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Abstract Classifiers that refrain from classification in certain cases can significantly re-
duce the misclassification cost. However, the parameters for such abstaining classifiers are
often set in a rather ad-hoc manner. We propose a method to optimally build a specific
type of abstaining binary classifiers using ROC analysis. These classifiers are built based
on optimization criteria in the following three models: cost-based, bounded-abstention and
bounded-improvement. We show that selecting the optimal classifier in the first model is
similar to known iso-performance lines and uses only the slopes of ROC curves, whereas
selecting the optimal classifier in the remaining two models is not straightforward. We in-
vestigate the properties of the convex-down ROCCH (ROC Convex Hull) and present a
simple and efficient algorithm for finding the optimal classifier in these models, namely, the
bounded-abstention and bounded-improvement models. We demonstrate the application of
these models to effectively reduce misclassification cost in real-life classification systems.
The method has been validated with an ROC building algorithm and cross-validation on 15
UCI KDD datasets.

Keywords Abstaining classifiers · ROC analysis · Cost-sensitive classification · Cautious
classifiers

1 Introduction

Abstaining classifiers are classifiers that can refrain from classification in certain cases and
are analogous to a human expert, who can say “I don’t know”. In many domains (e.g.,
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medical diagnosis) such experts are preferred to those who always make a decision but are
sometimes wrong.

Machine learning has frequently used abstaining classifiers (Chow 1970; Ferri and
Hernández-Orallo 2004; Pazzani et al. 1994; Tortorella 2000) as well as parts of other tech-
niques (Ferri et al. 2004; Gamberger and Lavrač 2000; Lewis and Catlett 1994). Analogously
to the human expert analogy, the motivation is that when such a classifier makes a decision
it will perform better than a normal classifier. However, as these classifiers are not directly
comparable, the comparison is often limited to coverage-accuracy graphs (Pazzani et al.
1994; Ferri and Hernández-Orallo 2004).

In recent years, there has been much work on ROC analysis (Fawcett 2003; Flach and
Wu 2005; Provost and Fawcett 2001). An advantage of ROC analysis in machine learning
is that it offers a flexible and robust framework for evaluating classifier performance with
varying class distributions or misclassification costs (Fawcett 2003).

In our paper, we apply ROC analysis to build an abstaining classifier that minimizes
the misclassification cost. Our method is based solely on ROC curves and is indepen-
dent of the classifiers used. In particular, we do not require that the underlying classifier
gives calibrated probabilities, which is not always trivial (Cohen and Goldszmidt 2004;
Zadrozny and Elkan 2001). We look at a particular type of abstaining binary classifiers, i.e.,
metaclassifiers constructed from two classifiers described by a single ROC curve, and show
how to select such classifiers optimally according to three different optimization criteria that
are commonly encountered in practical applications.

More specifically, in the first model, the so-called cost-based model, the goal is to op-
timize the misclassification cost calculated using an extended-cost matrix (similarly to the
model discussed by Tortorella 2000, 2004). While this model can be used in situations in
which misclassification costs are explicitly given, in many practical applications the exact
misclassification costs are unknown and can only be estimated. Given this and the high sen-
sitivity of the cost-based model, we proposed two other models in which abstention costs are
implicit. In these models, the so-called bounded models, we calculate the cost per actually
classified instance and use boundary conditions for abstention rate and the misclassification
cost.

The idea is that such a setting would allow us to trade the misclassification cost for ab-
stentions, i.e., higher abstentions result in a lower misclassification cost (obviously, given an
abstention kmax we want to have the smallest misclassification cost rc possible and similarly,
given misclassification cost rcmax we want to have the smallest abstention k possible), which
is intuitive in many applications.

In the bounded-abstention model, the boundary condition is the maximum abstention
rate of the classifier, whereas in the bounded-improvement model, the boundary condition is
the maximum misclassification cost of the classifier. These models can be intuitively used in
many practical applications with resource or cost constraints, in particular the ones involving
a human domain expert. We will illustrate these models with two examples from the domain
of computer security: a resource-bounded example and a cost-bounded example.

In the first example, suppose there is a system processing intrusion detection alerts in real
time. Alerts can be either true alerts, which indicate an intrusion, or false alerts, triggered
mistakenly when no intrusion took place. In case of a true alert, the system should perform
an action (e.g., notify the network administrator), whereas false alerts should be quietly
discarded. The system uses an imperfect automatic classifier, with a known ROC, and a
human analyst, with a limited processing capability. Assuming that the system receives c

events per minute and the human analyst can only analyze m events per minute, the goal of
a bounded-abstention model is to decide which m/c alerts will be processed by the analyst so
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that the overall misclassification cost is minimized. In this case, the abstention for a fraction
m/c alerts results in a lower misclassification cost of remaining alerts.

In the second example, assume a similar scenario but with cost constraints: e.g., a con-
tract with a customer limits the maximum misclassification cost (resulting from discarded
true alerts and incorrect notifications on non-intrusions) to some value rcmax. Assuming the
best automatic classifier has a misclassification cost rc∗

max (rc∗
max > rcmax), the goal of the

bounded-improvement model is to select the smallest number of alerts to be classified by a
human domain expert so that the contractual obligations are met.

We will formally define the above three models in the following sections. The point made
here is to motivate our models and to show their practical relevance.

The contribution of the paper is twofold: First, we define an abstaining binary classifier
built as a metaclassifier and propose three models of practical relevance: the cost-based
model (an extension of Tortorella (2000)), the bounded-abstention model, and the bounded-
improvement model. These models define the optimization criteria and allow us to compare
binary and abstaining classifiers. Second, we propose efficient algorithms to practically build
an optimal abstaining classifier in each of these models using ROC analysis, and evaluate
our method on a variety of UCI KDD datasets.

Parts of this paper are based on (Pietraszek 2005). In this contribution we provide a
deeper investigation of the two bounded models, and provide an efficient algorithm to select
the optimal classifier.

The paper is organized as follows: Sect. 2 presents the notation and introduces the
ROCCH method. In Sect. 3 we introduce the concept of ROC-optimal abstaining classifiers
in three models. Section 4 discusses the first model, the cost-based model, and Sect. 5 pro-
pose algorithms for efficient construction of abstaining classifiers in the other two models:
bounded-abstention and bounded-improvement models. Section 6 discusses the evaluation
methodology and presents the experimental results. In Sect. 7, we present related work.
Finally, Sect. 8 contains the conclusions and future work.

2 Background and notation

A binary classifier C is a function that assigns a binary class label to an instance, usually
testing an instance with respect to a particular property. We will denote the class labels of a
binary classifier as “+” and “−”.

A scoring classifier R is a special type of binary classifier that assigns scores to instances.
The value of the score denotes the likelihood that the instance is “+” and can be used to
sort instances from the most likely to the least likely positive. Note that the scores do not
necessarily have to be calibrated probabilities. A scoring classifier R can be converted to a
binary classifier Cτ as follows: ∀i : Cτ (i) = + ⇐⇒ R(i) > τ . Variable τ in Cτ denotes the
parameter (in this case a threshold) used to construct the classifier.

Abstaining binary classifiers A (or abstaining classifiers for short) are classifiers that in
certain situations abstain from classification. We denote this as assigning a third class “?”.
Such nonclassified instances can be classified using another (possibly more reliable, but
more expensive) classifier (e.g., a multi-stage classification system as suggested by Senator
2005) or a human domain expert.

The performance of a binary classifier is described by means of a 2 × 2-dimensional
confusion matrix C. Rows in C represent actual class labels; columns represent class la-
bels predicted by the classifier. Element Ci,j represents the number of instances of class i
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Table 1 The confusion and cost
matrices for binary classification.
The columns (C) represent
classes assigned by the classifier;
the rows (A) represent actual
classes

(a) Confusion matrix C

A C

+ −

+ TP FN P

− FP TN N

(b) Cost matrix Co

A C

+ −

+ 0 c12

− c21 0

classified as class j by the system. For a binary classifier, the elements are called true posi-
tives (TP ), false negatives (FN ), false positives (FP ), and true negatives (TN ) as shown in
Table 1(a). The sum of TP and FN is equal to the number of positive instances (P ). Simi-
larly, the number of negative instances (N ) equals FP + TN .

Asymmetrical classification problems can be modeled by a cost matrix Co with identical
meanings of rows and columns as in the confusion matrix. The element Coi,j represents the
cost of assigning a class j to an instance of class i.

As shown by Elkan (2001), for binary cases, all four-element cost matrices (full cost
matrices) with identical value of (c21 − c11)/(c12 − c22) form an equivalence class with
respect to the decision-making process in the classification. This in particular means that
adding a constant value to the rows of the cost matrix yields and equivalent cost matrix.
Therefore, without loss of generality it is often assumed that a cost-matrix has the main
diagonal equal to zero (i.e., the cost of correctly classifying instances is zero). In such cases,
the matrix has only two nonzero values (Table 1(b)): c21 (cost of misclassifying a negative
instance as a positive) and c12 (cost of misclassifying a positive instance as a negative), and
from the decision-making perspective the matrix has only one degree of freedom, the so-
called cost ratio CR = c21/c12. We will come back to these assumptions when we discuss
abstaining classifiers.

Classifiers in a cost-sensitive setup can be characterized by the expected cost rc, a cost-
weighted sum of misclassifications divided by the number of classified instances (making it
invariant of the number of classified instances):

rc = FN · c12 + FP · c21

TP + FN + FP + TN
. (1)

2.1 ROC analysis

An ROC plane (fp × tp) has axes ranging from 0 to 1 and labeled false positive rate
(fp = FP/(FP + TN) = FP/N ) and true positive rate (tp = TP/(TP + FN) = TP/P ),
as shown in Fig. 1. Note that throughout the paper we use a convention in which uppercase
variables denote absolute values and the lowercase variables denote the corresponding rates.
Evaluating a binary classifier Cτ on a dataset produces exactly one point (fpτ , tpτ ) on the
ROC plane. Many classifiers (e.g., Bayesian classifiers) or methods for building classifiers
have parameters τ that can be varied to produce different points on the ROC plane. In par-
ticular, a single scoring classifier can be used to generate a set of points on the ROC plane
efficiently (Fawcett 2003).

Given a set of points on an ROC plane, the ROC Convex Hull (ROCCH) method (Provost
and Fawcett 2001) constructs a piecewise-linear convex down curve (called ROCCH) fROC :
fp �→ tp, having the following properties: (i) fROC(0) = 0, (ii) fROC(1) = 1, and (iii) the
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Fig. 1 Examples of ROC and
ROCCH curves and the
cost-optimal classifier

slope of fROC is monotonically nonincreasing. We denote the slope of a point on the ROCCH
as f ′

ROC.1

To find the classifier that minimizes the misclassification cost rc, we rewrite (1) as a
function of one variable, FP , calculate the first derivative d rc/d FP and set it equal to 0.
This yields a known equation of iso-performance lines

f ′
ROC(fp∗) = CR

N

P
, (2)

which shows the optimal slope of the curve given a certain cost ratio (CR), N negative, and
P positive instances. Similarly to Provost and Fawcett (2001), we assume that for any real
m > 0 there exists at least one point (fp∗, tp∗) on the ROCCH having f ′

ROC(fp∗) = m.
Note that the solution of this equation can be used to find a classifier that minimizes the

misclassification cost for the instances used to create the ROCCH. We call such a classifier
ROC-optimal. However, it may not be optimal for other instances. Nevertheless, if the testing
instances used to build the ROCCH and the other instances are representative, such a ROC-
optimal classifier will also perform well on other testing sets.

3 ROC-optimal abstaining classifier

Our method builds an ROC-optimal abstaining classifier as a metaclassifier using an ROC
curve and the binary classifiers used to construct it. An ROC-optimal classifier is defined as
described in Sect. 2.1. The method constructs an abstaining metaclassifier Aα,β using two

1We assume that the slope at vertices of a convex hull takes all values between the slopes of adjacent line
segments.
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Fig. 2 Abstaining classifier
Aα,β constructed using two
classifiers Cα and Cβ

binary classifiers Cα and Cβ as follows:

Aα,β(x) =

⎧
⎪⎨

⎪⎩

+ Cα(x) = +∧Cβ(x) = +,

? Cα(x) = −∧Cβ(x) = +,

− Cβ(x) = −∧Cα(x) = −.

(3)

Each classifier has a corresponding confusion matrix, (TPα,FNα,FPα,TNα) and
(TPβ,FNβ,FPβ,TNβ ), which will be used in the next sections. Classifiers Cα and Cβ belong
to a family of classifiers Cτ , described by a single ROC curve with FPα ≤ FPβ (as shown
in Fig. 2).

Our method is independent of the machine-learning technique used. However, we re-
quire that for any two points (fpα, tpα), (fpβ, tpβ) on the ROC curve, with fpα ≤ fpβ ,
corresponding to Cα and Cβ , the following conditions hold:

∀i: (Cα(i) = + �⇒ Cβ(i) = +) ∧ (Cβ(i) = − �⇒ Cα(i) = −). (4)

Conditions (4) are the ones used by Flach and Wu (2005) in the work on repairing concav-
ities of ROC curves. These are met in particular if the ROC curve and Cα and Cβ are built
from a single scoring classifier R (e.g., a Bayesian classifier) with two threshold values α

and β (α ≥ β). The advantage is that for such a classifier, a simple and efficient algorithm
for constructing an ROC curve exists (Fawcett 2003). For arbitrary classifiers (e.g., rule
learners), (4) is generally violated. However, we observed that the fraction of instances with
Cα(i) = + ∧ Cβ(i) = − typically is small. As this is an important class of applications, this
is an interesting area for future research.

Given a particular cost matrix and class distribution N/P , the optimal binary classifier
can easily be chosen as a one that minimizes the misclassification cost (1). However, no
such notion exists for abstaining classifiers, as the tradeoff between nonclassified instances
and the cost is undefined. Therefore, we proposed and investigated (Pietraszek 2005) three
different criteria and models of optimization E : the cost-based, the bounded-abstention and
the bounded-improvement model, which we discuss in the following sections. Models E
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Table 2 Cost matrix Co for an
abstaining classifier under
Cost-Based Model. Columns and
rows are the same as in Table 1.
The third column denotes the
abstention class

A C

+ − ?

+ 0 c12 c13

− c21 0 c23

determine how nonclassified instances are accounted for in the misclassification cost and
other boundary conditions. We formulate our goals as:

Given – An ROC curve generated using classifiers Cτ , such that (4) holds.
– A Cost matrix Co.
– Evaluation model E .

Find A classifier Aα,β such that Aα,β is optimal in model E .

Cost-based model In the first evaluation model ECB , a so-called cost-based model, we use
an extended 2 × 3 cost matrix with the third column representing the cost associated with
abstaining from classifying an instance. This cost can be dependent on or independent of the
true class of the instance.

Bounded models To address the shortcomings of the cost-based model and allow for sit-
uations in which the extended cost matrix is not available, we propose two models EBA

and EBI that use a standard 2 × 2 cost matrix and calculate the misclassification cost per
instance actually classified. The motivation is to calculate the cost only for instances the
classifier attempts to classify.

In such a setup, a classifier randomly abstaining from classification would have the same
misclassification cost as a normal classifier. Conversely, classifiers abstaining from classify-
ing only for difficult instances may have a significantly lower misclassification cost.

However, such a system is underspecified as we do not know how to trade the misclas-
sification cost for the number of nonclassified instances. To address this, we propose two
bounded evaluation models having boundary conditions:

Bounded-abstention model EBA, where the system abstains for not more than a fraction
kmax of instances and has the lowest misclassification cost,

Bounded-improvement model EBI , where the system has a misclassification cost not
higher than rcmax and abstains for the lowest number of instances.

4 Cost-based model

In this model, we compare the misclassification cost, rcCB, incurred by a binary and an ab-
staining classifier. We use an extended 2 × 3 cost matrix, with the third column representing
the cost associated with classifying an instance as “?”. Similarly, to the standard binary case
we assume that the costs of correct classification is zero, however the costs of abstention
can be different from different classes. This is different from a similar model studied by
Tortorella (2000, 2004), who used a full cost matrix and only a single abstention cost. We
will come back to these differences at the end of this section.
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Given – ROC curve generated using classifiers such that (4) holds
– 2 × 3 cost matrix Co

Find Classifier Aα,β such that it minimizes misclassification cost rcCB

Having defined the cost matrix, we use a similar approach as in Sect. 2.1 for finding
the optimal classifier. Note that the classifications made by Cα and Cβ are not independent.
Equation (4) implies that false positives for Cα imply false positives for Cβ . Similarly, false
negatives for Cβ imply false negatives for Cα , and we can thus formulate (5). The misclassi-
fication cost rcCB is defined using a 2 × 3 cost matrix similar to (1), with the denominator
equal to the total number of instances.

rcCB · (N + P ) = (FPβ − FPα)c23
︸ ︷︷ ︸
Cα , Cβ disagree, –

+ (FNα − FNβ)c13
︸ ︷︷ ︸
Cα , Cβ disagree, +

+FPα · c21︸ ︷︷ ︸
FP for both

+FNβ · c12
︸ ︷︷ ︸
FN for both

= (FNα · c13 + FPα · (c21 − c23) + FNβ · (c12 − c13) + FPβ · c23)

= P

(

1 − fROC

(
FPα

N

))

c13 + FPα(c21 − c23)

+ P

(

1 − fROC

(
FPβ

N

))

(c12 − c13) + FPβ · c23. (5)

We rewrite (5) as a function of only two variables FPα and FPβ , so that to find the local
minimum we calculate partial derivatives for these variables

∂rcCB

∂FPα

· (N + P ) = −P

N
f ′

ROC

(
FPα

N

)

c13 + c21 − c23,

∂rcCB

∂FPβ

· (N + P ) = −P

N
f ′

ROC

(
FPβ

N

)

(c12 − c13) + c23,

(6)

set the derivatives to zero and making sure that the function has a local extremum. After
replacing FPα and FPβ with the corresponding rates fpα and fpβ , we obtain the final
result:

f ′
ROC(fp∗

β) = c23

c12 − c13

N

P
,

f ′
ROC(fp∗

α) = c21 − c23

c13

N

P
,

(7)

which, similarly to (2), allows us to find fp∗
α and fp∗

β , and the corresponding classifiers Cα

and Cβ . Note that these equations use only slopes of the ROC curve and are therefore very
easy to apply.

This derivation is valid only for metaclassifiers (3) with (4), which implies fp∗
α ≤ fp∗

β

and fROC(fp∗
α) ≤ fROC(fp∗

β). As an ROCCH is increasing and convex, its first derivative
is nonnegative and nonincreasing, and we obtain f ′

ROC(fp∗
α) ≥ f ′

ROC(fp∗
β) ≥ 0. Using the

2 × 3 cost matrix these conditions can be rewritten as:

(c21 ≥ c23) ∧ (c12 > c13) ∧ (c21c12 ≥ c21c13 + c23c12). (8)

If condition (8) is not met, our derivation is not valid, but the solution is trivial. While it is
clear that when the abstention costs are higher than the costs of incorrect classification, the
optimal strategy is not to abstain (expressed by the first two terms of (8)), the interpretation
of the third term is not obvious. We will prove it in the following theorem.
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Theorem 1 If (8) is not met, the classifier minimizing the misclassification cost is a binary
classifier, namely, a single classifier described by (2).

Proof Calculating (6) we obtain that if the rightmost part of (8) does not hold, ∂rcCB/∂fpα is
negative for all values f ′

ROC(fp∗
α) ≤ f ′

ROC(fp∗) = c21/c12 ·N/P and, similarly, ∂rcCB/∂fpβ

is positive for all values f ′
ROC(fp∗

β) ≥ f ′
ROC(fp∗) = c21/c12 · N/P . This, together with the

basic assumption fpα ≤ fpβ and the properties of the ROCCH, implies that fp∗
α = fp∗

β ,
which means that the optimal abstaining classifier is a binary classifier. Such a classifier is
the binary classifier described by (2). �

Equation (8) allows us to determine whether for a given 2 × 3 cost matrix Co a trivial
abstaining classifier minimizing rcCB exists, but gives little guidance to setting parameters
in this matrix. For this we consider two interesting cases: (i) a symmetric case c13 = c23 and
(ii) a proportional case c23/c13 = c21/c12.

The first case has some misclassification cost CR with identical costs of classifying in-
stances as “?”. This case typically occurs when, for example, the cost incurred by the human
expert to investigate such instances is irrespective of their true class. In this case, (8) simpli-
fies to the harmonic mean of two misclassification costs: c13 = c23 ≤ c21c12/(c21 + c12). The
second case yields the condition c13 ≤ c12/2 (equivalent to c23 ≤ c21/2). This case occurs
if the cost of classifying an event as the third class is proportional to the misclassification
cost. These simplified equations allow a meaningful adjustment of parameters c13 and c23

for abstaining classifiers.
To summarize, the ROC-optimal abstaining classifier in a cost-based model can be found

using (7) if (8) (or the special cases discussed below) holds on a given cost matrix. In the
opposite case, our derivation is not valid; however the ROC-optimal classifier is a binary
classifier (Cα = Cβ ).

4.1 Equivalence of the full cost matrix

Recall from Sect. 2, that in the binary case a cost matrix with the main diagonal equal to zero
is equivalent to a full cost matrix with respect to classification. It is not obvious, however,
that the same is true for the cost-based model. We will prove it in the following theorem:

Theorem 2 Adding a constant value to the rows of the extended cost matrix yields an equiv-
alent matrix with respect to the choice of the cost-optimal classifier.

Proof Assume we have a full extended cost matrix

Co =
(

c11 c12 c13

c21 c22 c23

)

.

In the first step we will modify (5) to calculate costs for a full cost matrix to account for
correct decisions made by the classifier. Classifier Aα,β makes TPα correct classification
with class “+” and TNβ correct classifications with class “−”. This means that the overall
misclassification cost is increased by PfROC( FPα

N
)c11 + (N − FPβ)c22. Hence, calculating

derivatives based on (6) yields

∂rcCB

∂FPα

· (N + P ) = −P

N
f ′

ROC

(
FPα

N

)

(c13 − c11) + (c21 − c23),

∂rcCB

∂FPβ

· (N + P ) = −P

N
f ′

ROC

(
FPβ

N

)

(c12 − c13) + (c23 − c22).

(9)
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In both cases the derivatives use a only paired differences of two items in the same row of
the matrix, which means that arbitrary constants added to the rows of the matrix cancel out
and thus have no effect on the optimal classifier chosen by the algorithm. This completes
the proof. �

An important implication from this proof is that the cost-based model presented by Tor-
torella, Tortorella (2000, 2004) with a full 2 × 2 cost-matrix and a single abstention cost is
equivalent to ours (based on Theorem 2 one can subtract the values of costs of correct classi-
fication (c11, c22) from each row of the matrix). Note that if the costs of correct classification
are not identical, converting Tortorella’s model results in different values of abstention costs:
c13 and c23. Finally, this shows that from the classification perspective the extended cost ma-
trix has only three degrees of freedom (we have four values, but any non-zero value can be
fixed by multiplying the whole matrix by a constant).

5 Bounded models

In the experiments using a cost-based model, we noticed that the cost matrix and in partic-
ular cost values c13, c23 have a large impact on the number of instances classified as “?”.
Therefore we think that, while the cost-based model can be used in domains where the 2 × 3
cost matrix is explicitly given, it may be difficult to apply in other domains where parameters
c13, c23 would have to be estimated. Therefore, in the bounded models, we use a standard
2 × 2 cost matrix and calculate the misclassification cost only per instances classified.

Using a standard cost equation (1), with the denominator TP + FP + FN + TN =
(1 − k)(N + P ), where k is the fraction of nonclassified instances, we obtain the following
set of equations:

rcB = 1

(1 − k)(N + P )
(FPα · c21 + FNβ · c12),

k = 1

N + P
((FPβ − FPα) + (FNα − FNβt)),

(10)

determining the relationship between the fraction of classified instances k and the misclas-
sification cost rcB as a function of classifiers Cα and Cβ . Similarly to the cost-based model
we can rewrite these equations as functions of fpα and fpβ :

rcB = 1

(1 − k)(N + P )
(Nfpα · c21 + P (1 − fROC(fpβ)) · c12),

k = 1

N + P
(N(fpβ − fpα) + P (fROC(fpβ) − fROC(fpα))).

(11)

By putting boundary constraints on k and rcB and trying to optimize the other variable,
rcB and k respectively, we create two interesting evaluation models we discuss in the follow-
ing sections.

5.1 Bounded-abstention model

By limiting k to some threshold value kmax (k ≤ kmax), we obtain a model, the bounded-
abstention model, in which the classifier can abstain for at most a fraction kmax of instances.
In this case the optimization criterion is that the classifier should have the lowest misclassi-
fication cost rcB (hereafter referred to as rcBA).
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As stated in the introduction this model does not require an explicit 2 × 3 cost matrix,
which may not be given and is particularly applicable in resource-constrained situations. In
such cases, the bounded-abstention model yields an optimal classifier given the abstention
window kmax. For example, many classification systems involving human domain experts
are typically resource constrained. Another example of such systems are real-time multi-
stage classification systems in which the subsequent stages have a limited throughput and
cannot process more than a fraction kmax of instances.

Given – ROC curve generated using classifiers such that (4) holds
– 2 × 2 cost matrix Co

– Fraction k

Find Classifier Aα,β such that the classifier abstains for not more than a fraction
of k instances and has the lowest cost rcBA.

Unfortunately, unlike the cost-based model, the set of equations (11) for a bounded-
abstention model does not have an algebraic solution in the general case, and in (Pietraszek
2005) we used general numerical optimization methods to solve it. Here we present an al-
gorithm finding the solution that is extremely efficient for piecewise-linear ROCCH curves.

To find the solution for the bounded improvement model, we will use the constrained op-
timization method for the function of two variables. We will proceed in the following three
steps: First, we will present the algorithm for a smooth convex down ROC curve differen-
tiable in [0,1] and assuming that exactly a fraction kmax of instances remains unclassified.
Second, we will show under which conditions the optimal classifier can abstain for less
than a fraction kmax of instances. Finally, we will extend the method to the piecewise linear
ROCCH curves.

5.1.1 Optimal classifier for a smooth convex down curve

Our minimization task can be defined as follows: Find the minimum of rcBA(fpα,fpβ),
subject to condition k∗(fpα,fpβ) = k(fpα,fpβ) − kmax = 0.

For this, we will use the Lagrange method, which is a method for constrained optimiza-
tion of a differentiable function under equality constrains (see e.g., Stewart 1992; Wolfram
Research Inc. 2006 for a more complete coverage). Very briefly, given differentiable func-
tions F and G the goal is to find the minimum of F(X) given the constraint G(X) = 0. The
method calculates the so-called Lagrange multipliers λ such that

∇F(X) = λ∇G(X). (12)

By solving (12) for X and λ and given the constraint G(X) = 0 we obtain the desired solu-
tion.

In our case we have functions of two variables (fpα and fpβ ) and in this two-dimensional
case (12) can has an interpretation that vectors ∇rcBA and ∇k have the same direction. This
is equivalent to ∇rcBA × ∇k = 0 and

∂rcBA

∂fpα

∂k

∂fpβ

− ∂k

∂fpα

∂rcBA

∂fpβ

= 0. (13)

The second condition is that k∗(fpα,fpβ) = k(fpα,fpβ) − kmax = 0.
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Calculating the derivatives, condition (13) simplifies to

f ′
ROC(fpα)f

′
ROC(fpβ)c12P

2 − f ′
ROC(fpβ)NP (c21 − c12) − c21N

2

(N(fpα − fpβ + 1
︸ ︷︷ ︸

≥0

) + P (fROC(fpα) − fROC(fpβ) + 1
︸ ︷︷ ︸

≥0

))2(N + P )
= 0. (14)

Based on the properties of the ROC curve and classifiers Cα and Cβ , the denominator is
always positive (with an exception for an all-abstaining classifier, fpα = 0 ∧ fpβ = 1, for
which rcBA is undefined), which means that (14) is equivalent to

f ′
ROC(fpβ)

(

f ′
ROC(fpα) + N

P

(

1 − c21

c12

))

=
(

N

P

)2
c21

c12
. (15)

Theorem 3 If f ′′
ROC is nonzero, the optimal classifier in the bounded-abstention model ab-

stains for exactly a fraction kmax of instances and for a given k ∈ [0,1] there exists exactly
one classifier Aα,β .

Proof In the first step we show that when k = 0, fpα = fpβ = fp, such that f ′
ROC(fp) =

N
P

c21
c12

. The equality fpα = fpβ results from the properties of the ROC curve and (11). Con-

dition f ′
ROC(fp) = N

P

c21
c12

results from (15).
In the second step we show that given an optimal classifier Aα,β abstaining for exactly a

fraction kmax of instances, we can easily generate a optimal classifier A∗
α,β abstaining for a

fraction k∗
max = kmax + δk (where δk → 0) of instances.

Such a classifier has coordinates (fpα + δα, fpβ + δβ), in which the following condition
holds:

δk = ∇k · (δα, δβ). (16)

The derivative of a smooth convex down ROC curve is positive, which means that all
components of ∇k are nonzero.

Using (15) for the new point, we obtain the relationship between δα and δβ :

(f ′
ROC(fpβ) + f ′′

ROC(fpβ)δβ)

·
(

f ′
ROC(fpα) + f ′′

ROC(fpα)δα + N

P

(

1 − c21

c12

))

=
(

N

P

)2
c21

c12
(17)

and after simplifications we get the following result:

(δα, δβ) ·
(

f ′′
ROC(fpα), f

′′
ROC(fpβ)

N
P

c21
c12

(f ′
ROC(fpβ))2

)

= 0. (18)

Equations (16) and (18) show that for nonzero f ′′
ROC (i) there exists only one pair of

(δα, δβ) for given δk , (ii) δk ≤ 0 ⇒ δα ≤ 0 ∧ δβ ≥ 0, and (iii) k → 0 ⇒ fpα → 0 ∧fpβ → 1.
This completes the proof. Note that an almost similar inductive proof can be shown for

classifier starting from fp = 0 ∧ fp = 1, with negative increments δk (note that the second
step of the proof did not make any assumptions about the sign on δk). The advantage of such
an approach is that there is no need to compute the value of starting point fpα = fpβ = fp

in this case. However, the derivative of rcBA at fpα = 0∧fpβ = 1 formally does not exist. �
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Fig. 3 Optimal classifier paths
in a bounded-abstention model.
a Optimal classifier path for a
smooth convex up curve
(Algorithm 1). b Optimal
classifier path for a piecewise
ROCCH (Algorithm 2)

(a)

(b)
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Algorithm 1 Algorithm for finding the optimal classifier

This proof generates an optimal classifier path on the hyperplane of rcBA when varying
kmax between 0 and 1, as shown in Fig. 3(a) (thick white line). Note that the thin lines
show isolines of constant k (in this case with a constant increment of 0.1). The path can be
constructed either by varying k from 0 to 1 or by varying k from 1 to 0. We will refer to
these construction methods as “top-down” or “bottom-up”.

The above derivation can be used to formulate Algorithm 1 for finding the optimal clas-
sifier in the bounded-abstention model.

5.1.2 Optimal classifier abstaining for fewer than kmax instances

In this section we will determine when the optimal classifier can abstain for a fraction
smaller than kmax of instances. We will show when such a classifier exists and that when
it exists it has the same misclassification cost as the optimal classifier abstaining for exactly
a fraction of kmax instances.

Recall that the optimal abstaining classifier requires that (15) is met. In this section we
will prove the following theorem:

Theorem 4 Given an optimal classifier Aα,β abstaining for exactly a fraction kmax of in-
stances, no optimal classifier A∗

α,β abstaining for a fraction k∗
max ≤ kmax of instances and

having a misclassification cost lower than rcBA exists.

Proof Given an optimal classifier abstaining for exactly kmax instances, there exists a clas-
sifier abstaining for (k∗

max < kmax) and having the same or a lower misclassification cost iff
∂rcBA/∂fpα ≤ 0 or ∂rcBA/∂fpβ ≥ 0. In the remainder we will show when such a classifier
exists.

In the calculations below we will use the following substitutions:

Aα = f ′
ROC(fpα),

Bα = fROC(fpα) − fpαf
′
ROC(fpα),

Aβ = f ′
ROC(fpβ),

Bβ = fROC(fpβ) − fpβf ′
ROC(fpβ).

(19)
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Note that for a nondecreasing and convex down fROC, the following conditions hold:

Aα ≥ Aβ ≥ 0,

0 ≤ Bα ≤ Bβ ≤ 1,

Aα + Bα ≥ Aβ + Bβ ≥ 1.

(20)

Calculating ∂rcBA/∂fpβ . Calculating ∂rcBA/∂fpβ ≥ 0, assuming that (15) holds and using
substitution (19), yields the following condition:

∂rcBA

∂fpβ

≥ 0 ⇔ Bα︸︷︷︸
≤0

Aβc12P
2 + (−Aβ − Bβ + 1)

︸ ︷︷ ︸
≤0

c12NP ≥ 0. (21)

Equation (21) only holds if Bα = 0 and Aβ + Bβ = 1 and in this case ∂rcBA/∂fpα = 0.
From the properties of the ROC curve, this is only possible when fROC contains line seg-
ments (0,0)− (fpα,fROC(fpα)) and (fpβ,fROC(fpβ))− (1,1). In addition, condition (15)
must hold.

Calculating ∂rcBA/∂fpα . Calculating ∂rcBA
∂fpα

≤ 0, assuming that (15) holds and using sub-
stitution (19), produces the following condition:

∂rcBA

∂fpβ

≤ 0 ⇔ (Aβ + Bβ − 1)(Aαc12P
2 + (c12 − c21)NP ) ≤ −Bαc21NP. (22)

Dividing both sides by (15) we obtain:

Aβ + Bβ − 1

Aβ
︸ ︷︷ ︸

≥0

≤ −Bα︸︷︷︸
≤0

1

NP
. (23)

Similarly, this equation has a solution only if Bα = 0 and Aβ + Bβ = 1.
To summarize, we proved that the classifier Aα,β in the bounded-abstention model for

kmax will have the lowest cost rcBA when it abstains for exactly a fraction of kmax in-
stances. Moreover in the special case, when Aα,β is such that fROC contains the two line
segments (0,0) − (fpα,fROC(fpα)) and (fpβ,fROC(fpβ)) − (1,1), there exists an opti-
mal classifier A∗

α,β having the same misclassification cost and abstaining for fewer than
kmax instances. Such a classifier will be described by the ends of following line segments:
(0,0) − (fp∗

α, fROC(fp∗
α)) and (fp∗

β, fROC(fp∗
β)) − (1,1). Such cases correspond to a flat

area in Fig. 3(b). �

5.1.3 The algorithm for a convex hull fROC

Algorithm 1 is does not allow an efficient generation of a solution, as the increments δα , δβ it
uses are infinitely small. Moreover the property of nonzero f ′′

ROC, required by Algorithm 1,
does not necessarily hold. However, our function fROC is a convex hull, a piecewise linear
function, for which an efficient algorithm for finding the optimal classifier exists.

Assume the function fROC is a piecewise linear convex down curve, constructed from
line n segments S1, S2, . . . , Sn connecting n + 1 points P1,P2, . . . ,Pn+1. Each line segment
Si is described by a line segment tp = Aifp + Bi , where Ai and Bi are the coefficients of a
line connecting points Pi and Pi+1.
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In this case, the value of derivatives f ′
ROC is equal to Ai for fp ∈ ]fpPi

;fpPi+1 [ and is
undefined for arguments fpPi

and fpPi+1 . For our computations we assume that the value
of f ′

ROC for every argument fpPi
takes all values between [Ai−1;Ai]. Moreover, we also

assume that for fpP1 the derivative takes all values ]∞;A1] and for fpPn+1 the derivative
takes all values [0;An].

Note that with a piecewise linear ROCCH, (18) cannot be used because the values of
f ′′

ROC are either zero or undefined (at the vertices). However, (15) still can be used provided
we allow that derivatives at vertices take all values in a range of slope values of adjacent
segments.

Assuming the classifier Aα,β optimal for a fraction kmax is defined by (fpα,fpβ) where
fpα lies on the line segment Si and fpβ lies on the line segment Sj , we construct the optimal
classifier path “bottom-up” (i.e., constructing an optimal classifier A∗

α,β for k∗
max < kmax).2

The coordinates (fp∗
α, fp∗

β) of the classifier A∗
α,β will depend on the value of the following

expression:

X ← Aj

(

Ai + N

P

(

1 − c21

c12

))

−
(

N

P

)2
c21

c12
. (24)

When X < 0, the classifier fpα is located at the vertex (so that (15) holds) and the optimal
classifier A∗

α,β with k∗
max < kmax will have fp∗

β < fpβ . Similarly, when X > 0, the classifier
fpβ is located at the vertex and the optimal classifier A∗

α,β with k∗
max < kmax will have fp∗

α >

fpα . In both these cases the corresponding points fp∗
β and fp∗

α can be calculated from
equation

k∗
max = 1

N + P
(N(fpβ − fpα) + P (Ajfpβ + Bj − Aifpα − Bi)), (25)

given that the corresponding points fpα and fpβ are fixed.
Finally, when X = 0, the classifier Aα,β is located on line segments Si , Sj outside ver-

tices. In this case, the optimal classifier is defined ambiguously for a given kmax and these
classifiers can be generated by finding all pairs satisfying (25) given the constraints that
fpα is within a line segment Si and fpβ is within a line segment Sj . Specifically, it is also
possible to use either of the classifiers for the two preceding cases (X < 0 or X > 0).

This leads to Algorithm 2 for finding the optimal classifier efficiently. The algorithm
constructs the abstaining classifier “bottom-up” starting from points P1 and Pn. At each step
of the algorithm it calculates the value of X using (24) and depending on its sign, advances
either i or j as shown in Fig. 4. If the abstention rate for the new points Pi+1,Pj (or Pi,Pj−1

correspondingly) is larger than kmax the solution is calculated by solving a linear equation
k(fpα,fpβ) = kmax with respect to fpα (fpβ ) and the algorithm terminates. Otherwise, in
the next iteration the evaluation of X starts from the new point Pi+1,Pj (Pi,Pj−1).

Assuming the ROCCH consists of n line segments, the algorithm terminates in at most n

steps. Therefore its complexity is O(n).

5.2 Bounded-improvement model

The second bounded model is when we limit rcB (hereafter referred to as rcBI) to a threshold
value rcmax (rcBI ≤ rcmax) and require that the classifier abstain for the smallest number of
instances.

2If fpα lies on the vertex connecting Si−1 and Si , we assume the value Ai . Similarly, for fpβ lying on the
vertex connecting Sj and Sj+1, we assume the value Aj .
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Fig. 4 Finding the optimal
classifier in a bounded model:
visualization of X

This model is particularly useful in a multi-stage classification systems and classifica-
tion systems involving human domain experts, in which cost constraints are given. Given
the maximum misclassification cost, the bounded-improvement model yields an abstaining
classifier for which the misclassification cost for classified instances does not exceed a given
value. Note that in this case, model performs a “local optimization” and the non-classified
instances are excluded from cost calculations. Thus, if a complete coverage is needed such
instances have to be classified using a more accurate but expensive classifier.

The possible real-life applications of this model include the classification of intrusion
detection alerts, fraud detection systems, quality control system and medical domains. The
advantage of this model is that the cost constraint is easily quantifiable and intuitive for the
domain experts.

Given – ROC curve generated using classifiers such that (4) holds
– 2 × 2 cost matrix Co

– Cost rcmax

Find Classifier Aα,β such that the cost of the classifier is no greater than rcmax and
the classifier abstains for the smallest number of instances.

This model is an inverse of the preceding model and can be solved by an algorithm similar
to Algorithm 2. To show the solution for this model we use a similar approach as in the first
model: First we will show the algorithm for a smooth convex down ROC curve differentiable
in [0,1] and assuming that the classifier has rcBI equal to rcmax. Second, we will show under
which conditions the optimal classifier can have a misclassification cost smaller than rcmax.
Finally, we will present an efficient algorithm for piecewise linear ROCCH curves.

5.2.1 Optimal classifier for a smooth convex-down curve

To show the solution for the bounded improvement model, we will use the constrained
optimization method for the function of two variables. The minimization task can be de-
fined as follows: Find the minimum of k(fpα,fpβ), subject to condition rc∗

BI(fpα,fpβ) =
rcBI(fpα,fpβ) − rcmax = 0. Similarly as in Sect. 5.1, we use the Lagrange method and ob-
tain the same condition (15). The second condition is that rcBI(fpα,fpβ) = rcmax.

Theorem 5 If f ′′
ROC is nonzero, the optimal classifier in the bounded-improvement model

has rcBI equal to rcmax and for a given rcBI ∈ [0, rc∗
BI], where rc∗ is the rc for the optimal

binary classifier, there exists exactly one classifier Aα,β .

Proof The proof is similar to Theorem 3 with an identical first condition (15) and the second
condition δrc = ∇rcBI · (δα, δβ). However, unlike in the preceding case, ∇rcBI can be equal 0



154 Mach Learn (2007) 68: 137–169

Algorithm 2 Algorithm for finding the optimal classifier in a bounded-abstention model for
a piecewise-linear ROCCH curve

(under conditions shown in the proof of Theorem 4). In such a situation, the misclassification
cost rcBI will not change with the change of fpα and fpβ . �

Similarly to the preceding case, the proof generates an optimal classifier path as shown
in Fig. 5(a), where thin isolines show classifiers with identical misclassification cost rcBI .
The optimal classifier crosses these isolines at the points of minimal k.
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Fig. 5 Optimal classifier paths
in a bounded-improvement
model. a Optimal classifier path
for a piecewise ROCCH
(Algorithm 2 with modifications
(Sect. 5.2.3)). b The special case
for an abstaining classifier

(a)

(b)
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5.2.2 Optimal classifier with rcBI lower than rcmax

As we proved in Theorem 4, if fROC contains the line segments (0,0) − (fpα,fROC(fpα))

and (fpβ,fROC(fpβ)) − (1,1) and (15) holds, the classifier has the same rcBI for all classi-
fiers in these line segments.

Moreover, in this case, this rcBI for this line segment is the lowest rcBI an abstaining
classifier can achieve with this ROC curve. Therefore for a higher rcmax the optimal classifier
will have a lower misclassification cost. Such a situation is illustrated in Fig. 5(b).

5.2.3 The algorithm for a convex hull fROC

The algorithm is similar to Algorithm 2 with the following two modifications. Fist, it uses
different conditions in lines 9 and 17, namely evaluating the misclassification cost given by

rcmax = 1

(1 − k)(N + P )
(Nfpα · c21 + P (1 − (Ajfpβ + Bj)) · c12), (26)

where k is determined by (25). This yields

rcmax = Nfpα · c21 + P (1 − (Ajfpβ + Bj)) · c12

fpα(N + PAi) − fpβ(N + PAj) + P (Bj − Bi) + N + P
. (27)

Second, in lines 13 and 21 the overall solution is calculated by solving a linear equation (27)
with respect to fpα and fpβ .

5.3 Equivalence of the full cost matrix

In the previous section we proved that in the cost-based model an extended 2×3 cost matrix
has only three degrees of freedom and that adding an arbitrary constant to the rows of the
cost matrix yields an equivalent matrix from a decision making perspective. This however
does not hold for the 2 × 2 cost matrix for bounded models. We will prove the following
theorem.

Theorem 6 From a decision making perspective in bounded models, a full 2×2 cost matrix
is not equivalent to the cost-matrix with the main diagonal equal to 0.

Proof Similarly to Theorem 2 we modify rcB in (10) to take correct classifications
into account. This means that the nominator of (11) is increased by PfROC( FPα

N
)c11 +

(N − FPβ)c22.
Similarly to Sects. 5.1 and 5.2, using Lagrange method and calculating (13) we obtain a

condition equivalent to:

f ′
ROC(fpα)f

′
ROC(fpβ)(c12 − c11)P

2 + f ′
ROC(fpβ)(c21 − c22 − (c12 − c11))NP

+ (c22 − c21)N
2 + (f ′

ROC(fpα) + f ′
ROC(fpβ))(c22 − c11)NP

︸ ︷︷ ︸
�=0

= 0. (28)

Comparing (28) with (14) we see that while the first three components are equivalent, the
last one is not and, in general case, not equal to zero. This means that non-zero components
on the main diagonal will change the optimal solution and thus the equivalence does not
hold. This completes the proof. �
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Note that condition (28) can be used in Algorithm 2 to find the optimal classifier when a
full 2 × 2 cost matrix is given.

6 Experiments

To analyze the performance of our method, we tested it on 15 well-known datasets from
the UCI KDD (Hettich and Bay 1999) database: breast-cancer, breast-w, colic,
credit-a, credit-g, diabetes, heart-statlog, hepatitis, ionosphere,
kr-vs-kp, labor, mushroom, sick, sonar, and vote. These datasets are all binary
classification problems from 37 UCI datasets, downloaded from the Weka web-page.

We tested our method in all three models described above. In the ECB model, the input
data is a 2 × 3 cost matrix in the symmetric case (c13 = c23). In EBA, we use a 2 × 2 cost
matrix and kmax (the fraction of instances that the system does not classify). In EBI , we could
not use a constant value of rcmax for all datasets because different datasets yield different
ROC curves and misclassification costs. Instead we used a relative cost improvement f and
calculated rc as follows: rc = (1 − f )rcbin, where rcbin is the misclassification cost of the
ROC-optimal binary classifier found using (2). Hence the input data is also a 2 × 2 cost
matrix and a fraction fmin.

The goals of our experiments are three-fold: (i) to verify the ROC generalization and
the algorithms used, (ii) to analyze the trade-off between the abstention ratio and the cost
improvement and, (iii) to compare our abstaining classifiers with other known techniques
allowing for abstentions. We will discuss them in the remainder of this section.

ROC generalization Our method for selecting abstaining classifiers with two thresholds is
provably optimal provided that the ROC curve generalizes to an independent test set. The
method presented in this paper can only be applicable in real-life situations if the general-
ization properties hold, which also includes the stability of algorithms used (e.g., threshold
averaging for ROC curves and threshold interpolation). Therefore, the first goal of the ex-
periments is to validate it.

Abstention ratio vs. cost improvement From the application standpoint, it is important to
understand the relationship between the abstention ratio, cost parameters and the cost im-
provement. As showed in previous sections, depending on the constraints and the parameters
given, the optimal solution can be found by using one of the three algorithms provided. Ul-
timately, the gain from using an abstaining classifier instead of a binary one depends on
the shape of the ROC curve and is dataset specific. Therefore, the second goal of the ex-
periments is to show the expected performance estimates on a variety of publicly available
datasets (additional experiments with abstaining classifiers in the domain of computer intru-
sion detection can be found in Pietraszek 2007).

Direct comparison Finally, all the models, in particular the bounded models, perform “by
design” better than the normal binary classifiers, therefore it is more interesting to com-
pare them against other abstaining classifiers. From the other models (cf. Sect. 7) we chose
cautious classifiers (Ferri and Hernández-Orallo 2004; Ferri et al. 2004) as the most appro-
priate for our purposes. Here we briefly discuss how cautious classifiers work and how we
can make them comparable in our evaluation.

Cautious classifiers use a single multi-class probabilistic classifier and a vector K (class
bias) and w (window size) the decision rule shown in Algorithm 3.
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Algorithm 3 Cautious classifiers decision rule

This makes cautious classifiers similar to the bounded-abstention model, in which an ab-
stention window is defined. However, although for w = 0 abstention is zero and the classifier
abstains for almost all instances for w = 1, the relationship between w and the abstention
is neither continuous nor linear (Ferri and Hernández-Orallo 2004). Therefore our model
cannot directly compared with cautious classifiers. Similarly, cautious classifiers require
calibrated probabilities assigned to instances (otherwise the class bias might be difficult to
interpret). In contrast, our model, if used with a scoring classifier, uses only information
about the ordering of instances, not the absolute values of probabilities. This makes our
model more general. On the other hand, cautious classifiers are more general in the sense
that they can be used with a multi-class classification, whereas our model is based on ROC
analysis and is only applicable to two-class classification problems.

In the evaluation we use a simple probabilistic classifier (naive Bayes) and a binary clas-
sification, which is compatible with both our algorithms and the decision rules for cautious
classifiers. In fact, for a binary case cautious classifiers have only two degrees of freedom:
a scalar k (combining the information about costs and the class distribution) and a window
w. The interpretation of these parameters is not clear, but make a fair comparison of there
methods we need to have the two classifiers have the same point of operation (i.e., the absten-
tion window or the misclassification cost). To be able to do this we decided to: (i) compare
only classifiers for CR = 1, thus avoiding having to encode the misclassification costs in k,
(ii) perform the comparison only in the bounded abstention and bounded improvement mod-
els, (iii) use a simple algorithm based on a binary search for finding the window w, given
kmax (fmin) and the ROC curve in the bounded-abstention (bounded-improvement) model,
respectively. In such a setting, we can directly compare rc (k) of the two types of classifiers
analyzing their performance. Such a comparison is the third goal of our evaluation.

6.1 Constructing an abstaining classifier

Recall that vertices on the ROCCH can only be used to find an ROC-optimal classifier in
the cost-based model (Sect. 4). In the other two models, the ROC-optimal classifier uses
arbitrary points on the ROCCH, most typically one point is located at the vertex and a the
other one is located on a line segment computed in Algorithm 2 and the modified version
(Sect. 5.2.3).

Such classifiers, corresponding to points lying on the line segment, can be constructed
using a weighted random selection of votes of classifiers corresponding to two adjacent
vertices (Fawcett 2003). However, our prototype uses another method, which was more
stable and produced less variance than the random selection did.
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An ROCCH can be considered a function fROC : τ �→ (fp, tp), where τ ∈ T is a set of
discrete parameters, varying which, one constructs classifiers Cτ corresponding to different
points on the ROCCH. In our algorithm we compute an inverse function f −1

ROC : (fp, tp) �→
τ and interpolate it using splines with a function ˆf −1

ROC defined for a continuous range of

values τ . Given an arbitrary point (fp∗, tp∗) on the curve, we use the function ˆf −1
ROC yielding

τ ∗ to construct a classifier Cτ∗ .

6.2 Testing methodology

The experiment for each dataset was a two-fold cross-validation repeated five times with
different seed values for the pseudo-random generator. We used 5 × 2 cv, as it has a low-
level Type-I error for significance testing (Dietterich 1998). We averaged the results for these
runs and calculated 95% confidence intervals, shown as error bars on each plot. In the cross-
validation, we used a training set to build an abstaining classifier, which was subsequently
evaluated on the testing set.

The process of building an abstaining classifier is shown in Fig. 6. We used another
two-fold cross-validation (n = 2) to construct an ROC curve. The cross-validation was ex-
ecuted five times (m = 5), and the resulting ROC curves were averaged (threshold aver-
aging; Fawcett 2003) to generate a smooth curve. Although the method is applicable for
any machine-learning algorithm that satisfies (4), we used a simple Naive Bayes classifier
as a base classifier, converting it to a scoring classifier by calculating the prediction ratio
P (+ | x)/P (− | x).

Given the ROC curve and the input parameters (cost matrix and a value kmax or fmin), the
program uses the algorithms proposed to find values α and β describing Cα and Cβ and the
ROC-optimal classifier (in each model). These values were used to set the thresholds in a
Naive Bayes classifier built using the entire training set to create Aα,β .

Such an experiment was run for every dataset and every combination of input parameters,
CR and c13 (kmax or fmin), thus producing multiple plots (one for each dataset), multiple
series (one for each cost ratio), and multiple points (one for each value of c13, kmax or fmin).

Fig. 6 Building an abstaining classifier Aα,β
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We used three values of the cost ratio (CR): 0.5, 1 and 2, and four different values of c13

(first model), kmax: 0.1, 0.2, 0.3 and 0.5 (second model), and fmin: 0.1, 0.2, 0.3 and 0.5 (third
model), yielding 180 experiment runs (15 × 3 × 4) for each model.

We will briefly justify this choice of parameters. For the first model, we selected values
of c13 that are evenly spaced between 0 and the maximum value for a particular cost ra-
tio (cf. (8)). For the other two models, we believe that, while the results will definitely be
application-dependent, values of kmax (fmin) that are lower than 0.1 bring too small an ad-
vantage to justify abstaining classifiers, whereas values larger than 0.5 may not be practical
for real classification systems. For the CRs we tested the performance of our system for cost
ratios close to 1.

We used a naive Bayes classifier from the Weka toolkit (Witten and Frank 2000) as a
machine-learning method and R (R Development Core Team 2004) to perform numerical
calculations.

6.3 Results—cost-based model

Out of 180 experiments (15 datasets, four values of c13, and three cost values), 152 are
significantly better (lower rc) than the corresponding optimal binary classifier (one-sided
paired t-test with a significance level of 0.95). The optimal binary classifier was the same
Bayesian classifier with a single threshold set using (2).

Testing the stability of the generalization of ROC and the interpolation algorithms used,
we calculated a relative error of the predicted (based on the ROC curve) and the actual
(obtained on a validation set) misclassification cost �rc/rc = 0.15±0.01 and the abstention
ratio �k/k = 0.05 ± 0.01 for all datasets. The positive values mean that the classifier has
on average a higher cost then expected and a marginally higher abstention ratio. This shows
that the method is fairly stable.

Evaluating the relationship between the cost matrix and the abstention ratio, Fig. 7 shows
the results for one representative dataset. The X-axes correspond to the cost value in a sym-
metric case c13 = c23 (top and middle panel), and the Y-axes show the relative cost improve-
ment (top panel) and the fraction of nonclassified instances (middle panel). The bottom
panel displays the relationship between the fraction of skipped instances and the overall
cost improvement. Horizontal error bars show 95% confidence intervals for the fraction of
nonclassified instances, only indirectly determined by c13. Finally, Table 3 contains tabular
results for all datasets for one cost ratio and two sample costs c13 ∈ {0.1,0.2}.

We clearly observe that lower misclassification costs c13 = c23 result in a higher number
of instances being classified as “?” and higher relative cost improvement. However for dif-
ferent datasets even small differences in c13 result in large differences of k and f . On the
other hand, for many datasets, we observe an almost linear relationship between the fraction
of nonclassified instances and the relative cost improvement.

6.4 Results—bounded models

6.4.1 Bounded-abstention model

Out of 180 experiments (15 datasets, four values of fractions of nonclassified instances and
three cost values), 179 have a significantly lower rcB than the corresponding optimal bi-
nary classifier (one-sided paired t-test with a significance level of 0.95). The optimal binary
classifier is a Bayesian classifier with a single threshold.
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Fig. 7 Cost-based model:
Relative cost improvement and
fraction of nonclassified
instances for ionosphere.arff,
a representative dataset
(◦: CR = 0.5, �: CR = 1,
♦: CR = 2)

We also observed that in most cases the resulting classifier classified the desired fraction
of instances as the third class; the mean of the relative difference of k (�k/k) for all runs
is 0.078 ± 0.008. Similarly, the relative difference between the actual misclassification cost
and the cost estimated based on the ROC is also very small (�rc/rc = −0.065 ± 0.11).
This is particularly important as both k and rc are only indirectly determined by the two
thresholds the algorithm calculates. This proves the stability of the algorithm on a variety of
datasets.

The results for a representative dataset are shown in Fig. 8 and tabular results for all
datasets for one cost ratio and two sample kmax are shown in Table 4. The X-axes corre-
spond to the actual fraction of nonclassified instances and the Y-axes show the relative cost
improvement (top panel) and the misclassification cost (bottom panel). The top panel shows
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Table 3 Fraction of nonclassified instances (k) and relative cost improvement (f ) for a cost-based model
(CR = 1, c13 = {0.1,0.2})

Dataset c13 = 0.1 c13 = 0.2

k f k f

breast-cancer 0.97±0.03 0.64±0.01 0.68±0.05 0.31 ± 0.02

breast-w 0.31±0.03 0.16±0.05 0.05 ± 0 0.13 ± 0.05

colic 0.96±0.03 0.44±0.02 0.27±0.04 0.15 ± 0.03

credit-a 0.64±0.01 0.48±0.02 0.33±0.02 0.22 ± 0.02

credit-g 0.84±0.02 0.64±0.01 0.59±0.02 0.38 ± 0.01

diabetes 0.81±0.01 0.64±0.01 0.67±0.02 0.35 ± 0.01

heart-statlog 0.76±0.03 0.46±0.01 0.32±0.04 0.14 ± 0.04

hepatitis 0.46±0.06 0.51±0.03 0.29±0.03 0.29 ± 0.04

ionosphere 0.42±0.03 0.36±0.04 0.22±0.02 0.07 ± 0.05

kr-vs-kp 0.62±0.02 0.46±0.02 0.29±0.01 0.26 ± 0.01

labor 0.65±0.07 0.16±0.13 0.36±0.08 −0.09 ± 0.17

mushroom 0.23±0.02 −0.08±0.06 0.03 ± 0 0.22 ± 0.01

sick 0.13 ± 0 0.51±0.03 0.09 ± 0 0.28 ± 0.05

sonar 0.93±0.02 0.68±0.02 0.77±0.04 0.41 ± 0.03

vote 0.34±0.04 0.55±0.04 0.17±0.01 0.39 ± 0.05

Fig. 8 Bounded-abstention
model: Relative cost
improvement and the absolute
cost for ionosphere.arff, a
representative dataset
(◦: CR = 0.5, �: CR = 1,
♦: CR = 2, •: cautious classifier
for CR = 1)
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Table 4 Relative cost improvement (f ) as a function of a fraction of nonclassified instances (kmax) for a
bounded-abstention model (CR = 1, kmax = {0.1,0.5})
Dataset kmax = 0.1 kmax = 0.5

k f k f

breast-cancer 0.1 ± 0.01 0.07 ± 0.01 0.53 ± 0.01 0.3 ± 0.07

breast-w 0.12 ± 0.02 0.58 ± 0.06 0.53 ± 0.04 1 ± 0

colic 0.09 ± 0.01 0.14 ± 0.02 0.48 ± 0.01 0.33 ± 0.03

credit-a 0.1 ± 0 0.17 ± 0.02 0.5 ± 0.01 0.55 ± 0.03

credit-g 0.1 ± 0 0.11 ± 0.01 0.51 ± 0.01 0.37 ± 0.07

diabetes 0.11 ± 0.01 0.11 ± 0.02 0.51 ± 0.01 0.41 ± 0.03

heart-statlog 0.11 ± 0.01 0.19 ± 0.03 0.56 ± 0.02 0.58 ± 0.09

hepatitis 0.13 ± 0.01 0.33 ± 0.04 0.53 ± 0.03 0.71 ± 0.07

ionosphere 0.1 ± 0.01 0.26 ± 0.03 0.5 ± 0.01 0.74 ± 0.04

kr-vs-kp 0.1 ± 0 0.25 ± 0.01 0.56 ± 0.02 0.89 ± 0.02

labor 0.12 ± 0.04 0.37 ± 0.15 0.58 ± 0.05 0.77 ± 0.19

mushroom 0.09 ± 0.02 0.71 ± 0.01 0.42 ± 0.02 1 ± 0

sick 0.11 ± 0 0.7 ± 0.01 0.47 ± 0 0.85 ± 0.02

sonar 0.13 ± 0.01 0.12 ± 0.03 0.56 ± 0.02 0.6 ± 0.05

vote 0.1 ± 0.01 0.46 ± 0.04 0.55 ± 0.02 0.96 ± 0.03

the relative cost improvement as a function of the fraction of instances handled by opera-
tor k. The bottom panel shows the same data with the absolute values of rcB. The dashed
arrows indicate the difference between an optimal binary classifier and an abstaining one.

In general, the higher the values of k, the higher the cost improvement; for eight data-
sets, namely breast-cancer, credit-a, credit-g, diabetes, heart-statlog,
ionosphere, kr-vs-kp and sonar, we can observe an almost linear dependence be-
tween these variables. For four datasets (breast-w, mushroom, sick, vote) even as low
an abstention as 0.1 can lead to a reduction of the misclassification cost by half (and of as
much as 70% for two datasets).

Finally, as the third part of the evaluation we compared the performance of abstaining
classifiers and cautious classifiers. Recall from Sect. 6 that although cautious classifiers
do not use the ROC, we used it to find the threshold w to obtain the desired abstention
window k. Table 5 shows that cautious classifiers are on average less stable than abstaining
classifiers and yield smaller cost improvements, especially for lower values of k. In fact,
cautious classifiers for k = 0.1 seem to perform worse than a binary classifier (negative cost
improvement). For larger values of k both classifiers perform comparably. Quantitatively,
comparing the cost improvement for 15 datasets and 4 fractions k (with 10 runs each) we
got 31 significant wins, 24 ties and 5 losses.

6.4.2 Bounded-improvement model

This model is in fact the inverse of the preceding model, and thus we expected very similar
results. The results for a representative dataset are shown in Fig. 9, and tabular results for all
datasets for one cost ratio and two sample fmin are shown in Table 6. The X-axes correspond
to the relative cost improvement (top panel) and the misclassification cost (bottom panel).
The Y-axes show the actual fraction of nonclassified instances. The top panel shows the
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Table 5 Comparison of abstaining and cautious classifiers in a bounded-abstention model (all datasets,
CR = 1)

Abstention ratio kmax Abstaining classifiers Cautious classifiers

k f k f

0.1 0.11 ± 0.00 0.31 ± 0.02 0.16 ± 0.01 −0.32 ± 0.13

0.2 0.22 ± 0.00 0.47 ± 0.03 0.26 ± 0.01 0.13 ± 0.10

0.3 0.33 ± 0.00 0.53 ± 0.03 0.37 ± 0.01 0.48 ± 0.03

0.5 0.52 ± 0.01 0.68 ± 0.03 0.55 ± 0.01 0.68 ± 0.02

Fig. 9 Bounded-improvement
model: Fraction of nonclassified
instances for ionosphere.arff,
a representative dataset
(◦: CR = 0.5, �: CR = 1,
♦: CR = 2, •: cautious classifier
for CR = 1)

fraction of instances handled by the operator as a function of the actual misclassification
cost. It is interesting to compare the actual relative cost improvement f and the assumed
one (0.1, 0.2, 0.3, 0.5), as the former is only indirectly determined through two thresholds
set based on the performance on the training set. The mean of the relative difference of f

(�f/f ) for all runs is 0.31 ± 0.15. The positive value of the mean shows that, on average,
the system has a lower misclassification cost than required. Note that this value is higher
than the corresponding difference in the preceding model. We conclude that this model is
less stable and more sensitive to parameter changes than the preceding one. The right panel
shows the same data with the X-axis giving absolute cost values. In addition the horizontal
arrows (dashed) indicate the absolute values for the optimal binary classifier and the desired
cost at the head of an arrow.
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Table 6 Fraction of nonclassified instances k as a function of a relative cost improvement (fmin) for a
bounded-improvement model (CR = 1, fmin = {0.1,0.5})

Dataset fmin = 0.1 fmin = 0.5

f k f k

breast-cancer 0.28 ± 0.25 0.67 ± 0.15 0.66 ± 0.24 0.93 ± 0.05

breast-w 0.15 ± 0.04 0.03 ± 0.03 0.48 ± 0.06 0.11 ± 0.03

colic 0.09 ± 0.05 0.12 ± 0.09 0.43 ± 0.11 0.86 ± 0.03

credit-a 0.13 ± 0.02 0.06 ± 0.01 0.52 ± 0.04 0.46 ± 0.02

credit-g 0.14 ± 0.05 0.39 ± 0.12 0.46 ± 0.09 0.78 ± 0.08

diabetes 0.09 ± 0.03 0.39 ± 0.17 −0.2 ± 0.91 0.89 ± 0.06

heart-statlog 0.13 ± 0.04 0.07 ± 0 0.51 ± 0.13 0.62 ± 0.08

hepatitis 0.12 ± 0.1 0.22 ± 0.19 0.54 ± 0.08 0.49 ± 0.18

ionosphere 0.1 ± 0.03 0.03 ± 0.01 0.46 ± 0.06 0.31 ± 0.02

kr-vs-kp 0.1 ± 0.01 0.05 ± 0.01 0.5 ± 0.01 0.24 ± 0.01

labor 0.36 ± 0.19 0.23 ± 0.16 0.42 ± 0.44 0.59 ± 0.16

mushroom 0.07 ± 0.01 0 ± 0 0.48 ± 0.02 0.04 ± 0.01

sick 0.27 ± 0.05 0.04 ± 0.01 0.56 ± 0.03 0.07 ± 0

sonar 0.15 ± 0.06 0.19 ± 0.01 0.52 ± 0.13 0.74 ± 0.05

vote 0.13 ± 0.04 0.03 ± 0.01 0.53 ± 0.02 0.13 ± 0.02

Table 7 Comparison of abstaining and cautious classifiers in a bounded-improvement model (all datasets,
CR = 1)

Cost improvement fmin Abstaining classifiers Cautious classifiers

f k f k

0.1 0.17 ± 0.02 0.16 ± 0.02 −0.02 ± 0.12 0.27 ± 0.01

0.2 0.27 ± 0.02 0.24 ± 0.02 0.10 ± 0.12 0.34 ± 0.01

0.3 0.36 ± 0.02 0.31 ± 0.03 0.23 ± 0.11 0.40 ± 0.02

0.5 0.49 ± 0.03 0.45 ± 0.03 0.47 ± 0.06 0.54 ± 0.02

Similarly, to the preceding model, the four datasets can yield a 50% cost reduction while
abstaining for approximately 10% of the instances. On the other hand, there are datasets
in which even a 10% cost reduction is done at the cost of large abstention windows (e.g.,
67% for breast-cancer). Considering much larger actual relative cost improvements
than the desired one, we conclude that this model is more difficult to tune than the bounded-
improvement model.

Finally, the comparison with cautious classifiers is shown in Table 7. Cautious classifiers
are less stable and for comparable cost improvements f require higher abstentions. Quanti-
tatively, comparing the abstention ratios for the corresponding cost improvements we obtain
31 significant wins 16 ties and 13 losses for all datasets.

7 Related work

Classifiers with reject rules were first investigated by Chow (1970) and further developed by
Tortorella (2000, 2004) in the area of pattern recognition. The latter uses ROC analysis in
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a model corresponding to our cost-based model with a different cost matrix (c13 = c23). In
Sect. 4.1 we proved that these models are equivalent and thus can be used interchangeably.
Furthermore, we show conditions under which a nontrivial abstaining classifier exists and
also propose two bounded models with different optimization criteria.

Dubuisson and Masson (1996) and more recently Muzzolini et al. (1998) analyze statisti-
cal classifiers with a reject option in a multi-class classification setting. The authors propose
two types of rejections: (i) ambiguity reject, in which an instance is classified to two or
more classes with near equal probability and (ii) distance reject, in which the instance has
no similarity to each of the prototypical implementation of any of the classes. Given the
classification error tolerance (the probability of incorrect classification) ε and its confidence
error Cd the Inck method (Muzzolini et al. 1998) can select the ambiguity reject threshold
Ca such that the probability of ambiguity reject is minimal. This setting is the most similar to
our bounded-improvement classifier model, however there is a number of differences: First,
both papers make strong assumptions w.r.t. underlying classifiers and feature distributions,
whereas our method can use almost arbitrary classifiers. Second, the methods are more ap-
propriate for multi-class classifiers (Tortorella 2004) and do not take misclassification costs
into account. Finally, statistical classifiers with reject rules require a feature selection algo-
rithm and expensive integration over the pattern space to determine required probabilities.
In contrast, building of the ROC curve is simple and our selection algorithms run linearly
with the number of instances.

As already discussed in Sect. 6, cautious classifiers (Ferri and Hernández-Orallo 2004)
are more general than ours as they support multi-class classification problems and do not
use ROC curves. On the other hand, the interpretation of the abstention window w and class
bias k is less intuitive and, in many cases need additional calibration (like the one performed
in our evaluation). Another limitation is that cautious classifiers require calibrated probabil-
ities from the output classifier, whereas abstaining classifiers need a scoring classifier (or in
general a classifier for which condition (4) holds).

Delegating classifiers (Ferri et al. 2004) use a cascading model, in which classifiers at
every level classify only a certain percentage of the instances. In this way every classifier,
except for the last one, is a cautious classifier. The authors present their results with an
iterative system, using up to n − 1 cautious classifiers.

Flach and Wu (2005) use a single ROC curve with identical condition (4) to “repair
concavities” in the ROC curve increasing the AUC and improving the classification perfor-
mance. As the method effectively uses a simple operation on scores assigned by the under-
lying classifier, condition (4) also holds for the “repaired” curve. This means that abstaining
classifiers can be cascaded with the above method, likely improving the performance of
abstaining classifiers.

Pazzani et al. (1994) showed how different learning algorithms can be modified to in-
crease accuracy at the cost of not classifying some of the instances, thus creating an abstain-
ing classifier. However, this approach does not select the optimal classifier, is cost-insensitive
and specific to the algorithms used.

Confirmation rule sets (Gamberger and Lavrač 2000) are another example of classifiers
that may abstain from classification. They use a special set of highly specific classification
rules. The results of the classification (and whether the classifier makes the classification at
all) depend on the number of rules that fired. Similarly to (Pazzani et al. 1994), the authors
do not maximize the accuracy. Moreover, confirmation rule sets are specific to the learning
algorithm used.

Active learning (Lewis and Catlett 1994) minimizes the number of labeled instances
by iteratively selecting a few instances to be labeled. This selection process uses an implicit
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abstaining classifier, where it selects instances that are lying closest to the decision boundary,
however no cost-based optimization is performed.

8 Summary and conclusions

In this paper we proposed a method to build a ROC-optimal abstaining classifier using ROC
analysis. Such a classifier minimizes the misclassification cost on instances used to build the
ROC curve. Moreover, it has a low misclassification cost on other datasets from the same
population as the one used to build the curve.

We defined the misclassification cost in three models: A cost-based, a bounded-
abstention and a bounded-improvement model, which are relevant for numerous practical
applications. All the models use only the base classifier and an ROC curve and do not re-
quire that the underlying has classifier calibrated output probabilities, which is not always
trivial (Cohen and Goldszmidt 2004; Zadrozny and Elkan 2001).

In the first model, we used a 2 × 3 cost matrix, showed the conditions under which
the abstaining classifier has a nontrivial minimum cost, and presented a simple analytical
solution. In the bounded model, we showed how to build the abstaining classifier assuming
that no more than a fraction kmax of instances is classified as the third class. Finally, in
the third model, we showed how to build an abstaining classifier having a misclassification
cost that is no greater than a user-defined value. In the latter two models, we presented an
efficient algorithm for finding the optimal classifier. We presented an implementation and
verified our method in all three models on a variety of UCI datasets.

In our experimental validation we confirmed that the generalization of ROC is stable
with the algorithms used and that the obtained improvements agree predictions based on the
curve. Analyzing the relationship between abstention window and the cost improvement, we
observed that in many cases even small abstentions results in significant costs improvements.
This makes it a promising method for real-life applications. Finally, in comparison with
cautious classifiers in the bounded models our method proved to perform better in most
cases and be more stable.

The models presented in this paper, in particular bounded models, can be easily used in a
variety of practical applications, due to their easy interpretation and low complexity of algo-
rithms used. Another desirable property of abstaining classifiers is that reducing the overall
number of misclassifications (even in asymmetrical classification problems) and introducing
abstentions makes it easier for the human domain experts to review the classification. As ar-
gued by Axelsson (1999) with the high number of false positives, the human domain expert
tends to generalize an classify everything as “negative”. Abstaining classifiers reduce both
false positives and false negatives, allowing the human domain expert focus on instances se-
lected for abstention. This makes abstaining classifiers particularly appealing for problems
with highly skewed class distributions and misclassification costs such as intrusion detection
(Pietraszek 2007).

In this paper we showed how to select an optimal classifier given a scoring classifier
R, or in the general case, given two classifiers Cα and Cβ selected from a ROC curve with
a condition (4) met. This setting can be extended to a case, in which we have a set of
scoring classifiers and want to find an abstaining classifier for this set. One way of doing it
would be to construct a hybrid ROC for this set of rankers and its ROCCH, however this
could violate (4) and led to a sub-optimal selection. Another way is to use extended ROC
analysis to create 3D surfaces fp × tp × k and discard some parts of ROC surfaces. If the
number of potential surfaces to chose from is high, such a strategy could be more efficient.
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This, as well as analyzing the performance of the base algorithm for hybrid ROCCHs and
applying the algorithm for multi-class classification problems are interesting areas for future
research.

Acknowledgements I thank Luc De Raedt for discussions and his comments on this manuscript. Thanks
also go to Johannes Fürnkranz and the anonymous reviewers for their useful comments.
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