
Mach Learn (2011) 82: 315–349
DOI 10.1007/s10994-010-5196-5

Neural networks for relational learning:
an experimental comparison

Werner Uwents · Gabriele Monfardini ·
Hendrik Blockeel · Marco Gori · Franco Scarselli

Received: 10 March 2007 / Revised: 10 June 2010 / Accepted: 17 June 2010 / Published online: 24 July 2010
© The Author(s) 2010

Abstract In the last decade, connectionist models have been proposed that can process
structured information directly. These methods, which are based on the use of graphs for the
representation of the data and the relationships within the data, are particularly suitable for
handling relational learning tasks. In this paper, two recently proposed architectures of this
kind, i.e. Graph Neural Networks (GNNs) and Relational Neural Networks (RelNNs), are
compared and discussed, along with their corresponding learning schemes. The goal is to
evaluate the performance of these methods on benchmarks that are commonly used by the
relational learning community. Moreover, we also aim at reporting differences in the behav-
ior of the two models, in order to gain insights on possible extensions of the approaches.
Since RelNNs have been developed with the specific task of learning aggregate functions in
mind, some experiments are run considering that particular task. In addition, we carry out
more general experiments on the mutagenesis and the biodegradability datasets, on which
several other relational learners have been evaluated. The experimental results are promising
and suggest that RelNNs and GNNs can be a viable approach for learning on relational data.
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1 Introduction

Object localization (Bianchini et al. 2005), image classification (Francesconi et al. 1998),
natural language processing (Krahmer et al. 2003), bioinformatics (Baldi and Pollastri
2004), QSAR (Micheli et al. 2001), web page scoring, social network analysis (Newman
2001) and relational learning are examples of application domains where the information of
interest is encoded into a set of basic entities and relationships between them. In all these
domains, the data is naturally represented by sequences, trees, and, more generally, directed
or undirected graphs. In fact, nodes can denote concepts while edges can specify their re-
lationships. A machine learning technique for graphical domains is formally described as a
function ϕ, to be learned by examples, that computes a value ϕ(G, n), where G is a graph
and n one of its nodes. Intuitively, ϕ(G, n) is a property of the concept n1 that is predicted
using all the known concepts and their relationships.

For example, relational databases contain information that is naturally encoded as graphs:
each tuple of a relation can be denoted by a node, while the relationships between different
tuples are represented by edges (see Fig. 1). The nodes of the graph have labels (i.e., feature
vectors of real numbers) which correspond to the fields of the tuples. Recently, the study of

Fig. 1 A relational database and its graphical representation. Tuples are represented by nodes and fields by
node labels. The goal of a relational learner is to predict the unknown value of a tuple field (here represented
by a question mark)

1For sake of simplicity, in this paper, the formally correct sentences “the concept represented by n” and “the
relationship represented by (n,u)” are sometimes shortened to “the concept n” and “the relationship (n,u),”
respectively.
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machine learning techniques for relational data has received an increasing interest from re-
searchers. A common goal consists of predicting the value of a field, i.e. learning a function
ϕ(G, n) from examples, that takes as input a database G and a tuple n and returns the value
of a target field of n. In the case of Fig. 1, ϕ may be used to predict the customer ratings: ϕ

exploits all the database information for the prediction; the training set consists of customers
that have or have not payed their debts.

In the last years, new connectionist models were proposed that are capable to take in in-
put graphs and trees directly, embedding the relationships between nodes into the processing
scheme (Hammer and Jain 2004). They extend support vector machines (Kondor and Laf-
ferty 2002; Gärtner 2003), neural networks (Sperduti and Starita 1997; Frasconi et al. 1998;
Gori et al. 2005) and SOMs (Hagenbuchner et al. 2003) to structured data. The main idea
underlying those methods is to automatically obtain an internal flat representation of the
symbolic and subsymbolic information collected in the graphs.

In this paper, we focus on supervised learning and we discuss and experimentally evalu-
ate two connectionist models that have been recently proposed, i.e. Relational Neural Net-
works (RelNNs) (Blockeel and Bruynooghe 2003; Uwents and Blockeel 2005) and Graph
Neural Networks (GNNs) (Gori et al. 2005). Those models are peculiar for two different
reasons. RelNNs have been defined having relational learning in mind and their character-
istics are specifically designed to obtain a good performance on tasks from such a field. On
the other hand, the GNN model has been conceived to be general and to be able to process
directly, i.e., without a pre-processing, a very large class of graphs, including for instance,
cyclic and undirected graphs.

The paper experimentally evaluates the performance of those methods on benchmarks
that are commonly adopted by the relational learning community. The results are promising
and are comparable to the state of the art on benchmarks on QSAR problems, suggesting
that RelNNs and GNNs can be a viable approach for learning on relational data. Moreover,
we study and report differences in the behavior of the two models, in order to have insights
on the possible extensions of the approaches. Actually, RelNNs and GNNs differ for the
connectionist components they exploit, for the kind of graphs they can process and for the
learning algorithm. The analysis of the experimental results aims to evaluate how each dif-
ference affects the performance and, more generally, the capabilities of the two models.

The paper is organized as follows. In the next section, we review RelNNs, GNNs and
some literature on connectionist models for graph processing. Section 3 describes the exper-
imental comparison. Finally, the conclusions are drawn in Sect. 4.

2 Graph processing by neural networks

There exists an extensive literature on the application of neural networks to structured data
domains. In this section, a quick overview of a number of approaches is given and GNNs
and RelNNs are situated with regard to other methods. In order to reach such a goal, we
introduce a general framework that is useful to formally describe the considered techniques.

In the following, a graph G is a pair (N ,E), where N is a set of nodes (or vertices), and
E is a set of edges (or arcs) between nodes: E ⊆ {(u, v)|u,v ∈ N}. We assume that edges
are directed, i.e. each edge (u, v) is ordered and it has a head v and a tail u. The children
ch[n] of a node n are defined by ch[n] = {u| (n,u) ∈ E}. Finally, a graph is called acyclic if
there is no path, i.e. a sequence of connected edges, that starts and ends in the same node,2

otherwise it is cyclic.

2The considered paths can be of any length and be simple (without repeating nodes) or not.
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Fig. 2 In a graph, nodes
represent concepts and edges
relationships. The state x1 is
computed by the transition
function that uses the label l1 of
node 1, the states x2,x4,x6 and
the labels l2, l4, l6 of the
children of 1

Connectionist models for graph processing assume that the data can be represented as
directed graphs, standing for a set of concepts (the nodes) connected by relationships (the
edges). The direction of each edge represents the dependence of a concept on another one,
i.e. the edge (n,u) denotes the fact that concept n can be defined using concept u. Moreover,
each node n has a feature vector of real values ln, called label, that describes some properties
of the concept.

In order to implement this idea, a real vector xn ∈ R
s , called state, is attached to each

node n (see Fig. 2). The state should contain a description of the concept represented by the
node, so the state of a node naturally depends on its label and on its children. Formally, xn

is computed by a parametric function fwn , called state transition function, that combines the
information attached to node n and to its children ch[n]

xn = fwn (ln,xch[n], lch[n]), n ∈ N , (1)

where xch[n] and lch[n] are the states and the labels of the nodes in ch[n], respectively. The
transition function f is implemented by a neural network and the parameters wn are the
weights of this network. Although the transition function can adopt a different set of para-
meters for each node, as suggested by the notation wn, such a solution is not useful, since it
would give rise to a model without generalization capability. In practice, only two solutions
are used in the existing models: all the nodes share the same parameters, so that wn = w

holds; a set of parameters is shared by a group of nodes and each node n has a type kn that
defines the group it belongs to, i.e. wn = wkn . For example, in a dataset that represents a
relational database, where nodes denote tuples, the type kn is naturally defined by the table
the tuple n belongs to. It is worth noticing that if a node type is used, nodes having differ-
ent type may even use different transition functions and feature vectors, i.e. ln ∈ R

dkn and
fwn = f kn

wkn
may hold.

Moreover, for each node n an output vector on is also computed that depends on the
state xn and the label ln of the node. The dependence is modeled by a parametric output
function gwn

on = gwn (xn, ln), n ∈ N . (2)
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Together, (1) and (2) define a parametric model that computes an output on = ϕw(G, n)

for each node n of the graph G, taking into account the labels and the relationships of all the
nodes in G. The parameter set w includes all the wn used by the transition and the output
functions.3

Graph and relational neural networks are supervised learning models. In the supervised
framework, the node output ϕw(G, n) predicts a property of the concept represented by n.
Thus, a supervised learning set L can be defined as a set of triples L = {(Gi , ni,j , tni,j

)|1 ≤
i ≤ p, 1 ≤ j ≤ qi}, where each triple (Gi , ni,j , tni,j

) denotes a graph Gi , one of its nodes ni,j

and the desired output tni,j
. Moreover, p is the number of graphs in L and qi is the number

of the supervised nodes in graph Gi , i.e. the nodes for which a desired output is given. The
goal of the learning procedure is to adapt the parameters w so that ϕw approximates the
targets of supervised nodes. In practice, the learning problem is often implemented by the
minimization of the quadratic error function

ew =
p∑

i=1

qi∑

j=1

(tni,j
− ϕw(Gi , ni,j ))

2 . (3)

As in common feedforward neural networks, several optimization algorithms can be used:
almost all of them are based on a subprocedure that computes the error gradient w.r.t. the
weights. When the gradient is available, the possible optimization methods include, for
instance, gradient descent, scaled conjugate gradient, Levenberg–Marquardt and resilient
backpropagation (Haykin 1994).

RelNNs, GNNs and the other neural models for graph processing differ with regard to
the implementation of the two functions fwn and gwn , and to the method adopted to compute
the states xn and the gradient of the error function ∂ew

∂w
. Those differences will be described

in the following sections.

2.1 Learning algorithms

All the models we consider are based on a common idea. The graph processing defined by
(1) and (2) can also be described as the computation carried out on a large network, called
encoding network, that has the same topology as the input graph. The encoding network
is obtained by substituting all the nodes of G with “units” that compute the function fwn .
The units are connected according to graph topology (Fig. 3), where the directions of the
arcs are inverted. The “f -units” calculate the states locally at each node. The information
is diffused through the encoding network following the connections defined by the edges:
while in the input graph edge directions express the dependencies between nodes, in the
encoding network they define the direction of the information flow. For the nodes where
the output is computed, the “f -unit” is also connected to another unit that implements the
output function gwn .

Actually, as clarified in the following, the encoding network can be used both to compute
the states and to adapt the parameters. Since the encoding network connectivity depends
on the input graph, in some approaches the input domain is limited in order to simplify

3Different versions of (1) and (2) can be used, without affecting or even improving the expressive power of
the model. For instance, a more general model can process also edge labels by including their codings into
the inputs of fw , i.e., replacing (1) by xn = fwn (ln,xch[n], led[n], lch[n]), where led[n] are the labels of the
edges coming out from n. On the other hand, removing the node label from the input parameters of gw does
not affect the expressive power, since such an information is already included in fw . In this paper, for sake
of simplicity, we describe only the simplest general model that includes both GNNs and RelNNs.
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Fig. 3 A graph and the corresponding encoding network. The computation is carried out by “f -units” locally
at each node and the information is diffused according to the graph connectivity. An output unit computes the
output at node 3

the learning and the testing procedures. In fact, the main difference between RelNNs and
GNNs is that the former model assumes that the input graph G is acyclic and has a root
node.4 The root is the only supervised node and RelNNs produce just one output for each
graph. Thus, RelNNs can be adopted only on those tasks where the goal is to classify the
concept represented by the whole graph, whereas GNNs make no assumption on the input
domain and can produce a different output for each node, i.e. they can classify also the single
concepts denoted by the nodes.

2.1.1 Relational neural networks

If a graph is acyclic, the corresponding encoding network turns out to be a large feedforward
neural network whose components are the neural network units implementing gwn and fwn

(see Fig. 4). Thus, there is an order in which the units should be updated to propagate the
signals from inputs to outputs. Going in the reverse direction, from outputs to inputs, makes
it possible to backpropagate the error signal and compute the gradient.

In other words, a common backpropagation procedure (McClelland et al. 1986) can be
applied on the encoding network in order to obtain the states xn and the gradients ∂ew

∂wn
. More

precisely, the states xn are evaluated by the networks fwn following the natural order defined
by the edges5: first the states of the nodes without children are calculated, then the states of
their parents, and so on until the state of the root is obtained. Finally, the output is produced
by gwn .

On the other hand, the gradient ∂ew
∂w

is calculated by backpropagating the error from
the root to the leaves. More precisely, the derivative of the error with respect to the node
state ∂ew

∂xn
is computed first for the root, then for its children, and so on, until the leaves are

4A root node of the graph from which every other node is reachable.
5Formally, an edge states that the concept represented by the parent node depends on the concept denoted by
the child. Thus, the set of edges define a partial order, called the natural order, that specify the dependencies
between the concepts.
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Fig. 4 An acyclic graph and the corresponding encoding network. The backpropagation learning algorithm
can be used on the encoding network, which is a feedforward network

reached. For each unit, the value ∂ew
∂xn

allows to calculate the gradient ∂ew
∂wn

. Finally, since
the parameters are shared among nodes of the same type, the corresponding gradients are
accumulated. Such a learning algorithm, which is also used for recursive neural networks, is
called backpropagation through structure (Sperduti and Starita 1997; Frasconi et al. 1998).

Moreover, it is worth noting that, even if cyclic graphs cannot be taken in input directly
by RelNNs, they can be transformed into trees by an appropriate pre-processing (see Fig. 5
and Algorithm 1). The procedure consists of unfolding the graphs into trees according to a
breadth-first visit. The visit starts from the node n where the output is evaluated. At each
step, a node u′ of the unfolding tree T along with a corresponding node u of the graph G
are considered: T is extended by connecting u′ to a new set of children that are exact copies
of the children of u. The procedure is repeated until T has reached a predefined depth. At
the end, T is made up of copies6 of the nodes of G such that each copy in T resembles a
node in G both for its label and for its local connectivity.

Even if in practical applications the unfolding tree often contains most of the original
information, in theory the pre-processing may cause a loss of information, because it may
happen that two different graphs and/nodes are unfolded to the same tree. On the other
hand, a theoretical condition ensuring that the unfolding is lossless is described in Bianchini
et al. (2006), where it is proved that the generated tree contains the same information of
the original graph, provided that all the edges are visited and the nodes have distinct la-
bels. See Blockeel and Bruynooghe (2003) for a more detailed description of the unfolding
procedure implicit in the RelNN processing scheme.

2.1.2 Graph neural networks

The input graph of a GNN, and as a consequence the encoding network, can be cyclic. In
this case, backpropagation through structure cannot be used to compute the states and to

6In general, for each node in G there may exist several copies in T . Even if the number of nodes grows expo-
nentially with respect to the tree depth, it is possible to merge the common sub-structures whose dimension
is linear with respect to the tree depth, as explained in Sect. 2.1.3.
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Fig. 5 A graph (A), its unfolding tree (B) and the corresponding directed acyclic graph (C). The tree (B)
is generated visiting the graph (A) with a breadth-first strategy. Graph (C) is generated by merging common
sub-trees in (B)

Algorithm 1 The unfolding algorithm
Require: a graph G and one of its nodes n

Build a tree T having a copy n′ of n as root
Create an empty queue Q

Q.push(n′)
repeat

u′ = Q.pop()

Let u be the copy of u′ in G

Let S be a set containing copies of the children ch[u] of u

Extend T by connecting u′ to its children S

Q.push(S)

until G has been visited and T has reached a desired depth
return T ;

train the network. Thus, three issues have to be addressed in order to implement GNNs: (a)
as the states xn are defined recursively, depending one on the other, it must be ensured that
they are defined unambiguously; (b) a method must be designed to compute the states xn;
(c) an algorithm is required to compute the gradient ∂ew

∂w
. Those issues are addressed in the

following.

– Existence and uniqueness of the states xn. Let F w and Gw be the vectorial functions
obtained by stacking all the instances of fw and gw , respectively. Then (1) and (2) can be
rewritten for the GNN model as

x = F w(x, l), o = Gw(x, l), (4)

where l represents the vector containing all the labels of the input graph and x collects
all the states. By the Banach fixed point theorem (Khamsi 2001), if Fw is a contraction
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mapping,7 then (4) has a unique solution. Thus, issue (a) can be solved by designing fw

such that the global function Fw results to be a contraction mapping w.r.t. the state x. In
practice, this goal can be achieved by adding a penalty term p(Fw) to the error function

ew =
p∑

i=1

qi∑

j=1

(tni,j
− ϕw(Gi , ni,j ))

2 + βp(Fw)

where p(Fw) measures the contractivity of Fw and β is a predefined parameter balancing
the importance of the penalty term with respect to the error achieved on patterns.8 More
details can be found in Gori et al. (2005), Scarselli et al. (2009b).

– Computation of the states xn. The Banach fixed point theorem also suggests a method
to solve issue (b). In fact, the theorem states that if Fw is a contraction mapping, then
the dynamical system x(t + 1) = Fw(x(t)), where x(t) denotes the proposed t -th iterate
of x, converges exponentially fast to the solution of (4). In other words, the states can
be simply computed by an iterative application of their definition, i.e. by the following
dynamical system.9

xn(t) = fw(ln,xch[n](t − 1), lch[n]), n ∈ N . (5)

Intuitively, each iteration corresponds to an activation of the f-units in the encod-
ing network. The computation is stopped when the state change becomes small, i.e.
‖x(t) − x(t − 1)‖ ≤ ε for a vectorial norm ‖ · ‖ and a predefined small real num-
ber ε > 0.

– Computation of the gradient. In order to design a gradient descent learning algorithm, we
can observe that the encoding network represents a system having a settling behavior. For
this reason, the gradient can be computed using the Almeida–Pineda algorithm (Almeida
1990; Pineda 1987). In fact, GNNs compute the gradient by a combination of the back-
propagation through structure algorithm and the Almeida–Pineda algorithm which con-
sists of two phases:

(a) The states xn(t) are iteratively updated, using (5), until they are close to the fixed
point at step r ;

(b) The gradient ∂ew
∂w

is calculated by backpropagating the error signal through the en-
coding network from step r back to previous steps, until the error signal is close to 0.
Then, the weights are updated.

Thus, while phase (a) moves the system to a stable point, phase (b) adapts the weights to
change the outputs towards the desired target. The two phases are iterated until some stop

7A function ρ : R
n → R

n is a contraction mapping w.r.t. a vector norm ‖ · ‖, if there exists a real number
μ, 0 ≤ μ < 1, such that for any x1,x2 ∈ R

n, ‖ρ(x1) − ρ(x2)‖ ≤ μ‖x1 − x2‖.
8More precisely, the proposed approach cannot ensure that the transition function Fw is a contraction map-
ping outside of the training set. In theory, a GNN may not be able to compute a unique state, if it is applied on
a graph which is different from those already observed in training set. However, in practice, such a case would
not have any particular consequence except for the wrong prediction produced for the current input graph.
More importantly, such a behaviour has never been observed in the experiments. It is also worth mentioning
that there exists another version of the GNN model, called linear GNN (Scarselli et al. 2009b), which does
not suffer from this limitation and was not used in this paper since, according to previous experiments, its
performance is lower.
9Since, by Banach theorem, the fixed point is unique, the stable point computed by the dynamical system
does not depend on the initial state.
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criterion is fulfilled. It is worth to mention that even if the gradient could be computed
also by applying the standard backpropagation through time algorithm (Werbos 1990) to
the encoding network, however the procedure adopted by GNNs is faster and uses less
memory by exploiting Almeida–Pineda algorithm peculiarities. More details can be found
in Gori et al. (2005), Scarselli et al. (2009b).

2.1.3 Computational complexity issues

The time computational cost of learning in RelNNs is mainly due to the forward and the
backward phases of the backpropagation algorithm. The two phases have linear cost with
respect to the dimension of the encoding network. When the input graph is acyclic, the
encoding network has exactly the same shape of the graph, so that each step of the learning
algorithm costs O(max(|N |, |E|)), i.e., the cost is linear with respect to the number of nodes
and the number of edges in G.

A similar analysis applies to the case when the input graph is cyclic, provided that we
consider the unfolding tree of G instead of G itself. One may wonder whether the dimension
of unfolding trees is a problem, since the number of nodes grows exponentially with respect
to the tree depth. However, unfolding trees can be easily reduced by merging the common
sub-structures (see Fig. 5). In fact, two nodes can be fused provided that they have the same
label and their children have been already fused. Such a merging procedure can be repeated
from leaves to root until, in each level of the tree, there are at most as many nodes as in G.
The result is an acyclic graph with less than O(d · |N |) nodes, where d is the maximum
depth of trees, that contains the same information of the original tree and can be processed
by a RelNN.

On the other hand, the GNN learning algorithm requires O(r ·max(|N |, |E|)) operations,
where r is the number of iterations needed to compute the state by (5). Such a claim is
explained observing that both each iteration of (5) and each step of backpropagation costs
O(max(|N |, |E|)) (see Scarselli et al. 2009b for more details). Interestingly, r is usually
small due to the fact that the convergence to the fixed point is exponential.

Thus, learning has a similar cost in RelNNs and in GNNs. The difference is mainly due to
the values d and r , which, are determined in two different ways: in RelNN, d is a predefined
parameter of the pre-processing procedure; in GNNs, r is dynamically determined during
learning.

2.2 Transition and output functions

RelNNs and GNNs differ also for the implementation of the transition and the output func-
tions.

2.2.1 Relational neural networks

Relational neural networks have the following peculiarities:

– The output function gwn is implemented by a feedforward neural network.
– The transition function fwn , which does not use the labels ln, is implemented by a recur-

rent neural network rwn that combines the states and the labels of the children of each
node n, storing the result into an internal state z(i) ∈ R

s (see Fig. 6(A)). Formally,

z(i) = rwn (xchi [n], lchi [n],z(i − 1)) (6)
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Fig. 6 The implementation of
the transition function in
RelNNs (A) and GNNs (B)

where chi[n] is the i-th child of n and z(0) = z0 is a default initial value. The recurrent
network processes a child at every time step i, following some predefined order, which
depends on the considered application. The final internal state is then used as the state
of the node, i.e., xn = z(|ch[n]|). Notice that different kinds of recurrent neural networks
have been proposed and can be used to implement rwn as, for instance, fully recurrent net-
works and locally recurrent networks (Back and Tsoi 1994). It is also worth mentioning
that the order according to which the children are processed may affect the performance
of RelNNs, particularly when such an order is arbitrary and it does not depend on do-
main knowledge. However, previous experiments have shown that the importance of the
issue can be mitigated by shuffling the children during the learning (Uwents and Blockeel
2005).

– Nodes are grouped per type. Different networks are used for different types of nodes.
Each network can have a different number of inputs and parameters. The weights are only
shared between networks of the same type.

2.2.2 Graph neural networks

Graph neural networks have the following characteristics:

– No distinction is made between the nodes in the graph. All the nodes share the same
transition function and the same output function, i.e., fwn = fw , gwn = gw and the same
parameters wn = w.

– In GNNs, the transition function fw is implemented as a sum of contributions (see
Fig. 6(B)). Each contribution is related to a child and is produced by a feedforward neural
network hw that takes in input the state and the label of the considered child and the label
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of the node10

xn = fw(ln,xch[n], lch[n]) =
|ch[n]|∑

i=1

hw(ln,xchi [n], lchi [n]). (7)

Notice that, differently from the RelNN solution, xn does not depend on the order in
which the children are processed. Obviously, this latter technique is advantageous or not
according whether, in the considered application domain, important information can be
encoded by an order relationship between the children.11

Interestingly, GNNs are apparently limited by the fact that the global transition function Fw

has to be a contraction map and that (7) is used in place of (1). On the other hand, GNNs
have been proved to be able to approximate in probability any function ϕ on graphs under
mild conditions on the input domain and on the set of considered functions. For instance,
the universal approximation holds provided that ϕ is continuous with respect to the graph
labels and any node of each input graph can be distinguished from the other nodes either by
mean of the label (the nodes have different labels) or by mean of the connectivity (the nodes
belong to different paths). The result holds for non-positional graphs, when the transition
function (7) is adopted, and for positional graphs, when (1) is used. More details can be
found in Scarselli et al. (2009a).

2.3 Related approaches

In this section, the connectionist approaches for graph processing are briefly reviewed dis-
cussing their relationship with the framework of (1) and (2). Larger reviews and other
attempts to describe the common features of those approaches can be found in Goulon-
Sigwalt-Abram et al. (2005), Hammer et al. (2004b).

Common recurrent networks can be considered the simplest method to deal with a non-
static domain, which, in this case, consists of sequences of real vectors. In fact, a sequence
can be straightforwardly represented by a graph where the nodes are connected in a line. On
the other hand, the actual ancestor of the connectionist methods for graph elaboration is the
Recursive Neural Network (RNN) model (Goller and Küchler 1996; Sperduti and Starita
1997; Frasconi et al. 1998). RNNs are similar to RelNNs as they can process acyclic graphs
having a root, but in the former approach the transition function fwn is directly implemented
by a feedforward neural network, instead of a recurrent network.12

The literature contains a number of extensions of the recursive model. For example,
different transition and output functions were proposed in Bianchini et al. (2005) in order to

10Interestingly, both RelNNs and GNNs use specialized versions of fw . Actually, hw in (7) and rw in (6)
are preferred to the general fw in (1), because they allow to easily deal with application domains where the
number of children for each node is highly varying.
11Notice that, in theory, the GNN transition function can be also used to process ordered graphs, provided
that an extra input, which codifies the position of the child, is added to hw . However, as far as we know, such
an extension has not been experimentally evaluated, yet.
12It is worth noticing that whereas the number of parameters of a feedforward neural network is predefined,
the number of inputs of the transition function, which include the states of the children, is different for each
node. Thus, the network implementing fwn is usually designed with a predefined number of inputs large
enough to be able to process the nodes with the maximal number of children: if the node has a smaller
number of children, then the input is appropriately padded. Thus the RNN implementation of the transition
function is more suited for those application domains where the number of children of a node is small and
has a small variance whereas in other cases the RelNN implementation is preferable.
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process graphs with edge labels. The transition function studied in Bianchini et al. (2001)
permits to deal with non-positional graphs, where no order relationship is defined between
the children of a node. The transition function defined in Micheli et al. (2004) is based
on a cascade correlation network, while the architecture in Micheli (2009) is automatically
constructed. On the other hand, the graph unfolding procedure, which has been described in
Sect. 2.1.1, was previously used in Bianchini et al. (2006) in order to apply recursive neural
networks on cyclic graphs.

Finally, some effort has been dedicated to the study of the theoretical properties of RNNs
and a sort of universal approximation property was proved. In fact, RNNs can approximate
in probability any function on trees (Hammer 1999). Such a property is the counterpart of
that proved for GNNs.

The schema of (1) and (2) has also been used to design unsupervised methods. In this
case, the network parameters are adapted to obtain a clustering/auto-organization of the con-
cepts represented by the graph nodes. After the training, the output on is considered a coding
of the concept denoted by n. In SOM for Structured Domains (SOM–SD) (Hagenbuchner et
al. 2003), the output network does not exist, i.e., on = xn holds, while the transition function
is a SOM neural network. The state of the node xn is a codebook that identifies the cluster to
which the concept belongs. In Labeling RAAM (LRAAM) (Sperduti 1994), the transition
network is based on auto-associators. More precisely, a feedforward neural network kw (the
auto-associator) takes in input, for each node n, the states of the children and the node label
[ln,xch[n]]. The auto-associator is trained to reproduce in output a copy of the input, in order
to force the auto-associator to produce a coding of the input into the hidden layer: later such
a coding is assigned to xn. In practice, in LRAAM, the transition function consists of the
function implemented by the first layer of the above mentioned auto-associator, whereas the
output layer is the identity function.

In LRAAM and SOM–SD, the states were defined each at a time following a predefined
order among the nodes. Such an assumption, which corresponds to dealing with directed
graphs, has been recently overcome by models, for instance Contextual SOM for Structured
Domain (CSOM–SD), that can update each state several times (Hagenbuchner et al. 2005,
2009). Other general unsupervised models can be found in Hammer et al. (2004a, 2004b).

From a practical viewpoint, the above mentioned models mostly differ for the learning
framework, supervised or unsupervised, and for the kind of graphs they can process. Thus,
in order to select the best model, the application domain must be carefully studied. For ex-
ample, GNNs and CSOM–SD can deal with cyclic graphs and allow to produce an output
for each node, whereas RNNs and SOM–SD can process only directed acyclic graphs and
the output is produced only in correspondence of the root. Moreover, also the use of par-
ticular transition function can simplify the elaboration of some particular kind of graphs,
for instance non-positional graphs (Bianchini et al. 2001). However, in many applications,
several models can be used, both since the data can be represented in different ways and
because different approaches can be used for the some kind of graphs. In those cases, the
best model can be chosen only by an appropriate experimentation.

Supervised connectionist models for graph processing have been used in several appli-
cation domains, including protein structure prediction (Baldi and Pollastri 2004; Money
and Pollastri 2009), QSAR (Micheli et al. 2001), theorem proving (Goller 1997), im-
age classification and object localization in images (Bianchini et al. 2003; Di Massa
et al. 2006), language recognition (Rodriguez 2001; Sturt et al. 2003), logo recogni-
tion (Francesconi et al. 1998) and web page ranking (Scarselli et al. 2005). Applications
for unsupervised methods include XML clustering and classification (Yong et al. 2006;
Hagenbuchner et al. 2006), image classification (Wang et al. 2002) and web document clus-
tering (Bloehdorn and Blohm 2006).
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Finally, graph processing by neural networks is related to other approaches where pat-
terns are represented along with their relationships. For example, Markov chain mod-
els can emulate processes where the causal connections among events are represented
by graphs. A Markov chain corresponds to a GNN where the transition function is lin-
ear and the output is a real value and is equal to the state on = xn. Random walk the-
ory, which addresses a particular class of Markov chain models, has been applied with
some success to the realization of web page ranking algorithms (Brin and Page 1998;
Kleinberg 1999). Recently, some attempts have been made to extend these models with
learning capabilities such that a parametric model representing the behavior of the system
can be estimated from training examples (Tsoi et al. 2003, 2006; Chang and Cohn 2000).

More generally, several other statistical methods have been proposed which assume that
the dataset consists of patterns and relationships between patterns. Those techniques in-
clude kernel machines for graphs (Gärtner et al. 2004), random fields (Lafferty et al. 2001),
Bayesian networks (Jensen 1996), statistical relational learning (Getoor and Taskar 2007),
transductive learning (Vapnik 1998) and semi-supervised approaches for graph process-
ing (Chapelle et al. 2006). A comparison between connectionist models for graphs and other
approaches is complex and out of the scope of this paper. Here, it is sufficient to notice that
the most obvious advantage of the neural models is in the low computational complexity
of the test phase, which can be carried out in linear time both with respect to the data and
the model dimension. Moreover, the approximation capabilities of neural models have been
widely investigated proving that they behave as sort of universal approximators. On the other
hand, kernel machines have the advantage of being able to generalize well even when the
training set is particularly small. Finally, random fields, Bayesian networks and statistical
relational learning provide classification mechanisms with a strong foundation on statisti-
cal theory, while transductive and semi-supervised approaches allow to easily exploit data
without targets.

3 Experimental results

In order to evaluate the GNN and the RelNN models on relational data, we tested them
on benchmarks that are often used to compare Inductive Logic Programming (ILP) and
Machine Learning (ML) techniques. The considered problems include the task of modeling
the tables produced by aggregate function queries and two benchmarks dealing with two
QSAR problems, i.e., the prediction of the mutagenicity and the biodegradability properties
of some molecules. The experiments on the first benchmark are mostly dedicated to evaluate
the properties of the two models, while the tests on the other datasets aim at a comparison
with other approaches.

The following statements hold for all the experiments. The datasets were split into a
training set, a validation set and a test set. Each model was trained for a predefined number
of epochs13 on the training set and, every 20 epochs, was evaluated on the validation set.
The network achieving the best error on the validation set was evaluated also on the test
set. The learning procedures of RelNNs and GNNs exploited the resilient backpropagation
algorithm (Riedmiller and Braun 1993) to update the network weights on the basis of the
gradient. In all the experiments, the resilient algorithm was configured using the default

13An epoch is a single step of the learning procedure and it consists of the presentation of the entire training
set to the network.
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parameters specified in the original paper, while the parameters of the transition and the
output networks were randomly initialized in the range [−0.01,0.01].

In RelNNs, where a recurrent network is used to implement the transition function,
the children are processed following an order that is shuffled at each epoch (Blockeel and
Bruynooghe 2003; Uwents and Blockeel 2005) during learning, while in testing the order
is the same of the original dataset. Moreover, in the problems where only a node has to be
supervised, the chosen node is the first of the original dataset.14

The GNN simulator adopted is implemented in MATLAB and is available to download
at Monfardini and Scarselli (2004), whereas the RelNN simulator is implemented in C.

3.1 Aggregation functions

Modeling an aggregate function can be considered the minimal requirement for a relational
learner. An aggregate function is applied to a set or bag of tuples and produces a value
summarizing a property of the bag content. There are a number of ways to graphically
represent a bag of tuples, which involves only two kinds of concepts: the tuple and the set.
For example, in a representation (Fig. 7(a)), a node denotes the bag and other nodes stand
for the tuples. Bags and tuples are connected by edges, directed from the former to the latter,
that indicate the “is-made-of” relationship. The supervised nodes, which ideally contain the
field to predict, are those corresponding to the bags. For its simplicity, the task of modeling
an aggregate function is well suited to evaluate the basic characteristics of RelNNs and
GNNs.

Here, an artificial dataset was exploited. Each bag included from 5 to 10 tuples, while
each tuple had 5 random real fields in the interval [−0.8,0.8]. The following aggregate
functions have been considered: count, sum, maximum, average and median. Except for the
count function, which simply computes the number of tuples in the bag, the other aggregate
functions are applied only on one attribute of each tuple (the first one). The presence of
useless attributes makes more difficult the task of the relational learner, which has to single
out the useful data while it is capturing the target function.

For each bag, its dimension was defined by a random integer number generator using a
uniform probability distribution in the range [5,10]. In order to avoid biases in the results,
the construction of the tuples consisted in two steps: first, the aggregation result was defined
by a uniform probability distribution; then, a set of tuples that produced or approximated the
expected result was generated by a pseudo-random procedure. Such a procedure depended
on the particular aggregation function for the production of the first field, whereas the useless
fields were always assigned random values uniformly distributed in [−0.8,0.8]. Thus, for
the maximum function, the first field of each tuple contained random values smaller than the
defined maximum, except for one tuple, which was forced to contain the exact result. For
the sum, the tuples were recursively generated and, at each step, the first field was assigned
a random value smaller than the difference between the current sum of the bag and the
expected result; the last tuple was set so that the sum of the bag is the expected one. For the
average, the first field was generated using a uniform distribution centered around the fixed

14It is worth mentioning that the selection of the supervised node and the children ordering can affect the
performance: usually such a choice is based on domain knowledge. For example, in image classification,
where the nodes can represent homogeneous regions of the image, the node of the central region of the image
or the larger region is often chosen for the supervision (Di Massa et al. 2006). For the considered experiments,
we could not individuate a piece of domain knowledge that can help in selecting a set of preferable nodes for
supervision or a particular ordering of the children. For this reason, we simply chose the first node and the
ordering provided in the original datasets.
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Fig. 7 Four graphical representations of a bag of tuples. In (a) and (b), a node stands for the bag and the
other nodes denote the tuples. There may be edges directed from the bag to the tuples (a) but also edges in
the opposite direction may be used (b). In (c) and (d), the bag is not represented and the tuples are arranged
in a sequence (c) or all connected (d)

average. The median dataset was generated in a similar way, but with the median instead of
the average.

Each bag was considered correctly predicted if the output of the network was within ±0.1
with respect to the target. Results have been averaged over three runs for each function. In
each run, the dataset contained 500 bags: 300 in the training set, 100 in validation set and
100 in test set. Moreover, the number of epochs was 1000.

The experimentation consisted of two parts. In an initial experiment, two basic RelNN
and GNN models were tested; then several variations of those models were evaluated to
measure the effect on the performance of the model parameters and of the data representa-
tion. The configuration of the basic models is:

– State dimension is 5 for both GNNs and RelNNs;
– The GNN transition function hw and the GNN and RelNN output function gw are net-

works with one hidden layer, 5 hidden neurons, hyperbolic tangent activation function in
the hidden neurons and linear activation function in the output neurons;

– In RelNN the transition function is implemented by a recurrent network rw with 5 locally
recurrent neurons using the hyperbolic tangent activation function;

– The weights are shared among all the nodes both in GNNs and in RelNNs;15

15Notice that even if RelNNs have the capability to use different networks for different types of nodes in rep-
resentation (a) such a capability is not useful. In fact, the output function is evaluated only on the compound
nodes and the transition functions only on the nodes representing the tuples.
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Table 1 The accuracies (percentage) achieved with GNNs and RelNNs on the aggregation function experi-
ment using the base configuration. The sample standard deviation is reported in square brackets

Model Count Sum Max

Test Train Test Train Test Train

GNN 100 [0] 100 [0] 100 [0] 100 [0] 48.3 [9.29] 61.3 [12.2]

RelNN 99.0 [0.23] 99.5 [0.19] 99.8 [0.09] 99.9 [0.14] 45.1 [3.74] 63.0 [1.43]

Baseline 16.7 16.7 16.0 16.0 10.8 11.0

Model Avg Median

Test Train Test Train

GNN 100 [0] 99.8 [0.19] 84.3 [0.58] 87.3 [0.34]

RelNN 99.0 [0.57] 99.7 [0.26] 80.9 [1.86] 89.32 [0.92]

Baseline 18.4 19.0 31.0 31.2

– Bags of tuples are represented as in Fig. 7(a).16

This configuration was chosen, by a preliminary experimentation, among those achieving
the best performances and allowing a simple comparison of the models. However, the pur-
pose was not that of measuring the maximal performance, so that an exhaustive experimen-
tation was not carried out.

Table 1 shows the results obtained by GNNs and RelNNs in the base experiment. Notice
that the performance achieved by the two connectionist models varies largely according to
the considered aggregation function. This variance partially depends on the general difficulty
of neural networks to approximate some functions. For example, it is well know that even
a simple feedforward neural network can approximate more easily a function that counts or
sums the input values, than a function that computes the maximum. Actually, feedforward
neural networks having just one hidden neuron can approximate up to any degree of preci-
sion the sum and the count maps (Gori et al. 1998). On the other hand, the approximation of
the maximum function requires a number of hidden units that depends on the desired preci-
sion. Similarly, the approximation of the average and the median is more difficult because
they are composite functions: intuitively, the average requires to sum and to count the tuples,
while the median needs to sort and count the tuples.

On the other hand, the performance of the RelNN and the GNN models are very close on
all the tasks. Such a fact is probably due to the simplicity of the considered problems and
the simplicity of the data representation that does not highlight differences.

GNN and RelNN have been also compared with a baseline approach in last row of Ta-
ble 1. The baseline results were obtained by computing an optimal constant output on train-
ing set and using such a value as a response to every query. Such a comparison confirms that
the two connectionist models learn to combine the information contained in the bags.

More experiments have been carried out in order to evaluate how simple variations to
the base configuration affect GNN performance. The first experiment compared different
representations of a bag of tuples. More precisely, those depicted in Fig. 7 were considered.
Representation (b) is equal to (a) with the difference that also the “belongs-to” relationship
is used, i.e., there are edges going from the tuples to the sets. In (c), the tuples are arranged

16It is worth mentioning that RelNNs can directly process such a representation without a preliminary un-
folding, since the graph in Fig. 7(a) is a tree.



332 Mach Learn (2011) 82: 315–349

Table 2 The performance of the GNN model on the aggregation function benchmarks. The first row displays
the result of the base configuration, while other rows show the performance of a number of variations: in rows
2–4, different representations of the bags of tuples; in row 5, the label of the parent is not used in transition
function. Computation times (CPU elapsed times) are in seconds for each run (averaged on the five different
aggregation functions) on a PC with a CPU Athlon 4600+. The average sample standard deviation is reported
in square brackets

Representation Count Sum Max

Test Train Test Train Test Train

Base: Fig 7(a) 100 [0] 100 [0] 100 [0] 100 [0] 48.3 [9.29] 61.3 [12.17]

Fig 7(b) 100 [0] 100 [0] 100 [0] 99.3 [0] 58.3 [5.51] 82.1 [4.86]

Fig 7(c) 17.7 [0.58] 18.7 [0.34] 90.7 [8.33] 90.6 [6.77] 59.3 [19.63] 64.8 [16.37]

Fig 7(d) 100 [0] 100 [0] 100 [0] 99.5 [0.25] 71 [6.93] 89.2 [8.34]

no parent label 100 [0] 100 [0] 100 [0] 100 [0] 49.3 [9.29] 60.2 [16]

Representation Avg Median

Test Train Test Train

Base: Fig 7(a) 100 [0] 99.8 [0.19] 84.3 [0.58] 87.3 [0.34]

Fig 7(b) 99.3 [1.15] 99.7 [0.58] 78.3 [0.58] 78.3 [2.18]

Fig 7(c) 97 [0] 96.6 [0.20] 80 [1] 85.9 [2.41]

Fig 7(d) 100 [0] 99.7 [0] 87 [2] 88.1 [0.79]

no parent label 100 [0] 100 [0] 82.7 [1.53] 88.3 [1]

Representation Time (secs)

Test Train

Base: Fig 7(a) 0.05 101.8

Fig 7(b) 0.09 150.4

Fig 7(c) 0.08 92.4

Fig 7(d) 0.28 499.2

no parent label 0.07 93.0

in a sequence where the edges link a tuple to the following one. Finally, in (d) the bag is
not represented and all the tuples of a set are connected to each other by edges denoting
the “belongs-to-the-same-bag” relationship. Both in (c) and (d), a tuple must be chosen to
function as the supervised node: in our experiments, the selected tuple was the first that had
been generated, randomly, during dataset creation. Moreover, also the ordering of the tuples
in (c) is the one in which they were generated.

Table 2 shows the achieved performances. Interestingly, the best result is obtained with
representation (d), while one of the worst results is got by (c). Representation (d) is the one
in which the graph diameter17 is minimal, whereas representation (c) has the maximal diam-
eter. Thus, the difference in the performance is probably due to the long-term dependencies
problem that afflicts also common recurrent networks (Bengio et al. 1994). Intuitively, if the
diameter of the graph is large, the encoding network behaves as a deep network and learning

17The diameter of a graph is the maximal distance between two nodes, where the distance is defined as the
minimal number of edges contained in path connecting the nodes.
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is difficult, since the derivatives of error w.r.t. the weights rapidly decrease when they are
backpropagated.

One may wonder whether the diameter of any input graph could be decreased by adding
more edges. However, the edges cannot be chosen disregarding the fact that they have to rep-
resent useful information in the considered application domain. Moreover, the computation
time is affected by the number of edges in the representation as confirmed by last column of
Table 2.

A difference between the standard versions of RelNNs and GNNs is in the information
used by the transition networks: the label of the parent is adopted only by GNNs (com-
pare (6) with (7)). This fact may be an advantage, because more information is used, or
a disadvantage, because more parameters are needed. In another experiment, the label of
the parent node was removed from the transition function commonly used by GNNs, i.e.,
hw(ln,xchi [n], lchi [n]) in (7) is replaced by hw(xchi [n], lchi [n]). However, the results on the base
representation of Fig 7(a) do not single out a clear difference on the performance (see fifth
row of Table 2), suggesting that here the two mentioned effects are balanced.

Another set of experiments were dedicated to RelNNs, where the implementation of the
transition function is varied. More precisely, three transition networks were evaluated: a lo-
cally recurrent neural network (the base configuration), a fully recurrent neural network and
the sum of the outputs of a non-recurrent feedforward network adopting the GNN solution
described by (7). Fully recurrent neural networks have two layers: the input layer is fully
connected to the output one, while the output neurons are also back connected to the input
neurons. In locally recurrent networks, there is no feedback from output to input, but there
is a back connection from each output neuron to the neuron itself. See Back and Tsoi (1994)
for more details on those recurrent models. The parameters of the exploited network were
those defined in the basic configuration, i.e., 5 neurons in the output layer, state dimension
is 5, and 5 hidden neurons in the feedforward neural network.

Table 3 shows that the best performance is achieved by the GNN “sum” transition func-
tion. In order to explain such a result, it is worth mentioning that, in theory, recurrent net-
works are a more general model that can implement transition functions which cannot be
implemented by combining the outputs of a feedforward network.18 However, recurrent net-
works rely on the order by which the inputs (the children, in this case) are processed. More-
over, recurrent networks are affected by the long-term dependencies problem (Bengio et al.
1994) that limits the performance on long sequences. Thus, when the number of children is
large and/or the order is random and does not codify domain information, as in the current
experiment, the “sum” transition function can be advantageous over the recurrent networks.

3.2 The mutagenesis dataset

The mutagenesis dataset (Debnath et al. 1991) is a small dataset, publicly available (e.g.
in Mutagenesis 1991) and often used as a benchmark in the ILP literature (Lodhi and Mug-
gleton 2005). It contains the descriptions of 230 nitroaromatic compounds that are common
intermediate subproducts of many industrial chemical reactions. The goal of the benchmark
consists of predicting which compounds are mutagenic on Salmonella typhimurium. In the
original dataset, the value to be predicted was a real valued measure of the mutagenicity
of each compound. In fact, in Debnath et al. (1991) it is showed that 188 molecules out

18Fully recurrent networks have been proved to be universal approximators on sequences.
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Table 3 The performance of the RelNN model on the aggregation function benchmarks. The results achieved
by three different kind of transition functions are shown. Computation times (CPU elapsed times) are in
seconds. Experiments were conducted on an Intel Core Duo E6850 CPU at 3 GHz

Representation Count Sum Max

Test Train Test Train Test Train

Base: locally recurrent 99.0 [0.23] 99.5 [0.19] 99.8 [0.09] 99.9 [0.14] 45.08 [3.74] 63.0 [1.43]

fully recurrent 99.0 [0.35] 99.2 [0.14] 99.7 [0.30] 99.8 [0.13] 57.8 [7.24] 72.2 [4.60]

sum 99.9 [0.09] 100 [0] 99.8 [0.14] 99.8 [0.08] 78.1 [3.00] 84.1 [3.23]

Representation Avg Median

Test Train Test Train

Base: locally recurrent 99.0 [0.57] 99.7 [0.26] 80.9 [1.86] 89.3 [0.92]

fully recurrent 96.0 [1.37] 98.0 [0.35] 75.7 [2.29] 88.6 [0.40]

sum 99.8 [0.17] 99.9 [0.04] 86.4 [1.22] 94.2 [0.64]

Representation Time (secs)

Test Train

Base: locally recurrent 0.1 34.7

fully recurrent 0.1 37.4

sum 0.1 36.0

of 230 are amenable to a regression analysis. This subset was therefore called “regression–
friendly”, while the remaining 42 compounds were termed “regression–unfriendly”. How-
ever, as far as we know, the application considered in all the published papers is a classifica-
tion problem where it has to be predicted whether a compound is mutagenic (mutagenicity
is larger than one) or not (mutagenicity is smaller than one).

In this paper, we concentrate on the classification problem. GNNs and RelNNs were
trained to output 1 when they are fed on a mutagenic compound and −1, when the pattern
is not mutagenic. In the testing phase, a compound is predicted to be mutagenic or not
according whether the model output is larger than 0 or not.

Despite the fact that the dataset is quite small, it has been used intensively in the past
ten year to evaluate statistical and relational learning techniques. For historical reasons,
many authors have reported their results only on the “regression–friendly” part, that is often
referred to as “the” mutagenesis dataset. Moreover, the comparison is complicated by the
fact that many different features can be used in the prediction.

Each compound is provided with four global features (Debnath et al. 1991): two fea-
tures are chemical measurements (C), namely LUMO, or lowest unoccupied molecule or-
bital and logP, or water/octanol partition coefficient,19 while the other two features are pre-
coded structural attributes (PS). Moreover, some features describe properties of the sin-
gle atoms: they include the atom type and the charge. The atom-bond structure is also
given, which defines binary relationships between the atoms of each compound. Finally,
the presence of functional groups (FG), e.g. methyl groups, have been used in some papers

19Octanol is a fatty alcohol with eight carbon atoms that is immiscible with water. Water/octanol partitioning,
measured in logarithmic scale (LogP), is a relatively good approximation of the partitioning between the
cytosol and lipid membranes of living systems.
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as higher level features. This last kind of features describes some properties of groups of
atoms.

In our experiments, the simplest representation, denoted by AB, includes the atom-bonds
and the features of single atoms: the atom type and the charge. Moreover, atom types were
represented by a one-hot coding20 of the 9 different types available in the dataset. All other
features were denoted by the corresponding numerical values: the charge is a real and both
C and PS are 2-dimensional vectors.

The purpose of the experimentation on the mutagenesis dataset and, in the next section,
on the biodegradability dataset is to compare, on well known benchmarks from the rela-
tional learning field, the performances of RelNNs and GNNs to each other and with respect
to other models. Due to the large number of possible choices either in the representation
of the data and in definition of the model parameters, an exhaustive comparison of all the
possible solutions was not viable. Thus, in the following, we present the results obtained
with a configuration that was chosen according both to a preliminary experimentation and
some theoretical considerations. Such a preliminary study allowed us to define the most
promising configurations for RelNNs and GNNs and the range of the parameters to be ex-
perimented.

Two different graphical representations have been considered, that correspond to the
cases where the data is represented by two tables (Compounds and Atoms) and one table
only (Atoms), see Fig. 8.

(a) Each compound is denoted by a node that is labeled with the global features and is
connected to other nodes representing the atoms that belong to the compound. The atom
nodes are labeled with the type of the atom and are connected by edges to other nodes

Fig. 8 The graphical representations for the molecules of the mutagenesis dataset used for RelNNs (a) and
for GNNs (b). In (a) the supervised node is a node representing the compound. In (b), the supervised node is
one of the nodes representing the atoms

20A one-hot coding of a variable v that can assume a finite number of different values v1, . . . , va consists of
a a-dimensional vector [t1, . . . , ta ], such that if v = vi , then ti = 1 and tj = −1, for any j �= 0, hold.
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Fig. 9 The unfolding tree (b) obtained by unfolding the compound (a) up to depth 3. For the sake of clarity,
common substructures have not been merged

representing the bonded atoms. The attribute “is_mutagenic”, which has to be predicted,
is naturally associated with the compound node.

(b) The compound is not represented. The nodes standing for atoms are connected as in (a),
while their labels are extended with the global features. The supervised node can be any
node: in practice, only the first node21 of each compound is supervised.

The experimentation has been carried out using (a) for RelNNs and (b) for GNNs. Actu-
ally, the former representation is the more suited to represent the data for RelNNs, whereas
the latter is suitable for GNNs. This difference is due to the fact that RelNNs use differ-
ent neural networks for different relations, while GNNs do not. For this reason, RelNNs
can gain an advantage from having two different relations while GNNs cannot. Some pre-
liminary experimental results confirmed that RelNNs achieve the better performance with
representation (a), whereas GNNs obtain the better performance with representation (b).

Since representation (a) is cyclic, the graphs must be pre-processed using the unfold-
ing procedure described in Algorithm 1. Figure 9 shows an example of the results of the
unfolding of a compound.

Model configuration was as follows.

– The GNN transition function hw and the output function gw were implemented by feed-
forward neural networks with one hidden layer, hyperbolic tangent activation function in
the hidden neurons and linear activation function in the output neurons.

– In RelNNs, the transition function is implemented by a locally recurrent neural network
rwn using hyperbolic tangent activations.

Following the experimental procedure commonly adopted on this benchmark, we used a
10-fold cross-validation scheme. The dataset L was randomly split into 10 folds L1, . . . , L10.
For each i, an experiment was run using L \ Li for training and Li for testing. More pre-
cisely, L \ Li was further randomly split into an training set and a validation set, where
the validation set dimension equals the dimension of the test set, i.e., a 10% of the original
dataset The results were averaged on all the folds and on 3 different runs.

Validation sets were used to select the GNN and the RelNN parameter dimensions, i.e.
the number of hidden neurons and the state dimension. Nine different configurations were
evaluated by testing all the architectures that can be constructed by taking the number of

21More precisely, the first node is the one corresponding to the first atom in the list of the original dataset. As
far we know, the ordering in the dataset has no particular meaning.
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hiddens22 in 2,5,10 and the state dimension in 2,5,10. Moreover, the RelNN model has
been tested varying also the unfolding depth (in 1,2,3) and the transition function (choosing
among a locally recurrent network (lrc), a fully recurrent network (frc) or the sum of the
outputs of a feedforward network (sum)). The model architecture achieving the best result
on the validation sets was evaluated on test sets. More precisely, the best model is the one
obtaining the lower error average over all the folds and all the 3 repetitions.23

The number of training epochs was chosen by two different criteria: (a) during training,
the considered model was evaluated every 20 epochs on validation set and the epoch cor-
responding to best performance on validation set was considered the last epoch; (b) a large
number of epochs (500 in this case) was chosen, where “large” is heuristically defined as
a number several times larger than the number of epochs usually required by the learning
algorithm to reach a point where the error does not decreases significantly on training set
and on the validation set.24 In general, strategy (a) is preferable when a large validation set
is available and it provides a precise prediction of the error on test set. On the other hand,
the strategy (b) may be better provided that a too long learning time does not cause a loss of
generalization capability due to the overfitting phenomenon.

Table 4 shows the performances of GNNs and RelNNs on the two parts of the mutage-
nesis dataset and on the whole benchmark. The results indicate that, in our experimental
setting, stopping criterion (b) (column “500 epochs”) is better than criterion (a) (column
“Best on val.”) for GNNs, whereas the converse holds for RelNNs. In fact, in this case both
the validation and the training sets are probably too small: in GNN this gives rise to an early
stop of the learning, whereas in RelNN an overfitting phenomenon is observed.25 The differ-
ent behaviour of the two models with respect to overfitting can be confirmed by observing
the difference between the performances on training set and on test set, which is small for
GNNs and large for RelNNs (see Table 5). The reason of the overfitting in RelNN, which
has been not observed on the other datasets of this paper, has not been further investigated,
even if it is probably due to the number of parameters, which is larger than in GNN, and
to the (eventual) use of recurrent networks, whose performance depends on the sorting of
children.

Different sets of features for the labels were tested. More precisely, three cases were con-
sidered: only local properties and atom-bonds (denoted by AB);26 AB and chemical mea-
surements (denoted by AB+C); AB+C and structural attributes (denoted by AB+C+PS).27

22In order to keep small the number of experiments, only networks with the same number of hiddens in the
output function and the transition function were evaluated.
23It can be observed that such a procedure introduces a bias in the experiments, since the patterns of a
validation set are used also in test sets. On the other hand, the results aggregated by model allow to compare
the different configurations.
24It is worth to mention that for each experiment only one learning session is run for both the strategies and
that, in order to obtain a more fair comparison, the patterns originally assumed to the validation set has not
been used to extend the training set in strategy (b).
25It is worth to mention that the dimensions of the training set and the validation set have been selected
by heuristics and they have not been optimized. Probably, using different sizes for GNNs and RelNNs the
performance can be improved. Also, by leave-one-out validation, we could enlarge the training set. However,
those solutions have not been considered due to the long time required for running those experiments.
26Atom-bonds define the connectivity between the atoms and are not explicitly stored in labels.
27Notice that the actual label content depends also on the representation. In representation (b), the labels
contain both the local and the global features (C, PS), whereas in representation (a), the local features are
stored in the labels of the nodes standing for the atoms and the global features are stored in the labels of the
nodes denoting the compounds.
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Table 4 The performance of RelNNs and GNNs on mutagenesis benchmark. The columns display: the label
content; the architecture that produces the best performance on validation set; the accuracies achieved at the
end of the 500 training epochs and those achieved by the network that, during learning, has the best perfor-
mance on validation set. The architecture is defined by the number of hidden neurons, the state dimension, the
unfolding depth and the transition function, which can be a locally recurrent network (lrc), a fully recurrent
network (frc) and the sum of the outputs of a feedforward network (sum)

Model Label content Best architecture Accuracy

State Hidden Unf. Trans. 500 Best

dim. dim. depth type epochs on val.

Whole dataset

GNN AB 10 10 – – 81.74 [2.42] 79.13 [1.99]

GNN AB+C 5 2 – – 88.12 [0.50] 85.51 [0.66]

GNN AB+C+PS 10 2 – – 87.54 [1.00] 86.38 [0.25]

RelNN AB 2 10 2 sum 79.57 [2.01] 78.26 [0.64]

RelNN AB+C 5 10 2 sum 77.10 [1.47] 79.57 [1.70]

RelNN AB+C+PS 5 2 2 sum 80.87 [2.51] 83.04 [1.13]

Regression–friendly part

GNN AB 10 10 – – 80.49 [0.81] 79.59 [0.63]

GNN AB+C 2 5 – – 94.83 [0.83] 93.61 [1.07]

GNN AB+C+PS 2 2 – – 95.92 [0.32] 93.06 [0.93]

RelNN AB 2 10 2 sum 87.77 [2.48] 84.75 [1.82]

RelNN AB+C 2 2 1 sum 87.77 [1.22] 88.30 [0.45]

RelNN AB+C+PS 10 10 1 sum 88.30 [1.27] 91.49 [0.53]

Regression–unfriendly part

GNN AB 10 5 – – 79.67 [2.75] 79.83 [1.44]

GNN AB+C 2 10 – – 95.83 [1.44] 89.83 [1.61]

GNN AB+C+PS 2 10 – – 95.83 [1.44] 94.33 [1.15]

RelNN AB 2 2 2 sum 78.57 [7.72] 79.37 [2.71]

RelNN AB+C 5 10 2 sum 70.63 [4.64] 80.95 [2.71]

RelNN AB+C+PS 5 10 2 sum 73.02 [4.26] 80.16 [3.98]

The results in Table 4 indicate that GNNs and RelNNs can merge the global information
with the local information. In particular, the best performances are achieved when pure
graph features AB are merged with node information C and C+PS.

Table 5 compares the performance of the models when different number of hidden neu-
rons and different dimensions of the states are used. The table displays the performance on
the whole mutagenesis dataset using the features AB+C+PS, similar results were obtained
using only the friendly and the unfriendly parts of the benchmark and different sets of fea-
tures. The results show that even if the number of hidden neurons and the state dimension
affect the performance, the impact is not very large on the mutagenesis test set. Actually,
this fact can be explained by observing that increasing the dimension of the models would
allow to implement more “complex functions” on graphs. On the other hand, here such a ca-
pability is probably not exploited, because even if the ideal function that classifies correctly
the compounds is complex, such a function is not precisely defined by the current training
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Table 5 The effect on the performance of the architecture. RelNNs and GNNs are evaluated on the whole
mutagenesis dataset using the features AB+C+PS. The columns display: the architecture whose performance
is displayed; the accuracies achieved at the end of the 500 training epochs and those achieved by the model
that has the best performance on validation set. The architecture is defined by the number of hidden neurons,
the state dimension, the unfolding depth and the transition function, which can be a locally recurrent network
(lrc), a fully recurrent network (frc) and the sum of the outputs of a feedforward network (sum)

Architecture Train accuracy Test accuracy

State Hidden Type 500 Best 500 Best

dim. num epochs on val. epochs on val.

GNNs on whole dataset using AB+C+PS

2 2 89.84 [0.15] 86.90 [0.50] 87.97 [1.76] 87.25 [1.40]

2 5 90.96 [0.18] 87.67 [0.57] 88.70 [0.43] 87.10 [0.91]

2 10 91.57 [0.12] 87.68 [0.31] 88.70 [0.43] 86.38 [1.09]

5 2 90.17 [0.10] 87.63 [0.27] 87.39 [0.43] 85.80 [1.40]

5 5 91.07 [0.53] 88.22 [0.23] 88.41 [0.66] 86.81 [0.25]

5 10 91.72 [0.39] 87.54 [0.07] 87.97 [0.66] 86.09 [1.51]

10 2 89.82 [0.34] 87.48 [0.34] 87.54 [1.00] 86.38 [0.25]

10 5 90.94 [0.13] 87.41 [0.08] 88.99 [0.91] 87.10 [1.53]

10 10 91.56 [0.68] 88.08 [0.44] 89.13 [0.75] 86.23 [1.09]

RelNNs on whole dataset using AB+C+PS

2 2 lrc 89.62 83.37 81.01 80.72

2 2 frc 89.64 87.54 81.30 81.45

2 2 sum 86.81 82.54 78.70 81.01

2 5 lrc 94.28 83.71 76.67 81.30

2 5 frc 95.49 84.24 79.13 82.17

2 5 sum 92.36 83.24 79.13 80.72

2 10 lrc 96.88 82.64 76.38 80.58

2 10 frc 98.24 85.92 74.78 79.86

2 10 sum 94.71 85.63 77.25 78.99

5 2 lrc 91.18 82.14 80.87 80.29

5 2 frc 89.75 86.41 80.87 83.04

5 2 sum 85.43 83.55 78.26 77.97

5 5 lrc 95.24 89.15 80.29 81.16

5 5 frc 97.26 83.93 77.83 81.45

5 5 sum 91.68 84.22 78.70 78.70

5 10 lrc 98.15 88.91 76.81 82.61

5 10 frc 99.31 84.67 76.38 81.74

5 10 sum 95.07 84.67 78.55 80.72

10 2 lrc 90.25 87.21 81.30 81.30

10 2 frc 90.14 86.39 78.99 81.30

10 2 sum 76.18 74.35 71.88 71.88

10 5 lrc 95.05 85.07 79.28 81.88

10 5 frc 96.92 88.03 78.99 82.46

10 5 sum 84.20 80.20 76.09 76.23

10 10 lrc 98.39 84.91 77.68 82.46

10 10 frc 99.37 84.31 75.65 80.43

10 10 sum 91.74 85.38 77.68 79.13
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dataset that contains very few patterns. Thus, when the number of the parameters increase,
only the performance on training set eventually improves, e.g., in RelNNs.

Moreover, differently from the experiments on the aggregation function problems, the
best performances are achieved implementing the transition by recurrent networks (either
locally recurrent (lrc) or fully recurrent (frc)) instead of a sum of the outputs of a feedforward
network (sum). Such a difference may be due to the fact that the complexity of this problem
allows to exploit the larger approximation capability of the recurrent networks.

On the other hand, using the feature set AB allows us to compare the representations of
Figs. 8(a) and (b) in a particular case. In fact, representations (a) and (b) differ both for the
graph connectivity and for the label content. But, when AB is used, the atom labels have the
same content both in (a) and (b). The performance of GNNs and RelNNs are closer in this
case, which may suggest that the better GNN results may be due also to the different labels
used by the two models.

A review of the published results on the “regression–friendly” part can be found in Lodhi
and Muggleton (2005), whereas Ramon (2002), Uwents and Blockeel (2005) presents a
selection of results using the full set of compounds. Tables 6, 7, 8 report the performance
achieved by the state of the art techniques on the regression–friendly part, the regression–
unfriendly part and the whole mutagenesis dataset, respectively. In order to simplify the
comparison, those tables contain also a copy of the best results of RelNNs and GNNs.

The comparison is not straightforward because different methods exploit different feature
sets. However, if we focus on the absolute best performance of each method disregarding
the used features, we can observe that GNNs outperform other methods on the regression–
unfriendly part, while on the friendly part and on the whole dataset the results are close to
the state of the art. RelNNs produce slightly lower results with respect to GNNs. On the
other hand, if we take in consideration also the features, GNNs and RelNN performance
is comparable or better than the other approaches except for the feature set AB. This fact
can be explained by noticing that the capability of combining symbolic and sub-symbolic
information is an important characteristic of the proposed models. Such a characteristic is
less used when the features set does not contain the global properties, so that, in this case,
the models lose one of their advantages.

Finally, it is interesting to note that, whereas most of the approaches show a higher level
of accuracy on the whole dataset than on the regression–unfriendly part, this is not true for
our approaches. Such a behavior may suggest that the proposed connectionist models can
capture particular characteristics of the dataset, which cannot be captured by other meth-
ods. Those characteristics, however, may not be homogeneously distributed in friendly and
unfriendly parts. Such an odd distribution causes a difficulty in learning and gives rise to a
decrease in the performance when both parts are used.

3.3 The biodegradability dataset

In this section, the experimentation carried out on the biodegradability dataset (Dzeroski
1999; Dzeroski et al. 1999) is presented. Since the experimental procedure is very simi-
lar to that adopted for mutagenesis, in the following we only discuss the differences. The
reader is referred to the previous section for the representation of the compounds, the model
architectures and any other detail that is not explicitly reported here.

The biodegradability dataset is very similar to the mutagenesis dataset. The aim is to
predict the degree of biodegradability of 328 chemical compounds. The compounds are de-
scribed by some global information, molecular weight and logP, and by the atoms and bonds
that constitute them. For atoms and bonds, the type of atom or bond is given. This informa-
tion gives a full description of the molecules, but in earlier experiments conducted on this
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Table 6 A comparison of the performance of GNNs, RelNNs with other techniques on the regression–
friendly part of the mutagenesis dataset

Model Label content Reference Accuracy

GNN AB 80.49

GNN AB+C 94.83

GNN AB+C+PS 95.92

RelNN AB 84.75

RelNN AB+C 88.30

RelNN AB+C+PS 91.49

RS AB Lodhi and Muggleton (2005) 88.9

RDBC AB Kirsten (2002) 84

1nn(dm) AB Ramon (2002) 83

FOIL AB Quinlan and Cameron-Jones (1993) 76

MFLOG AB+C Kramer and De Raedt (2001) 95.7

1nn(dm) AB+C Ramon (2002) 91

RDBC AB+C Kirsten (2002) 83

P-Progol AB+C Srinivasan et al. (1994) 82.0

RS AB+FG Lodhi and Muggleton (2005) 89.9

Neural Networks C+PS Srinivasan et al. (1994) 89.0

RSD AB+C+FG Krogel et al. (2003) 92.6

RELAGGS AB+C+FG Krogel et al. (2003) 88.0

P-Progol AB+C+FG Srinivasan et al. (1994) 88.0

SINUS AB+C+FG Krogel et al. (2003) 84.5

RS AB+C+PS+FG Lodhi and Muggleton (2005) 95.8

boosted-FOIL not available Quinlan (1996) 88.3

dataset, extra descriptors were built. These extra descriptors include a vector of occurrences
of functional groups and the counts of small substructures in the molecules.

Thus five different features can be used for learning. Three of them are global values and
are related to the whole molecule: P0 contains the molecular weight and logP; P1 consists
of the counts of the different types of functional groups in the molecule; P2 consists of the
counts of common substructures in the molecules. The other two features describe the atoms:
R0 includes atom and bond type; R1 consists of background predicates on the functional
groups and substructures. A more detailed description of the information codified by R0,
R1, P1 and P2 can be found in Dzeroski et al. (1999).

In our experiments, atom and bond types were represented by one-hot coded vectors,
whose length was 11 and 4. Other features were denoted by their respective values. Thus,
P0 was a 2-dimensional vector, P1 and P2 were 30-dimensional sparse vectors.

For this dataset, researchers have studied both the corresponding regression problem,
where the half life time has to be predicted and the classification problem, where four cat-
egories were defined by common thresholds: chemicals that degrade fast, moderately fast,
slowly, or are resistant.

In the classification task, the output networks of RelNNs and GNNs had four output neu-
rons corresponding to the biodegradability classes. A one-hot encoding schema was used
to represent each class. The models were trained, by minimization of the common square
error function, to return the vector that represents the class to which the processed mole-
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Table 7 A comparison of the performance of GNNs, RelNNs with other techniques on the regression–
unfriendly part of the mutagenesis dataset

Method Label content Reference Accuracy

GNN AB 79.67

GNN AB+C 95.83

GNN AB+C+PS 95.83

RelNN AB 79.37

RelNN AB+C 80.95

RelNN AB+C+PS 80.16

TILDE AB De Raedt and Blockeel (1997) 85

RDBC AB Kirsten (2002) 79

1nn(dm) AB Ramon (2002) 72

TILDE AB+C De Raedt and Blockeel (1997) 79

RDBC AB+C Kirsten (2002) 79

1nn(dm) AB+C Ramon (2002) 72

Table 8 A comparison of the performance of GNNs, RelNNs with other techniques on the whole mutagen-
esis dataset

Method Label content Reference Accuracy

GNN AB 81.74

GNN AB+C 88.12

GNN AB+C+PS 87.54

RelNN AB 78.26

RelNN AB+C 79.57

RelNN AB+C+PS 83.04

RDBC AB Kirsten (2002) 83

1nn(dm) AB Ramon (2002) 81

TILDE AB De Raedt and Blockeel (1997) 77

1nn(dm) AB+C Ramon (2002) 88

RDBC AB+C Kirsten (2002) 82

TILDE AB+C De Raedt and Blockeel (1997) 82

cule belongs to. In the testing phase, the class predicted by RelNNs and GNNs is the one
corresponding to the largest output. The performance was measured by accuracy, i.e., the
percentage of the correctly classified compounds, and by accuracy up to one error (accuracy
±1), which consists of the percentage of examples whose classification is at most one class
up or down from the correct classification. For instance, a molecule that belongs to the class
fast and is classified as moderately fast, still counts as correctly classified in accuracy ±1.

In the regression task, the RelNN and GNN models, which had only one output, were
trained using a real value denoting the degree of biodegradability. Similarly to the original
paper (Dzeroski et al. 1999), the performance was evaluated using the correlation score
between the output of the model and the target to be predicted.
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Table 9 The performance of RelNNs and GNNs on the biodegradability regression task (at the top) and on
the classification task (at the bottom). The performance is measured by the accuracy and the accuracy up to
one error (Accuracy ±1), for the classification task, and by the correlation score, for the regression task

Regression task

Model Label content Best architecture Correlation

State Hidden Unf. Trans. 500 Best

dim. num depth type epochs on val.

GNN R0 10 10 0.6023 [0.0137] 0.6035 [0.0149]

GNN R0+P0 5 10 0.6823 [0.0056] 0.6822 [0.0049]

GNN R0+P0+P1+P2 2 10 0.4449 [0.0411] 0.4452 [0.0413]

RelNN R0 5 5 2 sum 0.6521 [0.0186] 0.6304 [0.0140]

RelNN R0+P0 2 5 2 sum 0.6516 [0.0203] 0.6499 [0.0210]

RelNN R0+P0+P1 5 2 2 lrc 0.6066 [0.0238] 0.6268 [0.0237]

RelNN R0+P0+P2 5 5 1 lrc 0.5619 [0.0427] 0.6417 [0.0120]

RelNN R0+P0+P1+P2 2 5 1 frc 0.5287 [0.0244] 0.6729 [0.0213]

Classification task

Model Label content Best architecture Accuracy Accuracy ±1

State Hidden Unf. Trans. 500 Best 500 Best

dim. num depth type epochs on val. epochs on val.

GNN R0 2 10 52.60 [0.97] 45.01 [1.36] 89.42 [0.94] 89.01 [1.70]

GNN R0+P0 5 10 58.34 [0.97] 53.66 [3.51] 92.96 [0.91] 91.65 [0.18]

GNN R0+P0+P1 10 10 54.85 [1.31] 42.66 [0.63] 91.55 [2.45] 89.60 [1.33]

GNN R0+P0+P2 2 10 53.31 [1.63] 41.68 [1.97] 88.60 [1.37] 91.34 [1.53]

GNN R0+P0+P1+P2 2 10 51.09 [1.85] 41.17 [0.02] 87.38 [2.00] 88.32 [1.55]

RelNN R0 5 2 2 lrc 39.33 [3.16] 40.00 [1.37] 87.87 [1.30] 92.26 [0.63]

RelNN R0+P0 2 2 1 frc 43.23 [1.60] 43.60 [0.43] 91.95 [1.56] 92.99 [0.83]

RelNN R0+P0+P1 2 5 1 lrc 52.01 [4.01] 50.73 [1.62] 91.04 [1.19] 92.01 [1.02]

RelNN R0+P0+P2 5 5 2 frc 48.72 [2.43] 47.62 [1.47] 88.60 [1.02] 90.67 [0.88]

RelNN R0+P0+P1+P2 2 5 2 lrc 49.94 [1.77] 51.46 [2.09] 89.39 [2.19] 91.22 [0.85]

Table 9 displays the performance on the biodegradability dataset. The best overall result,
both on the classification and the regression tasks, was obtained by GNNs with input R0+P0.
In most of the input configurations, GNNs outperform RelNNs, except on regression task
when all the features R0+P0+P1+P2 are used. Interestingly, the performance of both models
is maximal when an intermediate configuration is used between the shortest input R0 and
the longest R0+P0+P1+P2. Such a fact can be explained by observing that a larger set of
features requires a larger number of parameters and makes the networks more prone to fail
in generalization and to have overfitting problems. It is also interesting to notice that the
performance of the models is high even without any preprocessed input feature, i.e., using
R0, which includes only the graph connectivity and the bond and atom types.

Moreover, differently from the experiments on the mutagenesis, the stopping criterion
based on a large number of epochs and the criterion based on validation set achieve close
performances. The only exception occurs for GNN accuracy on the classification task: in
this case the former criterion clearly outperforms the latter. Notice that, even on the same
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Table 10 The effect on the performance of the number of hiddens and the state dimension. RelNNs and
GNNs are evaluated on the classification task of biodegradability using R0+P0. The columns display: the
number of hiddens and state dimension of the model whose performance is displayed; the accuracies achieved
at the end of the 500 training epochs and those achieved by the model that has the best performance on
validation set

Architecture Train accuracy Test accuracy Test accuracy ±1

State Hidden 500 Best 500 Best 500 Best

dim. num epochs on val. epochs on val. epochs on val.

GNNs on the classification task using R0+P0

2 2 66.96 [0.24] 56.33 [1.52] 53.11 [1.79] 49.10 [2.18] 92.26 [1.25] 90.22 [1.21]

2 5 74.57 [0.68] 58.03 [2.60] 56.79 [0.46] 48.27 [1.08] 92.16 [0.36] 92.25 [0.17]

2 10 78.39 [1.00] 58.86 [4.67] 57.09 [0.16] 47.48 [3.55] 91.64 [0.35] 91.03 [0.98]

5 2 67.03 [0.74] 57.75 [0.53] 53.33 [2.51] 51.42 [0.35] 90.22 [0.31] 89.61 [1.05]

5 5 75.61 [0.33] 61.06 [2.42] 57.82 [1.37] 49.97 [1.53] 92.56 [1.37] 90.92 [1.57]

5 10 79.52 [0.35] 64.58 [3.75] 58.34 [0.97] 53.66 [3.51] 92.96 [0.91] 91.65 [0.18]

10 2 66.75 [1.10] 54.72 [2.15] 52.93 [0.49] 48.87 [0.75] 90.63 [0.46] 91.02 [0.45]

10 5 75.71 [0.54] 59.96 [0.74] 57.30 [1.70] 49.49 [3.50] 92.46 [0.76] 89.80 [1.84]

10 10 79.12 [0.29] 64.71 [3.93] 56.71 [0.80] 52.64 [4.28] 93.17 [0.87] 91.35 [0.45]

RelNNs on the classification task using R0+P0

2 2 50.79 45.43 43.23 43.60 91.95 92.99

2 5 61.71 46.10 41.16 42.50 88.29 93.66

2 10 69.43 47.33 42.87 43.29 86.28 91.95

5 2 51.49 46.33 43.60 43.54 91.71 93.66

5 5 62.82 46.06 42.68 43.96 87.80 93.23

5 10 73.40 45.56 39.02 42.50 85.85 93.05

10 2 52.23 46.18 42.56 42.93 92.62 93.60

10 5 65.71 47.93 44.39 43.17 88.66 92.99

10 10 78.82 46.62 39.09 41.71 85.67 92.68

task, observing the accuracy ±1, we cannot identify a method that is clearly preferable.
This event may be explained observing that the square error function used during training
tends to directly increase the accuracy, whereas the impact on accuracy ±1 is an expected
consequence. Such a difference may indirectly changes the performance of the two stopping
criteria.

Table 10 illustrates the effect of using different numbers of hidden neurons and state
dimensions.28 It can be noticed that distance between the accuracy on the training set and
the accuracy on the test set increases in GNNs when a larger number of parameters are
employed. Such a behaviour confirms the presence of an overfitting problem that does not
allow to improve the performance with larger inputs. It is worth mentioning that the same

28For sake of brevity, the table shows only the performance on the classification task using the features
R0+P0, which is a case in the middle between the minimal number of features in R0 and the maximal in
R0+P0+P1+P2. Moreover, for RelNNs, only the “sum” transition function is considered. However, the other
cases showed similar results with respect to the goal of analyzing the effect of the number of hiddens and of
state dimension.
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Table 11 A comparison of the performance of GNNs and RelNN with other methods on the classification
task of the biodegradability benchmark

Models Label content Accuracy Accuracy ±1

GNN R0 52.60 89.42

GNN R0+P0 58.34 92.96

GNN R0+P0+P1 54.85 91.55

GNN R0+P0+P2 53.31 88.60

GNN R0+P0+P1+P2 51.09 87.38

RelNN R0 35.57 85.47

RelNN R0+P0 36.59 88.11

RelNN R0+P0+P1 42.68 91.16

RelNN R0+P0+P2 40.65 90.96

RelNN R0+P0+P1+P2 44.11 89.02

C4.5 P0+P1 55.2 86.2

C4.5 P0+P2 56.9 82.4

RIPPER P0+P1 52.6 89.8

RIPPER P0+P2 57.6 93.9

M5′ P0+P1 53.8 94.5

M5′ P0+P2 59.8 94.7

FFOIL P0+R0 53.0 88.7

ICL P0+R1 55.7 92.6

SRT-C P0+P1 50.8 87.5

SRT-C P0+P1+R1 55.0 90.0

SRT-R P0+P1 49.5 91.9

SRT-R P0+P1+R1 51.6 92.8

TILDE-C P0+R1 51.0 88.6

TILDE-C P0+P1+R1 52.0 89.0

TILDE-R P0+R1 52.6 94.0

TILDE-R P0+P1+R1 52.4 93.9

phenomenon, which is not evident on the R0+P0, arises also in RelNNs when larger inputs
are used.

Tables 11, 12 show the results achieved on the classification task and on the regression
task, respectively, as published in the literature (Dzeroski et al. 1999). Notice that R0, which
contains the graph connectivity, is needed by GNNs and RelNNs and has been always used
in our experiments, whereas such information is not useful or even misleading for most of
the other methods, since R0 is partially and implicitly contained in the other features. The
tables prove that the performance of our models is comparable to the other best results, but
not better: GNNs achieve the second best performance on classification task accuracy and
on regression task. The high results obtained by methods that do not exploit R0 suggests that
the counts of functional groups and substructures are probably a good propositionalization
of the relational data (graph connectivity), as already mentioned in Dzeroski et al. (1999).
On the other hand, the relatively high performance obtained by the presented approaches
using only R0 suggest that those methods can actually extract a large part of the information
in P0, P1, P2, R1 directly from the original graph.
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Table 12 A comparison of the performance of GNNs and RelNN with other methods on the regression task
of the biodegradability benchmark

Models Label content Correlation

GNN R0 0.6023

GNN R0+P0 0.6823

GNN R0+P0+P1+P2 0.4449

RelNN R0 0.6511

RelNN R0+P0 0.6329

RelNN R0+P0+P1 0.6253

RelNN R0+P0+P2 0.5228

RelNN R0+P0+P1+P2 0.5515

M5′ P0+P1 0.666

M5′ P0+P2 0.693

SRT-R P0+P1 0.580

SRT-R P0+P1+R1 0.632

TILDE-R P0+R1 0.622

TILDE-R P0+P1+R1 0.623

4 Conclusions

In this paper, we described and studied two recently proposed connectionist methods for
graph processing called Graph Neural Networks and Relational Neural Networks. The meth-
ods were compared and experimentally evaluated on benchmarks commonly used in rela-
tional learning field of research. The results are promising and suggest that RelNNs and
GNNs can be viable approaches for learning on relational data. In particular, on mutagene-
sis, the performance of RelNNs and GNNs equals and, in some cases, outperforms the state
of the art.

A larger experimentation of the proposed models is matter of future research. In particu-
lar, the fields of bioinformatics and image localization appear to provide applications where
GNNs and RelNNs may be useful. Moreover, a number of extensions of the models can
be investigated. For example, it may be interesting to study how the models can cope with
dynamic information, i.e., input graphs that change along time, or how they can deal with
missing information, for instance, label fields that are not available, and how the missing in-
formation can be eventually predicted. Moreover, several studies, which have been already
carried out for common feedforward networks, should be extended to GNNs and RelNNs.
For instance, the concept of Vapnik-Chervonenkis dimension and the cases when learning
without local minima is possible have not been investigated for the proposed neural models.
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