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Abstract The sample complexity of a reinforcement-learning algorithm is highly coupled
to how proficiently it explores, which in turn depends critically on the effective size of its
state space. This paper proposes a new exploration mechanism for model-based algorithms
in continuous state spaces that automatically discovers the relevant dimensions of the en-
vironment. We show that this information can be used to dramatically decrease the sample
complexity of the algorithm over conventional exploration techniques. This improvement is
achieved by maintaining a low-dimensional representation of the transition function. Em-
pirical evaluations in several environments, including simulation benchmarks and a real ro-
botics domain, suggest that the new method outperforms state-of-the-art algorithms and that
the behavior is robust and stable.

Keywords Reinforcement learning · Exploration · Kernel regression · Dimension
reduction

1 Introduction

Reinforcement-learning (RL) agents need to explore their environments well to be effective
(Thrun 1992). A particularly successful and versatile approach to action selection is for
agents to plan to reach areas of the state space where their models are uncertain. Agents
can be encouraged to reach these states by a type of exploration bonus (Sutton 1990) added
to uncertain transitions, sometimes called “optimism in the face of uncertainty” and more
recently referred to as RMAX exploration (Brafman and Tennenholtz 2002; Kakade 2003).

Unfortunately, even with sophisticated exploration techniques, the problem of the curse
of dimensionality still looms large in complex environments. The “curse” refers to the math-
ematical fact that the volume of a space grows exponentially larger as the dimensionality
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increases. Having to reason about a state space using a finite number of samples, algorithms
face extreme challenges in high-dimensional environments. Without any remedy for han-
dling this type of data, algorithms are doomed to failure in complex domains (Chow and
Tsitsiklis 1989).

A classic approach to dealing with high-dimensional spaces in machine learning is to ex-
plicitly use a simpler representation of data by projecting it to lower dimensional spaces—
known as dimension reduction. In fact, the history of using dimension reduction in machine
learning goes back to several decades ago, with a large number of success stories (Jolliffe
1986). Methods, such as principal component analysis (PCA), have long been used in var-
ious scientific disciplines as a preprocessing step for handling high-dimensional data, and
are now considered standard for dealing with complex data. More recently however, the ap-
plicability of these methods has been extended a great deal, thanks to advances in the field of
statistical learning theory. Robust dimension reduction in regression using nonlinear kernel
transformation functions is an example of such an advance (Weinberger and Tesauro 2007;
Fukumizu et al. 2009).

The idea of dimension reduction has also been studied in the reinforcement-learning
community. For example, Kolter and Ng (2009) and Parr et al. (2008) learned the relevant
basis functions (for example, from a large pool), when approximating the value function
in the context of least-squares temporal difference learning (LSTD). Discarding irrelevant
basis functions reduces the number of free parameters and provides a more overfit-resistant
estimation. Some research makes an even tighter connection to the dimension-reduction lit-
erature by directly using some of the existing techniques and tailoring them to the RL frame-
work. For example, Smart (2004) used manifold learning for low-dimensional representa-
tion of the value function, and Mahadevan (2009) proposed a framework using Laplacian
operators for representing and controlling Markov Decision Processes (MDPs).

The main contribution of this work is a method for using dimension reduction to attack
the exploration problem in continuous state-space problems. Because of the focus on ex-
ploration, our research is orthogonal to existing dimension-reduction work in RL, which
focused on either statistical efficiency of learning or exploitation. We present a model-based
algorithm that discovers low-dimensional structures in system dynamics and uses this infor-
mation to perform “self-aware” exploration in a more compact space, resulting in a dramatic
decrease in the sample complexity.

In this work, we concern ourselves with the sample complexity of algorithms instead of
their computational complexity. It is important to note that the algorithm we propose, like
any model-based method, still needs an approximate planner to solve its internal model.
While the structure-discovery component allows learning to take place in a smaller sub-
space with far fewer sample points, planning still needs to take place in the original space,
which might be computationally burdensome. Of course, since the model-learning in the
algorithm is independent of the planning step, any approximate planner that can handle gen-
erative models can be used. In this work, we use fitted value iteration (Gordon 1995) or
FVI, but one can easily substitute the approximate planner most appropriate for the prob-
lem.

We consider reinforcement learning in environments that can be modeled as continuous
state MDPs. These domains can be described by a tuple 〈S, A, T ,R,γ 〉, where S is the state
space and is a bounded measurable subspace of R

|S|, A is a discrete set of actions, T is the
transition function that determines the next state given the current state and action. We focus
on transition functions that can be written in the form of st+1 = T (st , at ) + ωt , where the
subscripts indicate time, and ω is a white noise. The function R : S → R is the bounded
reward function, whose maximum we denote by Rmax. Finally, γ is the discount factor. The
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agent knows about S , A, R and γ , and has to learn the optimal policy by interacting with
the environment.1

In the first part of the paper, we discuss a particular method of performing dimension
reduction for multivariate regression. We then show in the second part how to incorporate
this idea into a model-based RL algorithm to estimate the transition function and drive ex-
ploration on several test domains.

2 Dimension reduction for regression

The task of dimension reduction for regression (DRR) is to find a low-dimensional represen-
tation of the input space such that the transformed data can predict the output independent
of the original covariates. To be more precise, let us define the data as a set of observations
of the form (x, y), where x ∈ R

m and y ∈ R
l , and the regression as the problem of estimat-

ing the conditional probability density of y given x. Therefore, the task of DRR is to find a
transformation function � : R

m → R
r , with r < m, such that x and y are conditionally in-

dependent given the transformation �(x) (Fukumizu et al. 2009). Of particular interest are
techniques that involve linear transformation functions, mainly because of their versatility
and speed. For convenience, we use matrix notation X to denote the row-wise concatena-
tion of xT

i for i = 1 . . . n. Linear transformation into r-dimensional subspace can then be
specified using an (r × m) matrix.

In this section, we first consider multivariate kernel regression and how to embed di-
mension reduction in it, and then show how to tailor this method to be most effective in a
model-based RL algorithm.

2.1 Metric learning for kernel regression (MLKR)

We build on the work of Weinberger and Tesauro (2007) on univariate kernel-metric learn-
ing. Given a query point x∗, the kernel regression outputs ̂y∗ as follows:

̂y∗ ≡ f̂ (x∗) =
∑n

i=1 k(x∗, xi)yi
∑n

i=1 k(x∗, xi)
, (1)

where k(., .) ≥ 0 is referred to as the kernel function. A lot of different kernel functions have
been studied in the literature, but we focus on the Gaussian kernel:

k(xi, xj ) = 1

σ
√

2π
e

− d2(xi ,xj )

σ2 ,

where d is the distance metric and σ is a constant that determines how fast the kernel decays
with respect to d . Equation (1) uses the whole dataset for prediction, which might be compu-
tationally inefficient; to alleviate this problem, an approximation that uses only the c closest
neighbors of x∗—denoted by Nc(x

∗)—can be used. This approximation sacrifices a little
accuracy for a lot of computational advantage, since the kernel function usually decays very
fast and far points don’t have much contribution to the estimates. The approximate kernel
regression can be written as:

f̂ (x∗) =
∑

xi∈Nc(x∗) k(x∗, xi)yi
∑

xi∈Nc(x∗) k(x∗, xi)
. (2)

1Extension to the case of unknown reward function is straightforward.
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Metric learning refers to the tuning of the distance function in the kernel so as to minimize
the regression error. For example, if one of the dimensions of the input space is irrelevant
to the true function f , a distance metric that is oblivious to that dimension is expected to
achieve better results. We shall use subscripts on k to indicate what metric is being used
inside the kernel. For example, ku denotes the kernel function with the Euclidian metric.

In order to tune the metric, we must first select a differentiable distance function with
respect to some parameter θ . This setup allows us to perform gradient descent to find the
optimal value. More precisely, let the loss function L be the cumulative leave-one-out error
of the training set: L = ∑

i ‖yi − ŷi‖2
2. The metric-learning algorithm updates θ iteratively

using the gradient descent rule: �θ = −α ∂L
∂θ

, where α is the learning rate. Any differentiable
distance function works in this procedure. Here, we use the Mahalanobis metric, which can
be written as:

d2
m(xi, xj ) = ‖A(xi − xj )‖2

2, (3)

where A is an (m × m) parameter matrix. In this equation, we have rewritten the original
Mahalanobis metric to make learning easier (Weinberger and Tesauro 2007). It can be shown
that:

∂L
∂A

= 4
∑

i

(ŷi − yi)

∑

j (ŷi − yj )Akm(xi, xj ;A)xij x
T
ij

∑

j �=i km(xi, xj ;A)
, (4)

where xij is a shorthand for (xi − xj ) and km is the Gaussian kernel with the Mahalanobis
metric. Note that the optimized A provides a completely data-driven distance metric, so
normalizing the data prior to regression—a vital step in regular kernel regression—is not
necessary anymore. In fact, the parameter σ and the leading coefficient in the kernel function
can also be omitted, as they are captured inside A.

Equation (3) reveals that the kernel regression with Mahalanobis metric is equivalent to
regular kernel regression after the transformation X ← XAT . So, A plays the role of the
transformation function in DRR. It is important to note that this transformation does not
explicitly reduce the dimensionality of the data as in a typical DRR application. But, since
the kernel regression does not care about the dimensionality of the points as long as the
correct distance metric is used, this transformation is enough.

Nevertheless, we can incorporate explicit dimension reduction into the metric learning
process to allow for a more sophisticated regression process. This way, we can transform the
data into a lower-dimensional subspace as a preprocessing step, and then use a more appro-
priate regressor afterward. Furthermore, it is generally known that simpler representations
provide more noise-resistant learning along with better computational complexities.

If we know the desired target dimensionality, forcing A to be an (r × m) matrix en-
sures that a transformation that maps the data into the r-dimensional space is directly
learned. If the target dimensionality is not known ahead of time, we can use an unsupervised
dimension-reduction method after XAT

m×m transformation. In particular, it can be shown
that directly learning Ar×m is similar to learning Am×m and mapping (XAT

m×m) into an r-
dimensional space using PCA (please refer to Weinberger and Tesauro 2007 for more de-
tails).

Algorithm 1 highlights the details of the whole process when PCA is used as a second
step to provide explicit dimension reduction. The W in line 7 is the PCA transformation
matrix.

We are now ready to introduce a variant of MLKR that is more suitable for model-based
RL algorithms.



Mach Learn (2010) 81: 85–98 89

Algorithm 1 Multivariate MLKR Algorithm
1: function train(X,Y)
2: Initialize A.
3: repeat
4: �A ← −α ∂L

∂A {using (4)}
5: until ‖�A‖∞ < threshold
6: X̃ ← XAT ;

{explicit dimension reduction step:}
7: W = PCA(X̃);
8: X̃ ← X̃WT ;
9: end function

10: function test(x)
11: x̃ ← Wx;
12: return f̂ (x̃) using (2) with ku kernel, and trained on (X̃,Y);
13: end function

2.2 Factorization of MLKR

For a given regression problem, the minimal of all the input subspaces that maintains the
conditional independency of y and x is called the central subspace. This concept provides
an important insight into the statistical efficiency of the dimension reduction and the corre-
sponding regression, as it signifies what portion of the input data is redundant or irrelevant.

Estimating the transition function of a continuous state-space MDP involves solving a
regression problem from R

|S| to itself, with the target covariates being the next-state com-
ponents. A large class of real-life environments, including most of the physical control prob-
lems have a factorized transition function, in which the individual components of the next
state are independent of each other (i.e. p(y(i)|x, y(j)) = p(y(i)|x) when i �= j ). In fact,
coming up with a control problem that is not in this class is not an easy task. For this type
of environments, we introduce a factorized variation of MLKR, or F-MLKR, that achieves
a better statistical efficiency. This improvement is achieved by breaking up the original re-
gression into several easier ones with smaller central subspaces.

This extension is pretty straightforward to construct: The R
m → R

l regression is broken
up into l univariate MLKR problems, one for each component of the output space. Upon
receiving the training data set, the algorithm feeds {(x1, y1(j)), . . . , (xn, yn(j))} to the j -th
MLKR learner, where yi(j) is the j -th component of yi . To estimate the value of a query
point x∗, it queries each MLKR learner and constructs ̂y∗ using the output of the learners.

It can be shown that the central subspace of each univariate regression is smaller than
or equal to the central subspace of the original multivariate formulation. In fact, since each
univariate regression is dealing with only one component of the output, less information
from the input space is typically needed, yielding smaller subspaces. We demonstrate this
by a simple example. Consider learning a simple function f (x) = I (x) + rd(x), where I is
the identity function and rd shifts the components of x downward. For this specific function,
the dependency set of all the output components is all of the input variables, and therefore
the whole input space is required to describe f . However, each output component depends
on only two dimensions of the input.

The factorized MLKR turns the regression into l sub-regressions and one might be con-
cerned about accumulation of errors caused by this process. But fortunately, it is easy to see



90 Mach Learn (2010) 81: 85–98

Fig. 1 Comparison of MLKR
and F-MLKR on a simple
regression problem

that the error of F-MLKR will not be more than the error of the original MLKR because of
the independency of the output variables. On the other hand, smaller central subspaces of
the factored regressors create exponentially better estimations due to the properties of the
curse of dimensionality.

As an example, we estimated the above function in R
10 using the two methods. Figure 1

shows what happens if we force different target dimensionalities on the regressors. To pro-
duce this graph, we generated 100 points uniformly distributed in the unit square and used
the above function plus a small amount of Gaussian noise to construct the training set. The
x-axis shows the internal dimensionality we forced on the regressors. The y-axis shows the
mean-squared-error measured on another set of 100 randomly selected points.

Since only one dimension is statistically sufficient to output each component of the output
(using the linear combination of the two dependent components), F-MLKR quickly achieves
good performance, even when the algorithm has to map the input data into scalars. On the
other hand, MLKR requires all the input dimensions in order to maintain the link between
the input and output. That is why the result for MLKR improves as more dimensions are al-
lowed in the transformation. MLKR cannot solve the regression problem as well as F-MLKR
even when it uses the whole input space, because a training set of 100 points is simply not
enough to cover a 10-dimensional space.

3 The proposed algorithm

This algorithm, which we call Dimension Reduction in Exploration (DRE), is derived in
the spirit of several published papers in model-based reinforcement learning that use model
uncertainty to drive the exploration toward parts of the state space in which the algorithm
is uncertain about its predictions (Brafman and Tennenholtz 2002; Kakade 2003). More
specifically, we build on the work of Nouri and Littman (2008) that introduced the concept
of continuous knownness for exploration.

Knownness is a quantity in [0 . . .1] defined on the state-action pairs—denoted by
τ(s, a)—and is a measure of how certain the algorithm is about the dynamics of the en-
vironment from state s when action a is performed. Depending on the knownness value,
the algorithm mixes its internal estimation of the transition function with another func-
tion that transitions to an imaginary state with the highest possible value. This augmented
estimation of the transition function creates bonus values that are inversely proportional
to the knownness values; therefore, it encourages the agent to reach states that are less
known.
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More precisely, DRE uses |A| F-MLKR multivariate regressors to estimate the transi-
tion function, each responsible for estimating the next state for one action.2 Each F-MLKR
in turn consists of |S| MLKR regressors inside, each responsible for estimating one of the
components of the next state. Let MLKR(a, i) be the univariate MLKR regressor responsi-
ble for estimating the i-th component of the next state when action a is used. Upon receiving
a query point (s, a), the estimated transition function—denoted by T̂ —returns ŝ ′ as the next
state, where ŝ ′(i) is the output of MLKR(a, i).

Furthermore, let sf be a new special state with self-loop transition on all actions and a
reward of Rmax. DRE constructs its internal model as M̂ = 〈S + sf , A, T̂ ′,R,γ 〉, where the
augmented transition function T̂ ′ is computed as follows:

T̂ ′(s, a) =
{

sf , w.p. 1 − τ(s, a)

T̂ (s, a), o.w.
(5)

The knownness function τ(s, a) is computed using the corresponding F-MLKR regres-
sor. This regressor computes the knownness of s as the minimum of that state’s knownness
in all of its internal MLKRs:

τ(s, a) = min
i

(τ (MLKR(a, i); s)), i = 1 . . . |S|. (6)

The knownness function for each individual MLKR regressor is computed based on the
same local smoothness principle that kernel regression is based on: nearby points have sim-
ilar outputs. In this work, we use a simple function to capture this:

τ(MLKR(a, i); s)) = 1

c

∑

x∈Nc(s̃)

ku(s̃, x), (7)

where s̃ is the transformation of MLKR(a, i) applied to s.
After the construction of M̂ , the algorithm uses an approximate planner to find a near-

optimal policy for it. It then takes the greedy action according to this policy. While any
planning algorithm for solving continuous state MDPs with generative models can be ap-
plied, we use FVI in our implementation as mentioned earlier.

Algorithm 2 shows how the agent learns in the environment.

Algorithm 2 DRE: A model-based algorithm for continuous state space MDPs
1: for all timesteps t do
2: Observe the transition 〈s, a, r, s ′〉, and add 〈s, s ′〉 to the history list ha .
3: if t mod planFreq = 0 then
4: for all actions a:
5: Use ha to train a-th F-MLKR regressor.
6: Construct M̂ and use FVI to solve it. Denote the optimal policy by π∗.
7: end if
8: execute action π∗(s ′).
9: end for

2We can construct DRE with MLKR instead of F-MLKR in a similar fashion.
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3.1 Discussions

There are two important characteristics that we believe are vital to the success of DRE.
First, the algorithm uses metric learning for estimating the transition function, and second,
it computes the knownness function in a subspace of the original state space.

One of the most important properties of dimension-reduction techniques in regression is
that they provide stable approximation when the sample size is small. In fact, many practical
applications of these methods are when the number of samples is in the order of the number
of variables, in which case the classic approaches typically fail. Therefore, DRE is able to
build very realistic models of the world in the early stages of learning, due to the efficiency
of dimension reduction in regression.

The space in which the knownness is computed directly affects the sample complexity
of the algorithm. For a query point to have a high knownness value, several points need
to exist in its vicinity. Therefore, covering a space with known points requires a training
set that is exponential in size with respect to the dimensionality of that space. By reducing
the dimensionality of the space in which the knownness is computed, far fewer samples are
needed to get high knownness values for the entire space.

The computational complexity of relearning the metric every planFreq steps seems
burdensome, because |A| × |S| gradient descent instances need to be solved. However, our
experiments indicate that the most time-consuming component of the algorithm is still the
planning step. Part of this phenomenon stems from the way gradient descent searches the
solution space. If we use the current A as the starting point of the gradient descent (Line 2
of Algorithm 1), after performing dimension-reduction once or twice, the starting point is
usually very close to the optimal solution. As a result, gradient descent returns very quickly.
If local optima are a concern and we can afford more computation, we can start the search
using several initial matrices, though we did not see much improvement using this technique
in practice.

DRE is closely related to factored RMAX (Strehl 2007) and SLF-RMAX (Strehl et al.
2007) in finite spaces. Factored RMAX takes in the dependency graph of input/output vari-
ables in the form of a Dynamic Bayes Net, or DBN, from the user and uses this structure
to reduce the size of the model class of possible transition functions. This reduction results
in exponential speedup in the sample complexity. SLF-RMAX is a followup of factored
RMAX that discovers the structure of the DBN itself during the learning.

In the next section, we empirically evaluate the performance of DRE, particularly focus-
ing on the characteristics we mentioned.

4 Experimental results

We empirically evaluate the performance of DRE in two widely used simulation domains in
the RL community and a real robotics task.

4.1 Domains

Generalized Mountaincar is adapted from Mountaincar, which is a well-studied environ-
ment in the RL community (Sutton and Barto 1998). In this domain, an underpowered car
tries to climb to a hilltop, but has to build up speed via several back and forth trips across
the valley (Fig. 2(a)). This problem has two state variables (horizontal position and velocity)
and three actions (accelerate left, neutral and forward). The agent receives −1 reward each
timestep and the episode ends once the car clears the hilltop.



Mach Learn (2010) 81: 85–98 93

Fig. 2 (a) and (b) Mountaincar and Puddleworld borrowed from Sutton (1996), (c) The Bumbleball domain

To emphasize the effect of dimension reduction, we extend the original Mountaincar to
n-Mountaincar, in which n cars are controlled simultaneously. Thus, the dimensionality of
n-Mountaincar is 2n and there are 3n actions available. The goal of the environment is still
to steer the first car to the hilltop, so the average number of timesteps to the goal is the same
in all n-Mountaincar domains. By comparing the results of an algorithm for different values
of n, we can determine how much increasing dimensionality degrades the performance of
the algorithm.

Generalized Puddleworld is adapted from Puddleworld (Sutton 1996), in which an agent
is placed inside a two-dimensional unit square and has to navigate to a small goal region
while avoiding two puddles on the way (Fig. 2(b)). There are four available actions (U, D,
R, L) that move the agent in the intended direction by 0.05 with the addition of a small
Gaussian noise N (0,0.01). Each step yields a −1 reward, but additional penalties are given
for entering the puddles.

Generalized Puddleworld extends the original version to n-dimensional spaces in a nat-
ural way: In this version, the agent is placed in the unit square of the n-dimensional space
and has 2n available actions. Actions (2i − 1) and 2i move the agent along the i-dimension.
Puddles are the projection of the original 2D puddles into the new space.

Bumbleball World is a robot navigation task carried out by a four-legged Sony Aibo
robot. In this domain, the robot has to navigate to a goal region while avoiding a moving
obstacle in the environment (we used a randomly moving toy ball called the Bumbleball
as the obstacle). The state space has five dimensions: the position and orientation of the
robot in the field, and the ball’s position (see Fig. 2(c)). The state information is computed
using an overhead camera. There are six available actions to the robot: move forward and
backward, turn left and right, and strafe left and right. The low-level gait pattern for these
actions were hard-coded into the robot and were executed for 1 second for each timestep.
Each step results in −1 reward, unless the robot hits the ball in which case it gets −40. The
episode ends when the robot reaches the goal, in which case it receives 20 reward, or 100
steps is passed.

4.2 Experiments

The first experiment was designed to demonstrate the statistical efficiency of learning
the transition function using metric learning with dimension reduction. For this reason,
we ignored the exploration problem and evaluated algorithms on offline data. For each
i-Mountaincar, we collected 500 transitions using a policy that selects actions randomly
from 100 random start states and runs for 5 timesteps. Each algorithm learned a model us-
ing the data. We then chose another 100 random start states as the test set, and evaluated
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Fig. 3 Batch reinforcement
learning in n-Mountaincar

each algorithm by running its learned policy from these points for 300 steps or until the goal
was reached. For the sake of statistical significance, the experiment was repeated 20 times.
The y-axis of Fig. 3 is the average steps to the goal from the test points. The x-axis shows
the dimensionality of the environment. Error bars represent standard deviation.

We compared two algorithms: one that used regular kernel regression (denoted by Plain)3

and DRE that used F-MLKR. The σ parameter of Plain was hand tuned to 0.3. For DRE,
the c was set to 20 and the PCA cutoff to 70%. FVI used 20 points per dimension for both
algorithms.

As mentioned earlier, the average number of steps to the goal is the same in all
n-Mountaincars, and any performance degrade is only due to the model-approximation er-
ror. While kernel regression is a powerful technique, it is still susceptible to the curse of
dimensionality. Thus, the performance of Plain degraded as the dimensionality increased.
At 3-Mountaincar, the space became simply too large for the 500 training points to cover.
F-MLKR on the other hand, managed to keep the dimensionality low even in 4-Mountaincar
because of the fact that only a subset of dimensions were necessary to predict each compo-
nent of the output. The internal dimension of the univariate MLKR’s never went above 2 in
this experiment.

The second experiment tested algorithms in an online setting. We first used the gen-
eralized Puddleworld. Each algorithm ran 50 episodes, with a cap of 300 steps, in each
i-dimensional Puddleworld. Results are averaged over 20 runs. We compared two algo-
rithms: DRE with F-MLKR and Plain. The exploration in Plain was handled by computing
the knownness as:

τ(s, a) = 1

c

∑

x∈Nc(s)

ku(s, x), (8)

using the corresponding kernel regressor for action a. This is similar to (7), but with the
kernel computed in the original space.

Both algorithms set planFreq to 100. Parameter c in the approximate kernel regression
was set to 20. Figure 4 shows the average performance-per-episode (cumulative reward di-
vided by number of episodes) when the dimensionality changes. Similar to the previous
result, the F-MLKR maintained the low-level representation in all the domains (it never
used more than one dimension in each MLKR). Therefore, DRE created high knownness
values very quickly, as they were computed in small spaces. The Plain algorithm was not
very successful in high-dimensional Puddleworlds.

3This algorithm is very similar to Jong and Stone (2007).
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Fig. 4 Online evaluation of two
algorithms in n-dimensional
Puddleworld

Fig. 5 Comparison of knownness using regular kernel regression (a) and MLKR (b)

In order to get more insight into why DRE was superior to Plain, we investigated the
knownness function in a simple experiment. We selected part of the transition function of
2D Puddleworld: f (x) = x(2)+0.05+ N (0,0.01). We then compared the knownness func-
tion using the two equations (8) and (7) after training with 50 samples. Figure 5 shows the
training points along with the knownness values across the entire space. The darker parts of
the image indicate smaller knownness values (0 is black and 1 is white). The MLKR regres-
sor discovered that the horizontal dimension is irrelevant to the function, and generalized the
knownness values across this axis (see Fig. 5(b)). On the other hand, since the Plain kernel
regressor works in 2D, it produced much smaller knownness values because of the weaker
generalization.

We then tested the algorithms in generalized MountainCar with the same setup. Figure 6
shows a more detailed graph of learning which reveals the total reward obtained in each
episode of learning. We ran Plain (Fig. 6(a)) and DRE (Fig. 6(b)) in 1-MountainCar (the
solid lines in the two graphs) and 3-MountainCar (the dotted lines). As the graphs show,
both algorithms performed fairly comparatively in 1-MountainCar; but, Plain completely
failed to learn in 50 episodes in 3-MountainCar, whereas DRE didn’t suffer much.

We have tried the proposed algorithm in several other benchmarks and have found it very
robust and stable. One of the contributing factors to this behavior is the very few number
of parameters to tune, and that they are not very sensitive. In fact, we used only one set of
parameter values to run the algorithm across all the environments (except for planFreq for
computational purposes). However, the kernel width typically plays an important role in the
prediction accuracy of the regular kernel regression and has to be picked carefully every
time a new problem is to be solved.
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Fig. 6 The learning curve of (a) Plain and (b) DRE on two environments: 1-Mountaincar and 3-Mountaincar

Fig. 7 Effect of different values
of σ in the Plain algorithm in 2D
Puddleworld

As an example, Fig. 7 shows the result of picking different values for σ in the Plain
algorithm in the 2D Puddleworld. Considering the range between the optimal and random
policies, which was between −23 and −453, we can see how sensitive the algorithm is to
this parameter. To make matters more complicated, we note that the best kernel width for
this domain will not usually be a good choice for other domains. (The best width we found
that performed reasonable across the domains we tried was 0.3, while the best value for 2D
Puddleworld was much higher.) This experiment shows how useful the role of automatic
structure discovery is when not a lot of prior knowledge is available for the problem at hand.

The final experiment we considered was the Bumbleball world. The task was to learn as
much as possible using 1000 samples. Three algorithms were evaluated: DRE, Plain, and a
model-based algorithm that took in the dependency structure from the user a priori and used
it as the transformation mapping—we called it Dmax. The dependency structure was hand
crafted in several DBNs using the fact that the movement of the ball is generally independent
of robot and vice versa. Each DBN described the dependency of one of the components of
the next state on the current state when a particular action was chosen. While these DBNs
are prohibitively many to include in the paper, it is very straightforward to generate them.
We set the planFreq parameter to 20 for all the algorithms.

Table 1 summarizes the performance of these algorithms averaged over 3 runs. Obvi-
ously, Dmax performed better than DRE because the structure was given to it, but DRE was
also able to learn this 5-dimensional task using only 1000 samples, which is quite remark-
able. Plain had no chance of learning given the very few number of samples. To get a sense
of what the numbers mean, we note that a randomly moving dog collects about −850 reward
in each episode.
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Table 1 Performance of three
algorithms in the Bumbleball
domain

Algorithms: Dmax DRE Plain

Total cumulative reward: −1865.3 −2290.6 −7437.3

Number of collisions: 25.6 37 165.6

Percent finished episodes: 83.2% 76% 9.4%

One of the interesting behaviors of the algorithm was that it quickly learned to avoid the
ball even though it hadn’t learned the optimal policy quite yet.

5 Conclusion

In this paper, we proposed a new model-based algorithm that automatically discovers de-
pendency structures in the dynamics of the environment. To achieve this objective, it uses a
technique from the dimension-reduction literature to maintain a low dimensional represen-
tation of the transition function. A specially constructed knownness function in the reduced
space is used as the exploration strategy of this algorithm.

We showed that this technique boosts the performance of the algorithm in two major
ways: (1) using dimension reduction provides a statistically more efficient way of learning
the transition function, and (2) the computation of the knownness function in the reduced
subspace helps dramatically decrease the sample complexity of the algorithm. Experimental
results in two simulation benchmarks and a real robotics task confirm that the new method
significantly speeds up the learning process and that the behavior is robust and stable across
domains.
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