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Abstract Clustering stability methods are a family of widely used model selection tech-
niques for data clustering. Their unifying theme is that an appropriate model should result
in a clustering which is robust with respect to various kinds of perturbations. Despite their
relative success, not much is known theoretically on why or when do they work, or even
what kind of assumptions they make in choosing an ‘appropriate’ model. Moreover, recent
theoretical work has shown that they might ‘break down’ for large enough samples. In this
paper, we focus on the behavior of clustering stability using k-means clustering. Our main
technical result is an exact characterization of the distribution to which suitably scaled mea-
sures of instability converge, based on a sample drawn from any distribution in R" satisfying
mild regularity conditions. From this, we can show that clustering stability does not ‘break
down’ even for arbitrarily large samples, at least for the k-means framework. Moreover,
it allows us to identify the factors which eventually determine the behavior of clustering
stability. This leads to some basic observations about what kind of assumptions are made
when using these methods. While often reasonable, these assumptions might also lead to
unexpected consequences.
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1 Introduction

The important and difficult problem of model selection in data clustering has been the focus
of an extensive literature spanning several research communities in the natural and social
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sciences. Since clustering is often used as a first step in the data analysis process, the ques-
tions of what type of clusters or how many clusters are in the data can be crucial.

Unfortunately, an objective ‘correct’ answer to these questions seldom occurs in practice.
There might be several reasonable ones, depending on the resolution at which we inspect the
data, and our (usually subjective) definition of what constitutes a cluster. The ill-posedness
of the model selection problem is compounded by the unsupervised nature of the data, often
making it difficult to assess the compatibility of even a single specific model. These difficul-
ties suggest that the model selection procedure should be carefully chosen to fit the nature
of the problem at hand, and what the practitioner is trying to achieve. For this, one needs a
good grasp of the assumptions about the clustering structure that are inherent to each such
procedure. Understanding these assumptions is not always trivial for general-purpose model
selection methods, which are not tied to specific generative assumptions.

In the past few years, an increasingly popular family of such model selection methods are
those based on clustering stability. The unifying theme of these methods is that an appro-
priate model for the data should result in a clustering which is robust with respect to various
kinds of perturbations. In other words, if we choose an appropriate clustering algorithm, and
feed it with the ‘correct’ parameters (such as the number of clusters, the metric used, etc.),
the clustering returned by the algorithm should not be overly sensitive to the exact structure
of the data.

In particular, we will focus on clustering stability methods which compare the discrep-
ancy or ‘distance’ between clusterings of different random subsets of our data. These meth-
ods seek a ‘stable’ model, in the sense that the value of such distance measures should tend
to be small.

Although these methods have been shown to be rather effective in practice (cf. Ben-
Hur et al. 2002; Dudoit and Fridlyand 2002; Lange et al. 2004; Levine and Domany 2001;
Smolkin and Ghosh 2003; Bertoni and Valentini 2007), little theory exists so far to explain
their success, or for which cases are they best suited for. Over the past few years, a theoret-
ical study of these methods has been initiated, in a framework where the data are assumed
to be an i.i.d. sample. However, a fundamental hurdle was the observation (Ben-David et al.
2006, 2007) that under mild conditions and for any model choice, the clustering algorithm
should tend to converge to a single solution which is optimal with respect to the underlying
distribution. As a result, clustering stability might ‘break down’ for large enough samples,
since we get approximately the same clustering hypothesis based on each random subsam-
ple, and thus achieve stability regardless of whether the model fits the data or not (this prob-
lem was also pointed out in Krieger and Green 1999). It is important to emphasize that this
is not just a theoretical issue. If the scenario above indeed occurs, it implies that there exists
some sample size, which depends on the underlying distribution and hence may be hard to
compute, beyond which we should not trust the results of clustering stability methods.

A possible solution to this difficulty was proposed in Shamir and Tishby (2008a). In a
nutshell, that paper showed that even when all considered models eventually become com-
pletely stable, the relative stability of each model compared to the other models can some-
times be reliably discerned—even when the sample size increases to infinity. With this more
refined analysis, it was argued that there may be no upper limit to the sample size for which
clustering stability remains meaningful. Although it provided the necessary groundwork,
that paper only rigorously proved this assertion for a single toy example, as a proof-of-
concept.

In this paper, we formally investigate the application of clustering stability to the well
known and popular k-means clustering framework, when the goal is to determine the value
of k, or the number of clusters in the data. We consider arbitrary distributions in R” satis-
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fying certain mild regularity conditions, and analyze the behavior of the clustering distance
measure, scaled by the square root of the sample size. Rather than converging to zero in
probability as the sample size increases to infinity, this scaled measure converges to a non-
degenerate distribution which depends on the choice of k. From this we can show that even
for asymptotically large samples, clustering stability does not become meaningless, in the
sense described earlier, at least for the k-means framework that we study. While the prelim-
inary version of this paper (Shamir and Tishby 2008b) assumed an ideal algorithm, which
finds the global optimum of the k-means objective function, here we extend our results to
the actual algorithm used in practice, which might return a sub-optimal solution. Also, we
note that using different tools, some of the results presented here can be extended to more
general families of clustering frameworks beyond k-means (Shamir and Tishby 2009).

The asymptotic distribution is also interesting for two additional reasons. The first is that
it can be seen as an approximation which improves as the sample size increases. The second
and more profound reason is that if we are interested in discovering what fundamental as-
sumptions are implicit in performing model selection with clustering stability, these should
not be overly dependent on the sample size used. Therefore, as we look at larger samples,
sample-size-specific effects diminish, and what remains are the more fundamental charac-
teristics of the method. As a result, the analysis leads to some basic observations about the
factors influencing clustering stability for the k-means framework, which may be of theo-
retical and practical interest.

The paper is organized as follows. In Sect. 2, we introduce the problem setting and the
notation we shall use. The notation is also summarized in Table 1. In Sect. 3, we formally
present the results which characterize the asymptotic behavior of clustering stability in the
k-means framework. We build on these results in Sect. 4, where we discuss the factors in-
fluencing this behavior, and how do they affect what is considered as a ‘stable’ or ‘unstable’
model by clustering stability methods. These observations are illustrated with some simple
examples in Sect. 5. In Sect. 6, we give a negative result about the convergence rates of
clustering stability estimators to their asymptotic distribution. Almost all the proofs in the
paper are concentrated in Sect. 7, except for the proof of one of the lemmas, which is placed
in an Appendix due to its length and it being conceptually separate from the other results.
We end with conclusions in Sect. 8.

2 Problem setting and notation

We refer the reader to Fig. 1 for a graphical illustration of the basic setting, and some of the
notation introduced below. A list of the notation used may be found in Table 1.

Denote {1, ..., k} as [k]. Vectors will be denoted by bold-face characters. || - || will de-
note the Euclidean norm unless stated otherwise. (i, £) denotes the multivariate normal
distribution with mean g and covariance matrix X.

Let D be a probability distribution on R”, with a bounded probability density function
p(-), which is defined everywhere, and is continuous as a function on R"”. Assume that the
following two regularity conditions hold:

. fR,, p(X)|Ix[|?> dx < oo (in words, D has bounded variance).
e There exists a bounded, monotonically decreasing function g(-) : R — R, such that
p(x) < g(||x]]) for all x € R", and frO:OO r'"g(r) < oo.

The second requirement is purely for technical reasons and can probably be improved.
Nevertheless, it is quite mild, and holds in particular for any distribution that is not heavy-
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Fig. 1 An illustrative drawing of
the setting and notation used.
Thicker lines represent the

optimal k-means clustering T 2
partition (for k = 3 clusters) with ““o“‘
respect to the underlying “““o‘ ,,,,,,,,

distribution. Clustering two N s
independent random samples b i Kt
gives us two random centroid sets N
c and ¢’. These induce two
different Voronoi partitions of
R, and the distance measure is
the probability mass in the area
which switches between clusters,
when we compare these two ;

el

partitions (gray area) G i &
H3

Heip @0 Huip YHy o
Table 1 Table of notation
(k] {1,....k}
N, %) Multivariate normal distribution with mean g and covariance matrix X
D,p(-) Underlying probability distribution and corresponding density function
S=X1,...,Xm) Sample of size m drawn i.i.d. from D
Ar(-) The standard k-means algorithm
W(-) The k-means objective function w.r.t. an empirical sample (see (1))
W) The k-means objective function w.r.t. the underlying distribution D (see (2))
c=(cr,...,Ck) Cluster centroids, returned by the k-means algorithm based on a random sample
=01, s L) Limit cluster centroids to which the k-means algorithm converges in probability
dip (Ak (S, Ak (S52)) Scaled stability measure, based on samples S;, S, of size m (see (3))
instab(Ay, D) Expected value of the limit distribution of d% (Ax(S1), Ak (S52)) (see (9))
Ce,i The cluster associated with centroid ¢;
Feij The boundary between the clusters associated with centroids ¢;, ¢; (see (4))
He; j The infinite hyperplane containing the cluster boundary Fe ; ; (see (5))
r Hessian of W (-) at u (see (6), (7))
\%4 Per-cluster covariance matrix of D with respect to clustering u (see (8))

tailed or has bounded support. As to the continuity assumption, it should be noted that
our results hold even if we assume continuity solely in some open neighborhood of the
limit cluster boundaries to which our clustering algorithm converges (to be formally defined
shortly). However, since this somewhat complicates the analysis without leading to novel
insights, we will take this stronger assumption for simplicity.

Let A, (-) denote the (possibly randomized) standard k-means algorithm, which is given
asample S = {x;}/L, € R", sampled i.i.d. from D, and a required number of clusters k, and
returns a set of centroids ¢ = (cy, ..., ¢;) € R, These will usually be thought of as random
variables, dependent on the randomness of the sample. Recall that the k-means algorithm
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attempts to minimize the objective function
1 m
W(c) =— min ||¢; — x;|%, (1)
— ;HM lej —xil

via alternating steps of associating each instance to its nearest centroid, and then reposi-
tioning the centroids at the center of mass of their respective clusters (for further discus-
sion of the algorithm and its properties, see for instance Duda et al. 2001; Hartigan 1975;
Steinley 2006). This procedure is not guaranteed, in general, to find the global minimum of
W (o).

In a statistical setting, W(c) can be seen as an empirical approximation of the objective
function with respect to the underlying distribution, defined as

W(c) :=/ p(x) min ||¢; — x||* dx. )
R Jelk] -

As discussed earlier, we focus in this paper on the setting where the clustering algorithm
converges to a single solution as the sample size goes to infinity. Again, this solution may
not be the global minimum of W (c¢). A bit more formally, we shall assume that as the sample
size m increases, the centroids returned by the algorithm converges in probability to a single
fixed solution w = (@1, ..., u;) € R (up to permutation of the centroids), with centroids
which lie at the center of mass of the clusters with respect to the underlying distribution:

fxeC,“- xp(x) dx

Vi € [k] m; fxecﬂ,,- S dx
For simplicity, we will also assume that all these centroids are distinct (for all i # j,
R; # i ;). To avoid ambiguities involving permutation of the centroids, we assume that the
numbering of the centroids is by some uniform canonical ordering (for example, by sorting
with respect to the coordinates), such that this numbering does not change for sufficiently
small perturbations of .

The basic idea of clustering instability is to measure distances between clusterings, based
on different samples from our data. More formally, we define the (scaled) distance between
two clusterings Ay (S)) and Ay (S,), where S, S, are samples of size m, as i/m times the
probability that a randomly sampled instance from D will belong to different clusters in
Ak (S)) and Ay (S,). Formally,

dp (A (81), Ak (82)) = «/%xl:%(x € A(S1);, X € Ax(S2) . j # J)- 3)

This definition follows (Ben-David et al. 2006, 2007), and is similar to what clustering
stability methods attempt to estimate in practice, by computing the proportion of the data
which switches between clusters when the clusterings 2, (S;) and Ay (S,) are compared.
The main difference is the additional scaling by /m (the ‘correct’ scaling factor as will
become evident later on). This is usually performed by clustering independent subsamples
of the data, and empirically estimating the distance between the resulting clusterings. The
average distance is taken to be the measure of the model instability. Thus, understanding
the behavior of d} (A (S1), Ak (S»)) (over drawing and clustering independent samples) is of
much interest in analyzing the behavior of clustering stability.
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Any choice of cluster centroids ¢ = (¢, ..., ¢;) induces a Voronoi partition on R". For
each cluster centroid ¢;, we denote the interior of its corresponding cluster as C, ;, defined
as

Cei = [x € R : argmin [l¢; — x| =i].
Jelk]

Also, we will denote F¢; ;, fori # j, as the boundary face between clusters i and j. Namely,
the points in R"” whose two closest cluster centroids are ¢; and ¢;, and are equidistant from
them:

Feij:= {XER” :argm%g”ca —x||2:{i,j}]. “)
ae

Assuming c;,c; are distinct, F.; ; is a (possibly empty) subset of the hyperplane H.; ;,

defined as
.
Hei = {xeR";<x—c’+ch) e —02)20}. )

In the paper, we use integrals with respect to both the n-dimensional Lebesgue measure,
as well as the (n — 1)-dimensional Lebesgue measure. The type of integral we use should
be clear from the context, depending on the set over which we are integrating. For example,
integrals over some C.; are of the first type, while integrals over some Fc; ; are of the
second type.

The remainder of this section formally defines two matrices which prove to play an im-
portant role in how clustering stability behaves. The first matrix, of size kn x kn, is the
Hessian of the mapping W (-) at the limit solution u, which we shall denote as I". This ma-
trix is composed of k x k blocks I7; ; for i, j € [k], each such block being of size n x n. Each
block I7,; can be shown to be equal to'

2
L= (/ P dx)l,l -y T =l PO —p)(x—p)" dx,  (6)

C[L.! a#i Fuj,u

if i = j, and for i # j it is defined as

L PO — p)(x—p;)" dx. 0]

lw; — ﬂ_f|| Fuij

We will use the same block notation later for its inverse I"~!'. We assume that the matrix I”
is positive definite. This is a mild requirement, because if u is a locally optimal solution then
I’ is always positive semidefinite. Cases where I” is not strictly positive definite correspond
to singularities which are often pathological (for more discussion on this, see Radchenko
2004).

The second matrix we shall need, denoted as V, is equal (up to a constant of 4) to the
covariance matrix of D with respect to each cluster, assuming the optimal clustering induced
by p. More specifically, V is a kn x kn matrix, composed of k diagonal blocks V; of size
n x n for i € [k] (all other elements of V are zero), where

v; :=4/C PO(x — ) (x — ;)" dx. ®)

i

We shall assume that V; has full rank for any i.

IThis is proven in Pollard (1982). The definition of I there differs from ours in one of the signs, apparently
due to a small error in that paper (Pollard, personal communication).
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3 Asymptotic behavior of clustering stability

In this section, we formally characterize the asymptotic behavior of clustering stability, and
discuss some immediate consequences. The detailed proofs are presented in Sect. 7.

At a technical level, our main result is the following theorem, which characterizes the
exact distribution to which d(Ax(S1), Ac(S>)) converges for any appropriate underlying
distribution D, as well as its expected value.

Theorem 1 Assume D has a bounded probability density function p(-), which is continuous
as a function on R" and fulfills the two regularity conditions specified in Sect. 2. Let Ay (+) be
the k-means algorithm, and assume that the returned set of centroids ¢ = (¢4, ..., ¢;), based
on i.i.d. samples from D, converge in probability to some set of k distinct centroids g =
(i, ..., /) which are a local optimum of W (-). Furthermore, assume that I' is invertible
and that V; has full rank for any i € [k]. Then we have that d}(Ay(S1), Ak(S>)) converges
in distribution to that of

-
V2 / P& ‘(”’i_x> <Ci—ﬂi>
Z Fuij i = G IHINX — R ¢~ K

I<i<j<k

dax,

where ¢ = (cq,...,¢) ~N(u, TV,
The expected value of this distribution, denoted as instab(2y, D), is equal to

Z / lIJ(X,i,j) dx. ©)
F,

1<1<j<k Wi ””'i_”'j”

where V(X, i, j) is defined as

(0 0E Sl
o v\ D h ) \x—w; )|

All the integrals can be shown to exist by the assumptions on p(-).

The asymptotic distribution and ﬂta\b(Ak, D) allows us to characterize the asymptotic
behavior of clustering stability. The following theorem exemplifies this on a simple empir-
ical estimator of clustering stability. The main difference between the following estimator
and those proposed in the literature is that it measures the distance between just a single pair
of clusterings from a pair of independent samples, rather than averaging over several pairs
based on subsampling the data. This just makes our result stronger, because these kind of
bootstrap procedures should only increase the reliability of the estimator, whereas here we
are interested in a ‘lower bound’ on reliability.

Theorem 2 Define a clustering stability estimator, é\kjm, as follows: Given a sample of size
3 m, split it randomly into 3 disjoint subsets Sy, S,, S5 each of size m. Estimate
dy (B (S1), Ak (52))/+/m by computing

1 L,y
— D Ax e B(S1)), X € B (S2) 1, j # ).
m xeS3
For any distribution D satisfying the conditions of Theorem 1, assume that for some two

values of k, ks # k,, the ratio of ﬁta\b(Aku, D) and M(Aks , D) (as defined in Theorem 1)
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is R > 3. Then we have that:

~ ~ 0.3+ 3log(R
Pr(fy, sm = Oty 3m) < % +o(1),

where the probability is over a sample of size 3 m used for both estimators, and o(1) con-
verges to 0 as m — oo. This bound is understood to signify o(1) if R = oco.

The theorem implies the following: Suppose we are considering two possible values
for k, designated as k; and k,, such that the ratio between Eta\b(Aku, D) and Eta\b(Akx ,D)
is some reasonably large constant (one can think of it as a relatively unstable model corre-
sponding to k,, vs. a relatively stable model corresponding to k;). Then the probability of
not empirically detecting k, as the most stable model has an upper bound which actually
decreases with the sample size, converging to a constant value dependent on the ratio of
M(Akx ,D) and m(Ak“ , D). In this sense, according to the bound, clustering stabil-
ity does not ‘break down’ in the large sample regime, and the asymptotic reliability of its
empirical estimation is determined by M(Ak, D). We emphasize that this theorem deals
with the reliability of detecting the most stable model, not whether a stable model is really
a ‘good’ model in any other sense.

4 Factors influencing stability of clustering models

According to Theorem 1, for any distribution satisfying the necessary conditions, the dis-
tance between clusterings (after scaling by /m) converges to a generally non-degenerate
distribution, which depends on the underlying distribution and the number of clusters k. As
Theorem 2 shows, this implies that clustering stability does not ‘break down’ in the large
sample regime, and its choice of the most ‘appropriate’ value of k eventually depends on
instab(ay, D).

Theorem 1 provides an explicit formula for @(Ak, D). Although one can always cal-
culate it for specific cases, it is of much more interest to try and understand what are the gov-
erning factors influencing its value. These factors eventually determine what is considered
by clustering stability as the ‘correct’ model, with a low value for m(Ak, D). Therefore,
understanding these factors can explain what sample-size-free assumptions correspond to
the use of clustering stability, at least in the k-means setting that we study. A full analysis of
these factors and their inter-relationships is a complex endeavor in itself, but several basic
observations can be obtained in a relatively straightforward manner. Some simple examples
illustrating expected and unexpected consequences of these observations will be provided in
the following section.

We will base these observations on two sets of rough but conceptually simpler upper and
lower bounds on ﬂm\b(Ak, D). These bounds are presented in Theorem 3 and Corollary 1
which follow, and highlight different aspects of this quantity. Since our main focus in this
section is clarity rather than generality, we will allow ourselves to assume that the probability
distribution D is supported in the unit ball of Euclidean space.? For the same reason, we have
made no particular effort to make the bounds tight.

2Relaxing or removing this assumption will only affect multiplicative constants, which might depend on the
regularity conditions we have imposed on the probability density function p(-).
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Theorem 3 M(Ak, D) is upper bounded by

( \f Vha max(V>
p(x)dx
akmm(r) U,J Wi

where o := min;; |®; — R ll, and Anax(A) and Ayin(A) denote the smallest and largest
eigenvalues of a matrix A.
Also, instab(2y, D) is lower bounded by

(\/7\/ Amin(V) )
p(X) dx.
Amax (1) Uij Fui.j

Corollary 1 m(Ak, D) is upper bounded by

ii F

aVol — 16kn P R
e i,j L

where Vol := max; fc p(X)dx denotes the largest cluster with respect to the clustering
induced by p and the underlymg distribution, Vol := min; |, Cu p(x) dx denotes the smallest
such cluster, P := SUPJ,  Fyi . p(X) denotes an upper bound on the probability density along
the limit cluster boundaries, and o :=min;y; |w; — p;| is a lower bound on the distance
between any two limit centroids.

Also, M(Ak, D) is lower bounded by

( \/)‘-min(v) ) /
2(Vol + 16knP Ja) ) J|

p(x)dx.

i Fuij

We will start by considering Corollary 1. The first thing to notice is that the integral
density along the cluster boundaries, fU' i p(x) dx, seems to play an important role in
i, j o,

determining the instability of a model. According to the upper bound, if the density along

the cluster boundaries is zero, we get that m(Ak, D) =0, and thus any such model will
be asymptotically considered as the most stable one. Moreover, the same bound implies that
M(Ak, D) will tend to be small even if the density along the cluster boundaries is small
but not exactly zero. This means that clustering stability will tend to consider models with
lower density along the cluster boundaries as more ‘appropriate’.

A second observation that can be made is that when faced with two different choices
of k, both of which with low density along the boundaries, both the upper and lower bounds
in Corollary 1 will often tend to be larger for the bigger value of k. To see this, notice first
that the cluster boundary area, U Fy.i j, increases with the number of clusters. Also, if

the clusters are reasonably balanced, we should expect Vol to scale down inversely with k,
whereas +/Anin (V) scales down at a slower rate, especially in high dimensions. If P is small
enough to make kn P relatively negligible, these factors imply that the bounds in Corol-
lary 1 will tend to be larger for the bigger value of k. To give a concrete and very simple
example (see Fig. 2 for a graphical illustration), consider a uniform distribution on the cube
[—1//n,1//n]", with k; = 2" and k, = 2*" (the example can be easily generalized). The
optimal clustering for each k& is a uniform grid partition of the cube (intuitively, we slice the
cube once along each dimension for k; = 2", and 3 times for k, = 22"). To correspond to
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Fig. 2 A graphical illustration of
the example discussed in the text,
for n = 2. The shaded areas
represent areas of positive
density. Black circles represent
centroids, and lines represent
cluster boundaries. For the same
underlying distribution, the left
figure represents an optimal
clustering with k; =4 clusters,
and the right figure represents an
optimal clustering with kp = 16
clusters

the regime of low density along the boundaries, suppose we slightly modify the distribution,
by making the probability density at thin slivers around the optimal cluster boundaries to be
very small. Obviously, this does not materially change the optimal clustering. Comparing
how the elements in the bounds change as we move from k; to k;, we have that Vol and
Vol decrease by 2", o decreases by 2, «/Amin(V) decreases by 24/2, and fU,- i p(x)dx
increases by 3. As a result, we get that the upper bound in Corollary 1 increaéjes by approx-
imately 3 % 2"/2*!_and the lower bound increases by approximately 3 % 2"~%/2,

This observation matches a known experimental phenomenon, in which clusterings tend
to be less stable for higher k, even in hierarchical clustering settings where more than one
value of k is acceptable. When the ‘correct’ model has, for example, a very low boundary
density and nice structure compared to all the competing models, this might overcome any
inherent tendency of instability to increase with k. However, when this is not the case, nor-
malization procedures might be called for, as in Lange et al. (2004). Although one can argue
that this phenomenon is exacerbated by finite sample effects (since the same sample size m
is used to measure the clustering stability for different values of k), we see here that it relies
on factors which do not depend on the sample size, and thus will not be resolved simply by
scaling the sample size with k.

Turning to Theorem 3 allows us to see in which direction is clustering instability affected
by the local geometry of the limit clustering in the solution space. Specifically, recall that
I' is the Hessian of the objective function at the limit clustering u, and thus describes the
local geometry of the objective function around that point. If u represents a shallow, ill-
defined local optimum of the objective function, then we might expect the eigenvalues of I”
to be small. From Theorem 3, we see that this will tend to make M(Ak, D) larger. For
the same reason, a deep and well-defined local optimum will tend to make m(Ak, D)
smaller. Thus, clustering stability seems to take into account and penalize shallow and ill-
defined local optimum in terms of the objective function, which is indeed often a sign of a
mismatch between the model and the data.

Finally, it is important to emphasize that most of the observations above are concerned
with tendencies, and have no pretensions to universality, in the sense that they apply for
every possible clustering setting. In particular, as was recently pointed out and studied in
Ben-David and von Luxburg (2008), there definitely exist situations where the density along
the cluster boundaries is not positively correlated with the model instability. Thus, these
observations should be seen as aids in understanding what kind of assumptions clustering
stability methods tend to make in choosing the most ‘appropriate’ model, rather than as
universal assertions about their behavior.
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10 107 ==
0 100020003000 ~ O 100020003000 ~ O 10002000 3000
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Fig. 3 Illustrative examples of the behavior of clustering stability. In each column, the upper plot is a repre-
sentative sample from the underlying distribution (in all cases, a mixture of unit variance Gaussians in R2),
while the lower plot is the average value of d% (A (S1), Ak (S2)) (empirically averaged over 1000 trials), for
different sample sizes m

5 Examples

To illustrate some of the observations from the previous section, we empirically evaluated
the instability measure on a few simple toy examples, where everything is well controlled
and easy to analyze. These examples consist of various mixtures of Gaussians, where the k-
means algorithm (with 10 random initializations) was used as a basis to estimate the model
stability for different values of k. The results are displayed in Fig. 3. We emphasize that these
are just simple illustrations of possible expected and unexpected characteristics of clustering
stability in some very limited cases, which can be gleaned from the theoretical results above,
and are not meant to be a real empirical study of clustering stability.

First of all, we see that in all cases considered, the average value of d} (A« (S1), Ax(S2))
tends to converge to a constant value, which differs based on the choice of the model or-
der k, and clustering stability does not seem to ‘break down’ as sample size increases. If we
would have eliminated the scaling by the square root of the sample size in the definition of
dB (2% (S1), Ak (S2)), then we would have graphs which converge to zero for all values of k,
but the ratio between them would have remained more or less constant.

The three leftmost columns demonstrate how, for these particular examples, the density
along the cluster boundaries seem to play an important role in determining M(Ak, D).
In the two leftmost columns, kK = 3 emerges as the most stable model, as the boundaries
between the clusters with k = 3 have low density. However, k = 3 becomes less stable as the
Gaussians get closer to each other, with higher densities in the boundaries between them.
At some point, when the Gaussians become close enough, k = 2 becomes more stable than
k=3.

A different and more unexpected manifestation of this behavior can be seen in the right-
most plot, which simulates a hierarchical clustering setting. In this case, all three Gaussians
are separated, but one of them is relatively more separated than the other two. As before,
k =4 is less stable than k = 3 and k = 2, but now k = 2 is the most stable model. Deciding
on k =2 as the number of clusters in the data is not unreasonable (recall that clustering
stability makes no explicit generative assumption on how the clusters look like). However, it
can indicate that in a hierarchical clustering setting, clustering stability might prefer higher
levels of the hierarchy, which may or may not be what we want.
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6 A negative result on convergence rates

After establishing the asymptotic distribution of the clustering distance measures for k-
means clustering, a reasonable next step is exploring what kind of guarantees can be made
on the convergence rate to this asymptotic limit. As a first step, we establish the following
negative result, which demonstrates that without additional assumptions, no universal guar-
antees can be given on the convergence rate. The theorem refers to the case k = 3, but the
proof idea can easily be extended to other values of k. For simplicity, we will also assume
that we use an ‘ideal’ k-means algorithm which actually finds the global minimum of the
objective function given a sample. The setting which we use to prove the theorem is simple
enough so that the real k-means algorithm can be expected to have a similar behavior.

Theorem 4  For any positive integer my, there exists a distribution D such that
df(A3(S1), A3(S,)) converges in probability to 0 as m — o0, but Pr(d}(A5(S1), A3(S,)) >
Jm/4) is at least 1/3 for some m > my.

The intuition behind the theorem is that for a suitably designed distribution, an arbitrarily
large sample might be needed for the empirically derived clustering ¢ to get ‘close’ to the
limit clustering . As a result, for that setting and sample size, the central limit asymptotic
behavior that we have analyzed will be a poor approximation. However, it should be em-
phasized that the setting used in the theorem is highly artificial, and not necessarily typical
of real-world clustering problems. Therefore, finding sufficient and empirically verifiable
conditions which do allow finite sample guarantees is of much interest.

7 Proofs
7.1 Proof of Theorem 1

Before embarking on the proof, we briefly sketch its outline:

1. Using tools from the statistical theory of Z-estimators, we characterize the asymptotic
Gaussian distribution of the cluster centroids ¢, in terms of the underlying distribution D
(Lemma 1). This result reproves the central limit theorem for k-means due to Pollard
(1982), but without requiring an algorithm capable of finding the global optimum of the
k-means objective function.

2. The cluster boundaries are determined by the positions of the centroids. Hence, we can
derive the asymptotic distribution of these boundaries. In particular, for every boundary
F.; j, we characterize the asymptotic distribution of the pointwise Euclidean distance
between two realizations of this boundary, over drawing and clustering two indepen-
dent samples. This distance is defined relative to a projection on the hyperplane H, ; ;
(Lemma 2).

3. We show that the probability mass of D, which switches between clusters i and
J over the two independent clusterings, has an asymptotic distribution definable by
an integral involving the distance function above, and the values of p(-) on Fy; ;
(Lemma 3 and Lemma 4). This allows us to formulate the asymptotic distribution of
dB (Ax(S1), Ak (S2)), and its expected value.

For convenience, we shall use € = (€1, . . ., €;) to denote the random element ¢ — w. Also,
we will use the stochastic order notation O,(-) and o0,(-) (cf. van der Vaart and Wellner
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1996). Let {X,,} and {Y,,} be sequences of random vectors, defined on the same probability
space. We write X,, = O,(Y,,) to mean that for each € > 0 there exists a real number M
such that Pr([| X,,[| > M||Y,,]l) < € if m is large enough. We write X,, = 0,(Y},) to mean
that Pr(|| X, || > €||Y.n]|) — O for each € > 0. Notice that {Y,,} may also be non-random. For
example, X,, = 0,(1) means that X,, — 0 in probability.

Lemma 1 Under the notation and assumptions of the theorem, /me = /m(c — j) con-
verges in distribution to v, where v~ N (0, I "'V I ™1, As a result, || €] = O,(1//m).

Since proving the lemma requires specific tools and additional notation which we will not
need later on, we present the proof separately in Appendix. Notice that the lemma allows
us to assume that for large enough values of m, with arbitrarily high probability and for
any i, j € [k],i # j, the nearest centroid to p; is c;, all centroids are distinct, F; ; is non-
orthogonal to Fy, ; ;, and |€| is arbitrarily small. We shall tacitly use these assumptions in
the remainder of the proof.

Lemma 2 For some i, j € [k],i # j, assume that F, ; j # 0. For any X € H, ; ;, define the
function:

¢i+c¢;

I, — p i+ —x) - (¢ —¢;)
(i —pj) - (¢ —¢))
Then if | €|| is smaller than some positive constant which depends only on ., £(X, ¢;, ¢;)
can be rewritten as

1 ﬂi_x)T<€i> 2
T — +0 +1 .
=] (X_ w,) () +ow+Dier)

Considering the projection of H; ; to H,; ;, we have that £(x, ¢;, ¢;) is the signed
Euclidean distance of x from the point on H.; ; which projects to it (see the left half of
Fig. 4). This is because £(x, ¢;, ¢;) must satisfy the equation:

(<X+E(x, ¢, cj) ki K ) _ G —l—c_,») -(¢; —¢;)=0.
i —w;ll 2

(x.ci¢)) =

Proof We will separate the expression in the definition of £(X, ¢;, ¢;) into 2 multiplicative
components and analyze them separately. We have that:

¢ +c¢;
(T]—X) -(C,‘—Cj)

_ (u _X> (= 1) + (6 =€)

2
it Ry it i€
=<%_X)'(Il«i_ﬂj)‘f‘(%_x)'(fi_fj)‘i‘(%)'(ll«i_ﬂj)
+O0(lel®).

Notice that the first summand is exactly O (since x € F), ; ;), and can therefore be dropped.
After expanding and simplifying, we get that the above is equal to

(i —%) - € — (k; —%) - €; + O(l€]®). an

@ Springer



226 Mach Learn (2010) 80: 213-243

As to the second component in the definition of £(x, ¢;, ¢;), we have that

i — il _ l; —wjll
(i =)= —e) N =yl + (= m)) - (e =€)
B 1 B 1
Iy — (14 Bt €y i — psl|(1+ O(llel)
! J i —pejll
1 1
_ <1_ OClel) )= + Ol 12
lw; — mjll 1+ O(lel) llae; — el

assuming ||€|| to be small enough. Multiplying (11) and (12) gives us the expression in the
lemma. O

In order to calculate the asymptotic distribution of d7; (A« (S), Ax(S2)), we need to char-
acterize the distribution of the probability mass of D in the ‘wedges’ created between two
boundaries for clusters #,j, based on two independent samples (see Fig. 1). For any two
given boundaries, calculating the probability mass requires integration of the underlying
density function p(-) over these wedges, making it very hard to write the distribution of
this probability mass explicitly. The purpose of the next two lemmas is to derive a more
tractable, asymptotically exact approximation for each such wedge, which depends only on
the values of p(-) along the boundary F,; ;.

We begin with an auxiliary lemma, required for the main Lemma 4 which follows. To
state these lemmas, we will need some additional notation. For some H,, ; j,let F C H, ; ; be
some finite intersection of half-spaces. For notational convenience, we shall assume w.l.0.g
that H, ; ; is aligned with the axes, in the sense that for all x € H,, ; ;, its last coordinate is 0
(it can be easily shown that the regularity conditions on p(-) will still hold). Also, denote
F'={yeR"!:(y,0) € F}, which is simply the n — 1 dimensional representation of F on
the hyperplane. Finally, for ease of notation, denote £((y, 0), ¢;, ¢;) forany y € F' as l, y),
where e =¢ — .

Lemma 3 Let €, €' be two independent copies of ¢ — u, each induced by clustering an

independent sample of size m. Let B = {x € R" : ||x|| < R} be a ball of radius R centered at
the origin. Then we have that

/;"DB

where the constants implicit in the r.h.s. depend on R.

L (y)
/: p(y,0) dé’dy‘ =0,(1/+/m), (13)
4

e(y)

le ()
/z Py, E)dé‘dy

e(y)

F'NB

Proof Since p(-) is a non-negative function, we can rewrite the expression in the lemma as

max{Ze (y),, ¢ W} max{fe(y),Z, o W}
/ / p(y,S)dédy—/ / p(y,0)dé& dy|,
FNB Jmintle (9.7, ()} F'NB Jmin{le ()2, (y)

max{Ze (y)./ (¥)}
f [ p(y, &) — p(y, O)dfdy‘-
F'NB

min{le (y).0er (¥)}

or
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By the integral mean value theorem, since p(-) is continuous, we have that the expression
above is equal to:

/ 1o (y) — LI (P, &) — p(y. 0)dy].
F'NB

where &y is between the minimum and maximum of {ll (y), Lo (y)}. For simplicity of nota-
tion, we will write &, € [576 (y), Ee/ 1.
The expression above is upper bounded in turn by:

/ (A EA2L0)) sup Ip(y, &) — p(y,0)|dy,
F'nB gyelle ).l ()]

assuming the integral exists. Since €, € have the same distribution, it is enough to show
existence and analyze the convergence to zero in probability for

/ LWl swp p(y.&) — p(y.0)|dy. (14)
F'NB tyelle(y). Ly ()]

This integral can be upper bounded by

sup 12(y)l  sup  [p(y.&) — p(y, 0) ldy. 5)

yeF'nB Eyelle ). Ly ] F'nB
Since B is bounded, we have according to Lemma 2 that if | €|| is small enough,

sup L) =OClell + Il (16)

yEF'NB

and a similar equation holds for £ (-) with € replaced by €’ in the r.h.s. To make the equa-
tions less cumbersome, we will ignore the higher order term ||€||?, since € converges to 0 in
probability anyway by Lemma 1 (it is straightforward to verify that the analysis below still
holds). From (16) and the sentence which follows, we have that supy /g Eyelle ).l ()] 5y =
O(Jl€]]). Since ||€]| converges to zero in probability, this implies that &, converges to zero
in probability, uniformly for any y € F' N B. Moreover, p(-) is uniformly continuous in the
compact domain B, and thus p(y, &) converges uniformly in probability to p(y,0). As a
result, we have that

sup sup lp(y,§) — p(y,0)| =0,(1). (17
YEF'NB gyelle(y).fe ()]

Substituting (16) and (17) into (15), and using the fact that ||| = O,(1//m), we get
that the expression in (15) (and hence (14)) is 0, (1/ A/m) as required. O

Lemma 4 For some non-empty Fy ; ;, let t(c,c,i, j) be a random variable, defined as the
probability mass of D which switches between clusters i, j with respect to the two clusterings
defined by ¢, ¢, induced by independently sampling and clustering a pair of samples Sy, S»
each of size m. More formally, define the set-valued random variable

Q(C, C/,i,j) = {X eR": (X € Cc’,’ ANX E Ccfyj) \4 (XG Cc’,i ANX € Cc,j)} U Fc,zﬂ,j U Fc’,i,ja
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Enin(/J‘v ) C/, i7 ])

Fmax(l‘wc»C,viv J)

Fuij

Fig. 4 An illustrative drawing of some of the notation and geometrical constructs used in the proof of The-
orem 1. Solid lines represent cluster boundaries with respect to the optimal cluster centroids p, while dashed
lines represent cluster boundaries with respect to cluster centroids ¢ or ¢’ returned by the clustering algorithm
based on an empirical sample. See the text for more details

so that
t(e, ¢, i, j) :/ p(x)dx. (18)
0(c.¢\i,j)

Then t(c, ¢, i, j) is distributed as

[ it e ldx o,/ v,
F,

i, j

where [ (X, ¢;, c’j) is distributed as
e (V) (679)
||ﬂi_ﬂj|| X—W; ej_é/j ’

Proof The right half of Fig. 4 should help to clarify the notation and the intuition of the fol-
lowing proof. Intuitively, the probability mass which switches between clusters i and j over
the two samples is the probability mass of D lying ‘between’ F¢; ; and Fy ; ;. A potential
problem is that this probability mass is also affected by the positions of other neighboring
boundaries. However, the fluctuations of these additional boundaries decrease as m — oo,
and their effect on the probability mass in question becomes negligible. Our goal is to upper
and lower bound the integral in (18) by expressions which are identical up to 0,(1//n)
terms, giving us the desired result.

As in Lemma 3, we assume that H,,; ; is aligned with the axes, such that for any
X € H,; j, its last coordinate is 0. Define Fp.(p,c,c,i,j) € H,,;; as the projec-
tion of Q(e,¢',i,j) on H,; ;. By definition of Ze ), Ee/(y), any point x = (y,0) in
Fmax(m, ¢, ¢, i, j) has the property that the width of Q(e, ¢, i, j) relative to H,; ; at X is
at most |£¢(y) — Lo (y)|-

Also, let Fiin(p, ¢, ¢, i, j) be the subset of Fi. (1, ¢, ¢, i, j), such that any point x =
(y, 0) in it has the property that the width of Q(c, ¢/, i, j), relative to H, ; ; at X, is exactly
|£Z (y) — ll/ (y)|. Since it is formed from intersections of half-spaces, it is measurable and we
can perform integration with respect to it.
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For notational convenience, we will drop most of the parameters from now on, as they
should be clear from the context. Let F, ., F,. and F’ be the n — 1 dimensional projections

of Fiaux, Fmin and F respectively, by removing the last zero coordinate which we assume to
characterize Hy ; ;. As a result of the definitions, by Fubini’s theorem, we have that:

[310%)
/ / p(y,S)ds‘dyz/ p(x)dxz/
Finax |/ Le(y) 0 Fr/nin

Assuming these integrals exist. Our goal will be to show that both the upper and lower
bounds above are of the form

L (y)
f p(y,é)dé‘dy- (19)
4

ey

/ PXLX, ¢, ) dx+0,(1/+/m),
F,

i, j

which entails that the ‘sandwiched’ integral in (19) has the same form. We will prove this
assertion for the upper bound only, as the proof for the lower bound is almost identical.

As in Lemma 3, we let B be a closed ball of radius R in R" centered on the origin,
and separately analyze the integral in the upper bound of (19) with respect to what happens
inside and outside this ball.

By Lemma 2, assuming |€|| is small enough, there exists a constant a > 0 dependent
only on u, such that

[l < alyll + Dlell + €l

As before, to avoid making our equations too cumbersome, we shall ignore in the analysis
below the higher order term ||€||?, since € converges to 0 in probability and therefore it
becomes insignificant compared to ||€]|. Also, since we conveniently assume that Hy, ; ;
passes through the origin, then any normal to a point in Hy, ; ; N B¢ lies outside B. This is
not critical for our analysis (in the general case, we could have simply defined B as centered
on some point in H, ; ;), but does simplify things a bit. With these observations, we have

that
\/;'l{nélx ch

< / 1.(y) — T (¥ sup p(y. &) dy
FhaxNB¢ £eR

Lo (y)
/Z Py, E)dé‘ dy

e(y)

< / (2] + 1T )] sup p(y. £) dy
FaxNB¢ éeR

<a(lell + ll€'l) (IIy||+1)§uHI;P(y,§)dy

Fl%axch

<a(lell + ll€'l) (Ixll + DgdlIx[) dx
Hy i jNB¢

(o]
s alllel+ Ile/H)/ (r+ 1)g(r) xer" ar,
r=R

where g(-) is the dominating function on p(-) assumed to exist by the regularity conditions
(see Sect. 2), and e is the surface area of an n dimensional unit sphere. By the assumptions
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on g(-) and the fact that ||€]|, || €’ = 0,,(1/ﬁ), we have that

/F,’,mnBC

where h(R) — 0 as R — oo. Notice that to reach this conclusion, we did not use any
characteristics of F,,., beside it being a subset of H, ; ;. Therefore, since |/(X, ¢;, c’j)| <

max?

a(Ix|]| + D)(|l€]| + |I€']])/+/m for some constant a > 0, a very similar analysis reveals that

)
fg() p(y,é)dé‘dyZOp(h(R)/«/m), (20)
ely

/ P, OIL(x, ¢, ¢)dy = 0, (h(R)//m). €2y
F'NB¢

We note for later that none of the constants implicit in the O, (-) notation, other than
h(R), depend on R. Turning now to what happens inside the ball, we have by Lemma 3 that

/F,;m nB

Leaving this equation aside for later, we will now show that

Loy - .
ﬁ P(Y»S)dé‘dY=/ [l (¥) = LW p(¥, 0)dy +0,(1//m).  (22)
[ FI;IZIXQB

e(y)

[ 1w - 0dy— [ 1w - Llpr.0ds| =0,/ V. @3)
Fr/nianB F'NB
The 1.h.s. can be upper bounded by

/ 1e¥) — L) p(y. 0) dy
(

Flax AF)NB

< / 12|+ 120 (1)) p(y, 0) dy.
(Fhax AF)NB
As €, € have the same distribution, we just need to show that

/ o)1 p(y, 0 dy = 0, (1//m). 24)
(Fhax AF)NB

By Lemma 2, inside the bounded domain of B, we have that |£7€ (y)| < all€]l for some
constant a dependent solely on u and R (as before, to avoid making the equations too
cumbersome, we ignore terms involving higher powers of |€]|). Moreover, since p(y, 0) is
bounded, we can absorb this bound into a and get that

f Z.)Ip(y, 0)dy < alle] / 1dy. 25)
(Fax AF)NB (Fax AF)NB

Note that f( FlAFAB 1dy is a continuous function of €, €’ in some neighborhood of 0.
max
Moreover, since F,, = F’ when € = € = 0, the integral above is 0 at € = € = 0. Since
llell, ll€ || converge to O in probability, it follows that

/ 1dy =o0,(1).
(Fhax AF))NB
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Combining this with (25), and the fact that |le|| = O,(1 /a/m), justifies (24), and
hence (23). Combining (20), (22) and (23), we get that

‘/;‘r/nax

= / e (y) — LW p(y, 0) dy + 0, (1//m) + O,(h(R)//m). (26)
F'NB

Ly (y)
/z p(y,é)dé‘ dy

e(y)

By Lemma 2, definition of I/(x, ¢;, bc}), and the fact that |€|, |€']| = 0,(1//m), we

have that £ (y) — Ze () is equal to |/(x, ¢;, €})| + 0, ((lyl + 1)/+/m). This implies that the
distribution of the r.h.s. of (26) is equal to

/ P, Ol(x, €, € dy +0,(1/v/m) + O, (h(R)//m).
F'NB

By (21), this is equal in turn to

/ P, OII(x, ¢;, )| dy +0,(1/5/m) + O, (h(R)/v/m).
F/

We now use the fact that R can be picked arbitrarily. Notice that the first remainder term
has implicit constants which depend on R, but the second remainder term depends on R
only through #(R) (recall the development leading to (20) and (21)). Therefore, the first
remainder term converges to 0 at a rate faster than 1/4/m in probability for any R, and the
second remainder term can be made arbitrarily smaller than 1/./m in high probability by
picking R to be large enough, since #(R) — 0 as R — oo. Thus, for any § > 0, we can pick
R so that the remainder terms eventually become smaller than §//m with arbitrarily high
probability. As a result, we can replace the remainder terms by o,(1/4/m), with implicit
constants not depending on R, and get that (26) can be rewritten as

/Ilr/nax

This gives us an equivalent formulation of the upper bound in (19). As discussed im-
mediately after (19), an identical analysis can be performed for the lower bound appearing
there, and this leads to the result of the lemma. O

[
/Z p(y,s)ds‘dy = [ P onicx. ) ldy + 0,1/,
F/

e(y)

We now turn to prove Theorem 1. Let (¢, ¢, i, j) be as defined in Lemma 4. By defini-
tion, d (Ax(S1), Ax(S2)) is equal to

Z Jmt(e, ¢ i, j). @27

I<i<j<k
By Lemma 4, we have that «/mt (¢, ¢, i, j) is of the form

/ Vmp(x) <Ili_x>T<€i_€;>
ros =l \x=n; ) \e;—¢

"

dx+0,(1). (28)

By the continuous mapping theorem (van der Vaart and Wellner 1996), we have that
Jm(e; — €, €; — e/j)T converges in distribution to (v; — v}, v; — v})T, where v, v’ are two
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independent copies of the random variable defined in Lemma 1. By standard results on the
distribution of the difference of independent and identically distributed Gaussian random
variables, this distribution is equal to that of «/E(Vi ,V j)T. Moreover, it is not difficult to show
that (28), ignoring the remainder term, is a continuous function of /m(e; — €,€; — e’j)T.
The idea is that it is obviously continuous with the integral restricted to some fixed ball
around the origin, and the contributions outside the ball can be made arbitrarily small if
the ball is large enough, by the assumptions on p(x) (a similar argument was made in the
proof of Lemma 4). Thus, by the continuous mapping theorem, /mt(c, ¢, i, j) converges

in distribution to
/ V2px) Kﬂ,—x) <vi>
Fany 1= 1] V)

Substituting (29) into (27), we get convergence in distribution to the one specified in our
theorem.
The only thing remaining is to derive the expected value of this distribution. This is equal

to
,,,Aj ”l‘l’z || L J J

I<i<j<k

dx. (29)

By Fubini’s theorem, this is equal to:

.
A3 wElGns) Gl
2 piy =i L\x=n;) vy )]

I<i<j<k

For notational convenience, denote ¥ = I" 'V I"~! as the covariance matrix of v. The
expression inside the expectation above is normally distributed, as a linear transformation of
a normal random vector. Using standard results on the distribution of such transformations,
and since for any univariate a ~ N'(0, '2) it holds that E[|a|] = 0'4/2/m, we can reduce the
above to

2 Z/ p(X) \/(Mi—X>T<Zi.i EiJ)(ILi_X)dX
VT R T = I AX — B ji ) \X—H;

The final form of instab(2,, D) is achieved by rewriting ¥ as (V21T (V121
and simplifying.

7.2 Proof of Theorem 2

The proof is composed of several lemmas. The key insight is that the asymptotic distrib-
ution of df5(Ax(S1), Ax(S2)), perhaps surprisingly, turns out to be a certain non-standard
seminorm of a Gaussian random vector. Using theorems on seminorms of Gaussian mea-
sures allows us to bound the probability of d7;(Ax(S1), Ax(S>)) being much larger or much
smaller than its expectation, and thus bound the probability that the empirical clustering
stability estimator will return deceiving results.

Lemma S The asymptotic distribution of d75(2x(S1), Ax(S2)) is equal to that of s(v), where
v~N(QO, 'V~ and s(-) is a continuous seminorm on R"*.
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Proof Denote v = (vy,...,V,) where v; € R". By Theorem 1, the asymptotic distribution
of d(Ax(S1), 2x(S>)) is equal to

V2 2 /u,jllltlp(X) ||’(ul_x> (3)

I<i<j<k

dx, (30)

where v is as defined in the lemma. It is quite straightforward to verify that the expression
is indeed a seminorm on v: homogeneity and the triangle inequality are immediate, and it
is clear that (30) is always non-negative. As to continuity, fix some arbitrary v € R”, and let
v + € be a small perturbation of v. Then we have that

.
s X[ () (1)
I<i<j<k ,L,,Ilu, il [\ x— n; Vite
.
=y V2p)_ <IL,-_—X> (w_) .
I<i<)<k ,L,,IIM, il [\x—n; v,
+ Z / \/—P(X) <I'Li_x)T<ei) B
l<i<j<k ,L,j””q will |\X— &, €;
V2p®) [ (mi—x\
1<i<j<k Fu.ij ”’L, [Lj” ”‘j

<sw+lel Y / ”{p() (el + 211x1) dx,

I<i<j<k
which by the regularity conditions on p(-), is upper bounded by s(v) + C|l€|| for some
constant C. Therefore, we get that s(v + €) — s(v) < C||€|| for any v, €. By an appropriate
substitution, this immediately implies that s(v) — s(v 4 €) < C||€|| as well. Therefore, for
any v, |s(v+€) — s(v)| < C|l€]l, which converges to zero as € — 0, hence s(-) is indeed
continuous. O

Lemma 6 Let v be a normally distributed random vector in R", whose covariance matrix
has full rank. Let s(-) be a seminorm on R" which is not 0 by identity, and let 6 € (1/2, 1)
be a free parameter. Introduce the following two parameters which depend on 9:

2(1—0) 1 —exp(—(erf~'(0))?)

ap=1+——70  by=1-0+
’ log (%) ’ Jrerf (0)

Then for any M, € such that Mby > 1 and eay < 1, it holds that

’

)(H»th)/Z

Pr(s(v) > ME[s(v)]) < 9(%

and

Pr(s(v) < €E[s(V)]) < erf(erf™ (0)age).
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Proof To prove the lemma, we will need two auxiliary results from the literature on
Gaussian measures. For completeness, we present these two results below, in the form in
which they apply to our setting. The first theorem, due to Borel, may be found as Theo-
rem II1.3 in Milman and Schechtman (1986). The second theorem is a direct implication of
Theorem 1 in Latata and Oleszkiewicz (1999). A small note about notation: for any A C R”",
and any scalar r > 0, we let tA ;= {x:x/t € A}.

Theorem 5 (Borel) Let v be a zero mean Gaussian random vector, and let A T R" be a
symmetric convex set such that Pr(ve A) =60 > 1/2. Then forany t > 1,

1—g\+02
Pr(v¢tA) < 9(7) .

Theorem 6 (Latata and Oleszkiewicz) Let v be a zero mean Gaussian random vector, and
let A C R" be a symmetric convex closed set. For any x > 0, let n(x) be the probability of a
standard normal random variable to lie in [—x, x]. Let a > 0 be such that Pr(v € A) =n(a).
Then forany 0 <t <1,

Pr(vetA) <n(ta).

In the proof, we will apply the two theorems above on (closed) balls around the origin
with respect to s(-), namely sets of the form {x € R”" : s(x) < a} for some a > 0. The fact
that these are symmetric and convex sets is immediate from the standard definition of a
seminorm. In Lemma 5, we have also shown that s(-) is a continuous function from R”
to R. Since the sets we are considering are pre-images, under the continuous function s(-),
of closed sets of the form [0, a] € R, we have that they are closed as well. This justifies our
use of the two theorems above.

We now turn to the proof itself. Since s(v) is a seminorm of a Gaussian random vector,
its distribution function F(¢) = Pr(s(v) <) is absolutely continuous, except possibly at the
single point inf{r > 0| F(¢) > 0} (see for example Hoeffman-Jgrgensen et al. 1979). Also,
we assume that v is non-degenerate and s(-) is not identically zero, therefore Pr(s(v) <1t)
is arbitrarily small for small enough ¢ > 0. As a result, for any 8 € (1/2, 1), there is a
corresponding positive parameter medy such that

Pr(s(v) <medy) =6.

Notice that the set {v: s(v) < medy} is exactly a closed ball of radius medy around the
origin, with respect to s(-). Applying Theorems 5 and 6, we get that

o\ (M2
Pr(s(v) > M medy) < 6’<T> , 3D
Pr(s(v) < e medy) < erf(erf™' (9)e). (32)

It remains to convert these bounds on the deviation from medy to the deviation from
E[s(v)]. To achieve this, we need to upper and lower bound E[s(v)]/medy. By substitution
of variables, we have that E[s(v)] is equal to

/OOPr(s(V) > t)dt =medy /OOPr(s(V) > Mmedy)dM.
0 0
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Using (31), this can be upper bounded by

w1 _p\ 1M
(16 [0(159) " aw).
1

which after straightforward computations leads to E[s(v)] < medy ag, where gy is as defined
in the lemma.
In a similar manner, we can write E[s(v)] as

(o)

o0
/ 1 —Pr(s(v) <t)dt = medy / 1 — Pr(s(v) < emedy) de,
0 0
which is lower bounded in term, using (32), by
1
meds / 1 —erf(erf~' (9)e€) de.
0

Again by straightforward computations, we reach the conclusion that E[s(v)] > medy by,
where by is as defined in the lemma.
Therefore, we have that if Mby > 1, then Pr(s(v) > ME[s(v)]) is upper bounded by

1 — g\ (+Mb)/2
Pr(s(v) > Mbymedy) SG(T) .

The other bound in the lemma is derived similarly. 0

We can now turn to the proof of Theorem 2. By Lemma 5, both d7}(2Ax_(S1), 2k, (52))
and d7(Ax, (S1), Ak, (S2)) converge in distribution to s(vy,) and s(vg,), where v, , vi, are
Gaussian random variables (non-degenerate by the assumptions on /" and V). By a union
bound argument and the definition of convergence in distribution, we have that for any fixed
number c,

Pr(dp By, (S1), Bi, (52)) < 1.1d7 (B, (S1), Ak, (52)))
< Pr(dp By, (S1), Ay, (52)) < ¢) 4 Pr(1.1dp (B, (51), B, (52)) = )
< Pr(s(vg,) <c)+Pr(l.1s(v,) > c) + o(1). (33)

We will first treat the simple case where R = oo, corresponding to M(Ak“ D)=0
and M(Aku ,D) > 0. In that case, we have that s(vx,) = 0 with probability 1, whereas
§(Vg,) < ¢ with arbitrarily small probability if we pick ¢ > 0 small enough. As a result, the
expression above is o(1) as required.

Turning now to the case of R < 0o, note that the combination of Lemma 5 and Lemma 6
allows us to upper bound the probability that s(v,) is smaller than its expectation by a
factor € < 1, and upper bound the probability that s(v,,) is larger than its expectation by
some factor M > 1, provided that €, M satisfy the conditions specified in Lemma 6.

Therefore, if we choose M and € so that 1.1M /e < R, where R is as defined in the
lemma, we get that (33) above is upper bounded by

1 — 91 ((1+M)bg, )/2
0, ( 5 ) + erf(erf ' (B2)ag,€) + o(1) (34)
1
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for any 6,6, € (1/2, 1). Choosing different values for them (as well as the choice of ap-
propriate M, €) leads to different bounds, with a trade off between the tightness of the con-
stants, and minimality requirements on R (which stem from the requirements on M, € by
Lemma 6). Choosing 6; =0.9, 6, =0.8, M =2log(R)/(bg, log(6,/(1—61))),e =1.1M /R,
and using the fact that erf(x) < (2/4/7)x for any x > 0, we get that (33) is upper bounded
by (0.3 4+ 31og(R))/R + o(1) for any R > 3.

Assume the event

dp (B, (81), Ak, (52)) > L1dp (Rx, (S1), A, (52)), (35)

occurs. Recall that the quantities in (35) depend on the unknown underlying distribution D,
and therefore cannot be calculated directly. Instead, we empirically estimate these quantities
(divided by \/_ to be exact), as defined in the theorem statement, to get the stability estima-
tors Gk 3m and Gk 3m. Thus, even if (35) occurs, it is still possible that Gk am < Hks 3m, and
we wish to upper bound the probability for this occurring.

Notice that conditioned on the event in (35), éku,gm and OAkA_j,,, are nothing more than
plug-in estimators of di(Ax, (S1), Ak, (52))/+/m and dif(Ax, (1), Bk, (52))/+/m respec-
tively, based on an i.i.d. sample of size m. Since these quantities decrease with m, a standard
Hoeffding bound would not apply. However, we have by Theorem 2 in Shamir and Tishby
(2008a) that concentration of measure still occurs, and the probability that éku 3 < ij 3m»
conditioned on the event in (35), is o(1) (namely, converges to 0 as m — 00). Therefore, the
probability that (35) does not occur, or that it does occur but the empirical comparison of
these quantities fail, is (0.3 4+ 31og(R))/R + o(1) as required.

7.3 Proof of Theorem 3

Letting A be some real symmetric matrix, we will use || A|| to denote its operator norm.
We will start by bounding W(x,i, j) in the definition of instab(ay, D) (10). Since
both V and I" are real symmetric matrices, we have that

- V20 N(@ Y (T (e —x
Vi j) = H( 0 Vj1/2)<(r_l)_/2i (F_l).z:.jf>( )H
< v oo (I i (Y (ﬂi —-X
Lo v7 (N Iy, X— R

R s ()]

= )\max(v))‘max (F) X—L;
mm J

Substituting this into the definition of 1nstab(Ak, D) in (9), we get an upper bound of the
form

ni—x ”

[ / Vi 1G50) }
: p(x)dx
;u/ )\min(r) ””’1 _Mj”

<= v f —”“M%ﬁm)dx],

Wiij )“min(r)

I<i<j<k

where & = min; ; [|#; — p; ||, and the last transition is due to the assumption that the dis-
tribution is supported in the unit ball (hence we can assume that [|x][, |, I, [|p; || are all at
most 1). Simplifying, we get the upper bound in the theorem.
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Turning to the lower bound and repeating the same technique, we get that

\IJ( ) ~ Amin V) mm(V M —X
Xl] - )\max(r) X_"l’j '

Substituting this into the definition of 1nstab(Ak, D) in (9), we get a lower bound of the
form

[/ i@ 1GED] ]
p(x)dx|.
IL!j maX(F) ”ILI _,'Lj”

1<z</<k

Since [|(#; — x,x — p;)|| is minimized for x = (u; + p£;)/2, we can lower bound the ex-
pression above by

[f VAnin(V) 1
Fuij max(r) \/—

Simplifying, we get the lower bound in the theorem.

p(x) dx:|.

1<1<]<k

7.4 Proof of Corollary 1

Theorem 3 gave us upper and lower bounds on m(Ak, D) in terms of the maximal and
minimal eigenvalues of V and I". From this, we will derive Corollary 1 by bounding these
eigenvalues.

We will start by upper bounding A, (V). Since V is a block diagonal matrix, we have
that Amax (V) = max;epx) Amax (Vi), where V; is block i in V (see (8)). By the definition of V;
and a straightforward application of the Cauchy-Schwartz inequality, we have that

(V) = max ¥7Viy < 4( max x| )/ p(x)dxsm/ p(x)dx
C

yllyl=1 Cui i

and therefore
Amax (V) < 16max/ p(x) dx. (36)
i Cui

We now wish to lower bound A, (7). By the definition of I" ((6) and (7)), it can be
decomposed as the difference of two matrices J and N. J is a kn x kn diagonal matrix,
composed of k segments of the form

</ P(X)dX>In,
Cu.i

I, being the unit matrix of size n x n. N is a kn x kn block matrix, composed of k x k
blocks. Each block (i, j) is of the form

2
Niji=Y ——— PO — ) (x — ;) " dx
ati ||,'l’l ”‘a ” F;L,i,u

and for i # j itis

2
Niji=—r—r PO — ) (x—p;)" dx.
e — ﬂj” Fuij
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By Weyl’s theorem (cf. Horn and Johnson 1985), we have that
)\min(r) = )Lmin(‘] - N) = )\min(J) - )"min(N) = }\min(J) - ,O(N),

where p(N) is the spectral radius of N. Since J is a diagonal matrix, its eigenvalues corre-
spond to the elements on the diagonal, and therefore A, (J) is at least min; f Coi p(x)dx.
As to p(N), since the spectral radius lower bounds any matrix norm, we can upber bound
p(N) by, say, the maximum column sum matrix norm of N (defined as max; Zf‘ll lni 1,
where n; ; are the entries of N). From the definition of N and the assumption of the distri-
bution supported on the unit ball, this norm for N can be (very roughly) upper bounded by
16knP /o, where P = SUpJ, . p(x) and & = min; ; [|1; — p;||. As a result, we get that

Amin(I7) > min/ p(x)dx — 16knP /a.
i Cpi

Finally, we turn to upper bound A, (I7). Again applying Weyl’s theorem, we have that
kmax(r) = )\’ITIJX(‘] - N) E )\max (J) + )\max(N) 5 )Vmax(-]) + IO(N)-

As we have seen above, we can roughly upper bound p(N) by 16kno, and we can upper
bound A, (J) by max; f Cos p(X) dx. As aresult, we get that

Amax(I") Smax/ p(x)dx + 16knP /a.
C

i .
w.t

Substituting the bounds we have derived above into Theorem 3 and simplifying gives us
the corollary.

7.5 Proof of Theorem 4

To prove the theorem, we will borrow a setting discussed in Linder (2002) for a different
purpose.

Let A be some small positive constant (say A < 0.1). Consider the parameterized family
of distributions {D.} (where € € (0, 1/4)) on the real line, which assigns probability mass
(1—e)/dtox=—landx=—1—A,and (1 +¢€)/4tox =1and x =1+ A. Any such dis-
tribution satisfies the requirements of Theorem 1, except continuity. However, as mentioned
in Sect. 2, the theorem only requires continuity in some region around the boundary points,
so we may ignore this difficulty. Alternatively, we may introduce continuity by convolution
with a small local smoothing operator. For any e, it is easily seen that d;_f‘,e (2% (S1), 2%(S2))
converges to 0 in probability, since the boundary points between the optimal clusters have
zero density.

Let Arl”. . denote the event where for a sample of size m drawn i.i.d. from D,, there are
more instances on {—1 — A, —1} than on {1, 1 4+ A}. Also, let Afn,6 denote the event that
for a sample of size m drawn i.i.d. from D, there are more instances on {1, 1 + A} than on
{—1— A, —1}. Finally, let B,, . denote the event that every pointin {—1 — A, —1,1,14 A}
is hit by at least one instance from the sample. Clearly, if A}n, ¢ N By, ¢ occurs, then the
optimal cluster centers for the sample are {—1 — A, —1, 1 + A’} for some A’ € [0, A], and
if Af,,y . N By, ¢ occurs, then the optimal cluster centers for the sample are {—1—A’, 1, 1+ A}
for some A’ € [0, A].
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By Slud’s inequality (see Anthony and Bartlet 1999), for any Bernoulli random variable
X suchthat E[X] = p < 1/2, and any whole number a suchthata/m <1—p,if X, ..., X,
are m i.i.d. copies of X, then

1 & a m a
Pr(%_z.x’z%) Zl_q’(v Pl —p)(Z_p)>’

where @(-) is the cumulative normal distribution function. The probability of the event
Arlny . is equal to the probability of a success rate of more than half in m Bernoulli trials,
whose probability of success is (1 — €)/2. Using the theorem above, we get after a few
straightforward algebraic manipulations that

! _o( L
Pr(A,,.)>1 cp( ﬁ+2eﬂ>. (37

The probability of the event A2 m.c 18 equal to the probability of a success rate of less
than half in m Bernoulli trials, whose probability of success is (1 — €)/2. By a standard
normal approximation argument, we have that for large enough values of m, and for any
€ € (0, 1/4), it holds that

Pr(A}, ) > 1/2. (38)

Finally, it is straightforward to show that Pr(B,, ) is arbitrarily close to 1 uniformly for
any e, if m is large enough. Combining this with (37), (38) and the easily proven formula
Pr(AN B) > Pr(A) — Pr(BC) for any two events A, B, we get that by choosing a large
enough sample size m > my, and an appropriate value €, it holds that

m,e

Pr(A,, N Byc).Pr(A}, . N Bye)=1/2—v

for an arbitrarily small v > 0. For that choice of m, €, if we draw and cluster two independent
samples S, S, of size m from D,, then the probability that event Am o N By, ¢ occurs for one
sample, and A2 . N By, ¢ occurs for the second sample, is at least 2(1/2 — v)2, or at least 1/3
for a small enough v. Note that in this case, we get the two different clusterings discussed
above, and

i+ Jm

dp, (23(S1),23(52) = — i

So with a probability of at least 1/3 over drawing and clustering two independent sam-
ples, the distance between the clusterings is more than +/m /4, as required.

8 Conclusions

In this paper, we analyzed the method of clustering stability for model order selection in the
k-means framework, based on an explicit characterization of its asymptotic behavior. We
concluded that this method does not ‘break down’ in the large sample regime, in the sense
that even when the sample size goes to infinity and the model becomes stable for any choice
of k, these stability estimators still tell us something meaningful, rather than just returning
random noise. Based on these results, we made some observations on the factors which may
tend to make a model ‘stable’ or ‘unstable’. Such observations are particularly useful for
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understanding what kind of assumptions are implicitly made, when one uses the clustering
stability method. These factors appear to constitute reasonable requirements from a ‘cor-
rect’ model, and accords with clustering stability working successfully in many situations.
However, they also imply that clustering stability might sometimes behave unexpectedly, for
example in hierarchical clustering situations, as illustrated in Sect. 5.

Although it is possible to extend some of the results presented here to more general
clustering frameworks, beyond k-means (see Shamir and Tishby 2009), the most obvious
challenge is to extend our analysis from the asymptotic domain to the finite sample size
domain. Showing that clustering stability does not ‘break down’ in the large sample regime
might have theoretical and practical relevance, but leaves open the question of why clus-
tering stability can work well for small finite samples. One route to achieve this might be
through finite sample guarantees, but as demonstrated in Theorem 4, additional assumptions
are needed for such results.

Acknowledgements The authors wish to thank Gideon Schechtman and Leonid Kontorovich for providing
the necessary pointers for the proof of Theorem 2.

Appendix: Proof of Lemma 1

As discussed in Sect. 7, we devote this appendix to reprove Pollard’s central limit theorem
for k-means (Pollard 1982) under the weaker assumption that the algorithm we work with
is non-ideal, and might return locally optimal solutions. This is achieved by using more
modern tools from empirical process theory, and specifically from the area of Z-estimators.
Intuitively, a Z-estimator is any statistical estimator, which works by trying to zero a func-
tion or a set of functions based on a sample. For example, suppose that m instances are
drawn i.i.d. from some distribution on R. Then the sample mean can be seen as a Z-
estimator: given a sample x, ..., X, it returns a value 6 which zeros the function A, 0) =
> (6 — x;). For a full formal treatment of Z-estimators, see (van der Vaart and Well-
ner 1996). To prove the lemma, we will apply a general central limit theorem for Z-
estimators, due to van der Vaart. This result (which appears for instance as Theorem 3.3.1
in van der Vaart and Wellner 1996) is very general, and we will quote it below as applied to
the specific setting where both the data and the hypothesis class reside in Euclidean spaces.
In particular, this allows us to ignore some technical conditions which hold trivially in a
finite-dimensional setting.

Theorem 7 (van der Vaart) Let {A,,},_, and A be a sequence of random maps and a fixed
map, respectively, between a subset ® of some Euclidean space, into some other Euclidean
space. Let (¢")>°_ be a sequence of random vectors, which satisfy A,,(bc,) =0 for all m.
Assume that as m — 00,

[Vm(An(e") = A(e™) = V/m(Au(p) — A N

0 39
I+ mle—pl| %

in probability, and that the sequence /m(A,, (L) — A())) converges in distribution to a
vector-valued random variable Z. Furthermore, assume that A(-) is differentiable at p
with an invertible derivative A w- If A(p) =0, and (c™) converges in probability to ., then
J/m(e — p) converges in distribution to —A;l Z,
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We will apply the theorem where ¢” is the set of centroids returned by the algorithm
based on a random sample, and u is the limit set of clustering to which we converge. We
will drop the m superscript when it is obvious from context.

The first step will be to cast the k-means algorithm as a Z-estimator, using a construct
which appears in Pollard (1982). For this, define for any i € [k] the following function from
R™ x R" to R™:

2(¢; —x) xeCg;,

0 otherwise.

Ai(e,x) = {

The factor of 2 is not really necessary, but would be convenient later for directly citing
certain results from (Pollard 1982) without the need to convert constants.

Furthermore, assuming Xi, ..., X,, is a sample drawn i.i.d. from D, define the random
map A,,(-) = (A}n(~), e, Af‘n(~)) and the deterministic map A(:) = (A' (), ..., A%(")) as

. 1 < 4
A0 =2 Aex).  A@i= [ Mepmadx
= Rn

for any i € [k].

The key insight is that given an empirical sample of size m, our k-means clustering algo-
rithm always returns a solution of ¢ such that A,,(c) = 0. This is a consequence of the fact
that in a k-means clustering, each centroid lies at the center of mass of its respective cluster.
It can be easily verified that such a solution zeros A,,(-). Thus, the k-means algorithm can
indeed be viewed as a certain type of Z-estimator.

With this construct in hand, we need to verify that the conditions of Theorem 7 indeed
hold. Proving that A(c) is differentiable, and deriving its form, is a purely technical exercise
in multivariate calculus, which may be found as lemma C in Pollard (1982). The resulting
matrix is exactly I”, which we have defined in (6) and (7). Showing that this is in fact the
Hessian of the k-means objective function is also proven in Pollard (1982).

Thus, the only thing really left to show is that (39) indeed holds in our case. Notice that
it is enough to show that

V(AL (€) = A'(©) = V(A () = A @)l
1+ mlle — ull

for any i € [k]. A relatively simple sufficient condition for this (implied by Lemma 3.3.5 in
van der Vaart and Wellner (1996)) is the following: For any cluster i € [k], any coordinate
j €{1,...,n}, set of centroids ¢, and instance x, let A{ (c, x) be the projection of A;(c, x)
on its j-th coordinate. Then for (39) to hold, it is sufficient to show that for some § > 0, any
i € [k], and any coordinate j € {1, ..., n}, the set of functions

0

(A (e, ) — A, ~)}”C,u”<(S
is a Donsker class. Intuitively, a set of real functions {f(-)} (with any probability distrib-
ution D) is called Donsker if it satisfies a uniform central limit theorem. Without getting
too much into the details, this means that if we sample m elements i.i.d. from D, then
(f(x1) + -+ f(Xn))/+/m converges in distribution (as m — o00) to a Gaussian random
variable, and the convergence is uniform over all f(-) in the set, in an appropriately defined
sense.
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We use the fact that if 7 = {f(-)} and G = {g(-)} are Donsker classes, then so is F -
G ={f()g(-)}, and that any subset of a Donsker class is also Donsker (see Sect. 2.10 in
van der Vaart and Wellner 1996). This allows us to reduce the problem to showing that for
any i, j, the following two function classes, from R” to R, are Donsker:

{cij = X ie-pi<ss {Ice; O }je—pi=s- (40)

The first class is composed of linear functions with bounded offsets in R”, which is well
known to be Donsker. The second class is composed of indicator functions for any possible
cluster in a clustering induced by ¢ close enough to p. Since each cluster is composed of
an intersection of at most k(k — 1)/2 halfspaces in R"” (where k, n are fixed quantities), this
class is known to have finite VC-dimension, and hence is also Donsker. These and related
results can be found for instance in Dudley (1999).

Thus, we have shown that for the settings assumed in our theorem, (39) holds. We now
return to deal with the other ingredients required to apply Theorem 7.

Considering the asymptotic distribution of /m(A,,() — A(w)), since A(n) = 0 by
assumption, we have that for any i € [k], it is equal to

m 1 m
(VmAy (), ..., /mAL(w) = ( > A X)), . ,ﬁZAkm,x,)), (41)
I j=1

where X, ..., X, is the sample by which A,, is defined. The r.h.s. of (41) is a sum of iden-
tically distributed, independent random variables with zero mean and bounded variance (by
the assumptions on the underlying distribution), normalized by /m. As a result, by the stan-
dard central limit theorem, each /m(A! (u) — A’(n)) converges in distribution to a zero
mean Gaussian random vector, with covariance matrix

V; :4/ p(X)(X—ILi)(X_ILi)TdX'
C

i

Moreover, it is easily verified from the definitions that Cov(A; (g, x), Ay (i, x)) = 0 for
any i # i'. Therefore, \/m(A,, — A)(n) converges in distribution to a zero mean Gaussian
random vector, whose covariance matrix V is composed of k diagonal blocks (Vi, ..., Vi),
all other elements of V being zero.

Applying Theorem 7, we now get that \/m(c — p) converges in distribution to "~ Z,
where Z ~ N(0, V). This asymptotic distribution can also be written as N'(0, I'~'V I,
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