
Mach Learn (2008) 73: 221–242
DOI 10.1007/s10994-008-5050-1

Flexible latent variable models for multi-task learning

Jian Zhang · Zoubin Ghahramani · Yiming Yang

Received: 18 February 2007 / Revised: 30 October 2007 / Accepted: 1 December 2007 /
Published online: 2 April 2008
Springer Science+Business Media, LLC 2008

Abstract Given multiple prediction problems such as regression or classification, we are
interested in a joint inference framework that can effectively share information between
tasks to improve the prediction accuracy, especially when the number of training examples
per problem is small. In this paper we propose a probabilistic framework which can sup-
port a set of latent variable models for different multi-task learning scenarios. We show
that the framework is a generalization of standard learning methods for single prediction
problems and it can effectively model the shared structure among different prediction tasks.
Furthermore, we present efficient algorithms for the empirical Bayes method as well as
point estimation. Our experiments on both simulated datasets and real world classification
datasets show the effectiveness of the proposed models in two evaluation settings: a standard
multi-task learning setting and a transfer learning setting.

Keywords Multi-task learning · Latent variable models · Hierarchical Bayesian models ·
Model selection · Transfer learning

1 Introduction

An important problem in machine learning is how to generalize between multiple related
prediction tasks. This problem has been called “multi-task learning”, “learning to learn”,
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“transfer learning”, and in some cases “predicting multivariate responses”. Multi-task learn-
ing has many potential applications. For example, given a newswire story, predicting its
subject categories as well as the regional categories of reported events based on the same
text is such a problem. Given the mass tandem spectra of a sample protein mixture, identify-
ing the individual proteins as well as the contained peptides is another example. Multi-task
learning has been applied to many other problems such as collaborative filtering, conjoint
analysis, etc.

When applied appropriately, multi-task learning has several advantages over the conven-
tional single-task learning. First, it can achieve better prediction accuracy due to the fact that
information is borrowed or shared among tasks, especially when the number of examples
per task is small and the number of tasks is large. Second, by conducting multi-task learn-
ing we are able to obtain certain knowledge about many tasks which are not accessible in
single-task learning. The obtained knowledge is helpful in both future knowledge transfer
and further data analysis.

Much attention in machine learning research has been placed on how to effectively learn
multiple tasks, and many approaches have been proposed (Yu et al. 2005; Zhang et al. 2005).
Existing approaches share the basic assumption that tasks are related to each other. Under
this general assumption, it would be beneficial to learn all tasks jointly and borrow informa-
tion from each other rather than learn each task independently. A key question in multi-task
learning is the definition of task relatedness and how to effectively take that into considera-
tion. Most existing work either explicitly or implicitly assumes some kind of task relatedness
and incorporates that into the statistical or mathematical modeling. However, the field still
lacks a unified framework which can provide a mechanism to support different types of task
relatedness.

In this paper we propose a unified probabilistic framework for multi-task learning. In our
framework task relatedness is explained by the fact that task parameters share a common
structure through latent variables. As will be illustrated, the underlying statistical assump-
tions of latent variables naturally reflect different task scenarios—how multiple tasks are
related to each other. Furthermore, the shared structure can be estimated more reliably by
using information from all tasks. Our framework not only generalizes standard single-task
learning methods but also supports a set of flexible latent variable models.

The rest of the paper is organized as follows. Section 2 describes the basic setting; Sect. 3
introduces the probabilistic framework; Sect. 4 describes detailed latent variable models
which can support different multi-task learning scenarios; Sect. 5 presents efficient learning
and inference algorithms for the empirical Bayes method and point estimation; Sect. 6 ex-
plores the application of cross-validation in the multi-task learning setting; Sect. 7 presents
the experimental results; Sect. 8 reviews the related work; Sect. 9 concludes the paper.

2 Setting

Given K tasks where each one is associated with its own training set

D(k) = {(x(k)

1 , y
(k)

1 ), . . . , (x(k)
nk

, y(k)
nk

)} (k = 1, . . . ,K)

where x(k)
i ∈ X (k) and y

(k)
i ∈ Y (k), we aim to estimate K prediction functions f̂ (k) (k =

1, . . . ,K) in a joint manner such that information can be shared between tasks. For simplic-
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ity we also use the compact notation D(k) = {X(k),y(k)} where

X(k) =
⎡
⎢⎣

x(k)

1
...

x(k)
nk

⎤
⎥⎦ ∈ R

nk×F , y(k) =
⎡
⎢⎣

y
(k)

1
...

y(k)
nk

⎤
⎥⎦ ∈ R

nk×1.

We also use DX and Dy to denote the union of all input X(1) ∪ · · · ∪ X(K) and output
y(1) ∪ · · · ∪ y(K), respectively.

As in standard learning, we assume that data points within each dataset are independently
and identically distributed (i.i.d.). Furthermore, we often assume that tasks are also i.i.d.,
although this can be relaxed to a certain degree as shown in Sect. 3.

We assume that the input spaces of K tasks are the same, i.e. X (1) = · · · = X (K) �= X , and
furthermore for the k-th prediction task we consider the parametric model f (k)(x|θ (k)) with
its index parameter θ (k). In this paper we focus on parametric models such as generalized
linear models (GLM) (McCullagh and Nelder 1989). As a result, the estimation of f (k)’s is
reduced to the problem of estimating parameters θ (k)’s from the training data D(1), . . . , D(K).

3 The probabilistic framework

Consider the k-th task and its parameter θ (k). Given the parameter θ (k), we focus on the
following likelihood models for regression and classification, which correspond to linear
regression and logistic regression, respectively:

regression: y
(k)
i ∼ Normal(〈θ (k),x(k)

i 〉, σ 2), (1)

classification: y
(k)
i ∼ Bernoulli(g(〈θ (k),x(k)

i 〉)) (2)

where g(t) = (1 + exp(−t))−1 is used to denote the standard logistic function and 〈x,y〉 is
used to denote the inner product between x and y.

In traditional learning, each θ̂
(k)

is estimated using {X(k),y(k)} alone, i.e. no information
is shared among those tasks, even if they are related. When tasks are related, it is beneficial
to pull information together and let data speak for themselves. To be more specific, we use
the following hierarchical Bayesian model for the generation of θ (k)’s:

θ (k) = Λs(k) + e(k), (3)

s(1), . . . , s(K) ∼ p(s(1), . . . , s(K)|Φ), (4)

e(k) ∼ Normal(0,Ψ ) (5)

where Λ ∈ R
F×H is a linear mixing matrix, s(k) ∈ R

H is the latent variable for the k-th task
which follows a parametric distribution p(.|Φ) with parameter Φ , and e(k) ∈ R

F follows a
multivariate normal distribution with mean 0 and covariance matrix Ψ .

The parameter θ (k) contains the information for the k-th prediction task. In the above
generative model it is composed of two additive components: Λs(k) and e(k). The second
component e(k) captures task-specific information and it becomes more important as we
gather more data for the k-th task. In particular, as nk → ∞, θ (k) should be asymptotically
as good as maximum likelihood or Bayes estimators for single-task learning. The first com-
ponent Λs(k) = ∑H

h=1 s
(k)
h λh is a linear combination of the columns λh of Λ. Note that all



224 Mach Learn (2008) 73: 221–242

Fig. 1 Graphical model of the
framework: Circle nodes denote
random variables, square nodes
denote parameters, shaded nodes
denote observed variables, and
plates are used to indicate
replication

columns of Λ are shared by all K tasks and thus can be estimated accurately when K is large,
and each column λh can be thought as a basis function in an additive model, which will be
assigned with different weights for different tasks through the latent variables s

(1)
h , . . . , s

(K)
h .

As a result, the framework has the advantage of being able to capture task-specific infor-
mation, as well as being able to infer hidden structures which can contribute significantly to
both prediction and understanding of the data. The graphical model corresponding to (1)–(5)
is shown in Fig. 1 for reference.

Another way to look at the framework is the following: If those θ (k)’s are known/observed
and we assume that p(.|Φ) is the standard multivariate normal distribution, then the above
model tries to solve a high-dimensional density estimation problem, where a parsimonious
multivariate normal distribution will be estimated by restricting its covariance matrix to be a
sum of Ψ and a low rank matrix ΛΛT , i.e. θ (k) ∼ Normal(μ,Ψ + ΛΛT ). Consequently, the
above framework combines the power of both supervised learning and density estimation.

Furthermore, when estimating parameters Λ and Ψ , certain structural regularizations
(such as favoring sparsity of Λ and diagonality of Ψ ) can be applied. This can be equiv-
alently seen as the Bayesian Maximum A Posteriori (MAP) estimation of Λ and Ψ by
assuming that they follow priors

Λ ∼ qΛ(Λ|α), (6)

Ψ ∼ qΨ (Ψ |β). (7)

We will see some concrete examples of their usage in Sect. 4.

4 Latent variable models

In this section we show how the parametric form of p(.|Φ) can support flexible latent vari-
able models for different multi-task learning scenarios. Here by “scenario” we mean how
tasks are related to each other. In other words, it can be thought as the choice of parametric
form in density estimation. This is well-justified as certain assumptions are needed in order
to capture the interesting structure shared among prediction tasks. In the following we an-
alyze a series of important and interesting scenarios, which are variants of the framework
presented in (1)–(7). For simplicity we only describe the additional or different components
with respect to the generic framework. As we will see, the generality and flexibility mainly
come from how to model the latent variables s(k)’s, as well as whether special regularizations
are imposed on the parameters Λ and Ψ .

4.1 Independent tasks

Our learning framework is clearly a generalization of standard single-task learning methods.
By setting the parameters Λ = 0F×H (which can be achieved by putting a strong structural
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restriction through its prior qΛ(Λ|α), for example), dependencies among θ (k)’s are ignored
and we have

θ (k) = e(k) ∼ Normal(0,Ψ ). (8)

As a result we totally ignore the relations among θ (1), . . . , θ (K) in the learning framework
and it simply degenerates to learning K individual tasks separately.

For example, if we use logistic regression as the classification model, then by doing a
point estimation on θ (k) we will obtain the standard MAP estimation, and similarly we will
get a Bayesian logistic regression model by inferring the posterior distribution of θ (k) given
the observed data. This simple degeneralization is very illuminating and it shows the impor-
tant roles of e(k) in modeling θ (k): While Λs(k) is supposed to capture the shared information
among tasks, e(k) contributes to the remaining task-specific part and makes the model flex-
ible. From this perspective our framework accommodates a full-spectrum of models while
standard statistical methods for single-task prediction are located at one extreme point.

4.2 Noisy tasks

Suppose our K tasks are all some noisy representations or versions of a single underly-
ing task θ 0 ∈ R

F×1. Our generic framework can accommodate this situation by restricting
Λ = μ ∈ R

F×1 (i.e. H = 1) and p(s(k) = 1) = 1. This particular model is useful for appli-
cations such as modeling data annotators or measurements of multiple equipments where
there exists a true model but we only observe data resulting from some noisy models. In
other words we have

θ (k) = μ + e(k) ∼ Normal(μ,Ψ ) (9)

where the covariance Ψ of e(k) reflects our knowledge about how noisy those tasks are with
respect to the centroid μ.

4.3 Clusters of tasks

This scenario is a generalization of the “noisy tasks” case, where the domain knowledge
indicates that tasks are divided into several clusters. One can simply use our framework to
subsume this as a special case by specifying

s(k) ∼ Multinomial(1;p1,p2, . . . , pH ) (10)

where Multinomial(1;p1, . . . , pH ) stands for the Multinomial distribution with index para-
meter n = 1 and proportional parameters p1, . . . , pH satisfying ph ≥ 0 and

∑H

h=1 ph = 1.
As a result s(k) will take the form [0, . . . ,0,1,0, . . . ,0]T where only one element is 1 and
the rest are 0’s. Geometrically, each θ (k) randomly picks up one column of the matrix Λ

and the generated θ (k)’s will be clustered around those columns λh’s. It is easy to check that
this prior over θ (k)’s is equivalent to a mixture of normal distributions which have different
means λh’s but the same covariance Ψ .

4.4 Tasks sharing a linear subspace

In this scenario tasks are assumed to be generated from a linear subspace for which each
column of Λ is a basis and s(k) stores the corresponding coordinates. By assuming the latent
variable

s(k) ∼ Normal(0, I) (11)
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to be the standard multivariate normal distribution, this generative model for θ (k)’s becomes
the standard factor analysis model. In other words, those K tasks share a linear subspace
whose bases are the columns of the mixing matrix Λ, since we have θ (k) = ∑H

h=1 s
(k)
h λh

where s
(k)
h is the h-th element of s(k). This model can be thought as a latent factor analysis

model where θ (k)’s, unlike in standard factor analysis, are generally unknown.

4.5 Tasks having sparse representation

Sparsity has become one of the most important concepts in modern statistical learning the-
ory, and many methods are successful partially due to this property, including lasso, Support
Vector Machines (SVM), wavelet-based methods, etc. Sparsity usually means that only a
small portion of the solution components are non-zero. Sparsity is a nice property since the-
oretically it can lead to better generalization when the assumption holds, and practically it
has certain computational advantages especially for high-dimension problems such as text.
There are at least two types of sparsities our framework can accommodate:

1. The first type of sparsity can be specified by putting a super Gaussian distribution such
as the Laplace distribution over the latent variable s(k), which essentially means that we
assume the target prediction functions of those K tasks are sparse linear combinations of
basis prediction functions. The generative model corresponding to this scenario can be
written as:

s(k) ∼
H∏

h=1

Laplace(0,1). (12)

Moreover, this model is of particular interest if we have an over-complete basis, since in
that case sparsity is crucial in order to obtain a reliable estimation.

2. Alternatively the matrix Λ can be sparse, and this leads to a natural sparse solution of
θ (k)’s since each of them is a linear combination of columns of Λ. This type of sparsity
can be induced by imposing a l1-type regularization on Λ similar to the lasso algorithm,
or equivalently, assuming a product of Laplace priors over each column λh of Λ and
perform the MAP estimation:

λh ∼
F∏

f =1

Laplace(0, η). (13)

4.6 Duplicated tasks

In reality the same task (up to some transformation) may appear several times. Formally,
we want to consider the situation where it is likely that we have θ (k) identical to one of the
previous tasks {θ (1), θ (2), . . . , θ (k−1)}. In other words, the probability that previously seen
tasks will appear again in the future is positive and bounded away from zero. Nonparametric
Bayesian technique like the Dirichlet Process (DP) (Ferguson 1973) can be used to model
the generation process of the θ (k)’s as: θ (k) ∼ G, G ∼ DP(α,G0), where α and G0 are the
precision parameter and base distribution of DP, respectively.

Alternatively DP can be used to model the generation of s(k) instead of θ (k) directly. The
latter approach is advantageous since (1) it is more general (Λ �= I) and θ (k)’s can duplicate
each other up to some transformation and additive noise; (2) s(k)’s lie in a low dimensional
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space. Our framework can capture this scenario by assuming

G ∼ DP(α,G0),
(14)

s(k) ∼ G

where any appropriate distribution over s(k) could be the candidate of the base distribu-
tion G0. Due to DP’s properties, given s(k), . . . , s(k−1), the probability that s(k) equals one of
them is strictly greater than zero. Consequently θ (k) may be identical to one previous model
subject to some transformation, and this generative model is able to capture the scenario of
duplicated tasks. Although this model could be approximated by a finite mixture model as in
the “clusters of tasks” scenario, DP provides a natural way to handle the increasing number
of clusters as the number of tasks grows.

4.7 Evolving tasks

In previous scenarios prediction tasks are assumed to be exchangeable, which means that the
order of θ (k)’s does not matter. However, there are situations where tasks are evolving one
after another, such as in the modeling of concept drift. For this scenario, the model should
be able to capture the fact that θ (k)’s are evolving. One of the simplest choices is to assume
a first-order Markov chain over θ (k)’s, θ (k−1) → θ (k), which can be fully specified by the
starting probability p(θ (1)) and transition probability p(θ (k)|θ (k−1)). Similar to the scenario
of “duplicated tasks”, a better choice is to put a Markov chain over s(k)’s instead of θ (k)’s:

s(k−1) → s(k) (15)

with the advantage that we have a Markov chain over a low dimensional space with dimen-
sionality H instead F . Notice that this is just a simple extension of the graphical model in
Fig. 1. As a result, the number of parameters (in specifying p(s(k)|s(k−1))) to be estimated is
greatly reduced and can thus be more reliably estimated. This model is closely related to the
widely used linear state space model in the literature.

5 Learning and inference

In this section we present an algorithm for the empirical Bayes method based on the model
defined in (1)–(5). We will also discuss efficient algorithms for point estimation.

From Fig. 1 we can see that the shared parameters Φ , Λ and Ψ capture the relations
among tasks, while the tasks decouple conditioned on those shared parameters. This obser-
vation indicates that parameters can be easily estimated in an iterative manner, as confirmed
by the following Expectation Maximization (EM) algorithm (Dempster et al. 1977).

To simplify the notation, we use Ω = {Φ,Λ,Ψ }1 to denote the hyper-parameters and
Z = {(θ (k), s(k))K

k=1} to denote the set of hidden variables. One thing to notice is that Λ

and s(k) are coupled together as a single term Λs(k) in our model. As a result, Λ and s(k)’s
parameter Φ cannot be uniquely identified (Lehmann and Casella 1998). This is of less
an issue in our case, as we are primarily interested in estimating the posterior distribution
of θ (k). To alleviate the unidentifiability problem, we could assume the prior p(s(k)|Φ) to

1We also need to estimate the noise variance parameter σ 2 for regression tasks.
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be of standard form (e.g., with zero mean and unit variance) and thus remove Φ from Ω .
Another possibility is to put a constraint on Λ such as ΛT Λ = I.

For the empirical Bayes method, the objective is to learn the hyper-parameters Ω from
the data by maximizing the observed data likelihood, which can be obtained by integrating
out hidden variables Z . The integration over s(k) will be easy if p(s(k)|Φ) is normal since
p(θ (k)|Λ,Ψ , s(k)) is also assumed to be normal; otherwise approximation is often needed
in order to efficiently compute the integral. Furthermore, for classification tasks the like-
lihood function p(y|x, θ) is typically non-exponential and thus exact calculation becomes
intractable.

However, we can approximate the solution by applying the EM algorithm to decouple the
maximization process into a series of simpler E-steps and M-steps. In the EM formulation,
instead of directly maximizing the log-likelihood of the observed data p(Dy|DX,Ω), we
attempt to maximize the expectation of the joint log-likelihood of both the observed data
and hidden variables E[logp(Dy, Z|DX,Ω)]. The goal is to estimate the parameters Ω as
well as to obtain posterior distributions over hidden variables θ (k)’s and s(k)’s given the
training data.

Formally, the incomplete data log-likelihood L = logp(Dy|DX,Ω) can be computed by
integrating out hidden variables as

K∑
k=1

log

⎧⎨
⎩
∫

p(s(k)|Φ)

⎛
⎝
∫

p(θ (k)|Λ,Ψ , s(k))

Nk∏
ik=1

p(y
(k)
ik

| x(k)
ik

, θ (k))dθ (k)

⎞
⎠ds(k)

⎫⎬
⎭ . (16)

And the parameters can be estimated by maximizing L, which involves two integrals over
hidden variables θ (k) and s(k), respectively. The EM algorithm can be summarized as follows:

• E-step: Given parameters obtained in the previous M-step, compute the distribution

p(Z|Ωt−1, DX, Dy).

• M-step: Maximize the expected complete data log-likelihood (Z, Dy) with respect to Ω ,
where the expectation is taken over the distribution of hidden variables obtained in the
E-step:

Ωt = arg max
Ω

EZ|Ωt−1,DX,Dy [logp(Dy, Z|DX,Ω)].

5.1 An EM algorithm for the empirical Bayes method

In the following we present the learning and inference algorithms for the generic multi-task
learning framework.

Given the model definition in (1)–(5), we need to estimate the parameters Λ and Ψ .
Here we take the empirical Bayes approach by integrating out the random variables s(k)’s
and θ (k)’s. Thus, the log-likelihood of the parameters Ω for the observed data {X(k),y(k)}K

k=1
can be written as

logp
(
y(1), . . . ,y(K) | Ω,X(1), . . . ,X(K)

)

=
K∑

k=1

log
∫

p(s(k)|Φ)

(∫
p(θ (k)|Λ,Ψ , s(k))

nk∏
i=1

p(y
(k)
i |θ (k),x(k)

i )dθ (k)

)
ds(k),
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where p(s(k)|Φ) is the distribution of the latent variable s(k), p(θ (k)|Λ,Ψ , s(k)) is a normal
distribution with mean Λs(k) and covariance matrix Ψ , and p(y

(k)
i |θ (k),x(k)

i ) corresponds to
the likelihood function of regression in (1) or that of classification in (2).

Such an estimation problem can be solved by an EM algorithm. To be more specific, the
goal of learning is to estimate the parameters Ω by maximizing the log-likelihood over all
K tasks. Since the log-likelihood function involves two sets of hidden variables, i.e., s(k)’s
and θ (k)’s, we apply the EM algorithm to iteratively solve a series of simpler problems.

E-step Given the parameters Ω all tasks are decoupled, the E-step can be conducted for
each task separately. Thus we only need to consider one task per time and we can omit the
superscript (k) for simplicity. Because it is generally intractable to do an exact inference
for our prior choice of p(s|Φ) and classification likelihood functions,2 we apply variational
methods as one type of approximate inference techniques to optimize the objective function.

The basic idea of variational methods is to use a tractable family of distributions q(θ , s) to
approximate the true posterior distribution. Specifically we assume an auxiliary distribution
q(θ , s) = q1(s)q2(θ), i.e. the mean field approximation, as a surrogate to approximate the
true posterior distribution p(θ , s|Ω,X,y).

Furthermore, we assume that q1(s) = q1(s|γ ) has the same parametric form of the prior
distribution p(s|Φ) but with variational parameter γ . Similarly, q2(θ) = q2(θ |m,V) is as-
sumed to have the form of a multivariate normal with mean m and covariance matrix V.
Now the goal is to find the best set of variational parameters γ , m and V such that the KL
divergence between q1(s)q2(θ) and p(θ , s|Ω,X,y) is minimized. It is easy to see that min-
imizing KL(q1(s)q2(θ)‖p(θ , s|Ω,X,y)) is equivalent to minimize the following quantity:

E[logp(s|Φ)] + E[logp(θ |Λ,Ψ , s)] + E[logp(y|θ ,X)] + H(s) + H(θ) (17)

where the expectation is taken w.r.t. q(s, θ), H(θ) = − ∫
q2(θ) logq2(θ)dθ and H(s) =

− ∫
q1(s) logq1(s)ds are the entropies of θ and s, respectively.

The first term E[logp(s|Φ)] can be easily computed once we assume some parametric
form of the distribution s; the second term can also be easily computed since p(θ |Λ,Ψ , s)
is assumed to be normal:

E[logp(θ |Λ,Ψ , s)]

= c − 1

2
Tr
(
Ψ −1

E[θθT ] + ΛT Ψ −1ΛE[ssT ] − 2ΛT Ψ −1
E[θsT ])

where c is some constant that does not depend on the variational parameters γ , m and V.
The third term E[logp(y|θ ,X)] is straightforward to compute for regression tasks. How-

ever, we do not have a closed-form representation for classification tasks since p(y|θ ,X) =∏
i p(yi |θ ,xi ) is a product of logistic likelihood functions. So we resort to another varia-

tional technique proposed in Jaakkola and Jordan (1997) to compute its lower bound as a
function of m and V by introducing a new set of variational parameters ξi ’s, one for each
example of the given task. The lower bound can be computed as:

E[logp(y|θ ,X)]

≥
n∑

i=1

(
logg(ξi) + yimT xi − ξi

2
+ h(ξi)

(
xT

i (V + mmT )xi − ξ 2
i

))

2Variational approximation is not necessary when p(s|Φ) is normal for regression tasks, for example. How-
ever, we present the variational method for its generality.
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where h(t) = (1/2 − g(t))/(2t), g(t) is the logistic function and n is the number of training
examples for the task.

Now (17) can be maximized with respect to the variational parameters to complete the
E-step. For example, when the choice of p(s) is the Multinomial distribution (and thus the
variational form of q1(s) = Multinomial(s|γ1, . . . , γH )), we can obtain the following update
formulas for multiple classification tasks (details are given in the Appendix):

ξi = [xT
i (V + mmT )xi]1/2,

V =
(

Ψ −1 − 2
n∑

i=1

h(ξi)xixT
i

)−1

,

m = V

(
1

2

n∑
i=1

yixi + Ψ −1
H∑

h=1

γhλh

)
,

γh ∝ exp

(
logφh − 1

2
(m − λh)

T Ψ −1(m − λh)

)

where λh is the h-th column of Λ. These fixed-point equations should be repeated over
ξi ’s, m, V and γh’s until the lower bound is maximized. Upon convergence, we can use the
resulting q1(s|γ )q2(θ |m,V) as a surrogate to the true posterior probability p(s, θ |Ω,X,y).

M-step Given the sufficient statistics obtained in the E-step, the M-step can be derived
similarly by maximizing the following quantity (which is a lower bound of log-likelihood
after throwing away some constants) with respect to the model parameters Ω :

K∑
k=1

(
E
[
logp(s(k)|Φ)

]+ E
[
logp(θ (k)|Λ,Ψ , s(k)

]+ E
[
logp(y(k)|θ (k),X(k))

])
(18)

where the last term in the parenthesis is only needed for regression tasks to compute the
parameter σ 2.

For example, in case when p(s|Φ) is assumed to be the Multinomial distribution with
parameters φ1, . . . , φH , we have the following update formulas:

φh = 1

K

K∑
k=1

γ
(k)
h ,

Λ =
[∑K

k=1 γ
(k)

1 m(k)

∑K

k=1 γ
(k)

1

, . . . ,

∑K

k=1 γ
(k)
H m(k)

∑K

k=1 γ
(k)
H

]
,

Ψ = 1

K

K∑
k=1

(
V(k) +

H∑
h=1

γ
(k)
h (m(k) − λh)(m(k) − λh)

T

)
.

In case we want to reduce the number of parameters we can assume that Ψ is diagonal
with isotropic variance, e.g. Ψ = τ 2I, and we have τ̂ 2 = Tr(Ψ̂ )/F . The EM algorithm is
summarized in Algorithm 1.
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Algorithm 1 An EM algorithm for empirical Bayes method

1. Initialize parameters Φ , Λ and Ψ (and σ 2 if applicable).
2. E-step: For the k-th task (k = 1, . . . ,K):

(a) Obtain γ (k), V(k) and m(k) (as well as ξi ’s if applicable) by maximizing equation (17).
3. M-step: Update parameters by maximizing equation (18).
4. Continue steps 2 and 3 until convergence.

5.2 Point estimation

For certain high-dimensional problems it may be computationally expensive to compute the
distribution over θ (k) and to store its sufficient statistics. Alternatively we can ignore the
uncertainty contained in the distribution and just compute point estimations of θ (k) and s(k).
In that case, we may consider the following decomposition of the parameters

θ (k) = Λs(k) + e(k)

where we treat θ (k) and s(k) (and thus e(k)) as non-random parameters. Certain structural
regularizations are needed in order to compute those estimations. For example, we may put
a l2-type penalty over e(k) and Λ, as well as some normalization requirement over s(k). The
resulting estimation method can be thought as a special case of the previous empirical Bayes
method where the distributions over θ (k) and s(k) become point mass functions. The solution,
as a result, can be computed by iteratively solving a set of optimization problems given the
parameter Λ for each task. In particular, we have

θ (k) = arg min
θ

{
−

nk∑
i=1

logp(y
(k)
i |θ ,x(k)

i ) + ρθ‖θ − Λs(k)‖2

}
.

The update of s(k) depends on the parametric choice of p(s|Φ). For example, when p(s|Φ)

has the form of a normal or Laplace distribution we have

s(k) = arg min
s

{
sT ΛT Λs − 2sΛT θ (k) + ρsΞ(s)

}

where Ξ(s) takes the form of ‖s‖2
2 or ‖s‖1, respectively. Both ρθ and ρs are parameters

which control the model complexity and can be tuned empirically.

5.3 Prediction

There are two types of prediction situations we would like to consider here.

1. Multi-Task Learning Prediction: This is the typical multi-task learning setting, where we
aim to make predictions for testing data of existing tasks. For a new data x of the k-th
task, its prediction can be written as

p(y|x) =
∫

p(θ (k)|m(k),V(k))p(y|x, θ (k))dθ (k)

where m(k) and V(k) are the mean and covariance variational parameters obtained in the
last E-step of the k-th task.
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2. Transfer Learning Prediction: Another interesting prediction scenario is to transfer the
parameters of the learned models to a new task with a limited number of training data
or even no training data. This scenario is sometimes called transfer learning (Thrun and
Pratt 1998). We are interested in investigating whether the learning of a new task can
benefit from generalizing the previous task parameters and whether the task features can
be helpful to provide more accurate predictions. In this case, it is a key to the development
of a generative model, i.e. we have to make explicit assumptions about how tasks are
related. From our generative model, we can observe that given the learned parameters Φ ,
Λ and Ψ from the previous K tasks, we can naturally extend the generation process for
the (K + 1)-th task to be

s(K+1) ∼ p(s|Φ),

θ (K+1) ∼ Normal(Λs(K+1),Ψ ),

and for a given input data vector x, its prediction is given by

p(y|x) =
∫

p(s(k)|Φ)

(∫
p(θ (K+1)|Λ,Ψ , s(k))p(y|x, θ (K+1))dθ (K+1)

)
ds(k).

Finally, if we want to reduce the computational complexity in the prediction step, an
alternative is to use the MAP estimation of θ to avoid the computation of the integral with
respect to the high-dimensional parameter θ .

5.4 Discussions

We could, in general, conduct a full Bayesian analysis on the model by assigning priors
over the parameters Ω . Posterior distributions over Ω as well as θ (k) and s(k) can be in-
ferred using sampling techniques. However, the computational burden forbids such choices
in most applications we consider here. Similarly, we could apply Monte Carlo methods to
implement the E-step (Tanner 2005) where the posterior distribution is approximated by
random samples from p(Z|Ω, DX, Dy). This choice may lead to better approximation when
the dimensionality of the hidden variables is relatively small.

6 Model selection

Model selection is an important step in standard supervised and unsupervised learning in
order to control model complexity and to achieve good generalization performance on future
test data. In multi-task learning it also plays an important role, since we not only want to
generalize well on future data of a particular task, but also want to achieve good performance
on future similar tasks.

Correspondingly there are two types of model complexity involved in our multi-task
learning framework: the model complexity of each predictive function f (k) (through the
task specific component e(k)) and the model complexity of the joint modeling over all f (k)’s.
Since the former type of model complexity has been extensively studied in the literature
(Hastie et al. 2001), we focus on the investigation of the latter.

We use cross-validation for model selection in the multi-task learning setting, due to its
simplicity and theoretical soundness. Given K tasks with their associated training datasets,
we split the tasks into Kcv folds randomly such that: T1 ∪ T2 ∪ · · · ∪ TKcv = {1,2, . . . ,K}.
Similar to the conventional setting (Silverman 1986), we can have two choices for the CV
loss function:
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• Cross-validation by likelihood: The c-th iteration of this type of cross-validation consists
of the following steps: (1) a generative model p̂\c(θ) is fitted using the (Kcv − 1) folds’
tasks T1, . . . , Tc−1, Tc+1, . . . , TKcv by the multi-task learning method; (2) for each task in
the validation fold Tc , a single-task learning method is applied to obtain point estimations

θ̂
(k)

’s; (3) the negative log-likelihood −log p̂\c(θ̂
(k)

) will be computed for k ∈ Tc . The
final score can be summarized as:

CV =
Kcv∑
c=1

∑
k∈Tc

− log p̂\c(θ̂
(k)

). (19)

• Cross-validation by prediction error: The c-th iteration for this type of cross-validation
consists of the following steps: (1) a generative model p̂\c(θ) is fitted using the (Kcv − 1)
folds’ tasks (T1, . . . , Tc−1, Tc+1, . . . , TKcv ); (2) for each task in the validation fold Tc , the
prior p̂\c(θ) is evaluated using another error-based cross-validation at the data instance
level. The final score can be summarized as:

CV =
Kcv∑
c=1

∑
k∈Tc

CVk(p̂
\c(θ)) (20)

where CVk(p̂
\c(θ)) is the error-based cross-validation score obtained by using p̂\c(θ) as

the prior of θ for the k-th task. That is, the obtained distribution p̂\c(θ) is used as the prior
distribution for θ to fit a single-task Bayesian model for the k-th task. The goodness of
fit is computed using the cross-validated prediction error by splitting the training set D(k)

into multiple folds.

We can see that in order to conduct cross-validation at the task level, we need a model3

to measure the closeness of the tasks (often in terms of their parameters θ (k)’s). Also the
latter method is computationally more expensive since another inner loop of cross-validation
needs to be carried out to obtain the final score.

The above procedure is a straightforward extension of standard cross-validation to the
multi-task learning setting, where all the tasks are split into Kcv folds instead of the training
set. We can use it to either select H , the dimensionality of the latent variable s(k), or the
choice of the parametric form for the latent variables s(k)’s. In some sense, the choice of
p(s|Φ) is very much like the choice of parametric family in density estimation, and in many
cases it can be determined by the domain knowledge. When there is not enough knowledge
to decide p(s|Φ), we can apply it to find a reasonable choice that can capture the shared
structure among prediction functions. For example, if we expect to have tasks clustered to-
gether we may prefer to use a Multinomial distribution as the parametric form; or if we
expect the tasks to have sparse representations we may choose one of the sparse representa-
tions introduced earlier. When prediction accuracy is the ultimate goal, we can easily apply
the cross-validation technique to decide which form to use.

Alternatively we can use the following two-step procedure to do model checking:

1. Conduct point estimation for each individual task to obtain θ̂
(k)

’s.

2. Given a parametric form p(s|Φ), measure the goodness-of-fit for those θ̂
(k)

’s using the
model p(θ |Λ,Ψ ) = ∫

p(s|Φ)p(θ |Λ,Ψ , s)ds.

3Although the model need not be probabilistic, having a probabilistic model over θ is a natural choice.
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We argue that having such capabilities makes the framework an integrated toolbox for multi-
task learning.

7 Experiments

7.1 Simulation: model selection

We conduct simulations to illustrate the use of the previously described cross-validation
methods. Although we focus on the mixture model in (10), the technique can be used to
select the number of hidden variables H or even the parametric assumption about s(k)’s.

We use mixture of normals to generate the parameters θ ’s of prediction functions, and
the true number of clusters varies from 1 to 8. For each mixture model we generate 100 tasks
θ (1), . . . , θ (100) from the prior distribution

θ (k) ∼
H∑

h=1

πhNormal(mh,Vh). (21)

The parameters πh, mh and Vh of the mixture model are randomly generated as follows:

πh ∝ 0.3 + Uniform(0,1),

mh ∼ Uniform

([−6
−6

]
,

[
6
6

])
, (22)

Vh ∼ 1

19
Wishart(I,20).

Finally, for each task we generate 10 training examples and 100 test examples using

x(k)
i ∼ Normal(0, I),

(23)
y

(k)
i ∼ Normal(〈θ (k),x(k)

i 〉, σ 2)

where the variance of the observation noise is set to σ 2 = 1.0.
In our experiments we create 6 generative models for θ (k)’s with the number of clusters

H taken to be 1, 2, 3, 4, 6 and 8, respectively. Figure 2 shows one sample of the generative
models we used for the 6 cases. We repeat the simulation process 20 times, which results in
20 × 6 = 120 runs of our mixture model algorithm.

Several experiments are conducted and the results are evaluated using the Mean Square
Error (MSE) measure. In particular, we use the following notations:

• MSE(f̂Ĥ ): MSE for the mixture model where the number of clusters Ĥ is chosen by
cross-validation.

• MSE(f̂H ): MSE for the mixture model where the true number of clusters H is given.
• MSE(f̂p(θ)): MSE for the mixture model where the true prior p(θ) (which is a mixture of

normal) is given.4

• MSE(f̂STL): MSE obtained by using single-task learning algorithms.

4This is the upper bound of the performance we can possibly achieve.
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Fig. 2 Contours of sampled densities using the generative model specified by (21)–(23) for θ (k)’s. H equals
1, 2, 3, 4, 6, 8 from top to bottom, left to right, respectively

We are interested in several comparisons from the experiments. First of all, we would
like to know how good is our fitted model compared to the one obtained by knowing H ,
the true number of clusters. Second, we want to measure the relative goodness of the fitted
model with respect to the “golden model” where we are given the true prior distribution
of θ (k)’s. Finally, we want to see how good is the model obtained by using a single-task
learning algorithm which does not consider the relations among tasks.

Tables 1 and 2 show the results of cross-validation by likelihood and cross-validation
by prediction error, respectively. Several conclusions can be drawn based on the results.
First, the model f̂Ĥ (with the number of clusters identified by cross-validation) is almost
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Table 1 Results for cross-validation by likelihood (K = 100)

H MSE(f̂
Ĥ

)/MSE(f̂H ) MSE(f̂
Ĥ

)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.0011 ± 0.0033 1.0028 ± 0.0029 1.0400 ± 0.0253

2 1.0000 ± 0.0064 1.0099 ± 0.0105 1.0357 ± 0.0215

3 0.9984 ± 0.0105 1.0084 ± 0.0079 1.0327 ± 0.0133

4 1.0025 ± 0.0080 1.0120 ± 0.0095 1.0321 ± 0.0188

6 1.0007 ± 0.0054 1.0186 ± 0.0155 1.0347 ± 0.0132

8 0.9984 ± 0.0067 1.0128 ± 0.0136 1.0255 ± 0.0191

Table 2 Results for cross-validation by prediction error (K = 100)

H MSE(f̂
Ĥ

)/MSE(f̂H ) MSE(f̂
Ĥ

)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.0000 ± 0.0019 1.0016 ± 0.0055 1.0474 ± 0.0275

2 0.9993 ± 0.0081 1.0041 ± 0.0091 1.0408 ± 0.0236

3 0.9993 ± 0.0086 1.0091 ± 0.0088 1.0394 ± 0.0203

4 0.9985 ± 0.0101 1.0102 ± 0.0146 1.0359 ± 0.0169

6 1.0005 ± 0.0054 1.0113 ± 0.0100 1.0284 ± 0.0158

8 1.0050 ± 0.0144 1.0190 ± 0.0209 1.0256 ± 0.0259

identical to the one fitted by given the true number of clusters. Furthermore, it is slightly
inferior to the “golden model” which uses the true prior distribution p(θ (k)). Second, the
performance obtained by single-task learning (i.e. without learning a joint prior over θ (k)’s)
can be significantly worse, as shown in the last column of both tables. Third, we observed
that both the likelihood-based CV and error-based CV methods work well and perform very
similarly.

To further illustrate the influence of the number of tasks, we repeat the experiments with
K = 50 and K = 200 while keeping the other settings fixed. Results are shown in Tables 3,
4, 5 and 6. By comparing the results to the results in Tables 1 and 2 we can see that as
the number of tasks increases (from 50, 100 to 200), the accuracy of the mixture model
improves gradually and approaches that of the “golden model”. We also noticed that if those
clusters are well-separated then they can be easily identified by our algorithm; otherwise
(i.e. when clusters are overlapping with each other) it is very difficult to identify the correct
number of clusters. In either case, however, the identified model works well in terms of the
prediction accuracy.

7.2 Multi-label text classification

In this experiment we apply the sparsity model in (12) to multi-label text classification prob-
lems, which exist in many text collections including the most popular ones such as the
Reuters-21578 and the new RCV1 corpus. Here each individual task is to classify a given
document to a particular category, and it is assumed that the multi-label property implies
that some of the tasks are related through some semantic topics.

For Reuters-21578 we choose nine categories out of ninety categories, which is based on
fact that those categories are often correlated by previous studies (Koller and Sahami 1997).
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Table 3 Results for cross-validation by likelihood (K = 50)

H MSE(f̂
Ĥ

)/MSE(f̂H ) MSE(f̂
Ĥ

)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.002 ± 0.0074 1.0066 ± 0.0110 1.0434 ± 0.0297

2 1.000 ± 0.0080 1.0097 ± 0.0128 1.0369 ± 0.0307

3 0.998 ± 0.0169 1.0164 ± 0.0149 1.0480 ± 0.0303

4 1.007 ± 0.0169 1.0270 ± 0.0241 1.0378 ± 0.0262

6 1.006 ± 0.0116 1.0229 ± 0.0163 1.0437 ± 0.0340

8 0.997 ± 0.0165 1.0195 ± 0.0159 1.0226 ± 0.0158

Table 4 Results for cross-validation by prediction error (K = 50)

H MSE(f̂
Ĥ

)/MSE(f̂H ) MSE(f̂
Ĥ

)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.001 ± 0.0042 1.0043 ± 0.0093 1.0535 ± 0.0406

2 1.002 ± 0.0112 1.0129 ± 0.0125 1.0371 ± 0.0265

3 1.002 ± 0.0124 1.0141 ± 0.0148 1.0393 ± 0.0245

4 0.998 ± 0.0192 1.0152 ± 0.0130 1.0311 ± 0.0302

6 1.001 ± 0.0161 1.0191 ± 0.0146 1.0215 ± 0.0226

8 0.995 ± 0.0130 1.0178 ± 0.0189 1.0291 ± 0.0260

Table 5 Results for cross-validation by likelihood (K = 200)

H MSE(f̂
Ĥ

)/MSE(f̂H ) MSE(f̂
Ĥ

)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.000 ± 0.0006 1.0016 ± 0.0026 1.0455 ± 0.0147

2 0.995 ± 0.0099 1.0060 ± 0.0072 1.0427 ± 0.0179

3 0.997 ± 0.0052 1.0037 ± 0.0044 1.0317 ± 0.0125

4 0.999 ± 0.0082 1.0064 ± 0.0072 1.0325 ± 0.0108

6 0.999 ± 0.0031 1.0092 ± 0.0071 1.0305 ± 0.0146

8 0.999 ± 0.0038 1.0107 ± 0.0072 1.0263 ± 0.0098

Table 6 Results for cross-validation by prediction error (K = 200)

H MSE(f̂
Ĥ

)/MSE(f̂H ) MSE(f̂
Ĥ

)/MSE(f̂p(θ)) MSE(f̂STL)/MSE(f̂p(θ))

1 1.000 ± 0.0011 1.0006 ± 0.0015 1.0379 ± 0.0121

2 0.996 ± 0.0087 1.0046 ± 0.0056 1.0377 ± 0.0139

3 0.998 ± 0.0051 1.0045 ± 0.0045 1.0308 ± 0.0148

4 1.000 ± 0.0096 1.0076 ± 0.0066 1.0314 ± 0.0136

6 0.999 ± 0.0037 1.0080 ± 0.0063 1.0351 ± 0.0185

8 1.000 ± 0.0043 1.0101 ± 0.0091 1.0238 ± 0.0128
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Fig. 3 Multi-label text classification results on Reuters-21578 and RCV1

After some pre-processing5 we get 3,358 unique features/words, and an empirical Bayes
method is used to learn the model. We also apply the model to the RCV1 dataset. However, if
we include all the 116 TOPIC categories (including 12 internal nodes in the topic hierarchy)
in RCV1 corpus we get a much larger vocabulary size: 47,236 unique features. Bayesian
inference is intractable for this high-dimensional case since memory requirement itself is
O(F 2) to store the full covariance matrix V[θ ]. As a result we take the point estimation
approach which reduces the memory requirement to O(F). For Reuters-21578 we use the
standard training/test split, and for RCV1 since the test part of corpus is huge (around 800k
documents) we only randomly sample 10k as our test set. Since the effectiveness of learning
multiple related tasks jointly should be best demonstrated when we have limited resources,
we evaluate our model by varying the size of training set. Each setting is repeated 10 times
and the results are summarized in Fig. 3.

In Fig. 3 the STL result is obtained by using regularized logistic regression for each cat-
egory individually. The number of tasks K is equal to 9 and 116 for the Reuters-21578 and
the RCV1 respectively, and in this set of experiments we set H (the dimension of hidden
source) to be the same as K in our experiments. We use the F1 measure (which is preferred
to error rate in text classification due to the very unbalanced positive/negative document
ratio) to evaluate the classification results. For the Reuters-21578 collection we report the
Macro-F1 results because this corpus is easier and thus Micro-F1 are almost the same for
both methods. For the RCV1 collection we only report the Micro-F1 result and we observed
similar trend in Macro-F1 although values are much lower due to the large number of rare
categories. From the results we can see that our multi-task learning model is able to improve
the classification performance for both cases, especially when the number of training docu-
ments per task is small. Furthermore, we are able to achieve a sparse solution for the point
estimation method. In particular, when nk = 100 we only obtained around 5 non-zero s(k)

h ’s
out of H = 116 for most of the tasks in the RCV1 collection.

7.3 Conjoint analysis

We also evaluate our models using a conjoint analysis dataset (Lenk et al. 1996) about per-
sonal computer survey among colleague students. There are 190 students in total (we only

5We do stemming, remove stopwords and words that occur less than three times.
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Fig. 4 Results on personal computer purchase survey

count those who completed the survey), and each rated the likelihood of purchasing one
of 20 different personal computer models. Each computer model is described by 13 bi-
nary features including: (1) telephone service hot line; (2) amount of RAM; (3) screen size;
(4) CPU speed; (5) hard disk size; (6) CD-ROM/multimedia; (7) cache; (8) color of unit;
(9) availability; (10) warranty; (11) bundled productivity software; (12) money back guar-
antee; (13) price. User’s rating is an integer between 0 and 10. The objective is to predict
user’s rating of a computer model based on features.

In the first experiment, we follow a similar setting as in Lenk et al. (1996) and in
Argyriou et al. (2006). That is, each task in this multi-task learning problem consists
of predicting the preferences of a particular user. For each task/user we randomly pick
up 8 examples as training and use the rest as the test set. We let the number of tasks
K ∈ {10,20,30,60,90,120,150,180} and apply our “cluster of tasks” scenario where
s(k) ∼ Normal(0, I). We repeat each setting 20 times and evaluate the model using the aver-
age Mean Square Error (MSE) and average Mean Absolute Error (MAE). In our experiment
the number of clusters H is chosen by using leave one task out cross-validation, and it turns
out that for this dataset H = 1 gives the best fit most of the time while H = 2 occasion-
ally does a better job when K is large. Results are shown in Fig. 4. From the results we
can see that as K increases, our model is able to capture the shared information and make
better predictions. Furthermore, our results are comparable to previous results using a dif-
ferent multi-task learning model (Argyriou et al. 2006). Also notice that the performance of
single-task learning in the same setting are much worse, with MSE = 17.06 and MAE = 3.31
respectively.

In the second experiment we will evaluate our method under the transfer learning setting.
That is, we would like to investigate how well the learned model can transfer the knowledge
to a new task. We vary the number of old tasks K ∈ {30,60,90,120,150} and test over the
rest (190 − K) new tasks. For each old task we use all 20 examples to train the model, and
then apply the learned model to those new tasks, for which we assume that we only have
m = 0,2,4,8 randomly sampled training examples. Each setting is repeated 100 times and
results are summarized in Table 7. From the results we can see that our model successfully
transfers the learned knowledge (in terms of the shared parameters) to the new tasks. In
particular, we are able to achieve relatively good performance even with very few training
examples for each new task, as long as we are also provided with many old similar tasks.
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Table 7 Results for transfer learning

m = 0 m = 2 m = 4 m = 8

MSE/MAE MSE/MAE MSE/MAE MSE/MAE

K = 30 6.20/2.02 5.04/1.78 4.49/1.66 3.91/1.53

K = 60 6.10/2.01 4.91/1.75 4.40/1.63 3.83/1.51

K = 90 6.08/2.01 4.84/1.74 4.35/1.62 3.80/1.49

K = 120 6.07/2.01 4.85/1.75 4.33/1.63 3.78/1.48

K = 150 6.04/2.00 4.83/1.74 4.33/1.63 3.75/1.47

8 Related work

Many methods have been proposed for multi-task learning (aka transfer learning, learning
to learn, etc.) in the literature. Earlier work (Thrun 1996; Caruana 1997; Thrun and Pratt
1998; Silver and Mercer 2001) on multi-task learning focused on using neural networks
to learn multiple tasks where the hidden layer is typically shared by all tasks to achieve
the information sharing. Breiman and Friedman (1997) applied the shrinkage method to
multivariate response regression in their Curds and Whey method, where the intuition is to
apply shrinkage in a transformed basis instead of the original basis so that information can
be shared between tasks.

By treating tasks as i.i.d. generated from some probability space, empirical process the-
ory (Baxter 2000) has been applied to study the bounds and asymptotics of multiple task
learning, similar to the case of standard learning. On the other hand, from the general
Bayesian perspective (Baxter 2000; Heskes 2000) we could treat the problem of learning
multiple tasks as learning with a shared Bayesian prior over the task space. Despite the gen-
erality of above two principles, it is often necessary to assume some specific structure or
parametric form of the task space since the functional space is usually of higher or infinite
dimension compared to the input space.

Regularized learning methods have also been applied to multi-task learning problems.
In particular, Ando and Zhang (2004) proposed a method which can learn a structure from
multiple tasks. Evgeniou et al. (2005) applied the Support Vector Machines method to multi-
task learning problems where all task parameters are assumed to share a central component.

Our framework is a special case of Hierarchical Bayesian model which generalizes and
extends our previous work (Zhang et al. 2005). Teh et al. (2005) proposed a semiparametric
latent factor model which uses Gaussian processes to model regression through a latent
factor analysis. Yu et al. (2005) applies a Gaussian processes prior over task functions so
that the shared mean and covariance function can be learned from all tasks. Although the
above approaches all assume some kind of task relatedness, none of them investigate how to
handle different task relatedness nor its connection to the underlying statistical assumptions.

9 Conclusion

In this paper we present a probabilistic framework for multi-task learning, where task relat-
edness is explained by the fact that task parameters share a common structure through a set
of latent variables. By making statistical assumptions about the latent variables, our frame-
work can be used to support a set of important latent variable models for different multi-task
scenarios. By learning those related tasks jointly, we are able to get a better estimation of
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the shared components and thus achieve a better generalization capability compared to con-
ventional approaches where the learning of each task is carried out independently. We also
present efficient algorithms for learning and inference for the proposed models. Results on
simulated datasets and real-world datasets show that the proposed models are effective.

From another viewpoint, our multi-task learning framework can also be thought as con-
ducting unsupervised learning at the higher function level and meanwhile conducting su-
pervised learning at the lower level for each prediction task. Viewed from this angle, the
distributional assumption of latent variables are essentially used for estimating the density
of task parameters and gives a statistical explanation of what is task relatedness.

Appendix

Here we give a detailed derivation of the E-step in Sect. 5.1 when p(s) is assumed to be the
Multinomial distribution. In this case, our choice of the parametric form of q1(s) is taken to
be Multinomial(s|γ1, . . . , γH ) and our choice of q2(θ) is taken to be Normal(θ |m,V).

Define the quantity of (17) to be O then we have

O = E[logp(s|Φ)] + E[logp(θ |Λ,Ψ , s)] + E[logp(y|θ ,X)] + H(s) + H(θ),

where

E[logp(s|Φ)] =
H∑

h=1

γh log(φh),

E[logp(θ |Λ,Ψ , s)] = c − 1

2
Tr
(
Ψ −1

E[θθT ] + ΛT Ψ −1ΛE[ssT ] − 2ΛT Ψ −1
E[θsT ])

= c − 1

2
Tr
(
Ψ −1V

)− 1

2

H∑
h=1

γh(m − λh)
T Ψ −1(m − λh),

E[logp(y|θ ,X)] ≥
n∑

i=1

(
logg(ξi) + yimT xi − ξi

2
+ h(ξi)

(
xT

i (V + mmT )xi − ξ 2
i

))
,

H(s) = −
H∑

h=1

γh log(γh),

and

H(θ) = c′ + 1

2
log |V|.

In the above equations c and c′ are constants, and h(t) = (1/2 − g(t))/(2t) where g(t)

is the logistic function (1 + exp(−t))−1. Plugging them into O and taking derivatives with
respect to the variational parameters ξi , V, m and γh we obtain

ξi = [xT
i (V + mmT )xi]1/2,
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V =
(

Ψ −1 − 2
n∑

i=1

h(ξi)xixT
i

)−1

,

m = V

(
1

2

n∑
i=1

yixi + Ψ −1
H∑

h=1

γhλh

)
,

γh ∝ exp

(
logφh − 1

2
(m − λh)

T Ψ −1(m − λh)

)
.

Derivations for other choices of p(s) can be obtained in a similar fashion by assuming q1(s)
to have the same parametric form as p(s).
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