
Mach Learn (2011) 83: 137–161
DOI 10.1007/s10994-010-5193-8

Effective feature construction by maximum common
subgraph sampling

Leander Schietgat · Fabrizio Costa · Jan Ramon ·
Luc De Raedt

Received: 20 September 2009 / Revised: 15 February 2010 / Accepted: 12 May 2010 /
Published online: 20 July 2010
© The Author(s) 2010

Abstract The standard approach to feature construction and predictive learning in molecu-
lar datasets is to employ computationally expensive graph mining techniques and to bias the
feature search exploration using frequency or correlation measures. These features are then
typically employed in predictive models that can be constructed using, for example, SVMs
or decision trees. We take a different approach: rather than mining for all optimal local pat-
terns, we extract features from the set of pairwise maximum common subgraphs. The max-
imum common subgraphs are computed under the block-and-bridge-preserving subgraph
isomorphism from the outerplanar examples in polynomial time. We empirically observe
a significant increase in predictive performance when using maximum common subgraph
features instead of correlated local patterns on 60 benchmark datasets from NCI. More-
over, we show that when we randomly sample the pairs of graphs from which to extract
the maximum common subgraphs, we obtain a smaller set of features that still allows the
same predictive performance as methods that exhaustively enumerate all possible patterns.
The sampling strategy turns out to be a very good compromise between a slight decrease
in predictive performance (although still remaining comparable with state-of-the-art meth-
ods) and a significant runtime reduction (two orders of magnitude on a popular medium size
chemoinformatics dataset). This suggests that maximum common subgraphs are interesting
and meaningful features.

Editors: Hendrik Blockeel, Karsten Borgwardt, and Xifeng Yan.

L. Schietgat (�) · F. Costa · J. Ramon · L. De Raedt
Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven,
Belgium
e-mail: leander.schietgat@cs.kuleuven.be

F. Costa
e-mail: fabrizio.costa@cs.kuleuven.be

J. Ramon
e-mail: jan.ramon@cs.kuleuven.be

L. De Raedt
e-mail: luc.deraedt@cs.kuleuven.be

mailto:leander.schietgat@cs.kuleuven.be
mailto:fabrizio.costa@cs.kuleuven.be
mailto:jan.ramon@cs.kuleuven.be
mailto:luc.deraedt@cs.kuleuven.be

138 Mach Learn (2011) 83: 137–161

Keywords Feature generation · Subgraph mining · Structure-activity learning ·
Chemoinformatics

1 Introduction

During the last decade, a lot of attention has been devoted to mining local patterns in mole-
cular datasets, leading to the development of many graph mining systems. These systems
typically employ constraints to specify the patterns of interest, such as frequency, or top-k
according to a correlation measure (e.g., χ2). Graph mining systems then perform a com-
plete search through the entire graph space, enumerating all subgraphs satisfying these con-
straints (Yan and Han 2002; Bringmann et al. 2006) or even exhaustively enumerating all
possible subgraphs (Wale et al. 2008).

Usually the resulting patterns are not used directly. Instead, they are used as features in
combination with traditional machine learning algorithms. Furthermore, the quality of the
generated patterns is measured through the quality of the induced classifiers or models for
regression (Wale et al. 2008). While these approaches offer strong guarantees w.r.t. com-
pleteness or optimality of the found patterns, they have a high computational cost and re-
quire post-processing to deal, for example, with redundancy issues (Bringmann et al. 2006).
In this way, local pattern mining acts as a complex, expensive and indirect approach to
generate features for graphs.

We propose a simple, efficient and direct approach to generate interesting graph patterns.
The idea is to compute maximum common subgraphs from randomly selected pairs of exam-
ples and to directly use them as features. While computing maximum common subgraphs in
general is an NP-hard problem, a polynomial-time algorithm exists for outerplanar graphs
in combination with the block-and-bridge-preserving subgraph isomorphism (Schietgat et
al. 2008). Outerplanar graphs can be embedded in the plane such that all of their vertices lie
on the outside of the graph. It is known that 95% of the molecules in the NCI1 collection are
outerplanar (Horváth et al. 2006), which makes this class of graphs well-suited for molec-
ular datasets. Moreover, it has been shown that employing the block-and-bridge-preserving
subgraph isomorphism instead of the general subgraph isomorphism in graph miners yields
more predictive feature sets for molecular datasets (Schietgat et al. 2008).

The present article extends this earlier work in that it shows that extracting maximum
common subgraphs of pairs of molecules in this framework yields even better features. The
advantages of this approach are (1) that it is easy to control the number of produced fea-
tures, while setting the frequency in a pattern mining task yields an unpredictable number
of patterns; (2) that patterns can be extracted in polynomial time and more efficiently than
by frequent or correlated subgraph mining, as no search space has to be traversed; and
(3) that on 60 benchmark problems from NCI, the extracted features allow for the construc-
tion of SVM classification models that achieve significantly better predictive performance
than those built using features returned by traditional local pattern mining and exhaustive
fingerprint generation methods.

The text is organized as follows. We start by explaining the algorithm to compute a max-
imum common subgraph of two outerplanar graphs and the feature construction method
based on maximum common subgraphs in Sect. 2. Section 3 presents an experimental eval-
uation, showing multiple variants of our method and comparing them to the state-of-the-art.
In Sect. 4, we discuss related work and finally, we conclude in Sect. 5.

1National Cancer Institute: http://cactus.nci.nih.gov/.

http://cactus.nci.nih.gov/

Mach Learn (2011) 83: 137–161 139

2 Maximum common subgraph sampling

In this section, we describe how to extract maximum common subgraphs from a graph-
based dataset. We start by introducing the necessary concepts in Sect. 2.1. In Sect. 2.2, we
will present a high-level description of the polynomial algorithm that computes a maximum
common subgraph of two outerplanar graphs (Schietgat et al. 2008), which we will use for
the feature generation method discussed in Sect. 2.3.

2.1 Graph theoretical concepts

We now formally define the necessary graph theoretical concepts. For an overview of graph
theory, we refer to Diestel (2000).

A labeled graph is a quadruple G(V,E,Σ,λ), with V a finite set of vertices and
E ⊆ {{u,v} | u,v ∈ V } a set of edges. Σ is a finite set of labels and λ : V ∪ E → Σ is
a function assigning a label to each element of V ∪ E. If G is a graph, V (G) denotes
the set of vertices of G, E(G) denotes the set of edges of G and λG denotes the label-
ing function of G. The size of a graph is a function mapping a graph to a real number
size(G) = ∑

x∈V (G)∪E(G) wλG(x), where each possible label of l ∈ Σ has been assigned a
weight wl . In this article, we instantiate the size of a graph as the sum of its number of
vertices and its number of edges, that is, we chose wλG(x) = 1 for every x ∈ V (G) ∪ E(G).

A sequence x0, x1, . . . , xn of vertices is a path from x0 to xn if and only if {xi, xi+1} ∈
E(G), for all i ∈ [0, n − 1]. A cycle x0, . . . , xn is a path such that x0 = xn. A path without
repeated vertices is a simple path; a cycle without repeated vertices apart from the start and
end vertex is a simple cycle. A graph G is connected if there is a path between any pair of
its vertices; it is biconnected if for any two vertices u and v of G, there is a simple cycle
containing u and v.

A graph is planar if it has a planar embedding, that is, it can be drawn in the plane in such
a way that no two edges intersect except at a common vertex. The regions formed by the
edges in a planar embedding are called faces. There is one unbounded face, which is called
the outer face. A biconnected component or block of a graph G is a maximal subgraph of
G that is biconnected. A bridge is an edge that does not belong to a block. An outerplanar
graph is a planar graph that can be embedded in the plane in such a way that all of its vertices
lie on the boundary of the outer face. An outerplanar graph consists entirely of blocks and
bridges.

Figure 1(a) shows an example of a non-outerplanar graph in which there is one ver-
tex (marked in light gray) that is not on the outside of the graph. The graphs in Fig. 1(b)
and Fig. 1(c), however, are outerplanar. Every vertex is labeled with a color representing
a chemical element: black for carbon, white for hydrogen and blue for nitrogen. Note that
in all graphs, the edges between carbons and hydrogens are bridges, while the rest of the
graphs form blocks. From a chemical viewpoint, blocks correspond to ring structures while
bridges are linear fragments of the molecule.

Let G and H be graphs. G is a subgraph of H , if (i) V (G) ⊆ V (H), (ii) E(G) ⊆ E(H),
and (iii) λG(x) = λH (x) holds for every x ∈ V (G)∪E(G). Two graphs G and H are isomor-
phic if there exists a bijection ϕ : V (G) → V (H) such that for every u,v ∈ V (G) the fol-
lowing holds: (i) {u,v} ∈ E(G) if and only if {ϕ(u),ϕ(v)} ∈ E(H), (ii) λG(u) = λH (ϕ(u)),
and (iii) if {u,v} ∈ E(G) then λG({u,v}) = λH ({ϕ(u),ϕ(v)}). A graph G is subgraph iso-
morphic to H , denoted G � H , if and only if G is isomorphic to a subgraph of H . The
subgraph isomorphism problem, that is, the problem of deciding whether G is subgraph iso-
morphic to H , is NP-complete (Garey and Johnson 1979); this also holds for outerplanar
graphs.

140 Mach Learn (2011) 83: 137–161

Fig. 1 Examples of molecular graphs. The colors of the vertices correspond to their labels: black for carbon,
white for hydrogen and blue for nitrogen. (a) Example of a non-outerplanar graph, with the vertex that is not
on the outside of the graph marked in gray. (b) A maximum common subgraph under the general subgraph
isomorphism (MCS�), highlighted in gray. (c) A maximum common subgraph under the BBP subgraph
isomorphism (MCS�), highlighted in gray

A block-and-bridge-preserving (BBP) subgraph isomorphism from G to H is a sub-
graph isomorphism from G to H , denoted G � H , such that (i) {u,v} ∈ E(G) is a
bridge iff {ϕ(u),ϕ(v)} ∈ E(H) is a bridge, and (ii) {u,v} ∈ E(G) belongs to a block iff
{ϕ(u),ϕ(v)} ∈ E(H) belongs to a block. That is, the BBP subgraph isomorphism is a spe-
cial case of the general subgraph isomorphism in which the constraint holds that bridges of
G are only mapped to bridges of H and edges of blocks of G only to edges of blocks of H .
As opposed to the subgraph isomorphism problem, the BBP subgraph isomorphism prob-
lem is computable in polynomial time for outerplanar graphs (Horváth et al. 2006). For trees,
which are special outerplanar graphs (they are block-free), the BBP subgraph isomorphism
is equivalent to the subtree isomorphism.

A common connected subgraph I of two graphs G and H is a connected graph such
that I � G and I � H ; it is a maximum common connected subgraph when in addition
there exists no other common subgraph J , such that size(I) < size(J). From now on we call
this an MCS� (where � means that it is mined under the general subgraph isomorphism)
and implicitly assume that it is always connected. In the same way, we define an MCS�.
Note that, since the BBP subgraph isomorphism is a more restricted version of the general
subgraph isomorphism, an MCS� will be subgraph isomorphic to one of the MCSs�. Note
also that, in the worst case, there may exist a potentially exponential number of MCSs. In-
terestingly, even though computing an MCS� or an MCS� between two general graphs is
NP-hard (Garey and Johnson 1979), it is possible to compute an MCS� between two outer-
planar graphs in polynomial time by using the block-and-bridge-preserving (BBP) subgraph
isomorphism (Schietgat et al. 2008).

Figure 1 shows a comparison between an MCS� (b) and an MCS� (c). In both examples,
the MCS is highlighted in gray. Note that one of the edges is a bridge in the upper graph,
while it belongs to a block in the lower graph (marked with a * in both graphs) and hence,
it cannot be mapped under the BBP subgraph isomorphism. Chemically, it seems relevant
not to map linear fragments to fragments that are part of a ring structure. This example
shows that algorithms computing MCSs� are more likely to generate smaller subgraphs
than algorithms computing MCSs�.

For notational convenience, in the remainder of the text we will simply use MCS when
we mean the MCS�.

Mach Learn (2011) 83: 137–161 141

2.2 Computing an MCS of two outerplanar graphs

In this section, we give a high-level description of the algorithm that computes an MCS
of two outerplanar graphs (Schietgat et al. 2008). The algorithm is based on a dynamic
programming strategy that makes use of efficient matching algorithms during the partial
solution building step. The two key procedures are: (1) subgraph enumeration, in which we
will generate a set of particular subgraphs for each of the two input graphs and establish their
parent-child relationships, and (2) bottom-up MCS computation. in which we will compute
an MCS for each pair of generated subgraphs, building on the already computed solutions
for pairs of children of these subgraphs.

Enumerating relevant subgraphs of an outerplanar graph First, we denote with Gr the
rooted graph G where vertex r ∈ G, the root, is distinguished from the other vertices. With-
out loss of generality, we can assume that for all graphs, we have chosen a planar embedding.
Given an outerplanar graph Gr , we introduce two kinds of subgraphs of Gr : the block-
preserving-subgraphs and the block-splitting-subgraphs. The former are subgraphs in which
a block is either entirely included in the subgraph or not; the latter are subgraphs which
are created by removing part of a block between two vertices. We call these two kinds of
subgraphs the relevant subgraphs of Gr . More formally,

– Given an outerplanar graph Gr , we denote with Gr
i the maximal connected subgraph of

Gr containing r but none of the edges on the path(s) between r and a vertex i. Every
subgraph Gr

i (i, r ∈ V (G)) is then a block-preserving-subgraph (BPS) of G. Remark that
for several (r, i) pairs we may obtain identical BPSs. We note that Gr

r = Gr . Examples of
BPSs can be found in Fig. 2(b) and Fig. 2(c).

– Given an outerplanar graph Gr , two vertices u and v in the same block of G and an orien-
tation o ∈ {�,�} (counterclockwise or clockwise), we denote with G|o[u,v[the maximal
connected graph including u and v that remains after removing the vertices between v

and u on the Hamiltonian cycle2 over all vertices of the block according to the orienta-
tion o, and removing all edges adjacent to v but not belonging to the block. We call these
graphs block-splitting-subgraphs (BSS) of Gr . We use the notation “[u,v[” to stress that
the edges of u and all vertices between u and v are kept while those of v are removed.
Note that G|o[u,u[= G. An example of a BSS can be found in Fig. 2(d).

Fig. 2 (a) An (unlabeled)
outerplanar graph Gr .
(b) An example BPS Gr

n.
(c) An example BPS Gr

u.
(d) An example BSS G|

�[u,v[

2A Hamiltonian cycle is a simple cycle which visits each vertex of the block exactly once.

142 Mach Learn (2011) 83: 137–161

We also define a parent-child relationship between the relevant subgraphs. We say that a
relevant subgraph Ri is a child of a relevant subgraph Rj if (i) Ri is a strict subgraph of Rj ,
and (ii) there exists no other relevant subgraph Rk for which Ri is a strict subgraph of Rk

and Rk is a strict subgraph of Rj .
We denote with BPS(G) the set of all BPSs of an outerplanar graph G and with BSS(G)

the set of all BSSs of G. Finally, we define for two outerplanar graphs G and H the set
P(G,H), containing the union of the set of pairs of their BPSs and the set of pairs of their
BSSs:

P(G,H) = (BPS(G) × BPS(H)) ∪ (BSS(G) × BSS(H)).

As we want to make sure we process all p ∈ P(G,H) in increasing size, we will first order
them lexicographically according to their size.

Bottom-up MCS computation Once the relevant subgraphs have been determined, we com-
pute an MCS using a bottom-up dynamic programming strategy.

When computing an MCS of two outerplanar graphs G and H , instead of considering
all possible rooted graphs Gr

i (r, i ∈ V (G)) and Hs
j (s, j ∈ V (H)), it suffices to compute an

MCS of Gr
i with i an arbitrarily chosen vertex from G with each graph in the set {Hs

j | s,

j ∈ V (H)} and to take the maximal one. Similarly, if suffices to choose one orientation for
the BSSs of one graph and both orientations for the other one.

We now describe how to match two relevant subgraphs of the same type, that is, an
BPS of G and a BPS of H or a BSS of G and a BSS of H . Matching two subgraphs of
different types is not needed due to the BBP subgraph isomorphism. The key idea is to
consider appropriate combinations of children, and to extend their MCSs into an MCS of
their respective parents. The dynamic programming approach implies that we have access
to the already computed MCS of all possible pairs of children.

In order to find an MCS of two BPSs Gr
i and Hs

j (whose roots have the same label),
we make a weighted maximal matching between the set of children of Gr

i and the set of
children of Hs

j (matching BSSs with BSSs and BPSs with BPSs, and checking that the
connecting edges have identical labels) using Munkres’ algorithm (Munkres 1957). The
weights represent the size of an MCS between the pairs of children.

In order to find an MCS of two BSSs G|oG[xi ,r[and H |oH [yj ,s[(splitting a block BG and
a block BH respectively), where r and s have the same label, the MCS is the result of the
best matching, that is, the matching that results in the largest MCS, between the MCS of the
children G|oG[xi ,xk [and H |oH [yj ,yl [(in which the attached BPSs are also matched). If {r, xi}
and {s, yj } are the only remaining edges of both blocks and they have identical labels, then
{xi, r} is added to the MCS.

We note that, when computing the matchings in the above steps, only one solution is
considered in case of ties. This results in a polynomial complexity, but if there are multiple
possible MCSs, only one of them is returned.

One can prove that this algorithm runs in polynomial time by counting the number of
children to consider and using known bounds on the running times of the algorithms used
in the dynamic programming step e.g., a maximal matching can be computed in cubic time
(Munkres 1957).

2.3 Method

In this section, we describe how we use the MCS algorithm to generate features for graphs.
The idea is to select pairs of graphs from the dataset, and then compute one of their MCSs.
Before we discuss the method, we give a problem description.

Mach Learn (2011) 83: 137–161 143

Problem description We define the task of generating features in graphs as follows. Con-
sider a set of graphs G , where each graph has been labeled positive or negative w.r.t. a
particular classification task

G = {(gi,Ci) | Ci ∈ {+,−}}.
Given a dataset G , a set of possible constraints c and a number k (with 0 < k < ∞), the task
is then to find a set of k subgraphs satisfying the constraints c that are used as features for G .

MCS extraction First, we introduce some additional notation. We denote with G+ the sub-
set of graphs belonging to the positive class, that is,

G+ = {(gi,Ci) ∈ G | Ci = +}.
In the same way, we define G−. Note that G+ and G− form disjoint partitions of G , that is,
G = G− ∪ G+. Then, let G∗ be the subset of outerplanar graphs of G , that is,

G∗ = {g ∈ G | g is outerplanar}.
Now we are ready to introduce the notation for extracting MCS features. We define

F (X,Y) = {p | p = MCS(x, y), x ∈ X, y ∈ Y }
where MCS(x, y) returns an MCS� of x and y computed and where X and Y are arbitrarily
defined sets of graphs. Observe that per pair of graphs, we compute only one MCS. We can
obtain different subsets of F (X,Y) by: (1) varying the selection strategy, that is, the way we
choose X and Y , possibly using a sampling method, and (2) adding additional constraints
on the found subgraphs p. In particular, the choices that we consider are:

1. Selection strategies on X and Y

– X = G∗ and Y = G∗, that is, we compute all MCSs from all pairs of outerplanar graphs
in our dataset;

– X = G∗+ (G∗−) and Y = G∗+ (G∗−), that is, we consider only subgraphs common between
graphs belonging to the same class (either positive or negative) in order to capture
features that are more discriminative for the given target concept;

– a sampling approach that selects couples (x, y) from X×Y uniformly at random. This
allows one to trade-off the accuracy with the efficiency as a reduced set of k features
can be generated more quickly. We denote a reduced set of k features as F k .

2. Additional constraints c on the retrieved subgraphs p

– freq(p, G) ≥ f , that is, p is a subgraph of more than f graphs in the dataset G ;
– χ2(p, G) > t , that is p is a subgraph occurring in more graphs from the positive (nega-

tive) class than from the negative (positive) class, where the exact threshold is derived
by the χ2 score, often used to compute the significance of patterns (Bringmann et al.
2006);

– size(p) ≤ s, that is, p has to have a size below the threshold s.

When a constraint c is imposed on a set of features F we denote the resulting set as c(F).
For instance, freq(F , G) ≥ f represents the set of patterns in F with a frequency higher
than f . Furthermore, we use the notation arg maxk φ(F , G) to denote the top-k features
from F , that is, the k features from F that score best with regard to a scoring function
φ(·).

144 Mach Learn (2011) 83: 137–161

Computational complexity In order to gain an understanding of the time complexity of the
proposed approach, we identify and discuss four key processes: (1) the computation of the
set of MCSs between two graphs x, y; (2) the selection strategy, which determines the set of
graphs from which to sample the pairs (x, y); (3) the elimination of multiple occurrences of
the same subgraph; and (4) the embedding of the extracted subgraphs in the graph dataset:

1. MCS computation While computing the MCS set under the general subgraph isomor-
phism is NP-hard, determining a single (random) MCS under the BBP subgraph isomor-
phism of two outerplanar graphs can be achieved in polynomial time using the algorithm
discussed in Sect. 2.2.

2. Selection strategy While the extraction of the MCS set from all pairs of graphs in G∗
invokes the MCS computation a number of times quadratic in the size of the set of ex-
amples, one can hope to achieve a good compromise by either (a) randomly selecting
a smaller subset of graphs in X,Y and invoking MCS(x, y) from all possible pairs, or
(b) directly selecting a smaller number of random graph pairs (x, y). This latter proce-
dure raises an interesting question as to how the number of (distinct) subgraphs k and the
number of graph pairs n relate (as the same MCS can be extracted from different graphs).
This is investigated experimentally in Sect. 3, where we show that the relationship be-
tween k and n is just linear.

3. Eliminating multiple MCS occurrences To avoid multiple occurrences, we have to check
for each new pattern whether it is isomorphic to an already found MCS. Because of the
BBP subgraph isomorphism and the fact that all MCSs are outerplanar, this can also be
realized in polynomial time and has to be repeated k2 times with k the cardinality of the
MCS set. This could be improved to k if you calculate the canonical label of each pattern.
Given a new pattern, you could check if its canonical label exists, instead of performing
pair-wise comparison.

4. Feature embedding Once the set of k MCSs has been identified, the translation of these
subgraphs into features is accomplished by doing a subgraph isomorphism test between
each of the k elements in the MCS set and each of the m elements in G∗. Using the BBP
decomposition notion, this can be done in polynomial time for each of the k · m pairs. To
compute the embeddings for the non-outerplanar graphs, that is, for every g ∈ G \ G∗, the
(NP-complete) general subgraph isomorphism test can be used.

Hence, the overall complexity is polynomial in the size of the individual graphs, in the size
of the graph set and in the size of the desired feature set (which is bounded by the square of
the size of the graph set).

Notice that, in contrast to traditional local pattern mining approaches, the proposed tech-
nique does not require one to perform expensive embedding operations while searching for
features, but only once the features have been generated, that is, while local pattern min-
ing techniques need to compute frequencies or correlation measures and therefore need to
perform embedding computations during the search phase, our approach computes the em-
bedding only after the whole set has been extracted.

In order to gain an understanding of the space complexity of the proposed approach,
we identify and discuss two key processes: (1) the space requirements for the extraction of
an MCS of two graphs and (2) the space requirements when processing the entire set of
examples.

In the first case, the MCS algorithm requires to store a number of relevant subgraphs
bounded by O(m2) with m being the number of vertices in the largest block. We note that
in practice this does not imply a severe memory requirement for applications in chemoin-
formatic.

Mach Learn (2011) 83: 137–161 145

In the second case, the key process is the check for multiple MCSs occurrences. For this
we need to keep track of all unique MCS patterns found. In Sect. 3, we empirically show
that the number of unique MCS features grows linearly w.r.t. the number of examples and
not quadratically as one would intuitively expect. This property allows us to conclude that
the memory requirements are in practice linear w.r.t. the dataset size.

A C++ implementation of the presented method can be downloaded at http://www.cs.
kuleuven.be/~dtai/PMCSFG.

3 Experimental evaluation

In this section, we perform an experimental analysis to measure the quality of the patterns
under the various parametric choices and the computational time needed to generate them.
The properties and the quality of the extracted subgraphs are evaluated by using them as
features in predictive tasks for 60 problems from chemoinformatics. We compare the results
against several related state-of-the-art methods and provide a discussion.

3.1 Datasets

The NCI dataset collection has been made publicly available by the National Cancer Insti-
tute and provides screening results for the ability of thousands of compounds to suppress
or inhibit the growth of a panel of 60 human tumor cell lines. The datasets used here corre-
spond to the parameter GI50, the concentration that causes 50% growth inhibition. For each
cell line, approximately 3,500 compounds are provided together with information on their
cancer-inhibiting action, which defines a binary classification problem. We use the datasets
of Swamidass et al. (2005), which are available from the authors upon request.

Each molecule is described in the Tripos Sybyl MOL2 format.3 From this we extract a
graph in which each vertex corresponds to an atom and each edge to a bond. The vertices
are labeled with general atom types (e.g., N, C) and the edges are labeled single, double,
triple, amide or aromatic. Hydrogen atoms are dropped.

3.2 State-of-the-art methods

We compare our method against three state-of-the-art methods that construct features for
graphs: one method that performs correlated subgraph mining (Bringmann et al. 2006) and
two methods that exhaustively enumerate all possible subgraphs (Wale et al. 2008; Willett
2006). We describe these methods using the notation introduced in Sect. 2.3.

First, we consider a correlated graph miner (Bringmann et al. 2006), which traverses a
search space in order to find the top-k correlated graph patterns. Here, each pattern receives
a χ2-correlation score w.r.t. the class value. It is known that correlated subgraph miners
outperform frequent subgraph miners, which mine patterns under the frequency constraint,
in terms of predictive performance (Bringmann et al. 2006). We call this method C-GP. In
our notation, it corresponds to arg maxk χ2(A, G), where A denotes the set of all possible
graphs.

Second, we consider the method proposed by Wale et al. (2008), which generates all
possible graph patterns that occur at least once in the dataset. The subgraph size is upper-
bounded by a user defined parameter s. Wale et al. (2008) have shown that their method

3http://www.tripos.com/data/support/mol2.pdf.

http://www.cs.kuleuven.be/~dtai/PMCSFG
http://www.cs.kuleuven.be/~dtai/PMCSFG
http://www.tripos.com/data/support/mol2.pdf

146 Mach Learn (2011) 83: 137–161

outperforms earlier methods such as graph kernels and fingerprints. We call this method
A-GP. In our notation, it corresponds to size(freq(A, G) ≥ 1) ≤ s.

Third, we consider a method that computes the FP2 fingerprints (generated using Open-
Babel v2.1.14). This is an exhaustive method that generates all possible paths (linear se-
quences) up to length s = 7. Moreover, it makes use of basic chemical knowledge to label
paths linked to a cycle and to discard uninformative paths. Because even for small s (say
7 or 8) this rapidly leads to vast numbers of features, the generated features are typically
compressed into a fingerprint using a kind of hashing of the occurrences of the paths onto a
fixed-length vector (Willett 2006). In this step, information is lost as it becomes impossible
to find out which patterns are involved in the fingerprint. Despite this drawback, fingerprints
are considered state-of-the-art among chemists (Willett 2006). We call this method FP2. In
our notation, it corresponds to size(freq(P, G) ≥ 1) ≤ s, where P denotes the set of paths.

3.3 Methodology and parameter settings

We consider a variety of parametric choices as detailed in Sect. 2.3. Table 1 gives an
overview of the variants that will be investigated as well as an overview of the state-of-
the-art methods we will compare to.

A-MCS corresponds to extracting MCSs from all outerplanar examples, while P-MCS
and N-MCS only extract MCSs from positive or negative examples alone, respectively.
R-MCS corresponds to extracting MCSs from randomly sampled pairs of outerplanar
graphs, while F-MCS and C-MCS first extract all MCSs and then keep the top-k ones
w.r.t. frequency and χ2, respectively.

Parameter settings for MCS variants For R-MCS, F-MCS and C-MCS, we chose k =
1000. Since R-MCS is a non-deterministic method, it was always run 10 times and boxplots
are reported. For F-MCS and C-MCS, we also chose k = 1000. For all MCS methods, we
discard subgraphs that only have a single vertex, as was done by Bringmann et al. (2006).

Table 1 Overview of the different parametric choices for F and the state-of-the-art methods

Abbreviation Method Language Hashing

MCS variants

A-MCS F (G∗, G∗) graphs no

P-MCS F (G∗+, G∗+) graphs no

N-MCS F (G∗−, G∗−) graphs no

R-MCS F k(G∗, G∗) graphs no

F-MCS arg maxk freq(F (G∗, G∗), G) graphs no

C-MCS arg maxk χ2(F (G∗, G∗), G) graphs no

State-of-the-art methods

C-GP arg maxk χ2(A, G) (Bringmann et al. 2006) graphs no

A-GP size(freq(A, G) ≥ 1) ≤ s (Wale et al. 2008) graphs no

FP2 size(freq(P , G) ≥ 1) ≤ s (Willett 2006) sequences yes

4http://openbabel.sourceforge.net.

http://openbabel.sourceforge.net

Mach Learn (2011) 83: 137–161 147

Parameter settings for state-of-the-art methods For C-GP, we chose k = 1000 and mined
the top-1000 most correlated patterns in the training data. For A-GP, we consider all sub-
graphs from length 1 to 7, that is, we chose s ≤ 7, as recommended by Wale et al. (2008).
FP2 also uses s ≤ 7 and requires one additionally to specify the number of bits for the pat-
tern encoding vector. A common choice for this number is 10, and since 1024 (the length of
the vector) is closest to the value of k, we adopt the same value of 10.

Evaluation Since we want to investigate the predictive quality of different feature genera-
tion methods, we vary only the feature generation step and resort to the same classification
procedure for all methods.

Given a graph dataset G , we first generate features only from the training set. Then, we
propositionalize each example in G to a one-bit vector encoding representation: given a
feature set of size k, each graph g ∈ G is encoded as a k-dimensional binary vector, where a
1 is marked in the ith position if the ith subgraph is subgraph isomorphic to g. The general
subgraph isomorphism is used for this matching for all methods.

As classification model we use SVMs in combination with the Tanimoto-kernel (Swami-
dass et al. 2005):

KT (x, y) =
∑N

i=1(xi = 1 ∧ yi = 1)
∑N

i=1(xi = 1 ∨ yi = 1) − ∑N

i=1(xi = 1 ∧ yi = 1)

In words, this kernel computes a similarity between vector x and vector y by counting
the number of common patterns (i.e. the set-intersection) between the two molecules as a
fraction of the total number of patterns that occur in both molecules (i.e. the set-union).
The Tanimoto-kernel is considered state-of-the-art for the classification of small molecules
(Willett 2006). As implementation we used SVMlight (Joachims 2002).

To evaluate the classification models, we use the area under the ROC curve (AUROC)
score (Provost and Fawcett 1998) and the H score introduced by Hand (2009), who shows
that AUROC fails to take into account the relative costs of misclassifications of different
classifiers. The H score does not suffer from this problem.

For all experiments, a stratified 10-fold cross-validation is used. The regularization para-
meter of the SVM is tuned out of 10 values running an internal 5-fold cross-validation over
the training data.

We compute the statistical significance of the different methods in two ways. On the
one hand, generalization over datasets follows from the win/loss-ratio. In particular, we use
the Friedman test combined with a Nemenyi post-hoc test to compute significance (Demšar
2006). The Friedman test is a non-parametric test for statistical comparisons of classifiers
over multiple datasets. It ranks the algorithms for each dataset separately, with the best
performing algorithm getting the rank of 1. In case of a tie, the average rank of the tied
models is assigned. Then, a Nemenyi post-hoc test is used to analyze which of the classifier’s
ranks differ significantly from each other: the performance is significantly different if the
corresponding average ranks differ by at most the critical difference, which depends on the
significance level and the number of classifiers (Demšar 2006).

We also use a second statistical test, which shows how well different classifiers are able to
generalize to other instances from the same population. One classifier is significantly better
than another at the 1% level for samples of ≈3,500 molecules when an increase of ≈2.5%
in AUROC or H is measured.

148 Mach Learn (2011) 83: 137–161

3.4 Results

We organize the experimental results as answers to a set of six questions:

Q1 What is the predictive quality of MCS features obtained under different selection strate-
gies?

Q2 What are the effects of applying different constraints on the obtained MCS features?
Q3 How does the quality of the feature set vary w.r.t. the number of sampled MCS features?
Q4 How many pairs of molecules need to be sampled in order to obtain k unique MCS

features?
Q5 How does MCS feature construction compare with state-of-the-art feature construction

methods?
Q6 What are the runtimes of the MCS feature generation methods and how do they compare

with state-of-the-art feature construction methods?

Q1: What is the predictive quality of MCS features obtained under different selection strate-
gies? Figure 3 shows the predictive performance (AUROC and H) for A-MCS, P-MCS and
N-MCS. On average, A-MCS resulted in approximately 7800 patterns, P-MCS in 4500 pat-
terns and N-MCS in 3200 patterns. According to the Friedman test, for which the average
ranks and critical difference are shown in Table 2, A-MCS is significantly outperforming
P-MCS for both evaluation measures. P-MCS in turn outperforms N-MCS for both mea-
sures.

However, the average AUROC and H scores over the 60 datasets (also shown in Table 2),
differ for less than 2.5%. This is an interesting result for the practitioner since, when there
are reasons to believe that the negative class is more complex to model or when the available
dataset exhibits a larger number of examples from the negative class (conditions that often
occur in chemoinformatic activity prediction tasks), one can resort to sampling from positive
examples alone without losing much predictive performance in practice.

In conclusion, while according to the Friedman test, extracting MCS features of positive
(or even negative) examples results in significantly worse predictive performances, the sec-
ond statistical test, which generalizes over molecules from the same population, indicates
that there is no significant difference between the methods. Further investigation suggests
that the small decrease in performance of P-MCS and N-MCS is caused by the reduced
number of features (see also Q3).

Q2: What are the effects of applying different constraints on the obtained MCS features?
To answer this question, we will compare a random sample of 1000 MCS features (R-MCS),
that is, applying no constraint at all, to the 1000 most frequent MCS features (F-MCS) and

Table 2 Average scores and
ranks for AUROC and H over 60
datasets when comparing
different selection strategies

Method AUROC H

Average Average rank Average Average rank

A-MCS 0.796 1 0.301 1.02

P-MCS 0.792 2.08 0.294 2.05

N-MCS 0.788 2.92 0.286 2.93

Critical difference for the average ranks at the 1% significance level: 0.53

Mach Learn (2011) 83: 137–161 149

Fig. 3 Predictive performance (AUROC and H) of different selection strategies on 60 NCI datasets

the 1000 most correlated MCS features (C-MCS). The predictive performance of R-MCS,
F-MCS and C-MCS is shown in Fig. 4. Note that, because for R-MCS the results are av-
eraged over 10 runs, boxplots are shown. These show that, despite the non-deterministic
nature of the procedure, R-MCS achieves quite stable results.

150 Mach Learn (2011) 83: 137–161

Fig. 4 Predictive performance (AUROC and H) when applying different constraints on 60 NCI datasets

The Friedman test (results shown in Table 3) shows a clear advantage for R-MCS over
F-MCS and C-MCS. However, again the average AUROC and H scores indicate no signifi-
cant difference (Table 3).

In conclusion, the results show that extracting MCS features from randomly sampled
pairs of examples does not perform significantly worse than applying a frequency or corre-

Mach Learn (2011) 83: 137–161 151

Table 3 Average scores and
ranks for AUROC and H over 60
datasets when applying different
constraints

Method AUROC H

Average Average rank Average Average rank

R-MCS 0.784 1 0.280 1.02

F-MCS 0.774 2 0.263 1.98

C-MCS 0.761 3 0.244 3

Critical difference for the average ranks at the 1% significance level: 0.53

Table 4 Redundancy evaluation
of the different feature
construction methods (averaged
over 60 datasets) that yield 1000
features

Method Uniqueness Total correlation

A-MCS 99.19 ± 0.18 N/D

R-MCS 98.52 ± 0.26 103.55 ± 1.26

F-MCS 97.00 ± 0.45 148.57 ± 2.74

C-MCS 91.38 ± 2.11 139.32 ± 2.59

A-GP 99.36± 0.20 N/D

C-GP 53.92± 5.74 212.44 ± 16.65

lation constraint on the MCS features. This is a surprising result, since randomly sampling
1000 MCSs is less computationally expensive (see Q4) than mining all MCSs and then post-
processing those under some constraint to obtain the 1000 best features. A possible reason
for this is that constraints tend to decrease the diversity of the set, i.e. features that are highly
frequent or correlated with the target could be highly inter-correlated and hence redundant
and ultimately uninformative. We further investigate this issue in the following section.

Redundancy issues In order to gain a deeper understanding on the quality and the dif-
ferences between the various feature sets, we define some indicators reported in Table 4.
First, we define uniqueness as the percentage of examples with a bit-vector encoding that
is unique, i.e. different from that of all the other examples in the dataset. It is evident that
examples having the same encoding cannot be further discriminated by any classification
method. Hence, a high uniqueness is a desirable property.

Second, we report the generalization of the mutual information measure, i.e. the total cor-
relation (Watanabe 1960) (also known as the multivariate constraint or multi-information)
to express the amount of redundancy existing among the set of features considered as ran-
dom variables. The total correlation (TC) is defined as: TC(X1,X2, . . . ,Xk) = ∑k

i H(Xi)−
H(X1,X2, . . . ,Xk) for the set of k features, where H(·) is the (joint) information entropy.
It represents the amount of information shared among the variables in the set. The sum∑n

i H(Xi) represents the amount of information (in bits) that the features would possess
if they were totally independent of one another. The term H(X1,X2, . . . ,Xn) is the actual
amount of information that the feature set contains. The difference between these terms
therefore represents the absolute redundancy present in the given set of features, that is, the
TC tells us how related a group of features are. A near-zero TC indicates that the features are
essentially statistically independent; they are completely unrelated, in the sense that know-
ing the value of one feature does not provide any clue as to the values of the other features.
A maximum value for TC is achieved when one of the features is completely redundant with
respect to all of the other features.

152 Mach Learn (2011) 83: 137–161

Table 5 Distribution of the number of edges of three feature generation methods for a representative dataset
(786_0). O.k represents the n · k order statistic of the distribution

Method Average Minimum O.05 O.25 O.5 O.75 O.95 Maximum

A-MCS 13.22 ± 7.56 1 5 9 12 16 27 98

A-GP 6.46 ± 0.86 1 5 6 7 7 7 7

C-GP 9.86 ± 3.80 1 5 8 10 12 16 19

We argue that a good set of features should have (1) a high uniqueness (so to be injective
and not commit to some predefined, target independent equivalence notion between exam-
ples) and (2) a low total correlation, that is, a low amount of information shared among the
features.

All results have been averaged over the 60 datasets and only test set examples, that were
not used for the generation of the patterns, were considered. Since we do not have access
to the actual patterns that were generated by FP2, this method is not included in the table.
Because the total correlation of different features sets only has a valid interpretation when
dealing with the same amount of features, we do not report it for the 105 features of A-GP or
for the 7800 features of A-MCS. According to these indicators, R-MCS selects a better set
of features than the other strategies. Moreover, we have also observed that R-MCS returns
features with a high frequency (occurring on average in 1/3 of the test set), showing that
with high probability, computing MCSs between randomly chosen pairs of graphs leads to
features that are also frequent.

We finally report in Table 5 some order statistics on the edge set size distribution of
the subgraphs retrieved with A-MCS, A-GP and R-GP. A-MCS shows a clear preference in
selecting significantly larger (and perhaps more interesting) subgraphs.

In conclusion, the features generated by A-MCS and R-MCS seem to have a larger
uniqueness and are less redundant, which likely contributes to their superior predictive per-
formance.

Q3: How does the quality of the feature set vary w.r.t. the number of sampled MCS features?
We measure the quality of the feature set as the predictive performance over 5 randomly
selected datasets as we increase k, the number of randomly sampled MCSs, from 100 to
6400 (each result has been averaged over 10 runs). For this experiment we do not tune
the regularization parameter of the SVM, but take a fixed value equal to 1 (this was the
best-performing parameter value in the previous experiments). Table 6 shows an AUROC
improvement of ≈5% when increasing the number of patterns from 100 to 6400 with a
saturation level around 3200 patterns.

In conclusion, our intuition that using more features boosts predictive performance is cor-
rect. Note that with very few patterns, it is already possible to obtain a reasonable predictive
performance.

Q4: How many pairs of molecules need to be sampled in order to obtain k unique MCSs?
We experimentally determine the functional link between the number of examples and the
number of unique MCSs by considering two strategies. In the first strategy, we take subsets
of n examples and consider all n(n − 1)/2 possible pairs of which we compute an MCS
(S1). In the second strategy, we consider a random sample of m pairs from the set of all
examples (S2). This corresponds to R-MCS.

The results of the two strategies are reported in Fig. 5. We observe that S2 needs to
consider less pairs to obtain the same amount of unique MCSs, confirming the intuition that

Mach Learn (2011) 83: 137–161 153

Table 6 Predictive performance (AUROC) on 5 NCI datasets with an increasing number of randomly sam-
pled MCSs

Dataset Number of MCS features

100 200 400 800 1600 3200 6400

SNB_19 74.3 76.0 77.2 78.0 78.8 79.2 79.4

M14 74.3 76.0 77.6 78.7 79.5 80.0 80.2

NCI_H522 74.9 76.3 77.6 78.7 79.5 80.1 80.3

786_0 75.1 77.1 78.3 79.4 80.1 80.4 80.7

HCT_116 76.2 78.0 79.4 80.4 81.2 81.7 82.0

Fig. 5 Relationship between the numbers of pairwise comparisons and the number of unique MCSs

the repeated use of the same molecule in different pairs yields a smaller number of unique
MCSs. Specifically, we found that in order to obtain 1000 different MCSs we need 45,000
pairs of randomly sampled molecules or a random sample of 400 molecules out of which
to consider all possible pairs. We have observed an almost perfect linear relationship (with
coefficient 2.6) between the number of molecules and the number of different MCSs, that is,
given a set of 1000 molecules, extracting the MCSs from all pairs gives 2,600 unique MCSs.

The reason is that the number of distinct MCSs does not grow linearly, but rather as the
square root of the number of pairs of examples as shown in Fig. 5. The explanation for
this behavior is subject of current study, but it seems to be related with the specific highly
combinatorial nature of subgraphs5 which biases shorter subgraphs to occur exponentially
more frequently, which in practice, greatly reduces the number of different MCSs actually
present.

5A similar behavior is observed in the growth of the number of distinct words (which are sequences of atomic
letters) in natural texts.

154 Mach Learn (2011) 83: 137–161

Table 7 Average scores and
ranks for AUROC and H over the
60 NCl datasets for the
state-of-the-art feature generation
methods

Method AUROC H

Average Average rank Average Average rank

A-MCS 0.796 1.45 0.301 1.35

A-GP 0.796 1.55 0.299 1.65

R-MCS 0.784 3.18 0.280 3.15

FP2 0.779 3.82 0.270 3.85

C-GP 0.684 5 0.134 5

Critical difference for the average ranks at the 1% significance level: 0.94

In conclusion, when considering a sampling approach, it is better to take the full set of
examples into account and consider random pairs, rather than computing MCSs of all pairs
on a selected subset of examples.

Q5: How does MCS sampling compare with state-of-the-art feature generation methods?
We first compare R-MCS (results are again averaged over 10 runs) to C-GP over the 60
datasets. Figure 6 shows a clear advantage for R-MCS. Also the Friedman test and the
average AUROC and H scores (Table 7) show that R-MCS is performing significantly better
than C-GP.6

Next, we compare R-MCS with FP2 (Fig. 6). Here, the Friedman test as well as the
average AUROC and H scores show that there is no significant difference between these
two methods (Table 7).

Finally, we compare A-MCS with A-GP. Figure 6 shows that both methods are compet-
itive in terms of predictive performance. The outcome of the Friedman test and the average
AUROC and H scores (Table 7) also show that the performances of A-MCS and A-GP are
not significantly different. However, A-GP needs ≈150,000 patterns to reach this perfor-
mance, while A-MCS needs only ≈7,800 patterns. Moreover, it can be argued that, because
of the BBP subgraph isomorphism, the patterns of A-MCS are more easily interpretable
from a chemical viewpoint.

To further investigate the quality of both sets of patterns, we have randomly selected
1000 patterns from the approach of Wale et al. (2008) (R-GP) and compared the decrease
in predictive performance. For R-GP, the average AUROC was 0.679, while the average H
score was 0.131. It turns out that GP degrades much more than MCS: the decrease in average
AUROC and H (A-GP–R-GP) is 11.7 and 16.8, while for our approach (A-MCS–R-MCS)
it is only 1.1 and 2.1, respectively. This shows that MCS features are more robust and mean-
ingful. To check the redundancy of the patterns generated by R-GP, we also computed their
uniqueness (25.25± 2.24) and redundancy (12.28 ± 0.80) . These numbers show that R-GP
yields a set of nearly totally independent features (see Table 4). However, if we compare the
predictive performance of R-MCS to the one of R-GP, it also becomes clear that achieving
non-redundancy among the features is not the only prerequisite to generate a good set of
features.

In conclusion, A-MCS and R-MCS can be considered as state-of-the-art feature genera-
tion methods.

6Bringmann et al. (2006) argue that mining the top-k sequences introduces less redundancy in the patterns
than mining the top-k graphs. We have therefore tested the latter approach which yields an average AUROC
of 73.6, still significantly below that of R-MCS.

Mach Learn (2011) 83: 137–161 155

Fig. 6 Predictive performance of state-of-the-art feature generation methods on 60 NCI datasets

Q6: What are the runtimes of the MCS feature generation methods and how do they compare
with state-of-the-art feature construction methods? We executed A-MCS and R-MCS on
an Intel Core2Quad Q9550 CPU (2.8 GHz) for a representative set of 3910 NCI molecules
with an average 23 vertices and 25 edges. First, we compare A-MCS with R-MCS. A-MCS
needed 3.7 × 105 seconds, while R-MCS needed 2,142 seconds. Obviously, A-MCS is a

156 Mach Learn (2011) 83: 137–161

time-consuming task, partly because of the many tests for duplicate MCSs. R-MCS, how-
ever, has a good trade-off between predictive performance and efficiency: it is 175 times
faster, while only a decrease of 1.1% in AUROC was measured. One argument in favor of
A-MCS, however, is that it, unlike the other feature generation methods, can easily be run in
parallel. Second, we compare R-MCS with C-GP. We randomly selected 5 datasets from the
60 NCI datasets for this experiment. R-MCS needed on average 2,327 seconds per dataset,
while C-GP needed on average 54,322 seconds, which is 23 times slower than R-MCS.

In conclusion, when handling large datasets or runtimes are important, R-MCS provides
a good trade-off between predictive performance and efficiency. Moreover, R-MCS achieves
a speed-up of a factor 23 w.r.t. a typical correlated graph miner.

3.5 Discussion

We have shown that features obtained as the maximum common subgraphs from all pairs
of instances in a dataset (or those obtained by sampling from a reduced set of pairs) al-
low the construction of predictive models achieving state-of-the-art performance on several
tasks from chemoinformatic. There are however some drawbacks and implications of the
presented method that deserve to be further discussed.

First, we notice that efficiency in the proposed approach can be guaranteed only when
restricting to outerplanar graphs. Indeed, if an instance is a non-outerplanar graph, then it
is not considered in the feature generation process. This restriction is not particularly se-
vere when (a) the proportion of non-outerplanar examples is very small (few percentages
w.r.t. the entire dataset size) or (b) the number of cases where interesting features are them-
selves non-outerplanar is negligible. The first case is often true in many chemoinformatic
applications although there exist datasets where the number of non-outerplanar instances
is relatively large (10–20% of the total size). In those cases, methods that can exploit all
the available material could in principle achieve better performance by simple virtue of a
larger data set from which to extract relevant features. We have experimentally investigated
the consequences of point (b) by extracting the top-k correlated subgraphs according to the
graph miner of Bringmann et al. (2006). In this case, we have verified that all subgraphs are
indeed outerplanar. A possible explanation for this is that the found patterns are too small to
form non-outerplanar examples.

Second, we observe that by using the BBP subgraph isomorphism, ring structures will be
either entirely selected as part of the MCS or not at all. As a consequence, ring structures and
linear fragments are treated in a different way. This bias seems to have positive effects on
the quality of the retrieved patterns when dealing with applications from chemoinformatics
as was experimentally shown in Schietgat et al. (2008). The effect of this bias on graphs in
other types of domains needs to be empirically evaluated on a per-application basis.

Third, we acknowledge that extracting MCS features from all possible pairs of instances
is a quadratic procedure which therefore does not scale well when dealing with large
datasets. To tackle this issue, we have proposed a randomization strategy that sacrifices
predictive performance in order to speed up the process. Interestingly, we have experimen-
tally shown that the performance of models built on the MCS features saturates rapidly with
the number of different MCSs so that only a relatively small number of random pairs of in-
stances is needed to achieve results comparable with the all-pairs case. Once again though,
it is unclear if these findings would hold true in different domains.

Mach Learn (2011) 83: 137–161 157

4 Related work

This work is related to various streams of research. Firstly, our technique can be regarded
as propositionalizing a relational or graph-based representation as is common in logical and
relational learning (De Raedt 2008). Various techniques have been used to generate features
of interest (Kramer et al. 2001). Our approach differs from these propositionalization ap-
proaches in that it works bottom-up and also that it computes pairwise minimally general
generalizations of the examples that can be used as features, and it combines this idea with
randomization. It is straightforward to adapt our technique for use in logical and relational
learning. One only has to replace the use of the maximum common subgraph notion by a
relational notion of minimally general generalization. Two such frameworks are well-known
(De Raedt 2008): when working under θ -subsumption, the minimally general generalization
is unique and is therefore called the least general generalization (Plotkin 1971), while work-
ing under OI-subsumption (De Raedt 2008) it is—as the MCS—not necessarily unique.
On the other hand, the size of the least general generalization under θ -subsumption of two
objects may be as large as the product of the sizes of these objects, while the size of the
minimally general generalization under OI-subsumption is bounded by the size of the ob-
jects themselves. The differences between OI-subsumption and θ -subsumption are akin to
those between subgraph isomorphism and homomorphism. While the use of subgraph iso-
morphism is more common when working with graphs, in inductive logic programming, the
alternative notion, based on homomorphism is more common.

There are different ways to define and compute maximum common subgraphs. A large
number of approaches can be related to distance metrics (De Raedt and Ramon 2009). Ray-
mond and Willett (2002) give an elaborate overview of existing similarity measures for
molecules that are graph-based. Most of these algorithms avoid the computational complex-
ity by computing approximate values, as the maximum common subgraph problem is in
general NP-hard. In our work, we use an alternative matching operator, that is, the block-
and-bridge-preserving subgraph isomorphism, which runs in polynomial time and is suitable
for molecules (Schietgat et al. 2008). An alternative approach to reduce the complexity could
be to consider common substructures which can be computed more easily, such as multisets
of common vertex labels (Karunaratne and Boström 2006). However, an important draw-
back is that the more complex shared substructures are not taken into account.

Secondly, our work is related to the common practice in constraint-based graph min-
ing, where constraints on subgraphs of interest are formulated and all subgraphs satisfying
the constraints are generated. A wide variety of different constraints has been considered
in graph mining, such as frequency-based (Yan and Han 2002; Deshpande et al. 2005),
generality-based, using one or two classes, imposing syntactic constraints, and combinations
of those with particular subclasses of patterns such as paths (Kramer et al. 2001). In addi-
tion, there has been research on correlated pattern mining (Bringmann et al. 2006), where
the goal is to find the top-k patterns according to a statistical significance measure such as χ2

or information gain. In both types of approaches, one typically performs a complete search.
This leads one to finding all solutions satisfying the constraints. While completeness and
optimality are interesting theoretical properties, these approaches are also computationally
much more demanding and may be harder to tune (that is, set parameters) than the simple
randomized approach we pursued. At the same time, the completeness and optimality prop-
erties are not directly related to the true task in these graph miners, which is concerned with
finding good representations of the graphs or molecules for use in classification. Our work
shows clearly that—at least for molecular applications—a much simpler approach without
strong guarantees may well achieve better results both in terms of predictive performance
and efficiency.

158 Mach Learn (2011) 83: 137–161

It is interesting to note that in He and Singh (2006) the authors propose to rank the sub-
graphs returned by a frequent graph miner according to a notion of statistical significance7

and show that in a chemical database the selected features are typically subgraph that are in
fact the “largest common subgraphs in a class of medically effective compounds”.

The favorable properties of randomization approaches, in particular the fact that choos-
ing random features can be better than choosing them according to specific criteria, have
already been noted in other contexts e.g., for selecting features in distance construction (Se-
bag 1997). Recently, the randomization idea has also been suggested in the area of pattern
mining. Chaoji et al. (2008) have introduced a feature construction method that obtains good
patterns by sampling under diversity constraints. However, the suggested method requires
the user to tune and specify two parameters that control the diversity (orthogonality) and
representativeness respectively.

We conjecture that methods looking for patterns that satisfy given constraints are more
subject to redundancy issues than randomized methods. The intuition here is that similar or
correlated patterns do exhibit the same properties w.r.t. the constraints and are therefore more
likely to be all selected in the top-k set, hereby reducing the diversity of the set. Intuitively,
the randomization procedure decreases the chance to select two patterns that are related
in any special way (e.g., being similar or correlated). At the same time, a randomization
procedure should not decrease the quality of the retrieved patterns. In the top-frequency case,
sampling k elements randomly from a larger set of top-frequent patterns leads to patterns
with a lower frequency on average than those obtained by a direct top-k frequent approach.
Hence, the random sampling has a negative impact on the desired pattern quality, that is, the
selected patterns are less frequent and potentially less relevant. In the MCS case, the random
sampling does not alter the main property of a pattern of being the maximum common
subgraph between a pair of instances.

Thirdly, as shown by De Raedt and Ramon (2009), the notion of a minimally general
generalization is closely related to that of a distance measure. For instance, the notion of
maximum common subgraph under subgraph isomorphism is used in Bunke and Shearer’s
distance measure (Bunke and Shearer 1998), while the one we are using (based on BBP-
subgraph isomorphism) was used by Schietgat et al. to construct a metric (Schietgat et al.
2008). Furthermore, as kernels can be viewed as a kind of similarity measure our work is
also related to kernels. Many types of graph kernels (Gärtner 2005; Horváth et al. 2004;
Ceroni et al. 2007) correspond to some feature space where every possible subgraph cor-
responds to a feature. The kernel then counts how many subgraphs two examples have in
common. The subgraphs are typically defined in such a way that they can be enumerated in
an implicit way such that the counting procedure can be done efficiently (e.g. via dynamic
programming procedures). In these cases however, as the dimension of the feature space
associated with the kernel becomes exponentially larger, there is an increasing probability
that a significant fraction of the feature space dimensions will be poorly correlated with the
target function. As a consequence, even when using large margin classifiers, one can fail to
obtain models with good generalization performance (Ben-David et al. 2002). In order to
tackle these issues, several remedies have been proposed, from down-weighting the contri-
bution of larger fragments and/or bounding a priori their size, to a direct manipulation of the
Gram matrix. Alternatively one can try to identify a strong bias, relevant to the task at hand,
and consider only a selected subset of structures to limit the dimension of the feature space
without degrading the prediction performance. Our approach follows the latter strategy in

7The p-value for a subgraph there is defined as the probability that the given subgraph occurs in a database
of random graphs with a support higher than the observed frequency.

Mach Learn (2011) 83: 137–161 159

that it generates at most a single feature per pair of examples and a relatively small set of
randomly chosen pairs is sufficient in practice to achieve good performance. We empirically
showed that the bias of the MCS operator seems to be very well suited for chemoinformatic
tasks.

A final stream of research is related to chemoinformatics, where the most common state-
of-the-art approach to feature construction in molecules is to generate all patterns of size up
to k (typically paths) that occur in at least one molecule (Wale et al. 2008; Willett 2006), the
so-called fingerprints. The differences with our approach are that our features are guaranteed
to occur in at least two molecules, that they are typically also much more informative as their
size is typically larger, and at the same time, the number of such features is much smaller.

5 Conclusions and future work

We have introduced a simple, direct and effective approach to extracting patterns in graphs.
It is based on the idea of computing the maximum common subgraph of randomly selected
pairs of graphs. The approach is very efficient (it runs in polynomial time thanks to the
restriction to outerplanar graphs), it does not require specifying any extra parameter (since
one can simply extract all possible distinct pairwise MCSs), yields better sets of features
than alternative approaches (as measured by the predictive performance of classifiers built
using the returned subgraphs as features) and seems to produce a smaller and less redundant
set of features than alternative techniques.

It was argued that the minimally general generalization approach provides an interesting
alternative to the fingerprints that are so popular in chemoinformatics today. The advantages
are that one obtains significantly larger and hence, chemically more meaningful patterns, as
well as a smaller number of them. We intend to further investigate this idea in a chemoin-
formatics context.

Probably the most surprising finding of our work was that extracting MCSs randomly
produces better features than more traditional and computationally more demanding all so-
lutions or top-k approaches in graph mining. This in turn sheds new light on the traditional
local pattern mining approach, which has dominated the field of data mining in the past
15 years. Our results indicate that for some tasks, such as finding interesting and repre-
sentative features in molecular data it may be better to employ simpler and more efficient
approaches based on e.g., randomization. Therefore, we hope that this work encourages
more research in this direction.

Future work includes (1) the analysis of maximum common subgraph under BBP-
isomorphism for direct use as a graph-kernel; (2) the extension of the maximum common
subgraph notion to non-connected components; (3) the exploration of different sampling
strategies to further reduce computational costs; and (4) the use of different language bias
e.g. maximum common subtrees or subsequences, for increased efficiency.

Acknowledgements L.S. is supported by a PhD grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT). F.C. is supported by the GOA Probabilistic Logic Learn-
ing. J.R. is partially supported by the Fund for Scientific Research (FWO) of Flanders and the ERC Starting
Grant 240186. The authors thank Björn Bringmann and Albrecht Zimmermann for their software and for
valuable suggestions. The authors thank Nikil Wale as well for providing his software and Hendrik Bloc-
keel, Maurice Bruynooghe and Kurt De Grave for fruitful discussions. This research was conducted using
high-performance computational resources provided by the K.U.Leuven (http://ludit.kuleuven.be/hpc).

http://ludit.kuleuven.be/hpc

160 Mach Learn (2011) 83: 137–161

References

Ben-David, S., Eiron, N., & Simon, H. U. (2002). Limitations of learning via embeddings in Euclidean half
spaces. Journal of Machine Learning Research, 3, 441–461.

Bringmann, B., Zimmermann, A., Raedt, L. D., & Nijssen, S. (2006). Don’t be afraid of simpler patterns.
In Proceedings of the tenth European conference on principles and practice of knowledge discovery in
databases (pp. 55–66).

Bunke, H., & Shearer, K. (1998). A graph distance metric based on the maximal common subgraph. Pattern
Recognition Letters, 19, 255–259.

Ceroni, A., Costa, F., & Frasconi, P. (2007). Classification of small molecules by two- and three-dimensional
decomposition kernels. Bioinformatics, 23(16), 2038–2045.

Chaoji, V., Al Hasan, M., Salem, S., Besson, J., & Zaki, J. M. (2008). Origami: a novel and effective approach
for mining representative orthogonal graph patterns. Statistical Analysis and Data Mining, 1(2), 67–84.

De Raedt, L. (2008). Logical and relational learning. Berlin: Springer.
De Raedt, L., & Ramon, J. (2009). Deriving distance metrics from generality relations. Pattern Recognition

Letters, 30(3), 187–191.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.
Deshpande, M., Kuramochi, M., Wale, N., & Karypis, G. (2005). Frequent substructure-based approaches

for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering, 17(8),
1036–1050.

Diestel, R. (2000). Graph theory. Berlin: Springer.
Garey, M. R., & Johnson, D. (1979). Computers and intractability: a guide to the theory of NP-completeness.

New York: Freeman.
Gärtner, T. (2005). Kernels for structured data. PhD thesis, University of Bonn, Germany.
Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve.

Machine Learning, 77(1), 103–123.
He, H., & Singh, A. K. (2006). Graphrank: statistical modeling and mining of significant subgraphs in the fea-

ture space. In ICDM ’06: proceedings of the sixth international conference on data mining, Washington,
DC, USA (pp. 885–890). Las Alamitos: IEEE Comput. Soc.

Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive graph mining. In KDD
’04: proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 158–167).

Horváth, T., Ramon, J., & Wrobel, S. (2006). Frequent subgraph mining in outerplanar graphs. In Proceed-
ings of the twelfth ACM SIGKDD international conference on knowledge discovery and data mining,
Philadelphia, PA, August 2006, pp. 197–206.

Joachims, T. (2002). Learning to classify text using support vector machines: methods, theory, and algo-
rithms. Berlin: Springer.

Karunaratne, T., & Boström, H. (2006). Learning to classify structured data by graph propositionalization.
In Proceedings of the second IASTED international conference on computational intelligence (pp. 393–
398).

Kramer, S., De Raedt, L., & Helma, C. (2001). Molecular feature mining in HIV data. In Proceedings of
the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD-01
(pp. 136–143). New York: ACM.

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S.
Džeroski & N. Lavrač (Eds.), Relational data mining (pp. 262–291). Berlin: Springer.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1), 32–38.

Plotkin, G. (1971). A further note on inductive generalization. In Machine intelligence (Vol. 6, pp. 101–124).
Edinburgh: Edinburgh University Press.

Provost, F., & Fawcett, T. (1998). Analysis and visualization of classifier performance: comparison under
imprecise class and cost distributions. In Proceedings of the third international conference on knowledge
discovery and data mining (pp. 43–48). Menlo Park: AAAI Press.

Raymond, J., & Willett, P. (2002). Maximum common subgraph isomorphism algorithms for the matching of
chemical structures. Journal of Computer-Aided Molecular Design, 16, 521–533.

Schietgat, L., Ramon, J., Bruynooghe, M., & Blockeel, H. (2008). An efficiently computable graph-based
metric for the classification of small molecules. In Lecture notes in artificial intelligence: Vol. 5255. Pro-
ceedings of the eleventh international conference on discovery science (pp. 197–209). Berlin: Springer.

Sebag, M. (1997). Distance induction in first order logic. In N. Lavrač & S. Džeroski (Eds.), Lecture notes in
artificial intelligence: Vol. 1297. Proceedings of the seventh international workshop on inductive logic
programming (pp. 264–272). Berlin: Springer.

Mach Learn (2011) 83: 137–161 161

Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., & Baldi, P. (2005). Kernels for small molecules
and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21(suppl_1), 359–
368.

Wale, N., Watson, I., & Karypis, G. (2008). Comparison of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems, 14, 347–375.

Watanabe, S. (1960). Information theoretical analysis of multivariate correlation. IBM Journal of Research
and Development, 4(1), 66–82.

Willett, P. (2006). Similarity-based virtual screening using 2D fingerprints. Drug Discovery Today, 11(23/24),
1046–1051.

Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002
IEEE international conference on data mining, ICDM 2002, Japan (pp. 721–724). Las Alamitos: IEEE
Comput. Soc.

	Effective feature construction by maximum common subgraph sampling
	Abstract
	Introduction
	Maximum common subgraph sampling
	Graph theoretical concepts
	Computing an MCS of two outerplanar graphs
	Enumerating relevant subgraphs of an outerplanar graph
	Bottom-up MCS computation

	Method
	Problem description
	MCS extraction
	Computational complexity

	Experimental evaluation
	Datasets
	State-of-the-art methods
	Methodology and parameter settings
	Parameter settings for MCS variants
	Parameter settings for state-of-the-art methods
	Evaluation

	Results
	Q1: What is the predictive quality of MCS features obtained under different selection strategies?
	Q2: What are the effects of applying different constraints on the obtained MCS features?
	Redundancy issues
	Q3: How does the quality of the feature set vary w.r.t. the number of sampled MCS features?
	Q4: How many pairs of molecules need to be sampled in order to obtain k unique MCSs?
	Q5: How does MCS sampling compare with state-of-the-art feature generation methods?
	Q6: What are the runtimes of the MCS feature generation methods and how do they compare with state-of-the-art feature construction methods?

	Discussion

	Related work
	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

