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Abstract This paper proposes a new measure for ensemble pruning via directed hill climb-
ing, dubbed Uncertainty Weighted Accuracy (UWA), which takes into account the uncer-
tainty of the decision of the current ensemble. Empirical results on 30 data sets show that
using the proposed measure to prune a heterogeneous ensemble leads to significantly bet-
ter accuracy results compared to state-of-the-art measures and other baseline methods, while
keeping only a small fraction of the original models. Besides the evaluation measure, the pa-
per also studies two other parameters of directed hill climbing ensemble pruning methods,
the search direction and the evaluation dataset, with interesting conclusions on appropriate
values.

Keywords Ensemble pruning · Ensemble selection · Ensemble methods

1 Introduction

Ensemble methods (Dietterich 2000) has been a very popular research topic during the last
decade. Their success arises largely from the fact that they offer an appealing solution to
several interesting learning problems of the past and the present, such as improving pre-
dictive performance, scaling inductive algorithms to large databases, learning from multiple
physically distributed data sets and learning from concept-drifting data streams.

Typically, ensemble methods comprise two phases: the production of multiple predic-
tive models and their combination. Recent work (Banfield et al. 2005; Caruana et al. 2004;
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Margineantu and Dietterich 1997; Giacinto et al. 2000; Fan et al. 2002; Martinez-Munoz
and Suarez 2004, 2006; Partalas et al. 2008; Tsoumakas et al. 2005), has considered an
additional intermediate phase that deals with the reduction of the ensemble size prior to
combination. This phase is commonly called ensemble pruning, while other names include
selective ensemble, ensemble thinning and ensemble selection.

Ensemble pruning is important for two reasons: efficiency and predictive performance.
Having a very large number of models in an ensemble adds a lot of computational overhead.
For example, decision tree models may have large memory requirements (Margineantu and
Dietterich 1997) and lazy learning methods have a considerable computational cost during
execution. The minimization of run-time overhead is crucial in certain applications, such as
in stream mining. In addition, when models are distributed over a network, the reduction of
models leads to the reduction of the important cost of communication. Equally important is
the second reason, predictive performance. An ensemble may consist of both high and low
predictive performance models. The latter may negatively affect the overall performance of
the ensemble. Pruning these models while maintaining a high diversity among the remaining
members of the ensemble is typically considered a proper recipe for an effective ensemble.

The ensemble pruning problem can be posed as an optimization problem as follows: Find
the subset of the original ensemble that optimizes a measure indicative of its generalization
performance (for example accuracy on a separate validation set). As the number of subsets of
an ensemble consisting of T models is 2T − 1 (the empty set is not accountable), exhaustive
search becomes intractable for a moderate ensemble size. Several efficient methods that are
based on a directed hill climbing search in the space of subsets report good predictive perfor-
mance results (Banfield et al. 2005; Caruana et al. 2004; Margineantu and Dietterich 1997;
Martinez-Munoz and Suarez 2004). These methods start with an empty (or full) initial en-
semble and search the space of different ensembles by iteratively expanding (or contracting)
the initial ensemble by a single model. The search is guided by an evaluation measure that
is based on either the predictive performance or the diversity of the alternative subsets. The
evaluation measure is the main component of a directed hill climbing algorithm and it dif-
ferentiates the methods that fall into this category.

The primary contribution of this work is a new measure for directed hill climbing ensem-
ble pruning (DHCEP) that takes into account the uncertainty of the decision of the current
ensemble. Empirical results on 30 data sets show that using the proposed measure to prune
a heterogeneous ensemble leads to significantly better accuracy results compared to state-
of-the-art measures and other baseline methods, while keeping only a small fraction of the
original models. In addition, it is shown that the proposed measure maintains its lead across
a variety of pruning levels. The secondary contribution of this work is an empirical study of
the main parameters (search direction, evaluation dataset, evaluation measure) of DHCEP
methods, leading to interesting conclusions on suitable settings.

This paper extends our previous work (Partalas et al. 2008) in the following respects.
First of all, it empirically compares a variety of different combinations of values for the main
parameters of DHCEP methods, instead of specific instantiations. This has led to interesting
new conclusions, such as the fact that the proposed measure significantly outperforms its
rivals when used in a forward search direction. The comparison is based on a much larger
number of datasets. Finally, this paper includes an extended description of the proposed
measure elaborating on its key issues.

The remainder of this paper is structured as follows: Sect. 2 presents background in-
formation on ensemble methods. Section 3 includes an extensive introduction to DHCEP
methods and their main parameters. Section 4 presents the proposed measure. Section 5
describes the setup of the empirical study and Sect. 6 presents and discusses the results.
Finally, Sect. 7 concludes this work and poses future research directions.
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2 Ensemble methods

2.1 Producing the models

An ensemble can be composed of either homogeneous or heterogeneous models. Homo-
geneous models derive from different executions of the same learning algorithm by using
different values for the parameters of the learning algorithm, injecting randomness into the
learning algorithm or through the manipulation of the training instances, the input attributes
and the model outputs (Dietterich 2000). Two popular methods for producing homogeneous
models are bagging (Breiman 1996) and boosting (Schapire 1990).

Heterogeneous models derive from running different learning algorithms on the same
dataset. Such models have different views about the data, as they make different assumptions
about them. For example, a neural network is robust to noise in contrast to a k-nearest
neighbor classifier.

In the empirical evaluation part of this paper we focus on ensembles consisting of models
produced by running different learning algorithms, each with a variety of different parameter
settings.

2.2 Combining the models

A lot of different ideas and methods have been proposed in the past for the combination
of classification models. The necessity for high classification performance in some critical
domains (e.g. medical, financial, intrusion detection) has motivated researchers to explore
methods that combine different classification algorithms in order to overcome the limitations
of individual learning paradigms.

Unweighted and Weighted Voting are two of the simplest methods for combining not only
Heterogeneous but also Homogeneous models. In Voting, each model outputs a class value
(or ranking, or probability distribution) and the class with the most votes (or the highest
average ranking, or average probability) is the one proposed by the ensemble. In Weighted
Voting, the classification models are not treated equally. Each model is associated with a
coefficient (weight), usually proportional to its classification accuracy.

Let x be an instance and mi , i = 1 . . . k a set of models that output a probability distri-
bution mi(x, cj ) for each class cj , j = 1 . . . n. The output of the (weighted) voting method
y(x) for instance x is given by the following mathematical expression:

y(x) = arg max
cj

k∑

i=1

wimi(x, cj ),

where wi is the weight of model i. In the simple case of voting (unweighted), the weights
are all equal to one, that is, wi = 1, i = 1 . . . k.

3 Ensemble pruning via directed hill climbing

Hill climbing search greedily selects the next state to visit from the neighborhood of the
current state. States, in our case, are the different subsets of the original ensemble H =
{ht , t = 1,2, . . . , T } of T models. The neighborhood of a subset of models S ⊆ H comprises
those subsets that can be constructed by adding or removing one model from S. We focus
on the directed version of hill climbing that traverses the search space from one end (empty
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Fig. 1 An example of the search space of DHCEP methods for an ensemble of 4 models

set) to the other (complete ensemble). An example of the search space for an ensemble of
four models is presented in Fig. 1.

The key design parameters that differentiate one DHCEP method from the other are
(Tsoumakas et al. 2009): (a) the direction of search, (b) the measure and dataset used for
evaluating the different branches of the search, and (c) the amount of pruning. The following
sections discuss the different options for instantiating these parameters and the particular
choices of existing methods.

3.1 Direction of search

Based on the direction of search we have two main categories of DHCEP methods: (a)
forward selection, and (b) backward elimination (see Fig. 1).

In forward selection, the current classifier subset S is initialized to the empty set. The
algorithm continues by iteratively adding to S the classifier ht ∈ H \ S that optimizes an
evaluation function. In the past, this approach has been used in Fan et al. (2002), Martinez-
Munoz and Suarez (2004), Caruana et al. (2004) and in the Reduced-Error Pruning with
Backfitting (REPwB) method in Margineantu and Dietterich (1997).

In backward elimination, the current classifier subset S is initialized to the complete
ensemble H and the algorithm continues by iteratively removing from S the classifier ht ∈ S

that optimizes an evaluation function. In the past, this approach has been used in the AID
thinning and concurrency thinning algorithms (Banfield et al. 2005).

In both cases, the traversal requires the evaluation of T (T +1)

2 subsets, leading to a time
complexity of O(T 2g(T ,N)). The term g(T ,N) concerns the complexity of the evaluation
function, which is linear with respect to N and ranges from constant to quadratic with respect
to T , as we shall see in the following sections.

3.2 Evaluation dataset

The evaluation function scores the candidate subsets of models according to an evaluation
measure that is calculated based on the predictions of its models on a set of data, which
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will be called the pruning set. The role of the pruning set can be performed by the training
set, a separate validation set, or even a set of—naturally existing or artificially produced—
instances with unknown value for the target variable. The pruning set will be denoted as
D = {(xi, yi), i = 1,2, . . . ,N}, where xi is a vector with feature values and yi is the value
of the target variable, which may be unknown.

In the past, the training set has been used for evaluation in Martinez-Munoz and Suarez
(2004). This approach offers the benefit that plenty of data will be available for evaluation
and training, but is susceptible to the danger of overfitting. Withholding a part of the training
set for evaluation, has been used in the past in Caruana et al. (2004) and Banfield et al. (2005)
and in the REPwB method in Margineantu and Dietterich (1997). This approach is less prone
to overfitting, but reduces the amount of data available for training and evaluation compared
to the previous approach. It sacrifices both the predictive performance of the ensemble’s
members and the quantity of the evaluation data for the sake of using unseen data in the
evaluation. This method should probably be preferred over the previous one, when there is
abundance of training data.

An alternative approach that has been used in Caruana et al. (2006), is based on k-fold
cross-validation. For each fold an ensemble is created using the remaining folds as the train-
ing set. The same fold is used as the pruning set for models and subensembles of this en-
semble. Finally, the evaluations are averaged across all folds. This approach is less prone to
overfitting as the evaluation of models is based on data that were not used for their training
and at the same time, the complete training dataset is used for evaluation. During testing the
above approach works as follows: The k models that were trained using the same procedure
(same algorithm, same subset, etc.) form a cross-validated model. When the cross-validated
model makes a prediction for an instance, it averages the predictions of the individual mod-
els. An alternative testing strategy that we suggest for the above approach is to train an
additional single model from the complete training set and use this single model during
testing.

3.3 Evaluation measure

The main component that differentiates DHCEP methods is the evaluation measure. Evalua-
tion measures can be grouped into two major categories: those that are based on performance
and those on diversity.

3.3.1 Performance-based measures

The goal of performance-based measures is to find the model that maximizes the perfor-
mance of the ensemble produced by adding (removing) a model to (from) the current ensem-
ble. Their calculation depends on the method used for ensemble combination, which usually
is voting. Accuracy was used as an evaluation measure in Margineantu and Dietterich (1997)
and Fan et al. (2002), while Caruana et al. (2004) experimented with several metrics, includ-
ing accuracy, root-mean-squared-error, mean cross-entropy, lift, precision/recall break-even
point, precision/recall F-score, average precision and ROC area. Another measure is benefit,
which is based on a cost model and has been used in Fan et al. (2002).

The calculation of performance-based metrics requires the decision of the ensemble on
all examples of the pruning set. Therefore, the complexity of these measures is O(|S|N).
However, this complexity can be optimized to O(N), if the predictions of the current en-
semble are updated incrementally each time a classifier is added to/removed from it.
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3.3.2 Diversity-based measures

It is generally accepted that an ensemble should contain diverse models in order to achieve
high predictive performance. However, there is no clear definition of diversity, nor a single
measure to calculate it. In their interesting study, Kuncheva and Whitaker (2003), could not
reach a solid conclusion on how to utilize diversity for the production of effective classifier
ensembles. In a more recent theoretical and experimental study on diversity measures (Tang
et al. 2006), the authors reached the conclusion that diversity cannot be explicitly used for
guiding the process of directed hill climbing methods. Yet, certain approaches have reported
promising results (Martinez-Munoz and Suarez 2004; Banfield et al. 2005).

One issue that is worth mentioning here is how to calculate the diversity during the search
in the space of ensemble subsets. For simplicity we consider the case of forward selection
only. Let S be the current ensemble and ht ∈ H \ S a candidate classifier to add to the
ensemble.

One could compare the diversities of subensembles S ′ = S ∪ ht for all candidate ht ∈
H \ S and select the ensemble with the highest diversity. Any pairwise and non-pairwise
diversity measure can be used for this purpose (Kuncheva and Whitaker 2003). Pairwise
measures calculate the diversity between two models. The diversity of an ensemble of mod-
els can be calculated as the mean pairwise diversity of all models in the ensemble. The time
complexity of this process is typically O(|S ′|2N). Non-pairwise diversity measures can di-
rectly calculate the diversity of an ensemble of models and their time complexity is typically
O(|S ′|N). A straightforward optimization can be performed in the case of pairwise diversity
measures. Instead of calculating the sum of the pairwise diversity for every pair of classifiers
in each candidate ensemble S ′, one can simply calculate the sum of the pairwise diversities
only for the pairs that include the candidate classifier ht . The sum of the rest of the pairs
is equal for all candidate ensembles. The same optimization can be achieved in backward
elimination too. This reduces their time complexity to O(|S|N).

Several methods use a different approach to calculate diversity during the search. They
use pairwise measures to compare the candidate classifier ht with the current ensemble S,
which is viewed as a single classifier that combines the decisions of its members with voting.
This way they calculate the diversity between the current ensemble as a whole and the can-
didate classifier. Such an approach has time complexity O(|S|N), which can be optimized
to O(N), if the predictions of the current ensemble are updated incrementally each time a
classifier is added to/removed from it. However, these calculations do not take into account
the decisions of individual models.

In the past, the widely known pairwise diversity measures disagreement, double fault,
Kohavi-Wolpert variance, inter-rater agreement, generalized diversity and difficulty were
used for DHCEP in Tang et al. (2006). Complementariness (Martinez-Munoz and Suarez
2004) and concurrency (Banfield et al. 2005) are two diversity measures designed specif-
ically for ensemble pruning via directed hill climbing. We next introduce some additional
notation to uniformly present these two methods.

We can distinguish four events concerning the decision of a classifier h and an ensemble
of models S with respect to an example (xi, yi ):

etf(h,S,xi, yi) : h(xi) = yi ∧ S(xi) �= yi

eft(h,S,xi, yi) : h(xi) �= yi ∧ S(xi) = yi

ett(h,S,xi, yi) : h(xi) = yi ∧ S(xi) = yi

eff(h,S,xi, yi) : h(xi) �= yi ∧ S(xi) �= yi
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The complementariness of a model h with respect to an ensemble S and a pruning set D

is calculated as follows:

COMD(h,S) =
N∑

i=1

I (etf(h,S,xi, yi)),

where I (true) = 1, I (false) = 0.
The complementariness of a model with respect to an ensemble is actually the number

of examples of D that are classified correctly by the model and incorrectly by the ensemble.
A pruning algorithm that uses the above measure, tries to add (remove) at each step the
model that helps the current ensemble classify correctly the examples it gets wrong. Note
that in the backward case the removed model is the one that minimizes the measure.

The concurrency of a model h with respect to an ensemble S and a pruning set D is
calculated as follows:

COND(h,S) =
N∑

i=1

(
2I (etf(h,S,xi, yi)) + I (ett(h,S,xi, yi)) − 2I (eff(h,S,xi, yi))

)

This measure is similar to complementariness, with the difference that it takes into ac-
count two extra events and weights them. No specific argument is given for this particular
choice of events and weights.

The margin distance minimization method (Martinez-Munoz and Suarez 2004) (also
specifically designed for DHCEP) follows a different approach for calculating the diver-
sity, which implicitly takes into account the decisions of individual models. For each clas-
sifier ht an N -dimensional vector, ct , is defined where each element ct (i) is equal to 1 if
the t th classifier classifies correctly example i of the pruning set, and −1 otherwise. The
vector, CS of the ensemble S is the average of the individual vectors ct , CS = 1

|S|
∑|S|

t=1 ct .
When S classifies correctly all the instances the corresponding vector is in the first quad-
rant of the N -dimensional hyperplane. The objective is to reduce the Euclidean distance,
d(o,CS), of the current ensemble CS from a predefined vector with the same components,
oi = p, i = 1, . . . ,N,0 < p < 1, placed in the first quadrant of the N -dimensional hyper-
plane. The value of p is usually between 0.05 and 0.25. The proposed margin diversity
measure, MARD(ht , S), of a classifier ht with respect to an ensemble S and a pruning set D

is calculated as follows:

MARD(ht , S) = d

(
o,

1

|S| + 1
(ct + CS)

)

3.4 Amount of pruning

Another issue that pertains to almost all ensemble pruning methods concerns the size of
the final ensemble. Two main approaches are followed with respect to this issue: (a) use
a fixed user-specified amount or percentage of models, and (b) dynamically select the size
based on the predictive performance of candidate ensembles of different size. In the second
case the predictive performance of the ensembles encountered during the complete search
process from the one end of the search space to the other is recorded and the ensemble with
the best performance is selected. If the goal of pruning is to improve efficiency, then the
former approach can be used in order to achieve the desired number of models, which may
be dictated by constraints (memory and speed) in the application environment. If the goal
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of pruning is to improve performance, then the latter approach can be used, as it is more
flexible and can sacrifice efficiency for effectiveness.

4 The proposed measure

We here propose a new measure starting from the common notation that was introduced in
Sect. 3.3 to describe the complementariness and concurrency measures. For simplicity of
presentation we slightly abuse the notation by dropping symbols xi and yi .

First of all we note that complementariness is based on event etf(h,S) only. However, the
rest of the events are also plausible indicators of the utility of a candidate classifier h with
respect to an ensemble S. For example, event ett(h,S) should also add to the utility of h,
though potentially not as much as etf(h,S).

This is reflected in the concurrency measure, which explicitly takes into account three of
the events (implicitly the fourth one as well, since eft(h,S) = 1 − ett(h,S) − eff(h,S) −
etf(h,S)), each with a different weight. Concurrency is considering positively the event
etf(h,S), negatively the event eff(h,S), positively with half the weight of the previous events
the event ett(h,S) and neutrally the event eft(h,S). The contribution of each of the events to
the heuristic is rather ad-hoc, as there is no theoretical justification for the particular choice
of weights.

More important is the fact that, as briefly mentioned in the previous section, concurrency,
complementariness and all other diversity measures that are computed based on the decision
of the candidate model and the decision of the ensemble as a whole, are agnostic of the
decisions of the individual models of the ensemble. We consider this a major limitation of
these measures, and justify our claim with an example. Consider two members of the pruning
set (xi, yi) and (xj , yj ) that are wrongly classified by candidate classifier h. The first one
is wrongly classified by 49% of the members of the ensemble S, while the second one by
just 10%. In both cases event eft(h,S) is the true one. Should these examples contribute
the same value to the measure? The rational answer is no. In the first case, the uncertainty
of the ensemble is high, while in the second it is low. In a forward selection scenario, the
probability that the ensemble will wrongly classify example i in the future, if it adds h to S,
is far greater compared to the probability that it will wrongly classify j .

The above issues motivated us to propose a new measure that takes into account the
uncertainty of the ensemble’s decision, and at the same time has clear and justified seman-
tics. The following quantities are introduced to allow its definition: NTi , which denotes the
proportion of models in the current ensemble S that classify example (xi, yi) correctly, and
NFi = 1−NTi , which denotes the proportion of models in S that classify it incorrectly. The
proposed measure, dubbed Uncertainty Weighted Accuracy (UWA), is defined as follows:

UWA(h,S) =
N∑

i=1

(
I (etf(h,S,xi, yi))NTi − I (eft(h,S,xi, yi))NFi

+ I (ett(h,S,xi, yi))NFi − I (eff(h,S,xi, yi))NTi

)

First of all, note that events etf and ett increase the metric, because the candidate classifier
is correct, while events eft and eff decrease it, as the candidate classifier is incorrect. The
strength of increase/decrease depends on the uncertainty of the ensemble’s decision. If the
current ensemble S is incorrect, then the reward/penalty is multiplied by the proportion of
correct models in S. On the other hand, if S is correct, then the reward/penalty is multiplied
by the proportion of incorrect models in S.
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This complex, at first sight, weighting scheme, actually represents a simple rule: ex-
amples for which the ensemble’s decision is highly uncertain should influence the metric
stronger, while examples where most of the ensemble’s members agree should not influence
the metric a lot. The rationale of this rule is the following: When most members of the en-
semble agree, then this is either a very easy (if the ensemble is correct), or a very hard (if it is
wrong) example. Rewarding a candidate classifier that correctly classifies an easy example
is of no real value, as is penalizing it for erring on a very hard example. On the other hand,
when the ensemble is marginally correct or incorrect, then the decision of the candidate
classifier is more important, as it may correct an incorrect decision of the ensemble, or the
other way round.

To see exactly how the measure represents the above rule, let’s examine each specific
event separately, in a forward selection scenario.

– In event etf, the addition of a correct classifier when the ensemble is wrong contributes a
reward proportional to the number of correct classifiers in that ensemble. The rationale is
that if the number of correct classifiers is small, then correct classification of this example
is hard to achieve and thus the addition of this classifier will not have an important impact
on the ensemble’s performance. On the other hand, if the number of correct classifiers is
large, then the example is marginal and thus the impact of the addition of this classifier is
significant.

– In event eft, the addition of an erring classifier when the ensemble is correct contributes a
penalty proportional to the number of erring classifiers in that ensemble. The rationale is
that if the number of erring classifiers is small, then the addition of another erring classifier
will not influence the ensemble significantly, while if the number of erring classifiers is
large, then the example is marginal and thus the classifier could change the ensemble’s
decision from correct to wrong.

– In event ett, the addition of a correct classifier when the ensemble is correct contributes a
reward proportional to the number of erring classifiers in that ensemble. The rationale is
that if the number of erring classifiers is small, then the addition of a correct classifier is
not really very useful. The higher the number of erring classifiers the more important is
the addition of this candidate classifier.

– In event eff, the addition of an erring classifier when the ensemble is wrong contributes a
penalty proportional to the number of correct classifiers in that ensemble. The rationale
is that if the number of correct classifiers is small, then the addition of another erring
classifier will not influence the ensemble significantly, as this is a hard to correctly classify
example. If the number of correct classifiers is large, then the example is marginal and
thus the classifier has a negative effect to the ensemble as it moves it further away from
the margin.

We next give a concrete example, in a forward selection scenario, in order to clarify how
the proposed measure works. Consider an ensemble that contains 10 classifiers h1 to h10 and
two candidate classifiers h′

1 and h′
2. Tables 1 and 2 show whether each of these classifiers is

correct or incorrect for a pruning set containing 5 examples x1 to x5. A correct decision is
indicated by a plus (+), and a wrong decision by a minus (−). For the ensemble, example
x1 is a difficult one, x2 an easy, while the rest of the examples are marginal. The last column
of Table 2 shows the value of the proposed measure.

The events that characterize h′
1 in relation to examples x1 to x5 are etf, eft, ett, eft and eff

respectively. Consequently, the contributions to UWA are NT1 −NF2 +NF3 −NF4 −NT5,
giving 0.2 − 0.2 + 0.6 − 0.4 − 0.6 = −0.4. The reward from correctly classifying x1 is
small, as it is a very easy example. The classifier is penalized stronger for the incorrect clas-
sification of marginal examples x4 and x5, compared to the hard example x2. The events
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Table 1 An ensemble of 10 classifiers and the decision of its models for the 5 instances of the pruning set

x1 x2 x3 x4 x5

h1 − + − + −
h2 − + + + −
h3 − + − + −
h4 − + − − +
h5 − + + − −
h6 + + + − +
h7 − + + + +
h8 + + − − −
h9 − − + + −
h10 − − + + +
NT 0.2 0.8 0.6 0.6 0.4

NF 0.8 0.2 0.4 0.4 0.6

Table 2 Two candidate classifiers, their decisions for the 5 instances of the pruning set and the value of the
proposed measure

x1 x2 x3 x4 x5 UWA

h′
1 + − + − − −0.4

h′
2 − − − + + 0

that characterize h′
2 in relation to examples x1 to x5 are eff, eft, eft, ett and etf respectively.

Consequently, the contributions to UWA are −NT1 − NF2 − NF3 + NF4 + NT5, giving
−0.2−0.2−0.6+0.4+0.6 = 0. The reward from correctly classifying the marginal exam-
ples x4 and x5 is large, as is the penalty from incorrect classification of marginal example
x3. In contrast, the incorrect classification of the very hard and very easy examples x1 and
x2 incurs a small penalty. Despite that both candidate classifiers make the same number of
errors, overall h′

2 is more beneficial to the current ensemble, which is reflected in a higher
value of UWA. It is this candidate classifier, that would be added to the ensemble in this
forward selection scenario that we examined.

Concluding this section, we explain how the name of the proposed measure was con-
ceived. If we dropped the weights from the measure, then it would be proportional to the
accuracy of the candidate classifier, since it would give a reward (penalty) of 1 whenever
there is a correct (incorrect) candidate classifier decision, irrespectively of the ensemble’s
decision. The weights correspond to the ensemble’s uncertainty, hence uncertainty weighted
accuracy.

5 Experimental setup

This section presents information about the datasets that were used for conducting the ex-
periments, the classifiers that comprise the initial ensemble, the ensemble pruning methods
that participate in the comparison, as well as the experimentation methodology that was
followed.
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Table 3 Details of data sets: folder in UCI server, number of instances, classes, continuous and discrete
attributes, percentage of missing values

id UCI folder Inst Cls Cnt Dsc MV(%)

d1 Anneal 798 6 9 29 0.00

d2 Balance-scale 625 3 4 0 0.00

d3 Breast-w 699 2 0 2 0.00

d4 Car 1728 4 0 6 0.00

d5 Cmc 1473 3 2 7 0.00

d6 Colic 368 2 7 15 23.80

d7 Credit-g 1000 2 7 13 0.00

d8 Dermatology 366 6 1 33 0.00

d9 Ecoli 336 8 7 0 0.00

d10 Haberman 306 2 3 0 0.00

d11 Heart-h 294 5 6 7 20.46

d12 Heart-statlog 270 2 13 0 0.00

d13 Hill 607 2 100 0 0.00

d14 Hypothyroid 3772 4 7 30 5.4

d15 Ionosphere 351 2 34 0 0.00

d16 Kr-vs-kp 3196 2 0 36 0.00

d17 Mammographic 962 2 5 0 3.3

d18 Mfeat-morphological 2000 10 6 0 0.00

d19 Page-blocks 5473 5 10 0 0.00

d20 Primary-tumor 339 2 0 17 0.00

d21 Segment 2310 7 19 0 0.00

d22 Sick 3772 2 7 23 5.40

d23 Sonar 195 2 60 0 0.00

d24 Soybean 683 19 0 35 0.00

d25 Spambase 4601 2 57 0 0.00

d26 Tic-tac-toe 958 2 0 9 0.00

d27 Vehicle 946 4 18 0 0.00

d28 Vote 435 2 0 16 5.63

d29 Vowel 990 11 3 10 0.00

d30 Waveform-5000 5000 3 21 0 0.00

The source code we developed for conducting the experiments along with a package
for performing statistical tests on multiple datasets, can be found at the following URL:
http://mlkd.csd.auth.gr/ensemblepruning.html.

5.1 Datasets

We experimented on 30 data sets from the UCI Machine Learning repository (Asuncion and
Newman 2007). Table 3 presents the details of these data sets (folder in UCI server, number
of instances, classes, continuous and discrete attributes, percentage of missing values). We
avoided using datasets with a very small number of examples, so that an adequate amount
of data is available for training, evaluation and testing.

http://mlkd.csd.auth.gr/ensemblepruning.html
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5.2 Ensemble construction

We constructed a heterogeneous ensemble of 200 models, by running different learning al-
gorithms with different parameters on the training set. The WEKA machine learning library
(Witten and Frank 2005) was used as the source of learning algorithms. We trained 40 mul-
tilayer perceptrons (MLPs), 60 k Nearest Neighbors (kNNs), 80 support vector machines
(SVMs) and 20 decision trees (DT) using the C4.5 algorithm. The different parameters used
to train the algorithms were the following (default values were used for the rest of the para-
meters):

– MLPs: we used 5 values for the nodes in the hidden layer {1, 2, 4, 8, 16}, 4 values for the
momentum term {0.0, 0.2, 0.5, 0.9} and 2 values for the learning rate {0.3, 0.6}.

– kNNs: we used 20 values for k distributed evenly between 1 and the plurality of the
training instances. We also used 3 weighting methods: no-weighting, inverse-weighting
and similarity-weighting.

– SVMs: we used 8 values for the complexity parameter {10−5, 10−4, 10−3, 10−2, 0.1, 1,
10, 100}, and 10 different kernels. We used 2 polynomial kernels (of degree 2 and 3) and
8 radial kernels (gamma ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}).

– Decision trees: We constructed 10 trees using postpruning with 5 values for the confidence
factor {0.1, 0.2, 0.3, 0.5 } and 2 values for Laplace smoothing {true, false}, 8 trees using
reduced error pruning with 4 values for the number of folds {2, 3, 4, 5} and 2 values for
Laplace smoothing {true, false}, and 2 unpruned trees using 2 values for the minimum
objects per leaf {2, 3}.

5.3 Ensemble pruning methods

We compare 16 instantiations of the general DHCEP algorithm, that arise by using all com-
binations of 4 different values for the evaluation measure parameter and 2 different values
for each of the evaluation dataset and search direction parameters. As far as the evaluation
measure parameter is concerned, we used the proposed measure, UWA, and the following
performance and diversity based measures: Accuracy (ACC) (Caruana et al. 2004), Comple-
mentariness (COM) (Martinez-Munoz and Suarez 2004) and Concurrency Thinning (CON)
(Banfield et al. 2005). The search was performed in both the forward (F) and the backward
(B) directions. The pruning set was instantiated to: (a) the training set (T), which means
that all available data are used for both building the models and pruning the ensemble, and
(b) a separate validation set (V).

In addition to the above 16 methods we implemented two methods that do not use any
diversity measures and prune the ensemble according to a fixed order. The first one is called
Random Ordering (RO), which randomly orders the classifiers and the second one is called
Greedy Ordering (GO), which orders the classifiers according to their accuracy on the prun-
ing set. Additionally, we implemented two baseline methods, corresponding to two extreme
pruning scenarios. The first one selects the best single model (BSM) in the ensemble, ac-
cording to the performance of the models on the pruning set, while the second one retains
all models of the ensemble (ALL). Note that for RO, GO, BSM and ALL, the direction pa-
rameter has no meaning and is neglected. Additionally, note that ALL does not require a
pruning set, as it does not include any selection process. For this reason, the performance of
ALL is calculated only for the case where all available training data are used for training the
models of the ensemble.

Voting was used for model combination in all aforementioned algorithms. Additionally,
all the algorithms follow the dynamic approach in Caruana et al. (2004), which selects the
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Table 4 Acronym, search direction, evaluation dataset and evaluation measure for the different DHCEP,
ordering and baseline pruning methods

Acronym Search direction Evaluation dataset Evaluation measure

FTACC Forward Training set ACCuracy

FTCON Forward Training set CONcurrency

FTCOM Forward Training set COMplementariness

FTUWA Forward Training set Uncertainty Weighted Accuracy

FVACC Forward Validation set ACCuracy

FVCON Forward Validation set CONcurrency

FVCOM Forward Validation set COMplementariness

FVUWA Forward Validation set Uncertainty Weighted Accuracy

BTACC Backward Training set ACCuracy

BTCON Backward Training set CONcurrency

BTCOM Backward Training set COMplementariness

BTUWA Backward Training set Uncertainty Weighted Accuracy

BVACC Backward Validation set ACCuracy

BVCON Backward Validation set CONcurrency

BVCOM Backward Validation set COMplementariness

BVUWA Backward Validation set Uncertainty Weighted Accuracy

TGO – Training set –

TRO – Training set –

TBSM – Training set –

VGO – Validation set –

VRO – Validation set –

VBSM – Validation set –

ensemble, during the pruning procedure, with the highest accuracy on the pruning set, in-
stead of using an arbitrary percentage of models. Table 4 shows the acronyms that will be
used in the rest of this paper for the different instantiations of the parameters of the general
DHCEP algorithm, RO, GO and BSM.

5.4 Methodology

Initially, each dataset is split into three disjunctive parts: D1, D2 and D3, consisting of 60%,
20% and 20% respectively. In the case where a separate validation set is used for pruning,
D1 is used for training the models and D2 for performing the pruning procedure. In the other
case, D1 ∪ D2 is used for both training and pruning. D3 is always used solely for testing the
methods.

The experiment described in this section is performed 10 times for each dataset using a
different randomized ordering of its examples. All reported results are averages over these
10 repetitions.

6 Results and discussion

According to Demsar (2006) the appropriate way to compare the effectiveness of multiple
algorithms on multiple datasets is based on their average rank across all datasets. On each
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Table 5 Average rank, ensemble size and type of the selected models of each method across all datasets

Method Avg. rank Avg. size MLP kNN SVM DT

FVUWA 3.96 7.5 2.0 0.9 2.8 1.8

FVCON 6.51 6.8 1.8 1.3 2.4 1.3

FVCOM 7.46 7.3 2.3 2.2 1.8 1.0

FVACC 7.63 7.7 2.8 2.3 1.9 0.7

BVUWA 6.25 32.6 9.5 6.0 11.3 5.8

BVCON 6.58 29.7 8.0 5.9 10.5 5.3

BVCOM 9.65 36.6 10.5 8.7 12.5 4.9

BVACC 12.86 46.5 18.1 15.5 10.4 2.6

FTUWA 18.45 1.69 0.05 0.61 0.98 0.05

FTCON 18.36 1.4 0.03 0.68 0.76 0.01

FTCOM 19.45 1.5 0.06 0.53 0.86 0.07

FTACC 18.11 1.3 0.05 0.51 0.8 0.04

BTUWA 12.65 43.6 7.3 15.9 14.6 5.8

BTCON 13.86 41.6 7.0 15.2 14.1 5.3

BTCOM 14.08 51.8 15.4 18.8 14.7 2.8

BTACC 15.31 29.8 10.6 12.8 5.4 1.1

VRO 12.58 86.1 18.3 26.2 32.1 9.6

VGO 8.80 30.0 8.1 7.6 10.0 4.3

VBSM 7.08 1.0 0.31 0.06 0.48 0.14

TRO 12.90 84.2 14.3 30.6 30.8 8.4

TGO 12.40 52.1 9.1 19.5 17.5 5.8

TBSM 17.58 1.0 0.12 0.79 0.08 0.0

ALL 15.36 200.0 40.0 60.0 80.0 20.0

dataset, the algorithm with the best performance gets rank 1.0, the one with the second best
performance gets rank 2.0 and so on. In case two or more algorithms tie, they all receive the
average of the ranks that correspond to them.

Table 5 shows the average rank (based on classification accuracy) along with the average
size and composition (type of models) of the pruned ensemble, for each method participat-
ing in the experiments. DHCEP methods are grouped first by pruning set, then by search
direction and finally sorted by evaluation measure. The table continues with RO, GO and
BSM grouped by pruning set, and ends with the ALL method. Detailed tables with the clas-
sification accuracy, rank and ensemble size of all methods in all datasets can be found in
Appendix (Tables 6–9).

We first study the evaluation dataset parameter and its relation to the effectiveness of
the ensemble pruning methods. We observe that using a separate validation set leads to
better results than using the training set, for all methods. In order to investigate whether the
differences in accuracy are statistically significant, we conducted 11 Wilcoxon signed rank
tests (Wilcoxon 1945), one for each pair of methods that differ in terms of the evaluation
dataset. At a confidence level of 95% all the tests reported significant differences in favor
of using a separate validation set. This shows that using unseen data to guide the pruning
process is very important, despite the fact that it comes at the expense of available training
data for the models of the ensemble. When the training set is used as the pruning set, the
pruning process is based on model predictions for data that are known to the models, and is
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therefore biased towards model subsets that overfit the training data. The negative effect of
overfitting is stronger for methods that select a small number of models, such as the baseline
BSM method and the DHCEP methods that search in the forward direction.

We next study the effect of the search direction parameter. In light of the results concern-
ing the evaluation dataset, we exclude methods that use the training set from this discussion.
We first notice that forward selection leads to better results compared to backward elimina-
tion for all evaluation measures. In order to investigate whether the differences in accuracy
are statistically significant, we conducted 4 Wilcoxon signed rank tests, one for each pair
of DHCEP methods that use a separate validation set for pruning and differ in terms of the
search direction. At a confidence level of 95% all tests show significant differences in favor
of the forward direction, apart from the pair of BVCON and FVCON.

As far as the size of the pruned ensemble is concerned, we observe that those DHCEP
methods that search in the forward direction tend to produce much smaller ensembles than
those that search in the backward direction. More specifically, the FVxxx methods achieve
an average reduction of 96.33% of the initial ensemble, while the BVxxx ones achieve an
average reduction of 81.82%. Note that this trend also holds for DHCEP methods that use
the training set to guide the pruning process.

Based on these results, the recommended search direction for DHCEP methods is the
forward one. Even though it does not bring a statistically significant benefit for one of the
measures (CON), it manages to reduce the initial ensemble substantially more compared to
the backward direction. Note that this conclusion assumes the use of a separate validation
set for evaluation.

This is an interesting outcome and can be explained by considering the fact that DHCEP
methods are based on a comparison of the decisions of a candidate model and an ensemble
of models. In the backward direction, DHCEP methods remove those models that are not
helpful compared to the current ensemble according to an evaluation measure. However, the
current ensemble is initially suboptimal, as it contains all models, both good and bad ones.
Therefore, there is a high probability that a good model will be removed in the beginning,
just because it does not improve the current suboptimal ensemble. On the other hand, in
the forward direction the initial ensemble is empty, and is progressively expanded accord-
ing to the evaluation measure, so it always contain good models. This explains both the
higher performance and the smaller size of the DHCEP methods that search in the forward
direction.

We continue the analysis of the results with a study of the evaluation measure parameter.
As before, we exclude methods that use the training set from this discussion. We first notice
that the proposed measure, UWA leads to the two best overall results, independently of the
search direction. We next proceed to an investigation of whether the proposed measure is
significantly better compared to the rest. Taking into account the conclusion concerning the
search direction parameter, we performed a Wilcoxon signed rank test between FVUWA
and each of FVCON, FVCOM and FVACC. We also performed a Wilcoxon signed rank test
between FVUWA and each of VGO, VRO, VBSM and ALL. At a confidence level of 95%
all the tests show that FVUWA performs significantly better than its competitors. This shows
that taking into account the uncertainty of the ensemble’s decision can lead to substantially
better results in terms of accuracy. The size of the pruned ensemble is approximately the
same as that returned by DHCEP methods using other evaluation measures.

It is also interesting to look at the composition of the pruned ensembles, as shown in
the last four columns of Table 5. Focusing on DHCEP methods that search in the forward
search direction and use a separate validation set for evaluation, we notice that they produce
ensembles with a balanced mixture of different types of models. Different types of models



272 Mach Learn (2010) 81: 257–282

Fig. 2 Performance of the FVxxx methods during the pruning phase. The ranking procedure is performed
for the different sizes of the ensemble between 1 and 200

lead to more diverse ensembles, and as a result more accurate ensembles. It is also interesting
to look into how the composition of models affects the performance of these 4 methods. It
seems that more SVMs and MLPs and less DTs and kNN models, lead to better results.
MLPs and SVMs are high performance classifiers and thus they dominate the ensemble.
Additionally, the selection of DTs and kNNs seems to add to the overall diversity, and such
models should be present in the pruned ensemble.

So far, we have looked at how methods behave under the setting that the percentage of
pruning is automatically determined by the methods themselves, which as we have discussed
in Sect. 3 is suitable when the main motivation of the pruning process is to increase the pre-
diction effectiveness. However, if we were primarily interested in assessing the efficiency
of the methods, then we should evaluate their accuracy under different percentages of prun-
ing. Still, we should note that the automated pruning methods already achieve a remarkable
pruning level, thus they meet the goal of efficiency too.

Figure 2 depicts the average rank of the FVxxx methods during the pruning process. The
curves are produced by calculating the ranks for the different sizes of the ensemble between
1 and 200. It is interesting to note that the method using the proposed measure (FVUWA)
is the best one for the largest part of the graph. Especially in the area between 2 and 40
models, it clearly outperforms its rivals. These findings show that it can be used for guiding
a pruning process, in situations where computational and storage savings is the dominant
motivation. Another interesting observation is that although FVCOM has a better average
rank compared to FVACC based on the automatic selection of the amount of pruning, it
is much worse than FVACC under the same level of pruning for the largest part of the
graph.
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7 Conclusions and future work

This paper presented a new measure for DHCEP, called Uncertainty Weighted Accuracy
(UWA), which takes into account the uncertainty of the decisions of the current ensemble.
We compared UWA against state-of-the-art measures using different values for the parame-
ters of search direction and evaluation dataset on ensembles of heterogeneous models. The
empirical comparison was carried out on 30 datasets and included 4 additional baseline en-
semble pruning methods. The results show that the proposed measure leads to significantly
better accuracy results compared to its rivals and it also manages to reduce substantially the
size of the original ensemble and thus to minimize the computational complexity.

Several interesting conclusions came up. To begin with, the evaluation dataset parameter
plays an important role on the performance of the DHCEP methods. The use of a separate
set leads to significantly better results than using all the available data. Also, the direction of
search is another important parameter that influences the performance of DHCEP methods.
The results showed that the forward direction helps to significantly improve the accuracy.

One interesting future work direction concerns the composition of the pool of models that
constitute the initial ensemble. It is interesting to investigate which parameters of the algo-
rithms have proved effective or not (for example a neural network with 10 hidden nodes) and
to use this information in order to substitute the specific models with other more effective
ones. Another related interesting direction concerns the development of a method that can
train and add models in the ensemble incrementally in an active learning fashion. In other
words to grow the ensemble dynamically by actively selecting the next most appropriate
model to train and/or perhaps dynamically removing inappropriate models that were previ-
ously added. This will save the computational costs of training a large number of models
from the beginning.
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