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Abstract We study on-line decision problems where the set of actions that are available
to the decision algorithm varies over time. With a few notable exceptions, such problems
remained largely unaddressed in the literature, despite their applicability to a large number
of practical problems. Departing from previous work on this “Sleeping Experts” problem,
we compare algorithms against the payoff obtained by the best ordering of the actions,
which is a natural benchmark for this type of problem. We study both the full-information
(best expert) and partial-information (multi-armed bandit) settings and consider both sto-
chastic and adversarial rewards models. For all settings we give algorithms achieving (al-
most) information-theoretically optimal regret bounds (up to a constant or a sub-logarithmic
factor) with respect to the best-ordering benchmark.

Keywords Online algorithms - Computational learning theory - Regret

1 Introduction

In on-line decision problems, or sequential prediction problems, an algorithm must choose,
in each of the T consecutive rounds, one of the n possible actions. In each round, each
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action receives a real valued positive payoff in [0, 1], initially unknown to the algorithm.
At the end of each round the algorithm receives some information about the payoffs of the
actions in that round. The goal of the algorithm is to maximize the total payoff, i.e. the sum
of the payoffs of the chosen actions in each round. The standard on-line decision settings
are the best expert setting (or the full-information setting) in which, at the end of the round,
the payoffs of all n strategies are revealed to the algorithm, and the multi-armed bandit
setting (or the partial-information setting) in which only the payoff of the chosen strategy
is revealed. Customarily, in the best expert setting the strategies are called experts and in
the multi-armed bandit setting the strategies are called bandits or arms. We use actions to
generically refer to both types of strategies, when we do not refer particularly to either.

In the prior-free setting (as is the case in this paper), the performance of the algorithm is
typically measured in terms of regret. (See Gittins 1979; Gittins and Jones 1979 for maxi-
mization of expected reward in the Bayesian setting.) The regret is the difference between
the expected payoff of the algorithm and the payoff of a single fixed strategy for selecting
actions. The usual single fixed strategy to compare against is the one which always selects
the expert or bandit that has the highest total payoff over the 7' rounds in hindsight.

The usual assumption in online learning problems is that all actions are available at all
times. In many applications, however, this assumption is not appropriate. In network routing
problems, for example, some of the routes are unavailable at some point in time due to router
or link crashes. Or, in electronic commerce problems, items are out of stock, sellers are not
available (due to maintenance or simply going out of business), and buyers do not buy all
the time. Even in the setting that gave multi-armed bandit problems their name, a gambler
playing slot machines, some of the slot machines might be occupied by other players at any
given time.

In this paper we relax the assumption that all actions are available at all times, and allow
the set of available actions to vary in an adversarial way from one round to the next, a model
known as “predictors that specialize” or “sleeping experts” in prior work. The first founda-
tional question that needs to be addressed is how to define regret when the set of available
actions may vary over time. Defining regret with respect to the best action in hindsight is
no longer appropriate since that action might sometimes be unavailable. A useful thought
experiment for guiding our intuition is the following: if each action had a fixed payoft distri-
bution that was known to the decision-maker, what would be the best way to choose among
the available actions? The answer is obvious: one should order all of the actions according
to their expected payoff, then choose among the available actions by selecting the one which
ranks highest in this ordering. Guided by the outcome of this thought experiment, we define
our base to be the best ordering of actions in hindsight (see Sect. 1.1 for a formal definition)
and contend that this is a natural and intuitive way to define regret in our setting. This con-
tention is also supported by the informal observation that order-based decision rules seem
to resemble the way people make choices in situations with a varying set of actions, e.g.
choosing which brand of beer to buy at a store.

We prove lower and upper bounds on the regret with respect to the best ordering for
both the best expert setting and the multi-armed bandit setting. We first explore the case
of a stochastic adversary, where the payoffs received by action i at each time step are in-
dependent samples from an unknown but fixed distribution P;(-) supported on [0, 1] with
mean u;. (Note that in this paper, the choice of which actions are available to be picked
in each round is always adversarial. In other words, there is no distributional assumption
on the subset of available actions.) Assuming that @ > @, > --- > w, (and the algorithm,
of course, does not know the identities of these actions) we show that the regret of any

learning algorithm will necessarily be at least Q2 (Z::ll l‘-‘_;/-'Jrl ) in the best expert setting,
1 v
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and Q(log(T) Z::ll mf;tm ) in the multi-armed bandit setting if the game is played for T
rounds (for T sufficiently large'). We also present efficient learning algorithms for both
settings. For the multi-armed bandit setting, our algorithm, called AUER, is an adapta-
tion of the UCB1 algorithm in Auer et al. (2002a), which comes within a constant fac-
tor of the lower bound mentioned above. For the expert setting, a very simple algorithm,
called “follow-the-awake-leader”, which is a variant of “follow-the-leader” (Hannan 1957,
Kalai and Vempala 2005), comes within a constant factor of the lower bound above. While
our algorithms are adaptations of existing techniques, the proofs of the upper and lower
bounds hinge on some technical innovations.

For the lower bound in stochastic multi-armed bandit setting, we must modify the classic
asymptotic lower bound proof of Lai and Robbins (1985) to obtain a bound which holds at all
sufficiently large finite times. For the stochastic best expert setting, we adapt standard KL-
divergence arguments to prove a precise lower bound that also holds for sufficiently large
finite times. Our lower bounds in Lemma 8 and Lemma 14 don’t refer to the “sleeping”
version of the problem, and concern the classical best-expert setting and multi-armed bandit
setting (all actions available), which might be of interest outside the context of this paper.

To prove that our lower and upper bounds are within a constant factor of each other
we use a novel lemma (Lemma 4) that allows us to relate a regret upper bound arising from
application of UCB1 to a sum of lower bounds for two-armed bandit problems (and similarly
in the best expert setting).

Next we explore the fully adversarial case where we make no assumptions on how the
payoffs for each action are generated (in particular, they could depend on the time hori-
zon T'). This model has been extensively studied in both the best expert setting and the
multi-armed bandit setting (see Littlestone and Warmuth 1994; Auer et al. 2002b and refer-
ences therein). For the variant in which only a subset of the actions are available at any given
time, we show that the regret of any learning algorithm must be at least €2(,/7Tnlog(n)) for

the best expert setting and Q2 (v Tn?) for the multi-armed bandit setting. We also present
simple variants of algorithms in Littlestone and Warmuth (1994) and Auer et al. (2002b)
whose regret is within a constant factor of the lower bound for the best expert setting, and
within @ (/log(n)) of the lower bound for the multi-armed bandit setting.

The fully adversarial case, however, proves to be harder, and neither algorithm is com-
putationally efficient. To appreciate the hardness of the fully adversarial case, we prove that,
unless RP = NP, any low regret algorithm that learns internally a consistent ordering over
experts can not be computationally efficient. Note that this does not mean that there can
be no computationally efficient, low regret algorithms for the fully adversarial case. There
might exist learning algorithms that are able to achieve low regret without actually learning
a consistent ordering over experts. Finding such algorithms, if they do indeed exist, remains
an open problem.

1.1 Terminology and conventions

We assume that there is a fixed pool of actions, {1, 2, ..., n}, with n known. We will some-
times refer to an action by expert in the best expert setting and by arm or bandit in the
multi-armed bandit setting. At each time step ¢ € {1, 2, ..., T'}, an adversary chooses a sub-
set A, € {1,2,...,n} of the actions to be available. The algorithm can only choose among

1 As is the convention in the literature, the problem instance is not allowed to depend on T in the stochastic
setting. In other words, first the distributions P; (-) are chosen, and then we look at regret bounds as a function
of T.
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available actions, and only available actions receive rewards. The reward received by an
available action i at time ¢ is r;(¢) € [0, 1].

We will consider two models for assigning rewards to actions: a stochastic model and an
adversarial model. (In contrast, the choice of the set of awake experts is always adversarial.)
In the stochastic model the reward for arm i at time 7, r;(¢), is drawn independently from
a fixed unknown distribution P;(-) with bounded support and mean y;. In the adversarial
model we make no stochastic assumptions on how the rewards are assigned to actions. In-
stead, we assume that the rewards are selected by an adaptive adversary. The adversary is
potentially but not necessarily randomized.

Let o be an ordering (permutation) of the n actions, and A a subset of the actions. We
denote by o (A) the action in A that is highest ranked in 0. A o-policy corresponding to
the ordering o is the policy that selects, at each time step ¢, the action o (4,) (i.e. available
action that is highest ranked by o). The reward of a policy o is the reward obtained by the
selected action at each time step:

T
ro(1:T) = roan(®). 1)

t=1

Let rmax(1: T) = max, r, (1 : T) (max, E[r, (1 : T)] in the stochastic rewards model) be the
reward obtained by the best o -policy (ordering), which is also called the benchmark. Note
that in the stochastic reward model, the expectation is taken before taking the maximum
over all orderings, which corresponds to the “maximum expected” reward, as opposed to the
“expected maximum” reward in the adversarial setting (as is also done in the literature). We
define the regret of an algorithm with respect to the best o -policy as the expected difference
between the reward obtained by the best o-policy and the total reward of the algorithm’s
chosen actions x(1), x(2), ..., x(t):

T
regret, (1:7T) = ]E|:rmax(1 :T) — er(,)(t):|, 2)

t=1

where the expectation is taken over the algorithm’s random choices and the randomness
used in the reward assignment.

1.2 Related work

Sequential prediction problems The best-expert and multi-armed bandit problems corre-
spond to special cases of our model in which every action is always available. These prob-
lems have been widely studied, and we draw on this literature to design algorithms and prove
lower bounds for the generalizations considered here. The adversarial expert paradigm was
introduced by Littlestone and Warmuth (1994) and Vovk (1990). Cesa-Bianchi et al. (1997)
further developed this paradigm in work which gave optimal regret bounds of /7 (Inn) and
Vovk (1998) characterized the achievable regret bounds in these settings.

The multi-armed bandit model was introduced by Robbins (1952). Lai and Robbins
(1985) gave asymptotically optimal strategies for the stochastic version of bandit problem,
where rewards for each arm are drawn from a fixed distribution in each time step.

Auer et al. (2002a) introduced the algorithm UCB1 and showed that the optimal regret
bounds of @(log T - Z;:ll m—itm ) can be achieved uniformly over time for the stochastic
bandit problem (the arms are arranged such that @ > u, > --- > w,). For the adversarial
version of the multi-armed bandit problem, Auer et al. (2002b) proposed the algorithm Exp3
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which achieves the regret bound of ©(y/Tnlogn), leaving a /logn factor gap from the
lower bound of Q (v/nT). Recently, Audibert and Bubeck (2009) proposed a @ (WTn) regret
algorithm for the adversarial multi-armed bandit problem closing the sub-logarithmic gap.
It is worth noting that the lower bound holds even for an oblivious adversary, one which
chooses a sequence of payoff functions independently of the algorithm’s choices.

Prediction with sleeping experts Freund et al. (1997) and Blum and Mansour (2005) have
analyzed the sleeping experts problem in a different framework from the one we adopt here.
In the model of Freund et al., as in our model, a set of awake experts is specified in each
time period. The goal of the algorithm is to choose one expert in each time period so as to
minimize regret against the best “mixture” of experts (which constitutes their benchmark).
A mixture u is a probability distribution (u, u,, ..., u,) over n experts which in time period
t selects an expert according to the restriction of u to the set of awake experts.

In contrast, our work uses a different evaluation criterion, namely the best ordering of
experts. In the special case when all experts are always awake, both evaluation criteria pick
the best expert. Our “best ordering” criterion can be regarded as a degenerate case (limiting
case) of the “best mixture” criterion of Freund et al. as follows. For the ordering o, we assign
probabilities %(l, €,€2,...,€" 1) to the sequence of experts (o (1), 5(2),...,o(n)) where
Z= 11:” is the normalization factor and € > 0 is an arbitrarily small positive constant. The
only problem is that the bounds obtained from (Freund et al. 1997) in this degenerate case
are very weak. As € — 0, their bound reduces to comparing the algorithm’s performance to
the ordering ¢ ’s performance only for time periods when expert o (1) is awake, and ignoring
the time periods when o (1) is not awake. Therefore, a natural reduction of our problem to
the problem considered by Freund et al. defeats the purpose of giving equal importance to
all time periods.

Blum and Mansour (2005) consider a generalization of the sleeping expert problem,
where one has a set of time selection functions and the algorithm aims to have low re-
gret with respect to every expert, according to every time selection function. It is possible
to solve our regret-minimization problem (with respect to the best ordering of experts) by
reducing to the regret-minimization problem solved by Blum and Mansour, but this leads to
an algorithm which is neither computationally efficient nor information-theoretically opti-
mal. We now sketch the details of this reduction. One can define a time selection function
for each (ordering, expert) pair (o, i), according to I, ;(t) =1 if i <, j for all j € A, (that
is, o chooses i in time period ¢ if I, ;(t) = 1). The regret can now be bounded, using Blum
and Mansour’s analysis, as

Z@(\/Y}log(n -n!-n) +log(n!-n*)) = O(v/Tn2logn +n*logn).

i=1

This algorithm takes exponential time (due to the exponential number of time selection
functions) and gives a regret bound of @ (/Tn%logn) against the best ordering, a bound
which we improve in Sect. 3 using a different algorithm which also takes exponential time
but is information-theoretically optimal. (Of course, Blum and Mansour were designing their
algorithm for a different objective, not trying to get low regret with respect to best ordering.
Our improved bound for regret with respect to the best ordering does not imply an improved
bound for experts learning with time selection functions.)

A recent paper by Langford and Zhang (2007) presents an algorithm called the Epoch-
Greedy algorithm for bandit problems with side information. This is a generalization of
the multi-armed bandit problem in which the algorithm is supplied with a piece of side
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information in each time period before deciding which action to play. Given a hypothesis
class # of functions mapping side information to actions, the Epoch-Greedy algorithm
achieves low regret against a sequence of actions generated by applying a single function
h € # to map the side information in every time period to an action. (The function £ is
chosen so that the resulting sequence has the largest possible total payoff.) The stochastic
case of our problem is reducible to theirs, by treating the set of available actions, A,, as a
piece of side information and considering the hypothesis class # consisting of functions
h,, for each total ordering o of the set of actions, such that A, (A) selects the element of
A which appears first in the ordering o. The regret bound in Langford and Zhang (2007)
is expressed implicitly in terms of the expected regret of an empirical reward maximization
estimator, which makes it difficult to compare this bound with ours. Instead of pursuing this
reduction from our problem to the contextual bandit problem in Langford and Zhang (2007),
we propose a very simple bandit algorithm for the stochastic setting with an explicit regret
bound that is provably information-theoretically optimal.

2 Stochastic model of rewards

We first explore the stochastic rewards model, where the reward for action i at each time step
is drawn independently from a fixed unknown distribution P; (-) with mean p;. For simplicity
of presentation, throughout this section we assume that p; > p, > --- > u,. That is, the
lower numbered actions are better than the higher numbered actions. Let A; ; = u; — u; for
all i < j be the increase in the expected reward of expert i over expert j.

We present optimal (up to a constant factor) algorithms for both the best expert and the
multi-armed bandit setting. Both algorithms are natural extensions of algorithms for the all-
awake problem to the sleeping-experts problem. The analysis of the algorithms, however,
is not a straightforward extension of the analysis for the all-awake problem and new proof
techniques are required.

2.1 Best expert setting

In this section we study the best expert setting with stochastic rewards. We provide an algo-
rithm and prove matching (up to a constant factor) information-theoretic lower bounds on
the regret of any algorithm.

2.1.1 Upper bound (algorithm: FTAL)

To get an upper bound on regret we adapt the “follow the leader” algorithm (Hannan 1957;
Kalai and Vempala 2005) to the sleeping experts setting: at each time step the algorithm
chooses the awake expert that has the highest average payoff, where the average is taken
over the time steps when the expert was awake. If an expert is awake for the first time, then
the algorithm chooses it. (If there is more than one such expert, then the algorithm chooses
one of them arbitrarily.) The pseudocode for the algorithm is shown in Algorithm 1. The
algorithm is called Follow The Awake Leader (FTAL for short).

The performance guarantee of the algorithm FTAL is presented in the following theorem.

Theorem 1 Let A; ;1 >0 fori=1,2,...,n — 1. Then FTAL algorithm has a regret of at
most

n—1

32
Ajiy1

i=1

with respect to the best ordering.
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1 Initialize z; =0 and n; =0 for all i € [n].
2forr=1t0T do

3 ifdj € A, s.t. nj =0 then

4 Play expert x () = j

5 else

6 Play expert x (f) = argmax;eq, (fl—’l)
7 end

8 Observe payoff r;(t) for all i € A,

9 zi < zi+ri(t) foralli € A,

10 n; < n;+1foralli € A,

11 end

Algorithm 1: Follow-the-awake-leader (FTAL) algorithm for the sleeping experts prob-
lem with a stochastic adversary

Note that we are only considering problem instances in which different arms have dif-
ferent average payoffs. Also note that as A; ;1 gets close to 0, the regret bound become
vacuous. A general result will be proved in Theorem 6 which will take care of both these
restrictions, and the above theorem follows as a corollary to Theorem 6 by setting € = 0.

The above theorem follows immediately from the following pair of lemmas. The second
of these lemmas will also be used in Sect. 2.2.

Lemma 2 Let A; ;41 >0 fori=1,2,...,n — 1. Then the FTAL algorithm has a regret of
at most

n j—1
8

ZZ — (Aiiv1+ A1)
2 . j=Lj
j=2 i=1 Aiﬁj
with respect to the best ordering.
Proof Let n;, be the number of times expert i has been awake until time . Let [i; , be expert

i’s average payoff until time ¢. The Azuma-Hoeffding Inequality (Azuma 1967; Hoeffding
1963) says that

Plnj e >nj ;i +nj A j/21<e

and

2
i Bi A7 inis
8nip — e~ T 8

Plni iy < nigpti — ni A /2] < e

Let us say that the FTAL algorithm suffers an (i, j)-anomaly of type 1 at time ¢t if x, = j and
fj:—wj> A;;/2; note that the definition does not require expert i to be awake at time 7.
Define i} to be the optimal expert at time ¢ (lowest indexed expert in A;). Let us say that
FTAL suffers an (i, j)-anomaly of type 2 at time ¢ if i =i and u; — fl;, > A; ;/2; note again
that the definition does not require expert j to be awake at time 7. Note that when FTAL picks
a strategy x, = j #i =1/, it suffers an (i, j)-anomaly of type 1 or 2, or possibly both. We
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will denote the event of an (i, j)-anomaly of type 1 (resp. type 2) at time ¢ by 8;}} (1) (resp.

8;3) (1)), and we will use Mflj), resp. M,(zj), to denote the total number of (i, j)-anomalies of

types 1 and 2, respectively. We can bound the expected value of M; o ; by

o A.Z Ny
EMD] <> e 5 1{jcA) 3
t=1
0 A2 0
<Y e “)
n=1

where line (4) is justified by observing that distinct nonzero terms in (3) have distinct values
of nj,. The expectation of M;’ <2) is also bounded by 8/A? ~j» via an analogous argument.

Recall that A, denotes the set of awake experts at time ¢, x, € A, denotes the algorithm’s
choice at time #, and r; () denotes the payoff of expert i at time ¢ (which is distributed
according to P;(-)). Recall that i} € A, is the optimal expert at time ¢ (i.e., the lowest-
numbered element of A,). We are now ready to bound the regret of the FTAL algorithm.
A very crucial observation that we make next is that when arm i; is the optimal arm in
round ¢ and arm x, # i, is picked by the algorithm, one of the following two events must
have happened: either the observed reward of arm i is much smaller than its actual mean
W;x, or the observed reward of arm x, is much larger than its actual mean w,,. The first one
corresponds to an (i;", x,)-anomaly of type 2, and the second one corresponds to an (i, x;)-
anomaly of type 1. We split the regret according to this classification, and bound each term
in turn.

T T T
E[Z ris(£) = rq () ] {Z A } = E[Z e o veED, (t)}A,-,*,x,}
t=1

=1 =1

T T
[Zl {60, 0}A; x,} |:Zl {62, 0}y x,}- )
=1 t=1

With the convention that A; ; = 0 for j < i, the first term in (5) can be bounded as
follows.

T
[21 {6, w}A; }
t=1

T n
= |:Z 1 8(1) (t) ] (since the event 81,(;1)]. (t) occurs only for j = x,)

T n j—1
=E{Z 1{e ) ZA,-,I»H} ©®

t=1 j=2 i=if
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n j—1

T
<E| LTS el | mertelio) sateto) orn =i <)

t=1 j=2i=if

no j—
EJE{ Z ,,+121 (e} }
J

j=2 i=1
n j—1

— [e))
- Az z+lE[M,"j]

j=2 i=1

8

= A—zAi,H—l

I<i<j<n T hJ

Similarly, the second term in (5) can be bounded by

T
{Zl {62, A, }
t=1

[ T n-—1

=FE Z Z 81(?, (t) i| (smce event &; @ +, (1) occurs only for i =i )

Lt=1 i=1

7 n—1
=E[> > 1{&7 0} Z Aj- u} (M
Li=1 i=l

Jj=i+1
T n—1 x;
<E[ 2> > HeTola } (fori < ji < jo, 1{&1% (0} = {7, 0)})
Li=1 i=1 j=i+l
<E Z > UZ %}}
Li=1 j=i+1 t=1
n—1 n
=Y > A E[MY]
i=1 j=i+1
8
< Ajy
ls;Sn Alz,] ! !
Adding the two bounds gives the statement of the lemma. ]

Before presenting the next lemma that will finish the proof of Theorem 1, let us make the
following definition which will be useful in the proof.

Definition 3 For an expert j and y > 0, let i,(j) be the minimum numbered expert i < j
such that A; ; is no more than y. That is

iy(j):=argmin{i :i < j, A;; <y}
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For an expert i, and y > 0, let j, (i) be the maximum numbered expert j > i such that A; ;
is no more than y. That is

Jy(@):=argmax{j:j>1i, A;; <y}
Now we are ready to present our next lemma.

Lemmad4 Let A; ;11 >0fori=1,2,...,n—1.Then

n

n—1
2 -1 -2 -1
E Al-,inyl’*,' <2 E Aj*l.j and E A[,jAjfl.j <2 E AUJF].
i=1

I<i<j<n Jj=2 I<i<j<n

Note that this lemma is very important from a technical point of view in the proof of the
regret bound for FTAL, but does not have a direct bearing on the intuitive understanding of
the algorithm.

Note that Lemma 4 combined with Lemma 2 finishes the proof of Theorem 1. Instead of
proving the lemma above, we will prove a slight generalization (that will be useful in taking
care of “small A; ;1;’s”), and the lemma above will follow as a special case by putting € = 0.

Let us first motivate the generalization. The left hand side of the first inequality in
Lemma 4 can also be written as lei<j5n:A,;,>0 A;fA;,i+1, since the condition A; ; > 0 is
vacuous (we are assuming in the statement of the lemma that A; ; > 0 for i < j). Instead of

. 2 . S

putting an upper bound on lei<j5n:A,~_,~>0 A7 Ag i, we will relax the condition A; ; >0
to A; ; > € for some € > 0 and prove an upper bound on lei<jsn:A,-,j>e A;]?A,-,,»H. Let us
present the general case.

Lemma 5 Fore >0,

n

Z ApjAiis1 =2 Z max{e, Ajyjy-1,i(p}  and

I<i<j<n:A; j>e€ J=jo(1)+1
Jom)—1
2 -1
E A7Aj 22 E max{e, Ajyi)joi)+1} -
155<j5"1Af.j>e i=1

Recall from Definition 3 that if A; ; > 0 fori < j, then jo(i) =i for all i and io(j) = j
for all j, and the above lemma reduces to Lemma 4 by taking € = 0. The more complex
bound, in terms of Aj,(j)—1,ip¢j) and Ay, jo)+1» Will be needed later in the paper when
proving the more general Theorem 6 that allows for A; ; = 0.

Proof 1t suffices to prove the first of the two inequalities stated in the lemma; the second
follows from the first by replacing each p; with 1 — u;, which has the effect of replacing
A,-,j with An+l—j,n+l—i~

For a fixed i € [n], we write Zj A2 as follows.

J>LA e T

Yo AT=) Hjsi A=A ®)
j=2

j:j>i,A,~J->e

o0
=f |{j:j>i,Aiyj>e,Ai_yj?2x}|dx
x=0
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:/ {j:e <A <x"}dx (A;; > eimplies j > i)
x=0

0
= —2/ |{j te< A < y}|y 3dy (changing the variable of
Y=o integration x~1/2 = y)

=2/ ‘{j:e<A,«.j§y}‘y_3dy. ()]
y

=0

Now we can write the following chain of inequalities. (Note that the best (highest payoff)
expert is indexed as 1, and lowest payoff is indexed n.)

n—1

2.2 A

i=1 jeli+li+2,....n},A; j>€

n—1

=D A ) A (10)
i=1

_ﬂj>LALj>E
—ZZA,,+1</ [{je<ni;< }|y*3dy> (from (9))

n—1
= y~3 (Z A1 ‘{] €e<A;; < y}|) dy (changing the order of integration
y—O and summation)

n—1
(Z Ajiv1 e <A < y}) dy (expanding |{-}| into
y—O

j= z+l sum of 1{-})

n j—1
_3 (Z Z Ajirl{e <A < y}) dy (changing the order of
>’_0 j=2 i=1 summation)

Jj—1
_ 22/ 3( Ainlfe <A < y}) dy (changing the order of

i=1 summation and integration)

\

1
_ 22/ z( Aiipilfe <A < y}) dy (for y < e, the integrand is 0)

i=1

n 00 ie(j)—1
= 22[ y_3< Z Ai,,-+1> dy (use Definition 3)
j=20=e i=iy(j)

n o0
= 22/ Y iy — i) dy.
j=2 =

Now, we need a little care in manipulating this expression. Let us consider two cases:
(1) Wic(j) = Mig(j)» Which means that there is no arm with mean in (u;, u; + €], and
(i) e, Gy > MigGys which means that there is some arm with mean in (4, 0 ; + €]. In the first
case, Wi, (j) — Mic(j) i zero whenever y < Ajy(j)—1,iy(j)> SO the lower limit of the integration
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can be changed to Aj;(j)—1,i,(j)- In the second case, no special care needs to be taken. Note
that in both cases, w; () — Wi (j) < y. Also note that for j such that ;t; = u,, the difference
Miy(j) — Mic() 18 alwéys zero (both terms being equal to ©;). So, we can change the lower
limit of the outer sum to start from Jo(1) + 1 (the first arm which has mean lower than the
mean of the first arm).

oo

<2 Z <I{Ai0(j)fl,i0(j)>€} ydy

j=jo(H+1 y=8ig()-Lig()

o0
+ HAi(h-1ig() = f}f y~? dY)
y=¢

n
=2 Y (HAi-tiom) > Figir1ie) ™" + HAigr-1igt) < €}(O)7)
J=jo(M+1

n
-1
=2 Y (max{e, Ajggj-LigHD -
J=jo(H)+1

This concludes the proof of the lemma. ]

Remarks for small A;;+; Note that the upper bound stated in Theorem 1 become very
large when A; ;1 is very small for some i. Indeed, when mean payoffs of all experts are
equal, A;;4; =0 for all i and upper bound becomes trivial, while the algorithm does well
(picking any expert is as good as any other). We suggest a slight modification of the proof
to take care of such case.

Let € > 0 be fixed (the original theorem corresponds to the case € = 0). Recall the de-
finition of i.(j) and j. (i) from Definition 3. Note that the three conditions: (1) i < i.(j),
(2) j > je(@), and (3) A; ; > € are equivalent. The idea in this new analysis is to “identify”
experts that have means within € of each other. (We cannot just make equivalence classes
based on this, since the relation of “being within € of each other” is not an equivalence
relation.)

Lemma 2 can be modified to prove that the regret of the algorithm is bounded by

8
Arjee

This can be seen by rewriting (6) as
T n ie(j)—1 T n j—1
[€)) [€))
E[Z Yo ey o) Y- Ai,m} + E[ Yo ey o) Y A,-,m}
=1 j=2 i=if 1=1 j=2 i=ic(j)
and noting that the second term is at most
T n T
E[ZZl{glgfi(x)}e} = E|:e > 1} =T,
t=1 j=2
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since only one of the events 81.([*1‘)]. (t) (corresponding to j = x,) can occur for each .
Equation (7) can be similarly modified by splitting the summation j =i 4+ 1...x, to
J=i+1l...je@)and j=j(G)+1...x.

To upper bound the regret by the sum of inverses of A;;;;, we can use Lemma 5. With
these modifications to the proof, we have established the following variant of Theorem 1.
Note that the result of Theorem 1 can be seen to be a special case of the theorem below by
setting € = 0.

Theorem 6 For every € > 0, the FTAL algorithm has a regret of at most

16 ot 16

+
Aigip-riopd 4 max{e, Ajyiy jotir+1}

n
2T+ Z max{e,

J=jo(H+1

with respect to the best ordering.

Remember that the distributions P;(-) and, in particular, €y = min;{A j ), j,()+1} are in-
dependent of T'. This means that for T' large enough (O (¢, %)), the optimal € in the theorem
above will be zero, obtaining a constant regret bound with respect to 7. Note that to make
this statement it is critical to express the regret bound in terms of A j ), j,¢)+1 Tather than in
terms of A, ;4 to handle the case where A, ;;; = 0 for some i, and ensure that €) is bounded
away from 0.

2.1.2 Lower bound

In this section, assuming that the means w; are bounded away from O and 1, we prove
that FTAL’s regret presented in the section above is optimal (up to constant factors). This is
done by showing the following lower bound on the regret guarantee of any algorithm. Let
Bernoulli(p) denote the Bernoulli distribution with mean p. We use KL(p; ¢) to denote the
KL-divergence of two distributions, and for the case of Bernoulli distributions with means
wand p/, we use the notation KL(u; ') instead of writing a somewhat more wordy notation
KL(Bernoulli(u), Bernoulli(i')). Please refer to Karp and Kleinberg (2007) and Cover and
Thomas (1999) for an introduction to KL-divergence.

Lemma 7 Let P; = Bernoulli(w;) fori =1,2,...,n be the payoff distributions with u; €
(o, B) for some 0 < o < B < 1 (w;’s can be relaxed to lie in the closed interval [«, B]). Let ¢
be any algorithm for the stochastic best expert model. Then, there is an input instance with n
arms endowed with some permutation of the aforementioned distributions (Py, P>, ..., P,),
such that the regret of ¢ up to time T is at least

n—1 1
Q(; Ajit1 >7

whenever T > Ty, where Ty is a function of n, (1, U2, - - ., n), &, and B.

To prove this lemma, we first prove its special case for the case of two experts.

Lemma 8 Ler P; = Bernoulli(w;) for i = 1,2 be payoff distribution with u, u, € (a, B),
U1 > U, and 0 < a < B < 1. Let ¢ be an online algorithm for the stochastic best expert
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problem with two experts. Consider two instances I, and I, for the stochastic best expert
setting: In both instances, there are two experts namely L and R; in I, (L, R) are endowed
with reward distributions (P, P») and in I,, they are endowed with (P, Py). Then the regret
of algorithm ¢ on at least one of 1| or I is

Q™).

whenever T > Ty, where § = 1 — o, Ty is a function of (i, 1), «, and B, and the
constants inside the Q(-) may depend on «, .

Proof Let us define some joint distributions: p is the joint distribution in which both experts
have payoff distribution P;, g, is the distribution in which they have payoff distributions
(P1, P,) (left is better), and g is the distribution in which they have payoff distributions
(P>, Py) (right expert is better).

Let Ty = 5% for ¢ = W, and T > Ty. We will prove that if ¢ runs for T
rounds, then for one the instances g, or g, it will suffer at least Q (8~') regret.

Let us define the following events: E~ is true if ¢ picks L at time 7, and similarly EX.

We denote by p’(-) the distribution induced by ¢ on the ¢-step histories, where the dis-
tribution of rewards in each time period is p(-). Similarly for ¢'(-). We have p'[EF] +
p’[E,R] = 1. Therefore, for every ¢, there exists M € {L, R} such that p’[E,M] > 1/2. Simi-
larly, there exists M € {L, R} such that

1

{I:ISIST, p'[EM] > } T

_ > .
272

Without loss of generality, assume that M = L. Now assume the algorithm faces the in-
put distribution gg, and define g = gg. Using KL(-; -) to denote the KL-divergence of two
distributions, we have

KL(p';q") <KL(p";q") =T -KL(p; q) = 872 - KL(k1; o)

<872 » i

= S mine( —a), B —B)] ~ 50°

by the choice of c.
Karp and Kleinberg (2007) prove the following lemma. If there is an event E with
p(E)>1/3 and g(E) < 1/3, then

KL(p'q)>11n(;)—l (11)
=3 3g(E) e’

We have that for at least /2 values of 7, p’'(EL) > 1/3 (it is actually at least 1/2). In such
time steps, we either have ¢’ (EX) > 1/3 or the lemma applies, yielding

L kit s b ] 1
— ;¢ > Inl ——— ) — —.
50 = =3 e ) T

This gives ¢’ (EF) > 1—10 Therefore, the regret of the algorithm in time period ¢ is at least

9 n 1 - 16
M1 IOMI 10M2 =70
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Since T = Q(872), we have that the regret is at least

1
—35-Q(0 ) =Q(6~
0 G H=E™h.
This finishes the proof of the lower bound for two experts. We next prove the lower bound
for n experts. g

Proof of Lemma 7 Let us group experts in pairs of 2 as (2i — 1,2i) fori =1,2,..., [n/2].
Apply the two-expert lower bound from Lemma 8 by creating a series of time steps
when A; = {2i — 1, 2i} for each i. (We need a sufficiently large time horizon—namely
T > ZW 2l cAz_iz_in—in order to apply the lower bound to all |n/2] two-expert instances.)
The total regret suffered by any algorithm is the sum of regret suffered in the independent
[n/2] instances defined above. Using the lower bound from Lemma 8, we get that the regret

suffered by any algorithm is at least
ln/2] 1
> o :

= Noi 12
im

Similarly, if we group the experts in pairs according to (2i,2i + 1) fori =1,2,..., |n/2],
then we get a lower bound of

i (Azz 2:+1>

Since both of these are lower bounds, so is their average, which is

1oa(z)=o(Zom)

i=1

This proves the lemma. ]
2.2 Multi-armed bandit setting

‘We now turn our attention to the multi-armed bandit setting against a stochastic adversary.
We first present a variant of the UCB1 algorithm (Auer et al. 2002a), and then present a
matching lower bound based on an idea from Lai and Robbins (1985).

2.2.1 Upper bound (algorithm: AUER)

Here the optimal algorithm is again a natural extension of the UCB1 algorithm (Auer et al.
2002a) to the sleeping-bandits case. In a nutshell, the algorithm keeps track of the running
average of payoffs received from each arm, and also a confidence interval of width (radius)
pjs = Slnt
times j’s payoff has been observed (number of times arm j has been played). At time ¢,
if an arm becomes available for the first time then the algorithm chooses it. Otherwise the

algorithm optimistically picks the arm with highest “upper estimated reward” (or “upper
confidence bound” in UCB1 terminology) among the available arms. That is, it picks the

where ¢ is the current time interval and 7, is the number of
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arm j € A, with maximum fi;, + p;, where [i;, is the mean of the observed rewards of
8lnt
nj,,

time ¢. The algorithm is called Awake Upper Estimated Reward (AUER).

arm j up to time ¢, and p;, = is the width of the confidence interval around arm j at

1 Initialize z; =0 and n; =0 for all i € [n].
2fort=1¢ T do
3 ifdj €A, st nj=0then

4 Play arm x (1) = j

5 else

6 Play arm x(t) = argmax;cy, (i + %’g’)
7 end

8 Observe payoff 7, (¢) for arm x ()

9 Zx(t) < 2x() + rx(t)(t)

10 Nx@) <= Nx(r) +1
11 end

Algorithm 2: The AUER algorithm for the sleeping bandit problem with a stochastic
adversary

We first need to state a claim about the confidence intervals that we are using.

Lemma 9 With the definition of n;;, |, i, and p;, = /%‘tf the following holds for all

1<i<nand1<t<T:
R R R 1
Plui € (i — pies i + pid 1 =Plitie € (i — pies i + 01 ]1 =1 = &
Proof The equality follows since the two events are the same. The proof of inequality is an
application of Chernoff-Hoeffding bounds, and follows from Auer et al. (2002a, pp. 242-
243). 0

Theorem 10 For problem instances with A; ;1 > 0fori =1,2,...,n— 1, the regret of the
AUER algorithm is at most

1
Ajis

n—1
66InT + ©@(1)) - Z
i=1

up to time T'.

The theorem follows immediately from the following lemma and Lemma 4. Note that
we are only considering problem instances in which different arms have different means.
This restriction will be removed at the end of this section, where we present a gen-
eral bound, and the above theorem will follows as a special case of the general re-
sult.
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Lemma 11 For problem instances with A; ;1 >0 fori =1,2,...,n — 1, the AUER algo-
rithm has a regret of at most
(a,)2
—— | Aii+1,
A7

n j—1

B3InT + (1)) -
j=2 i=1

up to time T'.

Proof We bound the regret of the algorithm arm by arm. Let us consider an arm 2 < j <n.
For i < j, let us count the number N; ; of times j was played when some armin 1,2,...,i
was awake. (In these iterations, the regret accumulated is at least A; ; and at most A, ;.) We

claim that E[N; ;] < Q; ;, where Q; ; := nA'T“T

We want to claim that after playing j foer,-’ ;j number of times, we are unlikely to make
the mistake of choosing j instead of something from the set {1, 2, ..., i}; that is, if the set
of awake arms at time ¢ includes some arm in [i] as well as arm j, then with probability at
least 1 — t%, some awake arm in [i] will be chosen rather than arm j.

Let us bound the expected number of times j is chosen when A; N [i] # @ and j has
already been played Q; ; number of times.

> Pl(x, = j) A(j is played s-th time) A (A, N [i]5 )]

Q; j<s<t<T

< Y Plu=NAG=5)A ey (@ + pjs = fcs + pr))]

Q; j<s<t<T
. ; N 8Int
= Z Plxi=jjA (n_/t,t =5)A Vk:| Hijr+ —— = Wi + Pre
Q; j<s<t<T §
. . 8Inr
< Y P[vzzl(u,,t - */T > flis +pk,,>] (12)
Q[vj<sft§T

Let us define the event inside the probability expression as E; and define E; to be the event
that [ty , € [k — Pr.s> ik + i ] forall k € {jIU{1,2,...,i}. (Although E; and E, depend
on s and ¢, we suppress this dependence for notational convenience.) The probability of
event E, is at least 1 — (i + 1)r~* (from Lemma 9).

We will bound use the probability of E; by conditioning it on the event E,. We can write
PlE|] =P[E||E;|P[E;]1+PE|ESIP[ES] < P[E;|E,]+P[ES]. To bound P[E, | E>], notice

) . 8InT A2 Bij
that the confidence p;, of arm j is at most / 5= - A7, < —L.

If event E; happens, &, +pj; < (j+pj.0) +0j; < pj+A;j = ;. Also, fig; + pr, >
wp forall k =1,2,...,i. Therefore, the sum in (12) can be upper-bounded by following.

; N 8Inr _
Z P Vo | ) + TZMk,t‘f‘pk.t

Ez] + ]P’[E;])

Qi j<s<t=T
i (n i+1
= Y Mot zm)+ Y =
Qi,j<s=t=T Qi j<s<t<T !
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N i+1 .
=< Z Pl +pj = pil + Z " (since g > o >+ > ;)

Qi j<s<t<T Q;,j<s<t<T

<©@@MT™?) (the first term is zero, since
Aje+ pjs < i, see above)
=01).

Therefore, after j has been played Q; ; number of times, the expected number of additional
times that j is played when A, N [i] # @ is bounded above by a constant. This implies

EIN,]1< 0., + o) < @)

+00).

l]

Now, it is easy to bound the total regret of the algorithm, which is

n j—1 n j—1
E[Z Z(Ni,j - Ni—l,j)Ai,j:| = Z Z Nij(Aij— At ), 13)

j=2 i=1 j=2 i=l1

which follows by regrouping of terms and the convention that Ny ; =0 and A;; =0 for
all j. Taking the expectation of this gives the regret bound of

n j—1
(33T +0(1)) - ZZ( )(Ai,j—Ai+1,j)-

j=2i=1

This gives the statement of the lemma. 0

Remarks for small A; ;11 As noted in the case of the expert setting, the upper bound above
becomes very weak if some A, ;; are small. In such a case, the proof can be modified by
changing (13) as follows.

n j—l1

ZZ(NLJ Ni—1,j) A

Jj=2 i=1
n ie(j) n j—1
=Y Y N =N DA+ Y (Nij— Nisi A
j=2 i=l J=2i=ic()+1
n ic(j)—1 n
<Z Z Nl]All+1+ZNle(])] le(])]+z Z (N,, N 1/)6

J=2i=ie(j)+1

n ic(j)—1

<Z Z Nlell+l+GZNl€(J +€Z(Nj 1Lj— iE(j),j)

< Z N;ijAiiv1 +€T,

1§i<j§n,A,'yj>e

where the last step follows from %) N;_; ; <T.
Taking the expectation, and using Lemma 5, we get the following regret bound for AUER
algorithm.
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Theorem 12 For any € > 0, the regret of the AUER algorithm is at most

n

re Y 33InT + O(1) j"%‘ 33InT + O(1)
€ s
max{e, Aj;j)—1io()} max{e, A jy), joti)+1}

j=io(+1 i=1

up to time T'.
2.2.2 Lower bound

In this section, we prove that the AUER algorithm presented is information theoretically op-
timal up to constant factors when the numbers p;—the mean payoffs of arms—are bounded
away from O and 1. We do this by presenting a lower bound of

n—1
Q(lnT > A;;H)
i=1

for this problem. This is done by closely following the lower bound of Lai and Robbins
(1985) for two-armed bandit problems. The difference is that Lai and Robbins prove their
lower bound only in the case when T — oo, but we want to get bounds that hold for finite 7'.
Our main result is stated in the following lemma.

Lemma 13 Ler P; = Bernoulli(w;) for i = 1,2,...,n be payoff distributions with u; €
(a, B) for some 0 < a < B < 1. Let ¢ be an algorithm for picking among n arms such that
for all t, the expected number of times ¢ plays a suboptimal bandit up to time t is bounded
above by c¢it*! + ¢, (¢; and c, possibly depend on ;). Then, there is an input instance with
n arms endowed with some permutation of the aforementioned distributions (P;)?_,, such

that the regret of ¢ is at least
n—1
logT i — M
Q Z (log T) (i — Wi+1) ’
—  KL(ivrs pi)

for T > Ty, where Ty is a function of n, u;, c1, c2, o, B.

We note that the exponent 0.1 in the lemma is quite arbitrary. Indeed, any nonzero expo-
nent would work for the purpose of the proof.

Note that the above lower bound without the (log 7") factor follows from the stochastic
best expert lower bound in Lemma 7.

Using the fact that for u; € (o, B), KL(u;; pi) = (9a,,3(Aﬁj), the lower bound can also be

stated as
n—1
(logT)
Q2 ,
’ (Z A

i=1

which matches (up the constant factors) the upper bound in Theorem 10. Note that the
notations O g(-) and €2, g(-) hide dependence on « and B.

We first prove the result for two arms. For this, in the following, we extend the Lai and
Robbins result so that it holds (with somewhat worse constants) for finite 7', rather than only
in the limit 7 — oo.
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Lemma 14 Let P; = Bernoulli(w;) for i = 1,2 with u, < uy, u; € (o, B) fori =1,2 and
0 <a < B < 1. Let ¢ be any algorithm for choosing among two arms which never picks the
worse arm (for any values of v, and u» in (a, B)) more than ct%' + ¢, times up to time t
(c1 and c, possibly depend on @, and ). Then there exists an instance with two arms
endowed with two distributions above (in some order) such that the regret of the algorithm
¢ when presented with this instance is at least

1((10g T)(uy — Mz))
6 KL(12; 1)

forall T > Ty, and the value of Ty can be explicitly computed as a function of , 2, c1, €2,

o, B.

Proof From the assumption that (; and pu, are bounded away from O and 1, there exists a
Bernoulli distribution with mean A > @; with

1
I KL(p2; A) — KL(po; p)l = e KL(p2; 1),
because of the continuity of KL divergence in its second argument. Indeed, using the con-
vexity of KL(u,; -) (for fixed w,), and the fact that the slope of KL(u,; -) is bounded by
B2 ) can be chosen to be min{u; + K20 BU=F) "F-it1} Thig claim provides us with

B(1—p) 10 (B-p)’ 2
a Bernoulli distribution with mean A (which is an explicit function of w; and 8) such that

11
KL(p2; A) < 0 KL(pe2; ). (14)

From now on, until the end of the proof, we work with the following two distributions on
T -step histories: p is the distribution induced by the algorithm ¢ playing against Bernoulli
arms with means (141, 12), and ¢ is the distribution induced by ¢ playing against Bernoulli
arms with means (@1, A). From the assumption of the lemma, we have

E T —narl < T +co.

Note that ¢; and ¢; here are functions of ; and A (which in turn is a function of u;, o, 8).
By an application of Markov’s inequality, we get that

9 E, [T —
P, |:n2,r < —(ogT)/KL(j42; A)] < 5 ql nyrl
0 T — 5 (log )/ KL(p2: 2)
0.1
< M
-T2
<47 (for T > (e2fen)'). (15)

(for T > PRUC KL(uz:)\)))

Let & denote the event that ny 7 < %(log T)/KL(uo; 1). If P, (8) < 1/3, then

— 9
Eplnor] = Py(€) - E(IOg T)/KL(p2, 1)

- 2 9 logT
~ 3 10 KL(ua, M)
29 logT

2 RN

311 KL(ua; )

which implies the stated lower bound.
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Henceforth, we will assume P, (&) > 1/3. We have IP,(8) < 1/3 using (15). Now apply-
ing the lemma from (Karp and Kleinberg 2007) stated in (11), we have

1 1 1
KL(piq) = ~In[ ——— ) — -
(Prq) = 3 n<3'4c1T*0<9> e

1 1 1
=-09InT — | - + =1In(12¢y)
3 e 3

1
=(0.3)InT — (5 1n(e3/ecl)>. (16)
The chain rule for KL divergence (Cover and Thomas 1999, Theorem 2.5.3) implies
KL(p; ) =E,[na,7]- KL(p2; ). a7
Combining (16) with (17), we get

(0.3)InT — L In(e¥/*cy)

E,lnyr] >

KL (25 A)
- 03 InT 1 In(e¥°c))
T LI KL(u2; 1) 3 KL(p2; p1)
3 In(D) 1 In(e¥°c))
COLTKL(uo 1) 3 KL(was 1)
3 In(T 1 In(T
23 n(T) b n(7T) (for T > (&%/°¢,)'%/3)
1T KL(2; 1) 10 KL(ueas 1)
Zl In(T) .
6 KL(jt2; m1)

This gives the required regret bound. The explicit value of T above which the bound holds
is

10
. C
Ty := max{e5/(9KL(ﬂz,)~))7 (c_2> ,(€¥ec))ton }
1

which can be explicitly written as a function of pu;, u,, c1, ¢z, @, B. O
We now extend the result from 2 to n bandits.

Proof of Lemma 13 A naive way to extend the lower bound is to divide the time line between

n/2 blocks of length 27 /n each and use n/2 separate two-armed bandit lower bounds as

done in the proof of Lemma 7.

We can pair the arms in pairs of (2i — 1,2i) fori =1,2,..., [n/2]. We present the
algorithm with two arms 2i — 1 and 2i in the i-th block of time. The lower bound then is

T\ &2 Moi—1 — M2i
aftog( L) 3 (L2 = ),
n ) = \KL(iai; pai-1)
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We get a similar lower bound by presenting the algorithm with (2i, 2i 4 1):
TN
o 1og(_> 5 ( i — Hais ) .
n/) = \KL(uait1; pai)

Taking the average of the two lower bounds and T > n? gives the required lower bound of

9(21 (log T)(14: —/ml))’

—  KL(iig1s i)

finishing the proof of the lemma. g

3 Adversarial model of rewards

‘We now turn our attention to the case where no distributional assumptions are made on the
generation of rewards. We consider in turn the best expert setting and the multi-armed bandit
setting. For each setting, we first prove information theoretic lower bounds on the regret of
any online learning algorithm, and then present online algorithms whose regret is within a
constant factor of the lower bound for the expert setting and within a sub-logarithmic factor
of the lower bound for the bandit setting. Unlike in the stochastic rewards setting, however,
these algorithms are not computationally efficient. It is an open problem if there exists an
efficient algorithm whose regret grows as @ (7 '~¢n°) for some positive constants €, c.

3.1 Best expert setting

In this section, we consider the adversarial sleeping best expert setting. Recall that in the
sleeping best expert setting, the algorithm chooses an expert to play in each time round from
the set of available experts, and at the end of the round, gets to observe the rewards of all
available experts for that round, not just for the one it chose. There is no assumption on how
the rewards of these experts are generated in each round; indeed an adversary chooses the
reward of each expert in each time round, and can observe the choices made by the algorithm
prior to that round in choosing the rewards for a particular round. Additionally, the adversary
also chooses which subset of the experts will be awake (available) in each time round.

We first present a lower bound on the achievable regret of any algorithm for the adver-
sarial sleeping best expert problem.

Theorem 15 For every online algorithm ALG and every time horizon T, there is an adver-
sary such that the algorithm’s regret with respect to the best ordering, at time T , is

Q(y/Tnlog(n)).

Proof We construct a randomized oblivious adversary (i.e. a distribution on input sequences
of length T') such that the regret of any algorithm ALG is at least Q2(,/Tnlog(n)). The
adversary partitions the timeline {1, 2, ..., T} into a series of two-expert games, i.e. intervals
of consecutive rounds during which only two experts are awake and all the rest are asleep.
In total there will be Q(n) = ®©(nlogn) two-expert games, where Q(n) is a function to
be specified later in (19). For i = 1,2, ..., Q(n), the set of awake experts throughout the
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i-th two-experts game is a pair A’ = {x;, y;}, determined by the adversary based on the
(random) outcomes of previous two-experts games. The precise rule for determining the
elements of A will be explained later in the proof.

Each two-experts game runs for 7o = 7/ Q(n) rounds, and the payoff functions for the
rounds are independent, random bijections from A® to {0, 1}. Letting g® (x;), g®(y;) de-
note the total payoffs of x; and y;, respectively, during the two-experts game, it follows from
Khintchine’s inequality (Khintchine 1923) that

E(|g? ) —g”)|) = 2(/To). (18)

The expected payoff for any algorithm can be at most %, so for each two-experts game the
regret of any algorithm is at least Q (+/Tp). For each two-experts game we define the winner
W; to be the element of {x;, y;} with the higher payoff in the two-experts game; we will
adopt the convention that W; = x; in case of a tie. The loser L; is the element of {x;, y;}
which is not the winner.

The adversary recursively constructs a sequence of Q(n) two-experts games and an or-
dering of the experts such that the winner of every two-experts game precedes the loser in
this ordering. (We call such an ordering consistent with the sequence of games.) In describ-
ing the construction, we assume for convenience that n is a power of 2. If n = 2 then we set
0(2) =1 and we have a single two-experts game and an ordering in which the winner pre-
cedes the loser. If n > 2 then we recursively construct a sequence of games and an ordering
consistent with those games, as follows:

1. We construct Q(n/2) games among the experts in the set {1, 2, ..., n/2} and an ordering
< consistent with those games.

2. We construct Q(n/2) games among the experts in the set {(n/2) + 1,...,n} and an
ordering <, consistent with those games.

3. Letk=20Q0(n/2).Fori =1,2,...,n/2,wedefine x;,; and y;,; to be the i-th elements in
the orderings <, <», respectively. The (k + i)-th two-experts game uses the set A®+) =
(ki Yiyi}-

4. The ordering of the experts puts the winner of the game between x;;; and y;; before
the loser, for every i =1,2,...,n/2, and it puts both elements of A%+ before both
elements of A*++D,

By construction, it is clear that the ordering of experts is consistent with the games, and that
the number of games satisfies the recurrence

Q(n)=20(n/2)+n/2, 19)

whose solution is Q(n) = ©(nlogn).

The best ordering of experts achieves a payoff at least as high as that achieved by the
constructed ordering which is consistent with the games. By (18), the expected payoff of
that ordering is T/2 + Q(n) - Q(+/Tp). The expected payoff of ALG in each round ¢ is 1/2,
because the outcome of that round is independent of the outcomes of all prior rounds. Hence
the expected payoff of ALG is only 7' /2, and its regret is

Q) - Q(\/?O) = Q(nlogn,/T/(nlogn)) = Q2(+/Tnlogn).

This proves the theorem. O

It is interesting to note that the adversary that achieves this lower bound is not adaptive
in either choosing the payoffs or choosing the awake experts at each time step, i.e. it makes

@ Springer



268 Mach Learn (2010) 80: 245-272

these choices without considering the algorithm’s past decisions. It only needs to be able to
carefully coordinate which experts are awake based on the payoffs at previous time steps.

Even more interesting is the fact that this lower bound is tight, so an adaptive adversary
is not more powerful than an oblivious one. There is a learning algorithm that achieves a
regret of @(y/Tnlog(n)). We turn our attention to this algorithm now.

To achieve this regret we transform the sleeping experts problem to a problem with n!
experts that are always awake, and we choose among these n! experts using the Hedge
algorithm (Freund and Schapire 1999). In the transformed problem, we have one expert for
each o-policy (i.e. ordering of the original n experts). At each round, each of the n! experts
makes a prediction according to its corresponding o -policy, (i.e. the same prediction as the
highest ranked awake expert in the corresponding ordering), and receives the payoft of that
policy (i.e. the payoff of the highest ranked awake expert in the corresponding ordering).

Theorem 16 An algorithm that makes predictions using the Hedge algorithm on the trans-
formed problem achieves 9 (y/Tnlog(n)) regret with respect to the best ordering.

Proof Every expert in the transformed problem receives the payoff of its corresponding
ordering in the original problem. Since Hedge achieves regret @ (/T log(n!)) with respect
to the best expert in the transformed problem, the same regret is achieved by the algorithm
in the original problem. The theorem follows by applying the bound log(n!) = @ (nlogn),
which is a consequence of Stirling’s formula. ]

In a naive implementation the algorithm described above is obviously not computation-
ally efficient since in each round we have to sample among n! experts and update n! weights.
A natural question is whether this algorithm can be implemented in polynomial time by de-
vising an efficient sampling scheme and a clever weight update procedure. The following
theorem, unfortunately, shatters any hope that this might be possible.

Theorem 17 Unless RP = NP, any learning algorithm for the adversarial sleeping experts
problem that:

1. generates its output by sampling over o -policies, independently of the set of awake ex-
perts
2. has regret bounded by T'~¢ - p(n) for some € > 0 and some polynomial function p(-)

cannot be implemented in polynomial time.

Proof We prove this theorem via a reduction from the minimum feedback arc set problem
(Garey and Johnson 1979). The notion of reduction here is not the usual Karp-reduction,
but we will show that if there is an algorithm with specified conditions, then we can find the
optimum for any feedback arc set instance with probability at least 1 — § for any constant
§>0.

Let ALG be any algorithm that respects the conditions in the theorem. We are given a
directed graph G = (V, A), in which we are to find the minimum feedback arc set. Every
permutation of the vertices defines a feedback arc set, but this mapping is not one to one.
(There can be many permutations for one feedback arc set.) For a permutation o, the corre-
sponding feedback arc set is the set of arcs going from higher numbered vertices to lower
numbered vertices, i.e., {a = (u, v) € A : 0 (#) > o (v)}. The cardinality of this set is denoted
by FAS(o). For a feedback arc set A’ C A, a corresponding permutation can be found by
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choosing one of the topological orderings of the graph (G, A \ A’). It is easy to see that the
minimum feedback arc set is equal to min, FAS(o). We will use the learning algorithm ALG
to find, with high probability, an ordering o minimizing FAS (o).

We instantiate an adversarial sleeping experts problem with |V| experts, one for each
vertex in the graph. In each round, the adversary selects an arc (#,v) in A uniformly at
random and makes the two experts corresponding to the head (v) and the tail (#) of the
selected arc awake and all the other experts asleep. It then associates a payoff of 1 to the
expert corresponding to the tail of the arc and a payoff of 0 to the expert corresponding to the
head of the arc. We play for T := 2((%] p(n)m)'/¢ rounds and in each round we record the
o-policy selected by ALG and also the feedback arc set value of the permutation o. At the
end of the T rounds we choose the best permutation among the 7 rounds—the one with the
smallest FAS(o) value—and output the corresponding feedback arc set. See Algorithm 3.

1 Leto =(1,2,...,|V]) (current best permutation) and x = FAS(c) (value of the best
feedback arc set so far).
fort =110 T =2([{1p(n)m)'/c do
Choose (u, v) € A at random from m arcs in A. Let {u, v} be the set of awake
experts. Set the payoff of u to 1 and the payoff of v to 0.
4 Record the permutation o; that the algorithm ALG outputs.
5 if x > FAS(o,) then
6 o <o,
7
8
9

w N

Xx < FAS(0;)
end
end
0 Output {a = (u,v) € A:0(u) > o (v)} as the feedback arc set.

=

Algorithm 3: Algorithm to solve Feedback Arc Set Problem from low regret adversar-
ial expert algorithm

Let FAS, be the optimum value of the feedback arc set. Let o be the permutation selected
by Algorithm 3. We claim that FAS(0) = FAS, with probability at least 1 — §. Since the
number of rounds is polynomial in n and m (¢ and § are constants), this will solve feedback
arc set in randomized polynomial time.

Since the expected regret of the algorithm is at most 7'~ p(n), it follows from Markov’s
inequality that with probability at least 1 — §, the regret is at most % T1=¢p(n). We will prove
that in this event, our algorithm finds a 0 with FAS(0) = FAS,.

We prove this claim by contradiction. If not, then for all t =1,2,...,T, FAS(o;) >
FAS, + 1. The expected reward of choosing a permutation 7 is 1 — %(r). Therefore the
expected regret in each round is at least

( FAS, ) ( FAS(o;) ) 1
1— —1- > —.
m m

Hence, the total regret of the algorithm is at least 7T - % We also know that the regret is at
most %T‘*E p(n). This gives the following relation:

3 |

T 1,
— <<-T “p),
m~ 8
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which simplifies to T < (é p(n)m)'/¢, a contradiction since we have taken T to be twice
as much. This proves that if we run our algorithm for 7 := 2([%1 p(n)m)'/€, then with
probability at least 1 — §, we recover the optimum feedback arc set for the graph. This
proves the theorem. ]

Note that this does not mean that there does not exist an efficient, low regret algorithm for
the adversarial sleeping experts problem. One might be able to design an efficient, low regret
algorithm that either does not sample over o -policies, or makes the sampling dependent on
the set of awake experts. For instance, there exists a simple algorithm that achieves low
regret against the particular adversary used in the proof above: run a separate instance of
the Hedge algorithm for every pair of experts and, in each round, use the instance of Hedge
corresponding to the two experts that are awake. Since the adversary will only present the
algorithm with two awake experts at a time, this algorithm can always make a prediction,
and its regret will be bounded by @ (v T - n?).

3.2 Multi-armed bandit setting

Finally, we consider the adversarial sleeping multi-armed bandit setting. Recall that in the
sleeping multi-armed bandit setting, the algorithm chooses an arm to play in each round
from the set of available arms, and at the end of the round, gets to observe the rewards of
the chosen arm (unlike best expert setting, where the algorithm observes the reward of all
potential choices). There is no assumption on how the rewards of these arms are generated
in each round. Additionally, an adversary also chooses which subset of arms will be awake
(available to be chosen by the algorithm) in each round.

We first present a lower bound on the achievable regret of any algorithm for the adver-
sarial sleeping multi-armed bandit problem.

Theorem 18 For every online algorithm ALG and every time horizon T , there is an adver-
sary such that the algorithm’s regret with respect to the best ordering, at time T , is 2 (n+/T).

Proof To prove the lower bound we will rely on the lower bound proof for the standard
multi-armed bandit when all the bandits are awake (Auer et al. 2002b). In the standard “all-
awake” bandit setting with a time horizon of Ty, any algorithm will have at least 2 (y/Ton)
regret with respect to the best bandit. To ensure this regret, the input sequence is generated by
sampling Ty times independently from a distribution in which every bandit but one receives
a payoff of 1 with probability % and 0O otherwise. The remaining bandit, which is chosen at
random, incurs a payoff of 1 with probability % + € for an appropriate choice of €.

To obtain the lower bound for the sleeping bandits setting we set up a sequence of n
multi-armed bandit games as described above. Each game will run for Ty = % rounds. The
bandit that received the highest payoff during the game will become asleep and unavailable
in the rest of the games.

In game i, any algorithm will have a regret of at least Q2 (,/ %(n — 1)) with respect to the
best bandit in that game. Consequently, the regret of any learning algorithm with respect to
the best ordering is bounded below by a positive constant times the following expression:

n—1 n—1 n—1

T T T 2 /T
S\ pemi=y ey [ era= S ey e
—Vn nig n Ji—o 3V n

The theorem follows. a

@ Springer



Mach Learn (2010) 80: 245-272 271

Let us now turn our attention to getting an algorithm for the adversarial sleeping multi-
armed bandit problem. To get an upper bound on regret, we will use the Exp4 algorithm
(Auer et al. 2002b). Since Exp4 only works against oblivious adversaries, in what follows
we will also assume an oblivious adversary (i.e. the rewards for each arm at each round do
not depend on the past choices of the algorithm).

Exp4 chooses an arm by combining the advice of a set of “experts”. At each round, each
expert provides advice in the form of a probability distribution over arms. In particular the
advice can be a point distribution concentrated on a single action. (It is required that at least
one of the experts is the uniform expert whose advice is always the uniform distribution over
arms.)

To use Exp4 for the sleeping experts setting, we concoct n! + 1 “experts”, one corre-
sponding to the “uniform” expert which chooses each arm with equal probability, and one
each for n! orderings. The expert corresponding to an ordering o always “advises” to play
the arm o (A;) (first available arm in its ordering), i.e., in each round, the advice of ex-
pert o is a point distribution concentrated on the highest ranked arm in the corresponding
ordering o.

This introduces a slight problem. Since the uniform expert may advise us to pick arms
which are not awake, we assume for convenience that the algorithms is not restricted to
choose an action from A, (awake set), but is allowed to choose any action at all, with the
proviso that the payoff of an action in the complement of A, is defined to be 0. Note that
any algorithm for this modified problem can easily be transformed into an algorithm for the
original problem: every time the algorithm chooses an action in the complement of A, we
instead play an arbitrary action in A, (and don’t use the feedback obtained about its payoff).
Such a transformation can only increase the algorithm’s payoff, i.e. decrease the regret.
Hence, to prove the regret bound asserted in Theorem 19 below, it suffices to prove the same
regret bound for the case when algorithm is allowed to choose an arm in complement of A,
with zero payoff.

Theorem 19 The Exp4 algorithm as described above achieves a regret of 9 (n./T log(n))
with respect to the best ordering, against an oblivious adversary.

Proof We have n arms and 1+ n! experts, so the regret of Exp4 with respect to the payoff of
the best expert is 9 (/T nlog(n! + 1)) (Auer et al. 2002b). Using the estimate log(n!+ 1) =
O (nlogn), this regret bound can be rewritten as @ (n/T logn). Since the payoff of each
expert is exactly the payoff of its corresponding ordering, we obtain the statement of the
theorem. ]

The upper bound and lower bound differ by a factor of @(y/log(n)), the gap result-
ing from adapting the Exp4 algorithm to our setting. In the classical multi-armed bandit
setting, Audibert and Bubeck (2009) closed a similar gap (© (/T nlogn) upper bound ver-
sus §(+/Tn) lower bound) by improving the Exp3 algorithm. It is not clear how the poli-
cies from (Audibert and Bubeck 2009) can be adapted for Exp4 algorithm, so closing the
©(/logn) gap in the sleeping multi-armed bandit problem setting remains an important
open problem.

4 Conclusions

We have analyzed algorithms for full-information and partial-information prediction prob-
lems in the “sleeping experts” setting, using a novel benchmark which compares the algo-
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rithm’s payoff against the best payoff obtainable by selecting available actions using a fixed
total ordering of the actions. We have presented algorithms whose regret is information-
theoretically optimal in both the stochastic and adversarial cases. In the stochastic case, our
algorithms are simple and computationally efficient. In the adversarial case, the most impor-
tant open question is whether there is a computationally efficient algorithm which matches
(or nearly matches) the regret bounds achieved by the exponential-time algorithms presented
here.
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