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Abstract We revisit an application developed originally using abductive Inductive Logic
Programming (ILP) for modeling inhibition in metabolic networks. The example data was
derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance
(NMR) time-trace analysis of their biofluids together with background knowledge repre-
senting a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply
two Probabilistic ILP (PILP) approaches—abductive Stochastic Logic Programs (SLPs) and
PRogramming In Statistical modeling (PRISM) to the application. Both approaches support
abductive learning and probability predictions. Abductive SLPs are a PILP framework that
provides possible worlds semantics to SLPs through abduction. Instead of learning logic
models from non-probabilistic examples as done in ILP, the PILP approach applied in this
paper is based on a general technique for introducing probability labels within a standard sci-
entific experimental setting involving control and treated data. Our results demonstrate that
the PILP approach provides a way of learning probabilistic logic models from probabilistic
examples, and the PILP models learned from probabilistic examples lead to a significant
decrease in error accompanied by improved insight from the learned results compared with
the PILP models learned from non-probabilistic examples.
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1 Introduction

There is currently considerable interest within Artificial Intelligence in Probabilistic Logic
Learning (De Raedt et al. 2008) and the closely allied area of Statistical Relational Learn-
ing (Getoor and Taskar 2007). These research fields are concerned with the integration of
probabilistic reasoning with first order logic representations and machine learning. This inte-
gration is needed in order to face the challenge of real-world data mining problems in which
the data consists of sets of objects with associated structural relations. We are interested in
finding useful predictive and/or descriptive patterns. In this paper, the term probabilistic is
used to refer to representations and forms of reasoning based on the probability calculus.
The term statistical is used to refer to empirical estimation techniques. The term logic is
used here to refer to representations and reasoning related to the predicate calculus such as
those studied within the field of computational logic. The term relational is used for model-
ing data based on predicate logic and set theory as done in relational database. The primary
advantage of using such representations is that it allows one to elegantly represent complex
situations involving a variety of objects as well as relations among the objects. The term
learning in the context refers to deriving the different aspects of a model in a probabilistic
logic on the basis of data. Typically, one distinguishes various learning algorithms on the
basis of the given data (fully or partially observable) or on the aspect being learned (para-
meter estimation or logical structure learning). The motivation for learning is that it is often
easier to obtain data for a given application domain and learn the model than to build the
model using traditional knowledge engineering techniques.

One approach to this problem is Probabilistic Inductive Logic Programming (PILP) (De
Raedt and Kersting 2004; De Raedt et al. 2008), which naturally extends traditional Induc-
tive Logic Programming (ILP) (Muggleton and De Raedt 1994) by introducing probabili-
ties that can explicitly deal with uncertainty such as missing and noisy information. There
have been some promising PILP frameworks and systems developed so far to help people
build probabilistic logic models, such as Bayesian Logic Programs (BLPs) (Kersting and
De Raedt 2000), Stochastic Logic Programs (SLPs) (Muggleton 1996), Independent Choice
Logic (ICL) (Poole 1997) and PRogramming In Statistical modeling (PRISM) (Sato 1995),
Markov Logic Networks (MLNs) (Richardson and Domingos 2006), etc. (De Raedt et al.
2008).

Although an increasing number of systems and applications have been published, there
are still many challenges in the PILP research. The question investigated in this pa-
per is whether PILP should always be used to learn from non-probabilistic examples.
This is motivated by the fact that the data sets used by most PILP systems and appli-
cations have non-probabilistic class values, like those used in ILP systems. On the one
hand, there is information lost by learning using just non-probabilistic data compared
with the raw (possibly continuous) data. In many cases, however, we could extract more
information, such as empirical probability or validity, in addition to categorical values.
Such information can be further used to support learning as well as model evaluation
in PILP. On the other hand, the ability of handling such probabilistic examples should
be one of the distinct positive features of PILP against ILP. The main reason for the
problem is the lack of an obvious source of probabilistic class values and corresponding
methods of exacting probabilistic examples from raw data. In this context, we investi-
gate the use of Abductive Stochastic Logic Programs and the PRISM system (Sato 1995;
Sato et al. 2008) for metabolic network inhibition learning and demonstrate that PILP mod-
els with higher predictive accuracy can be learned from probabilistic examples than non-
probabilistic examples.



Mach Learn (2008) 73: 55–85 57

This paper is organized as follows. Section 2 provides background relating to an introduc-
tion of probabilistic examples, PILP, SLPs, abduction, PRISM and the biological application
area of metabolic network inhibition as well as the previous study of abductive ILP. This is
followed by a description of the abductive approach to SLPs used in this paper as well as
the allied system PRISM. A general approach is described in Sect. 4 for extracting empiri-
cal probability labels from scientific data. This approach is employed in the experiments of
Sect. 5 which apply abductive SLP learning and the PRISM system to the metabolic network
inhibition problem. We show that significant accuracy increases are achieved by learning the
PILP models from probabilistic examples. Section 6 concludes with a comparison to some
related approaches and a discussion of the future work.

2 Motivation and background

2.1 Interpretation of probability and probabilistic examples

For the purposes of understanding the learned knowledge, it is vital to identify the inter-
pretation of probability employed within any PILP application. We are not going to review
the existing arguments of interpretations of probability in philosophy and statistics (Alan
2007). Instead, we distinguish two types of probabilistic knowledge following Halpern’s
categorisation on first-order logics of probability (Halpern 1989).

In order to analyse the semantics of first-order logics of probability, two approaches are
considered in (Halpern 1989). A type 1 probability structure is defined on the domain and is
appropriate for giving semantics to formulae involving statistical information; By contrast,
a type 2 probability structure puts probabilities on possible worlds and is appropriate for
giving semantics to formulae describing degrees of belief. According to the categorisation,
type 1 probabilities capture statistical information about the world by performing experi-
ments or trials, in which objective domain frequencies or empirical probability distribution
are gathered over objects, instances or sample spaces; whereas type 2 probabilities implic-
itly assume the existence of a number of possibilities or possible worlds (in some of which
formulae are true while in others are false), with some subjective probability distribution
over these worlds. Thus, the key difference between the two probability structures is that
probabilities are defined over the domain in type 1 structures, while probabilities are defined
over the domain in type 2 structures. Although they are two fundamentally different types
of probabilities, Halpern remarks there is a sense in which we can translate between the
two types of probability structures and furthermore combine the two modes of probabilistic
reasoning in some situations (Halpern 1989).

In addition, it is common that the probability distributions are defined over possible
worlds (first-order models) which give for each closed logical formula the probability that
it is true, but it is not necessary to define a distribution over the truth values of formulae
in type 1 probability logic (Cussens 2001). While possible worlds semantics are widely
used in Bayesian approaches (Pearl 1988) and PILP (Sato 1995; Poole 1997; Kersting and
De Raedt 2000), type 1 semantics have been applied in Probably Approximately Correct
(PAC) Learning (Haussler 1990) and Stochastic Logic Programs (SLPs) (Muggleton 1996;
Cussens 2001).

Based on the above categorisation of probabilities, we define a probabilistic example in
our study to be an example together with either a type 1 empirical frequency (probability
defined on the domain) or a type 2 empirical probability (probability defined on the possible
worlds). In mathematics, empirical probability of an event is the fraction of times we expect
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it to occur in an experiment (Stefan and Steven 2004). In a general case, the empirical
probability (of a sample) estimates the theoretical probability (of a population) by the law of
large numbers: as the number of trials of an experiment increases, the empirical probability
approaches the theoretical probability. It is fair to say that the normal empirical probabilities
accord with type 1 probability semantics as they are domain-based. We introduce type 2
empirical probability in order to deal with the cases when we are unable to count empirical
frequencies, but we could instead estimate the degree of belief or validity that some event
happened in terms of possible worlds semantics. We demonstrate a method in the paper that
can extract type 2 empirical probabilities from a small data set containing control and treated
cases where the empirical frequencies are not countable due to the size of sample space.

Definition 1 (Probabilistic example) A probabilistic example is a tuple (e,Pe(e)), in which
e is a ground logic atom and Pe(e)1 is either a (type 1) empirical frequency that is defined
by counting the frequency e occurred in a sample space, or a (type 2) empirical probability
which is defined by capturing the degree we believe e is true in some possible worlds.

Probabilistic examples are more accurate representation of what we know about the
world than non-probabilistic examples. For example, a probabilistic example (concen-
tration(citrate, down), 0.80) in metabolic network research means that either
we believe the statement ‘the concentration level of metabolite citrate goes down’ is
true with 80% validity or in terms of degree of belief (empirical probability), or we have ob-
served ‘the concentration level of citrate has a down regulation’ in an experiment with
a frequency of 80% (empirical frequency). This contrasts with a (positive) binary exam-
ple concentration(citrate, down) used in ILP. In addition, another advantage
of providing probabilistic examples results in implicit introduction of the corresponding
complements for binary examples. For example, in the above example, a complementary
probabilistic example (concentration(citrate, up), 0.20) can be assumed
accordingly. Thus probabilistic examples enrich the observations we could extract from the
raw data and provide extra support for learning. It is necessary to clarify that empirical prob-
ability is not prior probability, which is always used in Bayesian learning (Friedman 1998)
and is often the purely subjective assessment made by domain experts. Empirical probability
could be thought as posterior probability conditional on the experimental data.

Although the empirical frequency and the empirical probability in the definition have
different semantics, we fuse them in the context of abductive SLPs, that is, empirical proba-
bilities extracted from a sample space are converted into empirical frequencies for abductive
SLP learning. The motivation for this is, as detailed in Sect. 3, that domain-based probabil-
ity distribution and possible-world-based probability distribution are treated identically in
terms of SLD-derivation in abductive SLPs.

2.2 Probabilistic ILP with probabilistic examples

Probabilistic ILP aims to provide a formal learning framework for probabilistic logic learn-
ing. It extends ILP to deal with uncertainty. To address our motivation, we use the following
learning setting of PILP with probabilistic examples.

1We distinguish the empirical probability/frequency (denoted by Pe) from the normal probabilities (denoted
by Pr) in the context.
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Definition 2 (Probabilistic ILP with probabilistic examples) Given a probabilistic logic pro-
gramming representation language L, a set E = {(ei,Pe(ei))} of probabilistic examples over
L, and a background theory B , PILP finds a set of probabilistic hypotheses {(LP, λ)} over L
by applying some scoring function score (E,LP, λ,B) such that (LP, λ) stands for a logic
program LP annotated with probabilistic parameters λ. The scoring function is some objec-
tive score that returns a posterior distribution over the models {(LP, λ)} and consists of the
likelihood Pr(E|LP, λ,B) and/or a function that penalises the complexity of LP.

Following the traditional Bayesian learning (Friedman 1998) paradigm, the scoring func-
tion defined above could be as simple as the likelihood, Pr(E|LP, λ,B), (e.g. for maximum
likelihood estimation); or the posterior probability of the model, Pr(LP, λ|E,B), (e.g. for
maximum a posteriori); or the scores that take into account prior probabilities and penalised
functions, such as minimum description length (MDL) score (Rissanen 1982) and Bayesian
Information Criterion (BIC) score (Friedman 1998). If we suppose that the examples are in-
dependent and identically distributed (i.i.d.),2 then Pr(E|LP, λ,B) = ∏m

i=1 Pr(ei |LP, λ,B),
where m is the cardinality of E.

This formulation is more general than the one described in (De Raedt and Kersting 2004)
which is to find a single best hypothesis. Firstly, we include probabilistic examples and de-
fine the hypothesis scoring function to have not only the examples {ei} but also their associ-
ated empirical probability values {Pe(ei)} as the arguments. Secondly, our goal is to select
a set of candidate hypotheses using the Bayesian approach that finds a posterior distribution
over hypotheses. Thirdly, the penalised part in the scoring function plays an important role
in the learning as it overcomes the overfitting (to data) problem caused by only employing
likelihood.

2.3 SLPs and failure-adjusted maximisation algorithm

Stochastic logic programs (SLPs) (Muggleton 1996) are one of the developed PILP frame-
works that provide a natural way of associating probabilities with logical rules. SLPs were
introduced originally as a way of lifting stochastic grammars to the level of first-order logic
programs. SLPs were considered to be a generalisation of hidden Markov models and sto-
chastic context-free grammars. SLPs have later been used to define distributions for sam-
pling within ILP.

Definition 3 (Stochastic logic programs) An SLP S is a definite logic program, where each
clause C is a first-order range-restricted definite clause3 and some of the definite clauses
are labelled/parameterised with non-negative numbers, l : C. S is said to be a pure SLP if
all clauses have parameters, as opposed to an impure SLP if not all clauses have labels.
The subset Sq of clauses in S whose head share the same predicate symbol q is called the
definition of q . For each definition Sq , we use πq to denote the sum of the labels of the
clauses in Sq . S is normalised if πq = 1 for each q and unnormalised otherwise.

2The assumption of i.i.d. does not hold in some application areas and data sets where there exist correlations
between examples, e.g. the data set used in this paper. However, this is still an open question and has no
standard way to minimize the problem in the machine learning community.
3A definite logical clause C is range-restricted if every variable in C+, the head of C, is found in C−, the
body of C.
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For our purposes, SLPs are restricted to define probability distributions over definite
clauses, where each l is set to be a number in the interval [0,1]. In a pure normalised SLP,
each choice for a clause C has a parameter attached and the parameters sum to one, so
they can therefore be interpreted as probabilities. Pure normalised SLPs are defined such
that each parameter l denotes the probability that C is the next clause used in a derivation
given that its head C+ has the correct predicate symbol. Impure SLPs are useful to de-
fine logic programs containing both probabilistic (or parameterised) and deterministic (or
non-parameterised) rules.4 Unnormalised SLPs can conveniently be used to represent other
existing probabilistic models, such as Bayesian nets (Cussens 2001).

Generally speaking, an SLP S has a distribution semantics (Muggleton 2000), that is
one which assigns a probability distribution to the atoms of each predicate in the Herbrand
base of the clauses in S. Let n(S) denote the logic program formed by dropping all the
probability labels from S. A stochastic SLD-resolution procedure will be used to define
a probability distribution over the Herbrand base of n(S). The stochastic SLD-derivation
of an atom a is as follows: suppose ← g is a unit goal with the same predicate symbol
as a and without other function symbols and distinct variables; next suppose there exists
a ground substitution θ such that gθ = a (since the clauses at n(S) are range restricted,
θ is necessarily ground); now suppose the first atom in ← g can unify with the heads of
m > 0 stochastic clauses {l1 : C1, . . . , lm : Cm} in which the clause li : Ci is chosen (by some
selection function), then the probability of the choice is li

l1+···+lm
;5 and the probability of a

derivation of a is the product of the probabilities of all the choices made in the derivation;
moreover, the probability of the atom a is the sum of the probabilities of all the derivations
of a. Such stochastic SLD-derivation of a goal is always represented as a stochastic SLD-
tree. It is clear that a Markov chain, whose states are goals, is defined by a pure normalised
SLP and an initial goal through a stochastic SLD-resolution. The clause parameters thus
define transition probabilities between goals in the Markov chain.

Furthermore, some quantitative results are shown in (Cussens 2001), in which an SLP
S with parameter λ = log l together with a goal g defines up to three related distributions
in the stochastic SLD-tree of g: ψλ,S,g(x), fλ,S,g(r) and pλ,S,g(y), defined over derivations
{x}, refutations {r} and atoms {y}, respectively. An example is illustrated in Fig. 1, in which
the example SLP S defines a distribution, for a goal : −s(X), {0.1875,0.8125} over the
sample space {s(a), s(b)}. As stated in (Cussens 2001), SLPs do not define distributions over
possible worlds, i.e., pλ,S,G(y) defines a distribution over atoms, not over the truth values of
atoms. Thus, we could claim that the distribution semantics of SLPs is in accordance with
type 1 or domain frequency probabilistic logic (Halpern 1989) and SLPs have not previously
been provided with a possible worlds semantics.

Learning SLPs has been studied in (Cussens 2001), which solves the parameter estima-
tion problem by developing failure-adjusted maximisation (FAM) algorithm, and in (Mug-
gleton 2000, 2002a), which presents a preliminary approach to structure learning. The prob-
lem of SLP structure selection is still an open hard problem in the area that requires one to
solve almost all the existing difficulties in ILP learning (De Raedt and Kersting 2003).

4The desired meaning for unparameterised clauses in the impure SLPs is to see them as non-probabilistic
domain knowledge acting as constraints (Cussens 2001). The ability of combining such deterministic back-
ground knowledge with those probabilistic (parameterised) clauses is one of the central features of SLPs.
However, one should satisfy an equivalence relation constraint to apply impure SLPs so that only one single
refutation (with probability 1) could be derived from possibly multiple non-probabilistic rules in the under-
lying SLD-derivations. More details are discussed in Cussens (2001).
5It is li if S is normalised.
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Fig. 1 (a) An example of SLP S (adapted from Cussens 2001); (b) a stochastic SLD-tree for S with goal
:-s(X), including 6 derivations in which 4 are refutations (end with �) and 2 are fail derivations (end with
‘fail’); (c) probabilities computed in S for the two fail derivations x1 and x2, for the leftmost refutation r1,
and for the two atoms s(a) and s(b), respectively (Cussens 2001)

FAM is designed to deal with SLP parameter learning from incomplete or ambiguous
data in which the atoms in the data have more than one refutation that can yield them.
It is an adjustment to the standard EM algorithm where the adjustment is explicitly ex-
pressed in terms of failure derivation. The algorithm maximises, at iteration h, the likeli-
hood of parameters λh given the observed data y with empirical frequencies, i.e. Pe(y|λh),
the probability of y given the current parameters. Since an SLP’s parameters are its clausal
probabilities, FAM works on the expected contribution a particular clause has in stochastic
SLD-derivations with respect to the data at hand. This is ψλh [νi |y], the expected frequency
for clause Ci given the observed data y and the hth iteration parameter estimation λh

ψλh [νi |y] =
t−1∑

k=1

Nkψλh [νi |yk] + N(Z−1
λh − 1)ψλh [νi |fail],

where νi counts times Ci appeared in some derivation, Nk is the number of times datum yk

occurred in the observed data, N = ∑
k Nk is the number of observed data, ψλh [νi |yk] is the

expected number of times Ci was used in refutations yielding yk , ψλh [νi |fail] denotes the
expected contribution of Ci to failed derivations, and Zλh is the probability of all the refu-
tations (Cussens 2001). Therefore, the first part corresponds to refutations while the second
term to failed derivations. Broadly speaking, the equation gathers together the contributions
of a particular clause Ci to derivations against the program, the current parameters and the
data. The counts are used to estimate the probabilities for the parameterised clauses in each
FAM iteration.

2.4 Abductive logic programming

Considering a logical approach to the problem of incremental development of scientific
models, scientists have distinguished three forms of reasoning: deduction, abduction and
induction. Several studies have been conducted on the comparison and integration of ab-
duction and induction from the perspective of Artificial Intelligence (Kakas et al. 1992;
Flach and Kakas 2000). A basic assumption in the study of abduction is that a logical
theory or model T can be separated into two disjoint sets of predicates: the observable
predicates describe the empirical observations of the domain and the abducible predi-
cates describe underlying relations in the model that are not observable directly, but can
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bring about observable information through T . In practice, observations are typically repre-
sented by ground atomic facts on the observable predicates, and abducibles are the ground
atoms generated during reasoning on the abducible predicates that could complement the
current theory T . These two types of predicates form the basis of abductive explanation
for understanding the observations. In general, abduction generates, in the explanations,
extensional knowledge that refers only to the abducible predicates and that is specific
to some particular state of world; whereas induction generates intensional knowledge in
the form of new general rules that can provide new links between predicates. The com-
bination of abduction and induction has been deployed within ILP, e.g. the framework
of theory completion and its implementation Progol 5.0 (Muggleton and Bryant 2000;
Muggleton 2002b), application of abductive ILP to learning metabolic network inhibition
(Tamaddoni-Nezhad et al. 2006).

A general approach of integrating abduction with induction is developed in (Flach and
Kakas 2000). Abduction is first used to transform the observations to an extensional hy-
pothesis on the abducibles. The induction takes this as input and tries to generalize the
extensional information to general rules for the abducible predicates now treating them as
observables for its own purposes. The cycle can then be repeated by adding the learned
information on the abducibles back into the model as new partial information on the incom-
plete abducible predicates. This will affect the abductive explanations of new observations
to be used again in a subsequent phase of induction. Hence through the integration, the ab-
ductive explanations of the observations are added to the theory in a generalized form given
by a process of induction on them. Adding an explanation to the model allows us to predict
further observable information but the predictive power of abduction is restricted to come
from the already known rules in the model.

A framework that supports abduction in logic programming is that of abductive logic
programming (ALP) (Kakas et al. 1992; Kakas and Denecker 2002).

Definition 4 (Abductive logic programming) (I) An ALP theory or model T is a triple
(LP,A, IC), in which a logic program LP contains definitional knowledge about the domain
through a set of observable predicates and background predicates, a set of abducible predi-
cates A appear only in the condition parts of the program rules with no definition in LP, and
a set of integrity constraints formulae IC represent assertional knowledge about the domain,
augmenting the model in LP but without defining any predicates. (II) Given an ALP theory,
an abductive explanation for an observation O is a set Δ of ground abducible atoms on the
predicates A such that LP ∪ Δ |= O and LP ∪ Δ |= IC.

An ALP system thus returns an abductive explanation Δ which represents a hypoth-
esis that together with the model T explains how an observation O could hold. An ab-
ductive explanation partially completes the current model T by providing new knowledge
(abducibles). This framework provides the background for the studies of abductive ILP in
(Tamaddoni-Nezhad et al. 2006) and abductive SLPs in this paper.

2.5 PRISM and ICL

PRogramming In Statistical modeling (PRISM) (Sato 1995) and Independent Choice Logic
(ICL) (Poole 1997) are two existing PILP formalisms supporting abduction. The common
feature of these frameworks is that a purely probabilistic component (probabilistic facts
or alternatives) and a purely logical component (logical rules) are connected to produce a
hybrid model. Both of them, as well as SLPs, fall into the category of directed approaches
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where there is a nonempty set of formulae all of whose probabilities are explicitly stated
(Cussens 2007).

There are two disjoint sets of ground atomic formula in the languages: probabilistic facts
in PRISM, similarly to the alternatives in ICL, that define a base distribution; and those
come from using a set of logical rules that extend the base distribution to an induced distri-
bution over the set of least models. The PRISM system represents probabilistic facts in the
form of multi-ary random switches (msw). In ICL, an atomic choice specifies the truth value
of an alternative and a total choice specifies atomic choices for all alternatives. The base dis-
tributions are defined over a set of mutually independent msw facts or atomic choices with
the closed-world assumption (CWA). From a statistical point of view, both probabilistic
facts and alternatives can be treated as random variables that have truth values and proba-
bilities. Thus possible worlds semantics are explicitly invoked in the two formalisms, where
a possible world is determined by a total choice in ICL and a conjunction of msw facts in
PRISM.

In both frameworks, there is a strict separation between probabilistic facts, whose prob-
abilities are explicitly given, and formulae whose probabilities have to be inferred from the
probabilistic facts, the logical rules and the CWA (Cussens 2007). The logical rules are non-
probabilistic and are used to deterministically map the base distribution defined over facts to
other atomic formulae. To compute the probability of a formula F which is not a probabilis-
tic fact, it suffices to find the possible conjunctions of facts that entail F , each of which is a
product of base probabilities, and then compute the sum of the probabilities of the conjunc-
tions with the help of CWA. This is based on the distribution semantics defined in PRISM.
Moreover, abduction is a key operation in finding the required conjunctions. The importance
of abduction is reflected in the name probabilistic Horn abduction (PHA) (Poole 1993), the
original version of ICL. In PRISM, abduction is achieved by one of the two underlying
probabilistic inferences: explanation search. An explanation for a probabilistic goal G is a
conjunction E of the ground switch instances that occurs in a derivation path of G. Expla-
nation search works as an underlying subroutine for probability calculation and parameter
learning. In particular, the parameter estimation in the PRISM is exactly a process of abduc-
tion, where the base probabilities of a set of msw facts (abducibles defined by multi-valued
switch declarations) are estimated from a set of ground atomic formulae (observables de-
fined by target declarations). From a point of view of prediction, the learning could be done
with a subset of examples (train data) and we could further calculate the probabilities for
another subset of examples (test data) with the learned models using explanation search
so as to evaluate the performance of modeling. An example of applying PRISM for such
abductive learning and prediction can be found in the next section.

An explicit difference can be found between SLPs and PRISM/ICL, i.e. pure SLPs attach
probabilities to first-order clauses/rules as well as facts, but the logical rules are restricted to
be deterministic in PRISM/ICL. This further extends to the difference between their prob-
abilistic semantics, i.e. PRISM and ICL have possible worlds semantics but SLPs define
probabilities for proofs without much concern about the probabilities with which the atomic
formulae are true. However, as shown later, both PRISM and abductive SLPs can achieve
the same goal of abductive learning. To understand the representation problem better let us
consider the case of learning metabolic network inhibition.

2.6 Learning metabolic network inhibition

Metabolism provides a source of energy for cells and degrades toxic compounds in prepa-
ration for excretion. The graph of these interlinked chemical reactions is known as the
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Fig. 2 Description of the scientific experiments for machine learning metabolic network inhibition. The
example data was derived from studies of the effects of toxins on rats using NMR time-trace analysis of their
biofluids

metabolic network (Alm and Arkin 2003). The reactions that take place in the network
are catalysed by highly specialised proteins known as enzymes. One of the less understood
phenomena in the metabolic network is inhibition. Some chemical compounds, known as
inhibitors, can affect enzymes, impeding their function. This in turn affects the normal flux
in the metabolic network, the result of which is reflected in the accumulation or depletion
of certain metabolites. Inhibition is important because many substances designed to be used
as drugs can have an inhibitory effect on other enzymes. Any system able to predict such
inhibitory effect on the metabolic network would be useful in assessing the potential side-
effects of drugs.

In the Systems Biology project (MetaLog Project 2004–2006), several machine learning
studies have been conducted to use experimental data on the accumulation and depletion
of metabolites to model the inhibitory effect of various toxins, such as hydrazine, in the
metabolic network of rats (Fig. 2). In order to measure the actions of toxin, a group of rats
were injected with hydrazine and the changes on the concentrations of a number of chemi-
cal compounds are monitored during a period of time. Relative concentrations of chemical
compounds are extracted from Nuclear Magnetic Resonance (NMR) spectra of urine which
provide information concerning the flux of metabolite concentrations before, during and
after administration of a toxin.

One of the applied machine learning approaches is abductive ILP (Tamaddoni-Nezhad
et al. 2006), a variant of ILP supporting both abductive and inductive logic programming.
In that work, the binary information on up/down regulations of metabolite concentrations
following toxin treatment is combined with background knowledge representing a subset of
the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic diagrams. Based on the
underlying ALP paradigm, an abductive ILP program is used to suggest the inhibitory effects
occurring in the network, which includes a set of different types of predicates (Table 1), a set
of general rules under which the effect of the toxin can increase or reduce the concentration
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Table 1 The predicates defined in the abduction ILP for learning metabolic network inhibition (Tamaddoni-
Nezhad et al. 2006)

Predicate Type Description

concentration(Metabolite,
Level, Time)

observable at some Time a Metabolite has a certain Level of
concentration (up or down)

reactionnode(Metabolites1,
Enzymes, Metabolites2)

background a metabolic pathway between Metabolites1 and
Metabolites2 catalyzed by Enzymes

enzyme(Enzyme) background a (sequence of) Enzyme(s)

enzyme(Metabolite) background a (set of) Metabolite(s)

inhibited(Enzyme,
true, Metabolites1,
Metabolites2, Time)

abducible at Time the reaction from Metabolites1 to
Metabolites2 is inhibited by the toxin through an
adverse effect on Enzyme that catalyzes the
reaction

inhibited(Enzyme,
false, Metabolites1,
Metabolites2, Time)

abducible at Time the reaction from Metabolites1 to
Metabolites2 is not inhibited by the toxin
through an adverse effect on Enzyme that
catalyzes the reaction

of the metabolites, and some integrity constraints involving self-consistency requirements
of the model. In general, we can have a set of metabolites on each side of the reaction and
a set of different enzymes that can catalyze the reaction. An example of metabolic network
and the learned inhibition are demonstrated in Fig. 3.

The key point in the abductive ILP study is that, as introduced in Sect. 2.4, it supports the
integration of abduction and induction and provides abductive explanations for observations
in an ILP setting. Abduction is a procedure of finding explanations for observations and in-
duction is a procedure of formulating general rules for the abducible predicates. There are
three main reasons for us to revisit this application work of abductive ILP by using a prob-
abilistic ILP approach. Firstly, we believe the data set provides us a test bed for developing
a method that can extract probabilistic examples instead of non-probabilistic examples, as
it contains raw data for control and treatment cases. Secondly, we attempt to reject a null
hypothesis “learning probabilistic logic models from probabilistic examples does not pro-
vide better prediction than learning probabilistic logic models from non-probabilistic ex-
amples” with the empirical probabilities as the base line. Finally, we want to demonstrate
that probabilistic logic models provide richer interpretability than pure logic models from
the application point of view. Therefore, by adapting the pure logic program to an SLP pro-
gram and extracting probabilistic examples from the same data, our study aims at learning
probabilistic logic models of metabolic network inhibition from probabilistic examples.

3 Abductive SLPs

3.1 Abduction with SLPs based on a possible worlds semantics

Despite their use in stochastic contexts, SLPs have not previously been provided with a
(type 2) possible worlds semantics and their interpretation has generally been allied in the
literature (Puech and Muggleton 2003) to Halpern’s (type 1) domain frequency based prob-
abilistic models (Halpern 1989). Abductive SLPs provide a setting to SLPs which supports
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Fig. 3 An example of rat metabolic network and the corresponding inhibition of hydrazine (at hour 8) learned
by abductive ILP. Information on up/down changes in metabolite concentrations (boxed nodes) from NMR
spectra is combined with KEGG metabolic diagrams. The nodes without boxes are the metabolites whose
concentrations are not observed/observable. The enzymes associated with a single reaction (solid line) or a
linear pathway (dotted line) are shown as a single enzyme or a sequence of enzymes. Colored arrows show
the found inhibition with directions

abductive modeling and learning with SLPs through defining a probability distribution over
the abductive hypotheses based on a possible worlds semantics (Arvanitis et al. 2006).

As stated in Sect. 2.3, SLPs are originally set to have a distribution semantics (Sato 1995),
that assigns a probability distribution to the atoms in the Herbrand base of the clauses in an
SLP program according to a stochastic SLD resolution strategy (Muggleton 2002a). The
stochastic SLD-derivation procedure gives SLPs a domain-based semantics which define
probability distributions over ground atoms through building stochastic SLD-trees. How-
ever, being motivated by Markov models, we now provide a new setting which interprets the
probabilities assigned to the clauses as conditional probabilities between possible worlds.
When introducing abduction into SLPs (Arvanitis et al. 2006), given a clause p : H ← B

being applied in a stochastic SLD-derivation, the probability p is interpreted as Pr(B | H),
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i.e. the conditional probability of the ground body B being true (in some possible worlds)
given that the ground head H is true (in the same possible worlds). This setting corresponds
to an explanatory semantics of conditional probability that explain the possible causes for a
given result, in contrast with the normal causal semantics (Pr(H | B)) that infer the result
given the causes, like the semantics defined in Bayesian Networks (Pearl 1988) and BLPs
(Kersting and De Raedt 2000). Under the explanatory semantics, the possible explanations
that are computed for an atom are based on possible worlds, i.e. each possible world (expla-
nation) corresponds to a stochastic SLD-refutation (a branch in a proof tree) and the proba-
bility of the atom is the sum of the probabilities over all the possible worlds (explanations or
proofs). In fact, all the stochastic SLD-refutations of an atom compose a subset of possible
worlds (in which the atom is true), each of which is associated with a non-zero probability,
while all the other possible worlds are set to have zero probabilities under a closed world
assumption (CWA). When addressing this in logical reasoning and learning, the new setting
also suggests the possibility of introducing abduction into SLPs which can find abductive
explanations for observations. Therefore, SLPs with abduction setting are called abductive
SLPs which provide SLPs with a possible worlds semantics.

3.2 A worked example

We now explain the idea with an example. Suppose we are given the following SLP and the
domain is set to be {a, b}

0.6 : s(X) ← p(X),

0.4 : s(X) ← q(X).

We are now asked to provide explanations of the observation s(a).6 We can view the labels
in the SLP above as providing probabilities associated with various abductive explanations
of s(a) and s(b). Thus 0.6 is the probability associated with the explanation from the first
clause above. If we abduce p(a) from s(a) then a CWA leads us to conclude that ¬q(a)

holds in the world description in which this hypothesis is true.7 Thus we have the following
conditional probabilities

Pr(p(a),¬q(a)|s(a)) = 0.6, Pr(¬p(a), q(a)|s(a)) = 0.4,

Pr(p(b),¬q(b)|s(b)) = 0.6, Pr(¬p(b), q(b)|s(b)) = 0.4,

Pr(p(a), q(a)|s(a)) = 0, Pr(p(b), q(b)|s(b)) = 0.

By the laws of conditional probability

Pr(s(a),p(a),¬q(a)) = Pr(s(a))Pr(p(a),¬q(a)|s(a)),

Pr(s(b),p(b),¬q(b)) = Pr(s(b))Pr(p(b),¬q(b)|s(b)).

6We apply skolemisation to deal with existential quantifiers appeared in abducible predicates. For example,
assuming a clause s(X) ← p(X,Y ) (in which Y is a existentially quantified variable) and an observation
s(a), a ground fact p(a,$y) could be abduced from, where $y is a skolem constant of Y .
7It means that in the worlds that p(a) is true the explanation of q(a) is false. This shows a mutual exclusion of
the two explanations of s(a) and implies that 0 : s(X) ← p(X), q(X), which could not be derived under the
distribution semantics. It is also worth noting that the CWA here has the same meaning with the exclusiveness
condition set in the PRISM, which states that with any parameter settings, for any observable goal G, the
explanations (and sub-explanations) for G (and subgoals of G) are probabilistically exclusive to each other.
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Suppose we know a prior distribution over the observations,8 i.e. Pr({s(a), s(b)}) =
{0.8,0.2}. Thus we get the following possible worlds along with their probabilities

Pr(s(a),p(a),¬q(a)) = 0.8(0.6) = 0.48, Pr(s(a),¬p(a), q(a)) = 0.32,

Pr(s(b),p(b),¬q(b)) = 0.2(0.6) = 0.12, Pr(s(b),¬p(b), q(b)) = 0.08.

This leads to an assignment in which all other possible worlds have probability 0. In this
context, there are two possible explanations for s(a), i.e. p(a) with probability 0.48 and
q(a) with probability 0.32. Suppose we now extend the SLP above with the following.

0.5 : p(X) ← u(X),

0.5 : p(X) ← w(X),

0.3 : q(X) ← t (X),

0.7 : q(X) ← u(X), v(X).

By applying the normal Markov chain assumption in SLPs, and employing the same
arguments as above we get the following possible worlds with probabilities

Pr(s(a),p(a),¬q(a),¬t (a),¬u(a),¬v(a),w(a)) = 0.8(0.6)(0.5) = 0.24,

Pr(s(a),p(a),¬q(a),¬t (a), u(a),¬v(a),¬w(a)) = 0.8(0.6)(0.5) = 0.24,

Pr(s(a),¬p(a), q(a), t (a),¬(u(a), v(a)),¬w(a)) = 0.8(0.4)(0.3) = 0.096,

Pr(s(a),¬p(a), q(a),¬t (a), u(a), v(a),¬w(a)) = 0.8(0.4)(0.7) = 0.224,

Pr(s(b),p(b),¬q(b),¬t (b),¬u(b),¬v(b),w(b)) = 0.2(0.6)(0.5) = 0.06,

Pr(s(b),p(b),¬q(b),¬t (b), u(b),¬v(b),¬w(b)) = 0.2(0.6)(0.5) = 0.06,

Pr(s(b),¬p(b), q(b), t (b),¬(u(b), v(b)),¬w(b)) = 0.2(0.4)(0.3) = 0.024,

Pr(s(b),¬p(b), q(b),¬t (b), u(b), v(b),¬w(b)) = 0.2(0.4)(0.7) = 0.056.

The third and seventh probabilities actually correspond to a set of possible worlds respec-
tively.9 Furthermore, the marginal probabilities of all the abducibles of the two observations
are

Pr(t (a)) = Pr(s(a),¬p(a), q(a), t (a),¬(u(a), v(a)),¬w(a)) = 0.096,

Pr(u(a)) = Pr(s(a),p(a),¬q(a),¬t (a), u(a),¬v(a),¬w(a))

+ Pr(s(a),¬p(a), q(a),¬t (a), u(a), v(a),¬w(a)) = 0.464,

8Please be aware that this distribution is the subjective prior knowledge (denoted by Pr), not the objective
empirical distribution (denoted by Pe).
9For example, the third probability corresponds to three possible worlds:

(s(a),¬p(a), q(a), t (a),¬u(a),¬v(a),¬w(a)),

(s(a),¬p(a), q(a), t (a),¬u(a), v(a),¬w(a)),

(s(a),¬p(a), q(a), t (a), u(a),¬v(a),¬w(a)).

However, the model does not specify the probability for each of them.
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Pr(v(a)) = Pr(s(a),¬p(a), q(a),¬t (a), u(a), v(a),¬w(a)) = 0.224,

Pr(w(a)) = Pr(s(a),p(a),¬q(a),¬t (a),¬u(a),¬v(a),w(a)) = 0.24,

Pr(t (b)) = Pr(s(b),¬p(b), q(b), t (b),¬(u(b), v(b)),¬w(b)) = 0.024,

Pr(u(b)) = Pr(s(b),p(b),¬q(b),¬t (b), u(b),¬v(b),¬w(b))

+ Pr(s(b),¬p(b), q(b),¬t (b), u(b), v(b),¬w(b)) = 0.116,

Pr(v(b)) = Pr(s(b),¬p(b), q(b),¬t (b), u(b), v(b),¬w(b)) = 0.056,

Pr(w(b)) = Pr(s(b),p(b),¬q(b),¬t (b),¬u(b),¬v(b),w(b)) = 0.06.

Thus, we could conclude that the abducible u(a) is the abduced explanation for the observa-
tion s(a) with the highest probability 0.464 in the example. It is also worth noting that there
is no overlapping between the possible worlds that abduce u(a) (or u(b)), as the worlds de-
rived from the rule 0.5 : p(X) ← u(X) and the rule 0.7 : q(X) ← u(X), v(X) are two sets
of different worlds that have no connections between each other. And the CWA implicitly
assumes only one rule could be chosen at each time to induce u(X).

3.3 Framework of abductive SLPs

We now define the framework of abductive SLPs by three parts–abductive SLPs, stochastic
abduction and learning setting of abductive SLPs.

Definition 5 (Abductive SLPs) An abductive SLP SA is a first-order SLP with abductive
logic programming setting based on a possible worlds semantics. Let n(SA) denote the logic
program formed by dropping all the probability labels from SA, then n(SA) is an ALP theory
(as defined in Definition 4). Given an abductive SLP SA, a stochastic abductive explanation
for an observation can be derived by applying the following defined stochastic abduction
procedure.

Definition 6 (Stochastic abduction with abductive SLPs) Suppose that SA is an abductive
SLP, e is a first order ground atom (defined by some observable predicate) with a given
prior probability Pr(e), δ(e, SA) is a ground stochastic SLD-derivation of e derived from SA

involving a set of ground abducibles Ae (defined by some abducible predicates). We say that
a model Me is a least Herbrand model of (SA, e,Ae) if it contains all and only the ground
facts in δ and we have

Pr(Me|e) = Pr(δ(e, SA)) =
∏

C|C∈δ(e,SA)

Pr(C),

where C is a (grounded) stochastic clause with probability Pr(C) in δ. From this, we have
the probability of the possible world (e,Me)

Pr(e,Me) = Pr(e)Pr(Me|e) = Pr(e)Pr(δ(e, SA)).

Now suppose an arbitrary abducible a ∈ Ae , then the (marginal) probability of a can be
defined to be the sum of the probabilities of all the least models that have a in their abduced
facts

Pr(a) =
∑

Me |a∈Me

Pr(e,Me) =
∑

δ(e,SA)|a∈δ(e,SA)

Pr(e)Pr(δ(e, SA)).
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In the definition, a stochastic SLD-derivation δ is a least Herbrand model of the observa-
tion e if and only if δ is a stochastic SLD-refutation of e that proves e to be true.

Based on the underlying process of stochastic abduction, abductive SLPs further provide
a learning mechanism to learn a set of abducibles. Ideally, abductive SLPs should support
structure selection that combines induction and abduction in the learning. However, as SLP
structure learning is still a challenging problem in the area, we only consider SLP parameter
estimation in our study which learns probabilities for a given set of abducibles. This can be
done by applying some SLP parameter estimation algorithms, such as FAM (Cussens 2001).

Definition 7 (Parameter estimation setting of abductive SLPs) Suppose B is a background
knowledge theory in the form of logic program, E = {(e,Pe(e))} is a set of independently
observed ground probabilistic examples, and A is a set of mutually independent abducibles
(ground facts) based on some abducible predicates, abductive SLPs aim to learn a set of
parameters λ for (A,B) such that (A,B,λ) composes an abductive SLP SA, A ∧ B |= E

and λ is chosen to maximise the likelihood of SA,

Pr(E|SA) =
∏

e∈E

Pr(e|SA) =
∏

e∈E

∑

γ (e,SA)

Pr(γ (e, SA)),

where γ (e, SA) represents the set of stochastic SLD-derivations of e from SA.

The above parameter learning setting is a special case of Definition 2, where the scoring
function is set to be the maximum likelihood. Because FAM is not developed for the ab-
duction purpose, i.e. it does not explicitly compute probabilities for abducibles, we have to
treat abducibles as ground clauses and learn their probabilities using FAM by maximising
the likelihood Pr(E|SA). In fact, FAM estimates a clausal probability for a clause using the
same computation process as the stochastic abduction for an abducible through stochastic
SLD-resolution and it supports learning from empirical probabilities/frequencies.

3.4 Possible worlds semantics vs. distribution semantics

Distribution semantics are originally introduced in Sato (1995) as a basic attitude towards
the use of probability in logic or logic programming. The distribution approach defines a
specific probability distribution which gives the probability that each logical formula is true.
It is common that the probability distribution in question is defined over possible worlds
(first-order models) which (by marginalization) give for each closed logical formula the
probability that it is true (Cussens 2001). Thus, distribution semantics are originally de-
signed for representing Halpern’s type 2 possible worlds probability logic.

SLPs were given a distribution semantics over Herbrand models or a proof-theoretic
interpretation to the probability labels attached with stochastic clauses: whenever an SLD-
resolution procedure has to choose between clauses, the choice is made according to proba-
bility labels. On the other hand, SLPs represent uncertain knowledge as procedural descrip-
tions of sampling distributions, e.g. those defined in stochastic grammar and hidden Markov
models (Muggleton 2000). A pure SLP thus defines a distribution over instantiations of any
top-level goal, which is a sample space of ground atoms, but not over the truth values of
atoms. Although more complex SLPs can be used to encode other probabilistic models,
such as Bayesian net and Markov nets (Cussens 2001), the distributions encoded are over
hypothesis spaces of logic program rather than possible worlds. In fact, for a given goal, an
SLP defines an empirical distribution over a stochastic SLD-tree which is determined by an
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empirical distribution over a set of observations or atoms. Thus, the distribution semantics
used in SLPs are similar to Halpern’s type 1 domain frequency probability logic (Puech
and Muggleton 2003) and SLPs have not previously been provided with a possible worlds
semantics.

Possible worlds semantics provide model-theoretic interpretation to the probabilities:
some models or atoms or formulae are said to be true only in some possible worlds or
states, which are determined by multiple (exclusive) joint instantiations of some facts. For
example, in Poole (1997), “Possible worlds are built by choosing propositions from sets of
independent choice alternatives”. It is common that the probability distributions in possible
worlds semantics are often defined over the truth values of atoms or variables. One of the
advantages of possible worlds semantics lies in the easy interpretation and understanding of
probabilities. On the other hand, from the logic programming perspective, there is a need in
SLPs to discuss probability distributions over the truth values of atoms and clauses.

Abductive SLPs are a framework that provides possible worlds semantics for SLPs with
the help of abduction. On the one hand, abductive SLPs provide a new setting to SLPs: by
introducing abduction and abductive explanation, the probability label of a clause can be
interpreted by a conditional probability of its body given its head; and under possible worlds
semantics, we could define and discuss probability distributions over the truth values of
atoms. We have already shown in the previous sections how stochastic abduction works and
how the distributions are computed over possible worlds in the underlying SLD-resolution
proof procedures. Another advantage of the possible worlds semantics lies in that there is
implicitly a closed world assumption set in the stochastic abduction procedure in which the
atoms that are not in the derivations are considered false in the world of the derivations.

On the other hand, abductive SLPs do not define any new probability distributions, i.e.
for a given goal or atom, the distribution defined under possible worlds semantics over a set
of possible worlds is equivalent to that defined under distribution semantics over a set of
stochastic SLD-derivations. This is based on a fact that a stochastic SLD-refutation in the
traditional SLPs corresponds to a (set of) possible world(s) or an abductive explanation in
abductive SLPs, while some possible worlds are assumed to have zero probabilities under the
CWA. In addition, the computation of the probability of an abducible (is true) is equivalent
to the computation of the probability of an atom (without truth value) in SLPs, i.e. fλ,S,G(r).
For example, in Fig. 1, a distribution is defined over a set of four refutations (r1, r2, r3 and
r4 from left to right in Fig. 1(b)) in the SLP S:

fλ,S,G(r1) = 0.4 × 0.3 × 0.3

0.036 + 0.196 + 0.12 + 0.48
= 0.043,

fλ,S,G(r2) = 0.4 × 0.7 × 0.7

0.832
= 0.236,

fλ,S,G(r3) = 0.6 × 0.2

0.036 + 0.196 + 0.12 + 0.48
= 0.144, fλ,S,G(r4) = 0.6 × 0.8

0.832
= 0.577.

When treating S as an abductive SLP, an equivalent distribution can be computed over a set
of 16 possible worlds (for proving s(a) and s(b) to be true):

Pr(s(a),p(a),¬q(a)) = 0.043, Pr(s(b),p(b),¬q(b)) = 0.236,

Pr(s(a),¬p(a), q(a)) = 0.144, Pr(s(b),¬p(b), q(b)) = 0.577,

Pr(s(a),p(a), q(a)) = 0, Pr(s(b),p(b), q(b)) = 0, Pr(s(a),¬p(a),¬q(a)) = 0,

Pr(s(b),¬p(b),¬q(b)) = 0, Pr(s(a),p(a), q(b)) = 0, . . . ,
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in which four possible worlds have probabilities and all the others are set zero probabilities
under the CWA.

This is the reason why we could transform type 2 empirical validities into type 1 em-
pirical frequencies in our study, as the same distribution is built over two equivalent spaces
(possible worlds vs. derivations) that have different semantics (type 2 vs. type 1).

3.5 Abductive SLPs and PRISM

As both abductive SLPs and PRISM support abductive learning, we now show with an ar-
tificial example how they work respectively. We suppose a simple metabolic network in the
example which contains three metabolites (a, b and c) and two pathways (one is between a

and b through enzyme e1 and the other is between a and c through enzyme e2). We use the
same background knowledge as that in the later experiment, which models the toxic inhibi-
tion (inhibited/410) in the network caused by the concentration up/down regulation changes
(concentration/2). We assume two probabilistic examples (concentration levels of b and c)
have been observed as training data. The inputs for both approaches are the background
knowledge, the abducibles and the observed probabilistic examples. And the outputs will be
the probability distributions learned for the abducibles by abductive learning and the prob-
ability predicted for the concentration level of a (test datum) by the probability predictions.
In addition, abductive SLPs will also estimate the probabilities for the probabilistic clauses
(concentration/2), which has to be treated as pure logical (non-probabilistic) rules in the
modeling part of PRISM program.

The following SLP program shows the learning and prediction result using abductive
SLPs by running FAM software Pe-pl 0.12 (Angelopoulos and Cussens 2006).

%% abducibles, inhibition, with learned probabilities
0.3497 : inhibited(e1,a,b,t). 0.0999 : inhibited(e2,a,c,t).
0.1499 : inhibited(e1,b,a,t). 0.3997 : inhibited(e2,c,a,t).
0.0002 : inhibited(e1,a,b,f). 0.0002 : inhibited(e2,a,c,f).
0.0002 : inhibited(e1,b,a,f). 0.0002 : inhibited(e2,c,a,f).
%% probabilistic background knowledge with learned probabilities
0.4496 : concentration(X,down) :-

reactionnode(X,Enz,Y),inhibited(Enz,Y,X,t).
0.0004 : concentration(X,down) :-

reactionnode(X,Enz,Y),inhibited(Enz,Y,X,f),observed(Y,down).
0.5496 : concentration(X,up) :-

reactionnode(X,Enz,Y),inhibited(Enz,X,Y,t).
0.0004 : concentration(X,up) :-

reactionnode(X,Enz,Y),inhibited(Enz,Y,X,f),observed(Y,up).
%% deterministic (non-probabilistic) background knowledge
reactionnode(a,e1,b). reactionnode(b,e1,a).
reactionnode(a,e2,c). reactionnode(c,e2,a).
observed(b,down). observed(c,up).
%% observables, probabilistic examples (with empirical
%% probabilities),
%% the train data
%(concentration(b,down),0.70), (concentration(b,up),0.30)

10It denotes inhibited if the fourth argument is set to be t or not-inhibited if the fourth argument is f.
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%(concentration(c,down),0.20), (concentration(c,up),0.80)
%% probabilities predicted for the test data
%Pr(concentration(a,down))=0.483, Pr(concentration(a,up))=0.517

In the above abductive SLP, the possible world semantics apply to not only the abduc-
tive learning but also the probability predictions, e.g. the probability Pr(concentration(a,

down)) is computed by searching from sets of possible worlds (refutations) as done in ab-
duction. The following PRISM program shows the learning and prediction results using
PRISM 1.11.2 (Sato et al. 2008).

%% Declaration of targets and msws
target(concentration,2).% Observable predicate
target(failure,0).% Handling failures
data(user). % Data
values(inhibited,[[e1,a,b,t],[e2,a,c,t],[e1,b,a,t],[e2,c,a,t],

[e1,a,b,f],[e2,a,c,f],[e1,b,a,f],[e2,c,a,f]]).
% Abducibles,msw values
%% Modeling part, logical background knowledge rules
failure :- not(success).
success :- concentration(_,_).
concentration(X,down) :-

reactionnode(X,Enz,Y),msw(inhibited,[Enz,Y,X,t]).
concentration(X,down) :-

reactionnode(X,Enz,Y),msw(inhibited,[Enz,Y,X,f]),
observed(Y,down).

concentration(X,up) :-
reactionnode(X,Enz,Y),msw(inhibited,[Enz,X,Y,t]).

concentration(X,up) :-
reactionnode(X,Enz,Y),msw(inhibited,[Enz,Y,X,f]),
observed(Y,up).

%% Utility part, other background knowledge
reactionnode(a,e1,b). reactionnode(b,e1,a).
reactionnode(a,e2,c). reactionnode(c,e2,a).
observed(b,down). observed(c,up).
%% Observations, probabilistic examples, train data
%learn([count(failure,1),count(concentration(b,down),70),
%count(concentration(b,up),30),count(concentration(c,down),20),
%count(concentration(c,up),80)])
%% Probabilities learned for abducibles by calling show_sw
%Switch inhibited: unfixed_p: [e1,a,b,t] (p: 0.3460) [e2,a,c,t]
%(p: 0.1075)
%[e1,b,a,t] (p: 0.1589) [e2,c,a,t] (p: 0.3876) [e1,a,b,f]
%(p: 0.0000005)
%[e2,a,c,f] (p: 0.000001) [e1,b,a,f] (p: 0.0000) [e2,c,a,f]
%(p: 0.0000)
%% Probabilities predicted for the test data by calling prob()
% prob(concentration(a,down))=0.5465,
% prob(concentration(a,up))=0.4535

From the learning results, we conclude that similar inhibition have been found by the two
frameworks in terms of the probabilities learned for the abducibles. However, different pre-
dictions have been made by them for the test datum. The reason lies in the difference in the
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representations, learning algorithms and implementations. A distinct difference in the above
example is that it is necessary to represent and learn the background knowledge clauses
(concentration/2) as probabilistic rules in the abductive SLPs.11 By contrast, the background
knowledge clauses have to be modelled as purely logical rules in the PRISM code. Al-
though deterministic clauses seem more natural in some cases, they have to be treated as
parameterised probabilistic rules in the SLPs when multiple refutations are needed, other-
wise the probabilities could not be correctly calculated. In such cases, if we consider the
SLD-derivations as Markov chains, then the difference between the SLPs and the PRISM
becomes whether the transitions in the Markov chains are attached with probabilities or not.
The probability calculations of the states in the Markov chains are consequently different.
In addition, abducibles are denoted by random switches in the PRISM, but by the ground
atomic formulae in the SLPs, and probabilities are also estimated for the probabilistic rules.
Please note that failures are handled by applying FAM algorithm in the recent versions of
PRISM in order to relax its strict uniqueness condition—that exactly one atomic formula
representing observed data is derivable from any instantiation of the base distribution.

4 Extracting probabilistic examples from scientific data

In this section we outline a method to extract probabilistic examples from scientific data
divided into control and treated cases12 and exemplify its application to our rat metabolic
network data set. Table 2 presents a pseudo code for the following explained algorithm
applied to our rat metabolic network inhibition data set.

We have a scientific data set involving a set of data values collected from some control
cases as well as a set of data points from some treated cases. All the data are mutually inde-
pendent. In the ILP study, a positive example extracted from such data set is a ground atom

Table 2 Algorithm of estimating empirical probabilities from control/treatment data of metabolic network
inhibition

1. Initialize a matrix MR with column = 2 and row = number of metabolites; % MR[α,1] stores the state
value of the concentration of α (up or down) and MR[α,2] stores the extracted probability,
Pe(concentration(α,MR[α,1]))

2. for each metabolite α do

2.1. Cα = a set of concentration values of α observed in the control cases;

2.2. Mα = MEAN(Cα), SDα = STANDARDDEVIATION(Cα);

2.3. Tα = {τα}, a set of concentration values of α observed in the treated cases;

2.4. MR[α,1] = Mα < MEAN(Tα)? up : down; % Decide the state value (up or down) of the
concentration of α by the difference between MEAN(Cα) and MEAN(Tα)

2.5. MR[α,2] = ρα = MEAN({PNORM(τα,Mα,SDα)}); % Calculate the average of the integrals
returned by PNORM function

3. Apply matrix MR in the abductive SLP learning.

11It is necessary because such probabilistic rules in the impure SLP forms can derive more than one refuta-
tions for an observation (e.g. concentration(citrate, down)) in the SLD-derivation. As a counterexample, we
used unparameterised background knowledge to learn the abductive SLPs for the above example and got the
predictions: Pr(concentration(a,down)) = Pr(concentration(a,up)) = 0.5, which means no predictions at
all.
12The control cases are a set of data gathered from rats without toxin and the treated cases are a set of data
gathered from rats with toxin injection.
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stating that some attribute takes some non-probabilistic value by comparing the difference
of the average of the values observed in the control cases and treated cases respectively. In
our study, we attempt to extract, in addition to a non-probabilistic example, an empirical
probability for the example which shows the degree we believe it holds certain value.

The method consists in constructing, for each metabolite α in the control case (step 2.1),
a normal distribution Nα with parameters μ and σ calculated from a set of concentration
values of α, Cα , in all the control cases (step 2.2 and 2.5). Then, for each concentration
value of α, τα , that is observed in the treated cases (step 2.3), the integral from −∞ to τα is
calculated in Nα (e.g. using the function PNORM(x,m, sd),13 step 2.5). Meanwhile, a binary
state value (up or down) is set for α by comparing the difference between MEAN(Cα) and
MEAN({τα}) (step 2.4). Finally, the average of the integrals (each in [0,1]), ρα , is taken to
be the extracted probability (step 2.5).

Next, we claim that ρα indicates to what extent the set of τα in the treated cases differ
from the concentration values of α in the control cases. It follows that a value of ρα < 0.5
specifies α is less expressed in the treated cases compared to that in the control cases in
terms of the concentration levels, ρα > 0.5 indicates α is more expressed, and ρα = 0.5
shows that the concentration of α observed in the treated cases has no difference from that
in the control cases. Furthermore, we could say that Cα = ρα if ρα > 0.5 or Cα = 1 − ρα

otherwise,14 where Cα represents the confidence (or degree of belief) of the assertion ‘α is
more or less expressed in the treated cases relative to the control cases’. From our point
of view, Cα is the estimated type 2 empirical probability (or validity) of the concentration
of α happened in the treated cases against the control cases, i.e. we believe the statement
‘the concentration level of metabolite α takes some value’ is true with some probability
Cα . For example, a tuple (concentration(citrate,down),0.9843) derived from the method
corresponds to a probabilistic example that means ‘the concentration of metabolite cit-
rate is observed in the given data set to have a down regulation with empirical probability
0.9843’.

In our sample data file, after some pre-processing, we had the raw data values of 20 rows
(one per rat) and 20 columns (one per metabolite). The first 10 rows represent control rats
(injected with a placebo) and the latter 10 represent treated rats which were injected with
30 mg dose of hydrazine. Each column has information on the concentration of a given
metabolite at the 8th hour after the injection.15 The above method has been applied to the
raw data set by developing a small R script. We are aware that using only 10 data points
to build a normal distribution for control case is not ideal but have to treat it as an appro-
priate approximation with the data at hand.16 The result matrix with the estimated concen-
tration level and empirical probabilities for hydrazine are presented in column 2 and 3 of
Table 4.

13PNORM(x,m, sd) is a function in the R language, which calculates the area to the left of x in a normal
distribution with mean m and standard deviation sd , i.e. the cumulative distribution of the normal distribution.
14We do so under an assumption that α takes a binary state value, e.g. up or down, and a threshold of 0.5 is
set. It could be extended to categorical cases by setting multiple thresholds.
15The data of metabolite concentrations are gathered at some time points. For our research purpose, we are
using the non-temporal data collected after 8 hours of toxin injection. The methods in the paper could also be
applied to process the data at other time points. Temporal data have been dealt with in (Tamaddoni-Nezhad
et al. 2006).
16Please note that experiments in some scientific areas, such as metabolic network inhibition, are very ex-
pensive.
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Table 3 Learning algorithm used in the study

1. Extract probabilistic examples E with type 2 empirical probabilities from metabolic network inhibition
data.

2. Transform type 2 empirical probabilities into type 1 empirical frequencies in E.

3. Derive a background theory B from the abductive ILP study (Tamaddoni-Nezhad et al. 2006) and
manually choose a set of abducibles, A.

4. Apply leave-one-out approach to learn 20 SLPP models and 20 SLPN models, each of which estimates
probabilities for (A,B) from E using FAM implementation Pe-pl (Angelopoulos and Cussens 2006).

5. Apply leave-one-out approach to learn 20 PSMP models and 20 PSMN models, each of which
estimates probabilities for A from E using the PRISM system (Sato et al. 2008).

6. Evaluate the leave-one-out predictions made by abductive SLP models and PRISM models against
probabilistic examples with empirical probabilities.

7. Interpret the significance of the abducibles based on their learned probabilities, e.g. abducibles are said
to be significant if their probabilities are greater than a threshold.

5 Experiments—learning metabolic network inhibition

The experiments17 include two learning tasks—learning abductive SLPN and PRISM model
PSMN from non-probabilistic examples, and learning abductive SLPP and PRISM model
PSMP from probabilistic examples. Our learning algorithm is shown in Table 3.

5.1 Hypotheses to be tested

The null hypotheses to be empirically investigated in the study are

– The predictive accuracy of an SLPP model does not outperform an SLPN model for pre-
dicting the concentration levels of metabolites in a given rat metabolic network inhibition
(caused by a given toxin, such as hydrazine) experiment.

– The predictive accuracy of an PSMP model does not outperform an PSMN model for pre-
dicting the concentration levels of metabolites in a given rat metabolic network inhibition
(caused by a given toxin, such as hydrazine) experiment.

Based on the above null hypotheses and our interests of study in this paper, the following
restrictions and assumptions should be followed in the experiment: (1) only PILP models,
i.e. the SLPP , SLPN , PSMP and PSMN models, are learned and evaluated; (2) empirical
probabilities are used as metric to evaluate the predictive performance of the PILP models,
as we believe they provide more accurate information than the non-probabilistic values;
(3) we do not compare PILP models with the ILP models, as they use different evaluation
metrics; (4) we only compare the predictive performance between SLPP and SLPN ; (5) we
only compare the predictive performance between PSMP and PSMN ; (6) we do not compare
the predictive performance between the abductive SLP models and the PRISM models as it
is beyond the research purpose of this paper.

5.2 Materials and inputs

The (estimated) type 2 empirical probabilities are extracted from the raw data consisting of
the concentration level of 20 metabolites on 20 rats (10 control cases and 10 treated cases)

17The probabilistic examples and programs used in the experiments can be found at http://www.doc.ic.ac.uk/
~cjz/AbductiveSLPs.

http://www.doc.ic.ac.uk/~cjz/AbductiveSLPs
http://www.doc.ic.ac.uk/~cjz/AbductiveSLPs
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after 8 hours of the injection of hydrazine. In particular, each observation inputted into SLPP

is associated with a type 2 empirical probability ρ we have obtained in last section. In addi-
tion, our learning framework also allow us to provide the complementary observations with
probability (1−ρ) (like the negative examples in ILP). Both the FAM implementation Pe-pl
(Angelopoulos and Cussens 2006) and the PRISM system indirectly support the introduc-
tion of probabilities in the observation list by allowing the same observation to duplicate an
arbitrary (integer) number of times (or frequencies). This makes us possible to transform the
type 2 empirical probabilities extracted from the data set into the type 1 empirical frequen-
cies. For instance, a (positive) non-probabilistic example would be simply inputted in SLPN

as follows,

concentration(citrate, down)-1.

In addition, a corresponding probabilistic example could be inputted to SLPP in the follow-
ing form,

concentration(citrate, down)-98.
concentration(citrate, up)-2.

This could be done by using predicate count/2 in the PRISM system (as shown in Sect. 3.5).
We use the numbers 98 and 2 to stand for the relative frequencies of the observation, which
implicitly corresponds to ‘the concentration of metabolite citrate is down with an empiri-
cal frequency 98% and is up with frequency 2%’.18 So, probabilistic examples are applied
in the abductive SLP and the PRISM frameworks rather than positive and negative non-
probabilistic examples in the standard ILP learning.19

A background theory B has been derived and adapted from the existing ILP model (see
Sect. 2.6). A set of abducibles A is manually chosen based on the abducible predicates
(inhibited/4) and we are interested in finding the potential inhibitions (denoted by
inhibited(enzyme, metabolite1, metabolite2, t)) in a given metabolic
network involving the pathways between metabolites catalyzed by enzymes. Thus, A and B

together with the initial parameters (in an uniform or random distribution) compose of the
initial SLP that could be inputted for learning abductive SLPs, while A and B are needed to
build up a PRISM program for learning the PRISM models.

5.3 Methods

We apply leave-one-out cross validation technique to do the prediction and evaluation, in
which 20 SLPN models, 20 SLPP models, 20 PSMN models and 20 PSMP models are built
respectively. Each model is trained by 19 metabolites and tested by the left out one. We
perform the SLP learning by playing FAM using Pe-pl 0.12 (Angelopoulos and Cussens
2006) with both non-probabilistic examples (SLPN ) and probabilistic examples (SLPP ) un-
der Yap 5.1.1 (Costa et al. 2006). The corresponding PRISM models PSMN and PSMP are
learned by PRISM 1.11.2 (Sato et al. 2008).

18We could choose any integers x and y that satisfy x
x+y = 98%, but the sum (x + y) is required equivalent

for all the metabolites.
19It is worth noting that the method of duplicating examples to represent frequency information can also
be employed in ILP systems such as Progol. However the resulting learned logic programs will predict new
examples as either true or false, compared with the frequency assignment given by a learned SLP. On the
other hand, the simultaneous appearance of both concentration(citrate, down) and concentration(citrate, up)
in ILP systems will be treated as noise that could be avoided.
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Fig. 4 Metabolic network inhibition of hydrazine learned by abductive SLPs from probabilistic examples
(SLPP ). Each observed metabolite is associated with its concentration and the estimated empirical proba-
bility. The learned posterior probabilities for each inhibition (in two directions) are shown in the associated
ellipse. For example, the left corner ellipse specifies a learned inhibition in the form of two SLP clauses:
‘0.000988:inhibited(2.6.1.39,2-og,l-2-aa,t).’ and ‘0.0592:inhibited(2.6.1.39,l-2-aa,2-og,t).’, which mean there
is a significant inhibition from metabolite l-2-aa to metabolite 2-og with a probability 0.0592

5.4 Results

The following SLP shows part of the learned SLPP model and Fig. 4 illustrates a complete
model built from all the probabilistic examples, in which we set a threshold (0.02) to decide
which abducibles are significant (e.g. the significant inhibitions we have found) based on
their learned probabilities.

%% abducibles
0.0592 : inhibited(2.6.1.39,l-2-aminoadipate,2-oxo-glutarate,t).
0.0010 : inhibited(2.6.1.39,2-oxo-glutarate,l-2-aminoadipate,t).
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......
0.0358 : inhibited(2.3.3.1,beta-alanine,citrate,t).
0.0015 : inhibited(2.3.3.1,citrate,beta-alanine,t).
......
0.0239 : inhibited(3.5.2.10,creatinine,creatine,t).
0.0249 : inhibited(3.5.2.10,creatine,creatinine,t).
......
%% probabilistic background knowledge
0.3762 : concentration(X,down) :- reactionnode(X,Enz,Y),
inhibited(Enz,Y,X,t).
0.0856 : concentration(X,down) :- reactionnode(X,Enz,Y),
inhibited(Enz,Y,X,f), observed(Y,down).
0.4535 : concentration(X,up) :- reactionnode(X,Enz,Y),
inhibited(Enz,X,Y,t).
0.0846 : concentration(X,up) :- reactionnode(X,Enz,Y),
inhibited(Enz,Y,X,f), observed(Y,up).
%% non-probabilistic background knowledge
reactionnode(l-2-aminoadipate,2.6.1.39,2-oxo-glutarate).
reactionnode(2-oxo-glutarate,2.6.1.39,l-2-aminoadipate).
......
enzyme(2.6.1.39).
......
metabolite(l-2-aminoadipate). metabolite(2-oxo-glutarate).
......
observed(citrate,down). observed(2-oxo-glutarate,down).
......

The program for learning PRISM models has a similar form as the one shown in Sect. 3.5.
The abducibles with significant probabilities learned by the program are listed as follows,

[e2_6_1_39,l-2-aminoadipate,2-oxo-glutarate,t] (p: 0.096670606)
[e1_13_11_16,hippurate,succinate,t] (p: 0.044315196)
[e2_6_1,taurine,citrate,t] (p: 0.057226669)
[e3_5_2_10,creatinine,creatine,t] (p: 0.045813141)
[e3_5_2_10,creatine,creatinine,t] (p: 0.052581862)
[e4_1_2_32,methylamine,tmao,t] (p: 0.072195070)
[e2_6_1_14,beta-alanine,citrate,t] (p: 0.074273705)

in which the second pattern is not found by the SLPP model.
The probabilistic background knowledge in the program are interpreted as follows,

– the concentration level of metabolite X is down if, in the metabolic network, there is a
reaction edge between X and metabolite Y through an enzyme Enz that has been inhibited
from Y to X.

– the concentration level of metabolite X is up if, in the metabolic network, there is a
reaction edge between X and metabolite Y through an enzyme Enz that has been inhibited
from X to Y .

– the concentration level of metabolite X is down/up if, in the metabolic network, there is
a reaction edge between X and metabolite Y through an enzyme Enz that has not been
inhibited from Y to X and the concentration level of Y has been observed to be down/up.
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The program models both inhibited reactions (inhibited(_,_,_,t)) and not-inhibited re-
actions (inhibited(_,_,_,f)) occurred in the metabolic network as well as the changes of
metabolite concentrations. In our experiments we adapted the recursive model used in
(Tamaddoni-Nezhad et al. 2006) to a non-recursive one because both the SLP learning soft-
ware Pe-pl and the PRISM system failed to converge using the recursive programs. The
recursion in the program stands for not-inhibited reactions occurring between a chain of
metabolites in the network. Using some means to control the depth of the recursion, such as
Peano numbers, Pe-pl played well for the recursive models with depth 0 (i.e. non-recursive
model), but could not provide stable outputs for the recursive models with depth 1 and even
crashed for some recursive models with depth 2. Therefore, we assumed the metabolic net-
work exhibits a locality property, i.e. the status of a metabolite is mostly affected by its
nearest neighbours, which we believe is not very far from the truth.20 From the perspec-
tive of PILP, the learning aims to induce and abduce the probabilities for a set of inhibited
reactions (abducibles) from a set of observed metabolite concentration levels (probabilistic
examples) given a set of background knowledge rules. The background knowledge are rep-
resented by probabilistic clauses in abductive SLPs and by unparameterised logical clauses
in PRISM, respectively.

5.5 Model evaluation

The evaluation of the prediction models is made by calculating the predictive accuracy of
SLPN , SLPP , PSMN and PSMP against the probabilistic examples respectively. As shown
in Table 4, the prediction of a metabolite is the predicted probability of its concentration
level (down or up) when it is a test datum in the leave-one-out prediction; the predictive
accuracy of a model is defined to be (1—the average absolute error of predictions over all
the metabolites against empirical probabilities); by convention, we calculate the root mean
square errors (RMSE) for the predictions against empirical probabilities; and the signifi-
cance of difference is made by a one-tailed t-test21 (on the deviations from the empirical
probabilities) between SLPN (or PSMN ) and SLPP (or PSMP ) predictions, i.e. the p-value
by which we test the null hypothesis.

In particular, when treating the empirical probabilities as the evaluation baseline, SLPP

outperforms SLPN by 72.74% against 68.31% in predictive accuracy (1-absolute error) and
by 32.29% against 36.34% in RMSR with a significance level of 0.041 (p-value); PSMP

outperforms PSMN by 70.02% against 56.27% in predictive accuracy and by 38.99% against
52.54% in RMSR with a significance level of 0.034. It is worth noting that in Table 4 the
abductive SLP models appear to outperform the PRISM models. An explanation of this
outcome is beyond the scope of this paper, and is believed to be based on differences in the
representations and associated learning algorithms.

Based on these results, the null hypotheses to be tested in the experiments could be
rejected, i.e. both the abductive SLP models and the PRISM models that are learned from
probabilistic examples outperform the corresponding models learned from non-probabilistic
examples in terms of prediction in the metabolic network inhibition experiments.

20The non-recursive assumption restricts the predictive ability of the PILP models to some extent, which
might be one of the reasons why the predictive errors are relatively high. However, the assumption does not
affect the hypotheses we test in the study. It will be the future work to further investigate this problem.
21One-tailed test is used because of the hypotheses to be tested, in which SLPP (or PSMP ) either outperforms
SLPN (or PSMN ) or does not.



Mach Learn (2008) 73: 55–85 81

Table 4 Experiment results of learning rat metabolic network inhibition (hydrazine hour 8) from probabilis-
tic examples

Probabilistic examples Predictions

Metabolite Concentration Empirical Probs. SLPN SLPP PSMN PSMP

citrate down 0.9843 0.6900 0.6860 1.0000 0.9999

2-og down 1.0000 0.5680 0.6900 0.9999 1.0000

succinate down 0.9368 0.2590 0.2970 0.0726 0.9989

l-2-aa up 0.9962 0.6580 0.8280 1.0000 1.0000

creatine down 0.5052 0.3070 0.4430 0.0000 0.9985

creatinine down 0.5798 0.3220 0.4930 0.0000 0.9998

hippurate down 0.7136 0.3030 0.1660 0.0000 0.0000

beta-alanine up 0.9659 0.5670 0.6860 0.9998 1.0000

lactate up 0.9503 0.5400 0.5160 0.5227 0.4646

methylamine up 1.0000 0.3010 0.5250 0.0000 0.9996

trans-ac down 0.6488 0.3920 0.4410 0.3710 0.7741

formate down 0.9368 0.3920 0.4230 0.7414 0.7297

taurine up 0.7362 0.6500 0.8100 0.9987 0.9780

acetate up 0.6727 0.5560 0.5390 0.4594 0.1869

nmna up 0.5239 0.4890 0.4920 0.0006 0.0000

nmnd up 0.6414 0.4890 0.4990 0.0032 0.0000

tmao up 0.5166 0.3100 0.1120 0.0000 0.0000

fumarate up 0.6970 0.2970 0.5020 0.1188 0.9998

l-as up 0.6748 0.5040 0.5070 0.0002 0.0000

glucose up 0.8096 0.5570 0.5310 0.0876 0.7617

Predictive accuracy 68.31% 72.74% 56.27% 70.02%

Root mean square error 36.34% 32.29% 52.54% 38.89%

Significance of difference (p-value) 0.041 0.034

5.6 Interpretability

By comparing the learned SLPP model (illustrated in Fig. 4) with the previous ILP model
(illustrated in Fig. 3), apart from the inhibition patterns found in both models, at least two
promising new findings have been discovered in the SLPP model.22 The inhibition from
‘beta-alanine’ to ‘citrate’ that was not shown in the ILP model has been confirmed to be
crucial by the experts. Moreover, the inhibition between ‘creatine’ and ‘creatinine’ showed
a contradictory result,

0.0239 : inhibited(3.5.2.10,creatinine,creatine,t).
0.0249 : inhibited(3.5.2.10,creatine,creatinine,t).

22There are also three inhibitions found in the ILP model but not shown significant in the SLPP model. They
might be included if we reduce the significance threshold for the SLPP model, however, it is our future work
to investigate the cases with the help of domain experts.
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in which the learned probabilities of the two inhibited reactions are very close, i.e. the inhi-
bition could happen in both directions (as shown in a bilateral arrow in Fig. 4). This can be
further explained by their empirical probabilities,

concentration(’creatine’,’down’)-51.
concentration(’creatine’,’up’)-49.
concentration(’creatinine’,’down’)-58.
concentration(’creatinine’,’up’)-42.

which suggest that their down/up regulations are less expressed to decide the possible inhi-
bition between them.

These findings have also been found in the PSMP model, which also has discovered
an extra pattern. In addition, the PILP models learned not only the patterns but also the
probabilities (the degrees of belief) of the patterns which improve the interpretability from
the learned models.

6 Discussion and conclusions

6.1 Related work

We now conclude the discussion of the relationship between abductive SLPs and PRISM/
ICL. First of all, clauses or rules are treated as probabilistic (associated with probability
labels) in SLPs but purely logical in both PRISM and ICL. Logical rules are used to de-
terministically map a base probability distribution to an induced distribution in PRISM and
ICL, however, there is no mechanism of choosing between rules that have the same head.
We believe that the ability of dealing with probabilistic clauses is one of the distinct fea-
tures of SLPs based on the discussion in Sect. 3.5. Cussens (2007) presents some methods
of translating impure SLPs into PRISM programs.

From the point of view of semantics or the interpretation of probability, traditional SLPs
have a distribution semantics and interpret probabilities as sampling distributions or domain
frequencies over atoms and Herbrand base; PRISM is a distribution approach which defines
probability distributions over the truth values of logical formulae in possible worlds; ICL
explicitly defines possible worlds by choosing propositions from sets of independent choice
alternatives; and the framework of abductive SLPs is designed to introduce possible worlds
semantics to SLPs through abduction, where the possible worlds are determined by stochas-
tic SLD-refutations. Abduction is always applied in the frameworks with possible worlds
semantics.

In terms of applying abduction, abductive SLPs provide a way to directly learn the para-
meters for a set of abducibles, i.e. a distribution over a set of ground atomic formulae. The
PRISM system provides the explanation search function for abductive learning and proba-
bility calculations; and ICL assumes all the atomic choices as abducibles to find consistent
explanations that imply the observations.

Despite the above differences and comparison, as we have shown in the previous sec-
tions, both abductive SLPs and PRISM can be used to do abductive learning (abduction)
and probability predictions (probability calculations). The experimental results appear to
show that the abductive SLPs to abduction are a step forward compared to the previous
work in PRISM. The most significant feature of using PRISM is the efficiency achieved by
dynamic programming and sophisticated logic programming “tabling” technology.
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At last, as stated in (Cussens 2007), the distinction between possible worlds approaches
and domain frequency approaches is not so fundamental since any probability distribution
can be viewed as one over some set of possible worlds. We develop the idea of abductive
SLPs in the paper in order to impose a possible worlds semantics on the traditional SLP
formalism. Abductive SLPs provide not only abduction but also possible worlds semantics
that are easy to understand.

6.2 Conclusions and future work

We revisit an application developed originally using ILP by replacing the underlying logic
program description with PILP (SLPs and PRISM). Instead of learning logic models from
non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based
on a general technique for introducing probability labels within a standard scientific exper-
imental setting involving control and treated data. The estimation of empirical probabilities
could introduce errors compared with the unknown real distribution of control data due to
the limited number of data points. However, our method shown here aims to save some prob-
abilistic information that may have lost in non-probabilistic examples, so that PILP makes
better predictions.

It is worth noting that the goal of learning probabilistic logic models from probabilistic
examples is to predict accurate (posterior) probabilities rather than the class labels (which is
the target of standard ILP). To achieve the goal, we use a regression method which makes
estimations of probabilities through abduction from probabilistic examples and then tests
if the predictions of the test examples fit the empirical probabilities and models well. Dur-
ing the process, we not only introduce abductive logic programming setting into SLPs that
provides possible worlds semantics and abductive explanations for goals, but also transform
type 2 empirical probabilities extracted from raw data into type 1 empirical frequencies that
can be used in SLP and PRISM parameter learning.

The future work in theory includes further research of the relationship between differ-
ent probabilistic semantics: model-theoretic or possible worlds, proof-theoretic, domain fre-
quency and distribution semantics. In practice, it is necessary to do some extra work to
investigate why the recursive models are not well applicable in the current PILP modeling
and how to achieve this goal. Another area that needs more consensus in the machine learn-
ing community, although not directly related with the purpose of this paper, is the proper
way to do cross validation for data sets where the independent and identically distributed
(i.i.d.) assumption does not hold (i.e. the data is somewhat clustered). In our problem we
simply used leave-one-out because our data set was very small. However cross validating by
doing leave-one-out can yield an over estimation of the real predictive probability if the left
out observation is correlated with the training observations. Albeit there is theoretical work
about this problem from the statistical community (Martensa and Dardenne 1998) there is
no standard way to minimise this problem employed by the machine learning community.

In conclusion, the null hypotheses we have set in the paper and experiments were re-
jected on the basis of the abductive SLP models and the PRISM models we are using and
the experimental results. Our results demonstrate that the PILP approach, e.g. SLPs and
PRISM, not only leads to a significant decrease in error accompanied by improved insight
from the learned result but also provides a way of learning probabilistic logic models from
probabilistic examples.
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