
Mach Learn (2006) 64:183–208

DOI 10.1007/s10994-006-7733-9

Randomised restarted search in ILP

Filip Železný · Ashwin Srinivasan · C. David Page Jr.

Received: 10 April 2005 / Revised: 14 November 2005 / Accepted: 11 February 2006 / Published online:
8 May 2006
Springer Science + Business Media, LLC 2006

Abstract Recent statistical performance studies of search algorithms in difficult combina-

torial problems have demonstrated the benefits of randomising and restarting the search pro-

cedure. Specifically, it has been found that if the search cost distribution of the non-restarted

randomised search exhibits a slower-than-exponential decay (that is, a “heavy tail”), restarts

can reduce the search cost expectation. We report on an empirical study of randomised

restarted search in ILP. Our experiments conducted on a high-performance distributed com-

puting platform provide an extensive statistical performance sample of five search algorithms

operating on two principally different classes of ILP problems, one represented by an artifi-

cially generated graph problem and the other by three traditional classification benchmarks

(mutagenicity, carcinogenicity, finite element mesh design). The sample allows us to (1)

estimate the conditional expected value of the search cost (measured by the total number of

clauses explored) given the minimum clause score required and a “cutoff” value (the number

of clauses examined before the search is restarted), (2) estimate the conditional expected

clause score given the cutoff value and the invested search cost, and (3) compare the perfor-

mance of randomised restarted search strategies to a deterministic non-restarted search. Our

findings indicate striking similarities across the five search algorithms and the four domains,

in terms of the basic trends of both the statistics (1) and (2). Also, we observe that the cutoff

value is critical for the performance of the search algorithm, and using its optimal value

in a randomised restarted search may decrease the mean search cost (by several orders of

Editors: Rui Camacho

F. Železný (�)
Czech Technical University, Prague, Czech Republic
e-mail: zelezny@fel.cvut.cz

A. Srinivasan
IBM India Research Laboratory, New Delhi, India
e-mail: ashwin.srinivasan@in.ibm.com

C. D. Page Jr.
University of Wisconsin, Madison, USA
e-mail: page@biostat.wisc.edu

Springer

184 Mach Learn (2006) 64:183–208

magnitude) or increase the mean achieved score significantly with respect to that obtained

with a deterministic non-restarted search.

Keywords Inductive logic programming . Randomized search . Monte carlo study

1. Introduction

Computer programs now collectively termed “Inductive Logic Programming” (ILP) systems

use domain-specific background information and pre-classified sample data to construct a

set of first-order rules for predicting the classification labels of new data. Despite consid-

erable diversity in the applications of ILP, (see Džeroski, 2001 for an overview) successful

implementations have been relatively uniform, namely, engines that repeatedly examine sets

of candidate rules to find the “best” ones.

Here we view ILP a discrete optimization problem where one maximizes, by means of

search, an objective (scoring) function measuring the agreement of a rule with the sample

data. The choice of search method can critically affect the performance of an ILP system on

non-trivial problems. Enumerative search methods (such as the optimal branch-and-bound

algorithm), despite their attractive simplicity, are not robust in the sense of achieving a

balance between efficiency and efficacy across different problems (Goldberg, 1989). For many

practical problems that engender very large spaces of discrete elements, enumerative search,

however clever, becomes intractable. Up to special cases, where the organization of the search

space together with the character of the objective function allow for efficient deterministic

optimization, we are forced to take seriously Trefethen’s Maxim No. 30 (Trefethen, 1998):

“If the state space is huge, the only reasonable way to explore it is at random.”

Research into time-critical reasoning (Zilberstein, 1998) led to the formalization of “any-

time” algorithms that abandon optimality in favour of “good” solutions achieved using

bounded resources. This goal was also followed by recent developments of efficient auto-

matic model-checkers based on novel randomised search methods. Prominent examples are

the GSAT and WalkSat methods checking the satisfiability of propositional formulae (Selman,

Levesque & Mitchell, 1992), as randomised alternatives to the (enumerative) Davis-Putnam

solver. In conjunction with this, there is now a vigorous line of research that investigates

properties of large search spaces corresponding to difficult combinatorial problems (Gomes

& Selman, 1999). Some intriguing properties have been identified, such as the high irregular-

ity of the search spaces and “heavy-tailedness” of the cost distributions of search algorithms

used. Such properties manifest themselves in a large collection of real-world problems and

have been the inspiration for the design of randomised restarted search procedures. The basic

idea of these procedures is simple: if each search trial has a small, but fixed probability of

finding a good clause, then the probability of finding a good clause in a sequence of such trials

can be made quite high very rapidly. Put differently, the cost distribution from the sequence

has an exponential decay.

Previously, the heavy-tailed character of search cost distributions was reported in the

context of the first-order rule search conducted in ILP (Železný, Srinivasan & Page, 2003).

There, a simple adaptation of a method known as Randomised Rapid Restarts (Gomes et al.,

2000) was shown to result in a considerable reduction of clause search cost. Here, we extend

that investigation as follows:

1. We adapt a family of randomised restarted search strategies into an ILP system and present

all of them as instantiations of a general algorithm.

Springer

Mach Learn (2006) 64:183–208 185

2. We design and conduct an extensive Monte Carlo study that allows us to model the

statistical relationships between the search cost, the score of the best clause and the number

of clauses explored in each restart (called the “cutoff” value in the search algorithm).

Our experiments are conducted with data drawn from four domains, falling into two,

principally different classes. The first class is represented by an artificially generated, noise-

free, graph classification problem, in which the target theory can be modelled by a single, long

clause (10 literals in the body). The second class consists of three traditional ILP benchmarks:

Mutagenesis, Carcinogenesis and Finite Element Mesh Design. In these problems, good

theories typically consist of multiple, relatively short clauses (typically up to 5 body literals).

Although the natures of the two classes are quite different to each other, the main statistical

findings relate equally to all the four domains.

Previous work on stochastic search in ILP appeared both in early ILP research (Kovačič

et al., 1992) as well as in the recent paper (Serrurier, Prade & Richard, 2004). Unlike the

present study, the mentioned approaches were concerned with adaptations of the simulated

annealing optimization heuristic. Promising results were reported in learning problems in-

cluding the domain of Finite Element Mesh Design (Pompe, Kovačič & Kononenko, 1993)

as well as a musical domain (Pompe, Kononenko & Makše, 1996) (learning to compose

two-voice counterpoint).

The paper is organised as follows. In the next section we describe the clause search

strategies considered and the performance metric used to evaluate the strategies. Details

of the Monte Carlo study of these strategies and the dependence of their performance on

some important parameters is in Section 3, where we also discuss our results and formulate

questions requiring further investigation. Section 4 concludes the paper.

2. Search

We are principally concerned with performing a search in the clause subsumption lattice

bounded at one end by a finite most specific (“bottom”) clause derived using definitions in

the background knowledge, a depth-bounded mode language, and a single positive example

(the “saturant”: see (Muggleton, 1995) for more details on the construction of this clause).

For simplicity, we will assume the specification of the depth-bounded mode language to be

part of the background knowledge.

2.1. Strategies

The five search strategies that we investigate in this paper are: (1) A deterministic general-

to-specific search (DTD); (2) A randomised general-to-specific search (RTD); (3) A rapid

random restart search (RRR); (4) A randomised search using the GSAT algorithm (GSAT);

and (5) A randomised search using the WalkSAT algorithm (WSAT). All five strategies

can be viewed as variations of a general search procedure shown in Fig. 1. Differences

between the individual strategies arise from the implementation of the commands in bold-

face (summarised in Table 1). All strategies include restarts (if γ is a finite value). Restarting

DTD results in simply repeating the search.

As further clarification of the entries in Table 1, we note the following:

Saturant selection. A deterministic implementation (‘D’) of the first Select command (Step

3 in Fig. 1) results in the first positive example in the presented example sequence being

Springer

186 Mach Learn (2006) 64:183–208

Fig. 1 A general skeleton of a search procedure—possibly randomised and/or restarted—in the clause sub-
sumption lattice bounded by the clause ⊥(esat , B). This clause is derived using the saturant esat and the back-
ground knowledge B. In Step 4, �θ denotes Plotkin’s (theta) subsumption between a pair of Horn clauses.
Individual strategies considered in this paper are obtained by different implementations of the bold-typed
commands. Clauses are scored by a finite evaluation function eval. Although in the formal notation in Step 7
the function appears twice, it is assumed that the ‘max’ and ‘arg max’ operators are computed simultaneously.
In Step 11 Prune returns all elements of Active that cannot possibly be refined to have a better score than S∗. If
the number of refinements of the current clause is greater than (γ − N), Refine returns only the first (γ − N)
computed refinements, to guarantee that no more than γ clauses are evaluated between restarts. The search is
terminated when score ssu f is reached or call clauses have been evaluated, and restarted (from Step 3) when
γ clauses have been evaluated since the last restart. If all Select commands are deterministic then restarting
(setting γ < call) results in mere repetitions of the identical search

chosen as the saturant.1 A randomised implementation (‘R’) results in all examples having

a uniform probability of selection.

Start clause selection. A deterministic implementation (‘D’) of the second Select command

(Step 4), results in the search commencing with the the most general definite clause

allowable. A randomised implementation (‘R’) results in a clause selected with uniform

probability from the set of allowable clauses (see Appendix A for more details on how

this is achieved).

Update active list. A greedy implemention (‘G’) of the UpdateActiveList function (Step

10) results in the active list containing only the newly explored nodes (elements of the Ref).

1 To avoid artifacts arising from any particular example ordering, in Section 3 we will measure the average
performance of the DTD search variant, taking successively each positive example as the saturant.

Springer

Mach Learn (2006) 64:183–208 187

Table 1 Implementation differences among the different search strategies.
The entries are as follows: ‘D’ stands for ‘deterministic’, ‘R’ for ‘randomised’,
‘G’ for greedy, ‘C’ for complete, ‘Y’ to denote that pruning occurs, ‘N’ that
pruning does not occur, ‘U’ for uni-directional refinement (specialisation only)
and ‘B’ for bi-directional refinement (specialisation and generalisation). See
text for more details on these entries

Strategy →
↓ Step DTD RTD RRR GSAT WSAT

Saturant selection (Step 3) D R R R R

Start clause selection (Step 4) D D R R R

Update active list (Step 10) C C C G G

Next clause selection (13) D R D D R

Pruning (Step 11) Y Y N N N

Refinement (Step 14) U U B B B

A complete implementation (‘C’) results in Active containing all elements (including

elements of Ref).

Next clause selection. A deterministic implementation (‘D’) of the last Select command

(Step 13) results in the clause with the highest score being chosen from the Active list

(with ties being decided by the appearance order of clauses). A randomised implementation

(‘R’) results in a random choice governed by the following prescription:

– With probability 0.5, select the clause with the highest score in the Active list.

– Otherwise, select a random clause in the Active list with probability proportional to its

score.

Pruning. ‘Y’ denotes that pruning is performed, which results in a possibly non-empty set

being returned by the Prune command (Step 11). A ‘N’ implementation means that an

empty set is returned.

Refinement. The ‘U’ implementation of Refine command (Step 14) results in refinements

that are guaranteed to be specialisations of the clause being refined. The ‘B’ implementation

produces the (most general) specializations and (most specific) generalizations of the

refined clause.

By means of choosing between a deterministic and a stochastic implementation of the respec-

tive Select directives in line 4 (starting clause selection) and 13 (next clause selection), the

ILP algorithm simulates different search strategies suggested in previous general studies on

restarted search. The remaining Select command, in line 3, determining what bottom clause

is used to constrain the search space, is however special to ILP. We decided for a randomized

version of the selection in all the restarted strategies in order to increase the variance between

individual tries (a try is the sequence of steps 4–14 in Fig. 1). The decision will be formally

justified in the following section.

2.2. Evaluation

Informally, given some clause evaluation function, for each search strategy we ask two

questions. Firstly,

How many clauses must be searched to achieve a desired clause score?

Springer

188 Mach Learn (2006) 64:183–208

Here, we treat the number of search space nodes (clauses) explored as representative of the

‘search cost’ and quantify this cost-score trade-off by the expected value of the smallest cost

needed to achieve or exceed a desired score ssu f .2 Formally, we assume that call := ∞ and

will investigate the statistical relationship between the random variables St, ssu f , γ, C which

respectively denote the search strategy, the desired score, the number of clauses searched on

a single restart, and the smallest cost needed to achieve or exceed the desired score. For

each triple St, ssu f , γ , we wish to estimate the conditional cumulative distribution func-

tion F(C |St, ssu f , γ) from which we will calculate the expectation E[C |St, ssu f , γ]. For

simplicity, we will denote this expectation as

C̄(St, ssu f , γ) (1)

As we will analyze each strategy individually, we will omit the St argument as a further

notational simplification whenever its instantiation is clear from the context.

Given this evaluation measure, we can formally justify our choice of using a random

bottom clause at each restart of a restarted strategy, by means of the following theorem,

proved in Appendix C.

Theorem 1. Let St1 and St2 be two instances of the algorithm search in Fig. 1, running on
the same inputs and differing only in that the Select command on line 3 is

– deterministic for St1, that is, Select yields the same saturant e+ ∈ E+ in all tries (e+ has
been drawn from E+ with uniform probability prior to executing St1).

– stochastic for St2, that is, in each try Select draws e+ randomly with uniform probability
from E+.

Then C̄(St1, ssu f , γ) ≥ C̄(St2, ssu f , γ) for any ssu f , γ .

Our second informal question is

What clause score is achieved given an allocated search cost?

Here we deal with the random variables St, call , γ, S denoting respectively the search strategy,

the allocated cost, the number of clauses searched on a single restart, and the highest score

achieved during the search. Analogically to the previous question of interest, we assume that

ssuf := −∞ and will estimate the conditional expectation of S, denoted as

S(St, call , γ) (2)

where we will again omit the St parameter whenever focusing on a single strategy.

Although there is an obvious Bayesian relationship3 between C and S, there is no immedi-

ate relationship between their expectations. In Section 3, we will investigate this relationship

by considering another statistic C∗(ssu f , γ) defined as the smallest cost whose investment

results in achieving the expected score ssu f , i.e. C∗(ssu f , γ) = min{call |S̄(call , γ) ≥ ssu f }.
Then we will give sufficient conditions under which C∗(ssu f , γ) ≤ C̄(ssu f , γ).

The following points are evident, but worth restating:

2 At any stage of the search, the score value maintains the highest clause evaluation so far obtained in the
search. In other words, within a particular search execution, the score value is a non-decreasing function of
the cost (i.e. the number of clauses searched).
3 Namely P(C ≤ call |S ≥ ssu f) = P(S ≥ ssu f |C ≤ call)P(C ≤ call)/P(S ≥ ssu f).

Springer

Mach Learn (2006) 64:183–208 189

1. Let us assume that strategy St1 is found to achieve, on average, a desired score ssu f signif-

icantly faster than strategy St2. Strictly speaking, even if the clauses added successively to

a constructed theory do not reference each other, we cannot conclude that a set-covering

algorithm employing St1 will be more efficient than that using St2. This is because in the

cover algorithm, the individual clause search procedures are not statistically independent

events (since one influences the following by removing a subset of the positive examples).4

2. We are only concerned here with the search cost in finding a clause with a given score on the

training set. This does not, of course, translate to any statement about the performance of

the clause found on new (test) data. It is certainly interesting and feasible to also investigate

whether and how the generalization rate is statistically dependent on the procedure used to

arrive at an acceptable clause, given a required score. We will discuss this question further

in Section 3.4, however, its full empirical assessment is outside the scope of this study.

3. A search cost of immediate interest is the processor time occupied by a strategy. By

adopting instead to measure the number of clauses searched, we are unable to quantify

precisely the exact time taken by each strategy. Besides the obvious hardware dependence,

research elsewhere (Giordana & Saitta, 2000) has shown that the cost of evaluating a clause

can vary significantly depending on the nature of the problem addressed and formulation of

the background knowledge. In this study we are concerned with obtaining some domain-

independent insight into the five strategies.

3. Empirical evaluation

3.1. Materials

3.1.1. Data

Experiments were conducted using four ILP benchmarks. The first data set describes a set of

40 directed graphs. Every node in a graph is coloured to red or black. Each graph is labelled

positive if and only if it contains a specific (coloured) subgraph which can be represented by

a predefined (target) clause of 10 body literals. Besides the target clause, there exist multiple

other clauses (subgraphs) in the search space cleanly separating the positive examples from

the negatives. An example clause is shown below:

positive(A) :- a(A,B,B), a(A,C,B), a(A,C,D),
a(A,E,F), a(A,D,G), a(A,H,I),
b(A,C), b(A,H), r(A,J), r(A,H).

Background knowledge facts a(g,v1,v2) state the existence of an edge from vertex v1 to

vertex v2 in graph g, and b(g,v) (r(g,v)) denote that vertex v in graph g is coloured black

(red).

The other three problems—Mutagenesis, Carcinogenesis and Finite Element Mesh

Design—have been discussed extensively in ILP literature. As for Mutagenesis, we use

here one of the datasets described in our previous publication, namely the data pertain-

4 The conclusion would however be correct for many other ruleset induction algorithms where the events are
independent, such as CN2-like unordered rulesets, various other voting rulesets etc. In fact, even in the case
of cover search we do not see a reason why the ranking should be different for multiple-rule learning than
that estimated for single-rule learning, in other words, why the removal of a subset of positives should have a
(un)favorable effect on any particular search method.

Springer

190 Mach Learn (2006) 64:183–208

Table 2 Differences between the experimental data sets

Property Graphs Mutagenesis

Origin Artificially generated Biochemical literature

Noise No Yes

‘Target’ theory Yes No

‘Good’ theory One long clause (10 lits) Multiple clauses

pos/neg examples 20/20 125/63

Property Carcinogenesis Fnt Elm Mesh Design

Origin Biochemical literature Engineering Designs

Noise Yes No

‘Target’ theory No No

‘Good’ theory Multiple clauses Multiple clauses

pos/neg examples 182/148 223/242

ing to 188 “regression-friendly” compounds (Srinivasan et al.,1996). Table II describes

the principal differences between the data sets. The graph and mesh data sets are avail-

able on request to the first author. The software for the graph data generation can be

obtained from the third author. The mutagenesis and carcinogenesis dataset can be ob-

tained via anonymous ftp to ftp.comlab.ox.ac.uk in the directories pub/Packages/
ILP/Datasets/mutagenesis/aleph.

3.1.2. Algorithms and machines

All experiments use the ILP program Aleph. Aleph is available at: http://www.comlab.
ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.pl. Additional code imple-

mented to Aleph for purposes of the empirical data collection can be obtained from the first

author. The computation was conducted on the Condor computer cluster at the University of

Wisconsin in Madison (Mutagenesis and Graphs) and on an SGI Altix 3700 supercomputer

at the Czech Technical University in Prague (Carcinogenesis and Mesh). All subsequent

statistical analysis of the collected data was done by means of the R statistical package. The

R procedures developed for this purpose can be obtained from the first author.

3.2. Method

Recall that we are interested in estimating the conditional expected values C̄(ssu f , γ) and

S̄(call , γ) for each of the five strategies in Section 2.1. A straightforward way to collect the

required statistical sample needed to estimate the respective expected value for a given search

strategy would thus be to run a number of instances of the algorithm in Fig. 1, each with

a different setting of the sufficient score (cost) parameter ssu f (call) and the restart cutoff

parameter γ , each time recording the resulting value of C (S). This approach would however

perform a lot of redundant computation. Instead we adopt the following method:

For each problem (Graphs, Mutagenesis, Carcinogenesis, Mesh)

For each randomized strategy (RTD, RRR, GSAT, WSAT)

Springer

Mach Learn (2006) 64:183–208 191

1. γ = ∞, call = cmax (some large value: see notes below), ssu f = smax (the maximum

possible clause score: see notes below)

2. for i = 1 to #Runs

a) Call search(B, ∅, E, ssu f , call , γ) (see Fig. 1).

b) Record the ‘performance’ vector ci = [ci (0), . . . , ci (smaxi)] where ci (s) is the

number of clauses evaluated before achieving (or exceeding) score s for the first

time and smaxi is the maximum score achieved on run i .

3. Compute the expected cost from the performance vectors recorded.

The following details are relevant:

1. The method assumes a finite, integer-valued scoring function. In the experiments we

evaluate the score of a clause D as P(D) − N (D) where P(D) and N (D) are the

numbers of positive and negative examples ‘covered’ by D. That is, given positive

and negative examples E+, E− let E p ⊆ E+ s.t. B ∪ {D} |= E p and En ⊆ E− s.t.

B ∪ {D} |= En . Then P(D) = |E p| and N (D) = |En|. Rejecting all clauses for which

P(D) < N (D), the range of the score is 0 . . . P where P = |E+|. Thus in Step 1 smax =
P .

2. In these experiments cmax was set to 200,000 and #Runs was set to 6,000. Thus, the

empirical sample after execution of Step 2 consists of 6,000 performance vectors. Each

performance vector has at most P = |E+| elements (fewer elements are possible if score

P was not achieved on a run).

3. Step 3 requires the computation of expectations C̄(ssuf , γ) for any ssuf , γ and S̄(call, γ)

for any call, γ . In Appendix B we describe how the sample of 6,000 performance vectors

can be used to obtain an unbiased estimate of these expectations.

The method above does not refer to the non-restarted strategy DTD. DTD is deterministic

and thus a single run (and corresponding single performance vector) should be sufficient

to describe its performance. However, unlike the other strategies, DTD does not select the

saturated example randomly, but it selects the first positive example for saturation. To avoid

artifacts arising from any particular example ordering, we obtain instead an average condi-

tional cost. That is, we thus perform Step 2a above P = |E+| times, each time selecting a

different saturant. This results in P performance vectors: Appendix B shows how these per-

formance vectors can be used to obtain a biased (lower bound) estimate of C̄(ssuf , γ = ∞)

for any ssuf and an unbiased estimate of S̄(call, γ = ∞) for any call.

3.3. Results

Figures 2–5 show diagrammatically for the randomized strategies (1) the estimated expected

number of evaluated clauses (‘expected cost value’) as a function of the pre-set sufficient

score and the restart cutoff parameter, and (2) the estimated expected score achieved as a

function of the pre-set number of evaluated clauses and the restart cutoff. The total number

of such generated diagrams is 16 (four domains, four randomized strategies), out of which

we are showing here the four ‘diagonal’ combinations (Graphs-RTD, Mutagenesis-GSAT,

Carcinogenesis-WSAT, Mesh-RRR). As for a given domain, cost and score expectations of

the four restarted strategies turned out roughly similar, this sample is sufficient to illustrate

the principal trends observed.

Springer

192 Mach Learn (2006) 64:183–208

]
6

3
5

5
6:

1[
)

el
acs

g
ol

(
ff

ot
uc

]
0

2
:

1
[

e
r

o
c

s

]
0

0
0

0
0

2
:

1
[

)
el

a
c

s
g

ol
(

t

s
o

c

]
6

3
5

5
6:

1[)
el

a
c

s
g

ol(ff
ot

u
c

]
0

0
0

0
0

2:
1[

)

el
a

c
s

g
ol

(
t

s
o

c

]
0

2
:

1
[

e
r

o
c

s

Fig. 2 RTD on Graphs: expected costs (upper diagram) and expected scores (lower diagram)

Besides the mesh corresponding to the given restarted randomized strategy, each plot

also shows the expected value for the non-restarted (thereby independent of the cut-

off parameter γ) DTD strategy, by an ‘isolated’ strip located at the maximal cutoff

coordinate.

Springer

Mach Learn (2006) 64:183–208 193

]
6

3
5

5
6:

1[
)

el
acs

g
ol

(
ff

ot
uc

]
0

7
:

1
[

e
r

o
c

s

]
0

0
0

0
0

2
:

1
[

)
el

a
c

s
g

ol
(

t

s
o

c

]
6

3
5

5
6:

1[)
el

a
c

s
g

ol(ff
ot

u
c

]
0

0
0

0
0

2:
1[

)

el
a

c
s

g
ol

(
t

s
o

c

]
0

7
:

1
[

e
r

o
c

s

Fig. 3 GSAT on Mutagenesis: expected costs (upper diagram) and expected scores (lower diagram)

In all the upper (expected-cost) diagrams, the highest plateau should be interpreted as:

“cmax or higher” as all points corresponding to an expected cost in the interval [cmax , ∞] are

plotted with the vertical (z) coordinate cmax .

Springer

194 Mach Learn (2006) 64:183–208

]
6

3
5

5
6:

1[
)

el
acs

g
ol

(
ff

ot
uc

]
0

2
:

1
[

e
r

o
c

s

]
0

0
0

0
0

2
:

1
[

)
el

a
c

s
g

ol
(

t

s
o

c

]
6

3
5

5
6:

1[)
el

a
c

s
g

ol(ff
ot

u
c

]
0

0
0

0
0

2:
1[

)

el
a

c
s

g
ol

(
t

s
o

c

]
0

2
:

1
[

e
r

o
c

s

Fig. 4 WSAT on Carcinogenesis: expected costs (upper diagram) and expected scores (lower diagram)

3.3.1. Basic trends

Broadly, there are remarkable similarities in the plots from different strategies for a given

problem domain, as well as from the same strategy for different problem domains. The

principal trends are these:

Springer

Mach Learn (2006) 64:183–208 195

]
6

3
5

5
6:

1[
)

el
acs

g
ol

(
ff

ot
uc

]
0

1
:

1
[

e
r

o
c

s

]
0

0
0

0
0

2
:

1
[

)
el

a
c

s
g

ol
(

t

s
o

c

]
6

3
5

5
6:

1[)
el

a
c

s
g

ol(ff
ot

u
c

]
0

0
0

0
0

2:
1[

)

el
a

c
s

g
ol

(
t

s
o

c

]
0

1
:

1
[

e
r

o
c

s

Fig. 5 RRR on Mesh: expected costs (upper diagram) and expected scores (lower diagram)

1. The setting of the cutoff parameter γ has a very strong impact on the expected cost.

A choice close to its optimal value may reduce the expected cost over DTD up to

1,000 times for mutagenesis. A significant impact is also observed on the expected

score.

Springer

196 Mach Learn (2006) 64:183–208

2. γ ≈ 100 is a ‘good’ choice for all the investigated strategies in all the domains. For RTD,

the value is close to the optimum for most of the ssu f settings. The other restarted strategies,

which unlike RTD begin the search in the interior of the search lattice, the optimum γ for

most ssu f is lower (slightly above 10 clauses explored), but also here a local minimum of

the expected cost at γ ≈ 100 frequently emerges.

3. γ < 10 appears to be uniformly a ‘bad’ choice for all randomised strategies.

4. For both domains, other than very high values of ssu f , the expected costs of the restarted

strategies are uniformly lower than that of the non-restarted strategy DTD for a wide range

of γ (100 ≤ γ ≤ 10, 000).

3.3.2. Relationships between the expected values

We now investigate the relationship between C̄(ssu f , γ) and S̄(call , γ). Consider the quantity

C∗(ssu f , γ) = min{call |S̄(call , γ) ≥ ssu f }. (3)

While C̄(ssu f , γ) captures the expected number of explored clauses needed to achieve score

ssu f , C∗(ssu f , γ) corresponds to the smallest number of clauses whose exploration results in

the expected achieved score of at least ssu f . We plot the empirically measured values of both

these quantities for the four considered method-domain combinations in Fig. 7. For clarity

of comparison, we show the two plots for a single cutoff γ = 1000, a value yielding good

performance of the restarted methods in terms of the cost or score expectation functions while

avoiding their extremal points (such as at γ ≈ 100). For all four method-domain combinations

and a vast majority of γ and ssu f values (although not all of them), we observe a systematic

score

cost

unlucky

lucky

f

f2

1

μ

υ

C

C*

x = ssuf

Fig. 6 Representing performance vectors through continuous functions; see text for details

Springer

Mach Learn (2006) 64:183–208 197

0 5 10 15

0
0

0
8

0
0

0
6

0
0

0
4

0
0

0
2

0

Graphs / RTD

score

t
s

o
c

hard

soft

0 10 20 30 40 50 60

0
0

0
1

0
0

8
0

0
6

0
0

4
0

0
2

0

Mutagenesis / GSAT

score

t
s

o
c

hard

soft

0 2 4 6 8 10

0
0

0
0

4
0

0
0

0
3

0
0

0
0

2
0

0
0

0
1

0

Carcinogenesis / WSAT

score

t
s

o
c

hard

soft

0 1 2 3 4 5

0
0

0
0

3
0

0
0

5
2

0
0

0
0

2
0

0
0

5
1

0
0

0
0

1
0

0
0

5
0

Mesh / RRR

score

t
s

o
c

hard

soft

Fig. 7 Values of C̄(ssu f , γ) (denoted as “hard”), and C∗(ssu f , γ) (denoted as “soft”), where γ = 1000. The
score axes are trimmed to values corresponding to finite costs

relationship

C̄(ssu f , γ) > C∗(ssu f , γ) (4)

We offer a tentative theoretical model providing at least a partial insight into this empirical

phenomenon. As the analysis does not depend on γ , we will omit this parameter here. For

simplicity of proving, we now view performance vectors as bijective continuous ‘performance

functions’ fi : R+ ∪ {0} → R+ ∪ {0}. Figure 6 illustrates the situation for a case where the

search has been executed twice, yielding two performance vectors, here represented by the

Springer

198 Mach Learn (2006) 64:183–208

continuous functions f1 and f2. The cost C̄(ssu f) then corresponds to the average of f1 and f2

at point x = ssu f (see the vertical line stemming from x on the score axis). The cost C∗(ssu f)

(smaller than C̄(ssu f)) corresponds to the vertical coordinate where x = ssu f is the average of

the functions inverse to the functions f1 and f2 (see the horizontal line stemming from C∗ on

the cost axis). For such calculated C̄(ssu f) and C∗(ssu f), both being functions of ssu f , we will

also introduce their respective continuous counterpart functions μ and ν (see again Fig. 6). In

the general case of more than two performance functions, μ represents their average on the

vertical axis, while ν represents the average of their inverse functions on the horizontal axis.

Our model further assumes the fundamental property of search problems characterized

by heavy-tailed search cost distributions: there is a significant amount of both ‘lucky’ runs

and ‘unlucky’ runs (Chen, Gomes & Selman 2001). In our model we assume the set of

experimental executions of the randomized search (each corresponding to one performance

function) can be partitioned into two disjoint sets: lucky and unlucky runs. The unlucky

(lucky, respectively) runs have a convex (non-convex) shape of the performance function

(remember that this function captures the growing number of explored clauses with growing

score in a particular run). The example shown in Fig. 6 captures one lucky and one unlucky

run. Our model does not directly impose specific assumptions on the quantities of the lucky

or unlucky runs, but it does stipulate a form of balance by assuming that the inverse of the

performance function f −1
i (y) of an unlucky (lucky) run i (i.e. its score achieved with cost y)

is at all points y smaller (greater or equal) than the mean ν(y) among all runs. The following

theorem (proved in Appendix C) says that Ineq. 4 is implied by these conditions.

Theorem 2. Let D = R+ ∪ {0} and { f1, . . . fm, fm+1, . . . , fn, μ, ν} be a finite set of bi-
jective functions D → D such that μ(x) ≡ 1

n

∑n
i=1 fi (x), ν(x) ≡ 1

n

∑n
i=1 f −1

i (x) and for all
1 ≤ i ≤ n, x ∈ D: fi (0) = 0, f ′′

i (x) exists, and the following holds iff i ≤ m: f −1
i (x) < ν(x),

f ′′
i (x) is positive. Then μ(x) > ν−1(x) for all x ∈ D.

We leave it for future work to determine how accurately the model assumptions capture the

properties of the measured performance vectors and which of the assumptions are not met at

the points where the inequality 4 does not hold in the empirical data.

3.4. Discussion

For large intervals of the cutoff parameter γ , the restarted randomised search strategies

(RTD, RRR, GSAT, WSAT) exhibit similar performance, outperforming the non-restarted

deterministic clause search (DTD).

Our unit of cost was the number of clauses searched rather than cpu time. The advantages of

such a choice are evident: besides making the results independent of any particular hardware

platform used, the expected number of clauses tested in the search process is of interest in

its own right. For example, it is linked to generalization performance as shown in Domingos

(1999a) and discussed later in this section.

However, two issues require further investigation before conclusions can be made con-

cerning the ranking of the strategies in terms of cpu time. First, DTD and RTD always

begin the search with the most general definite clause allowed by the language restriction.

It is therefore biased towards evaluating shorter clauses than RRR, GSAT or WSAT which

usually means spending less total evaluation time for the same number of clauses scored.

To at least roughly assess how significantly this fact would change our results if cpu time

was viewed as the cost, we performed an additional experiment on the Mutagenesis domain

Springer

Mach Learn (2006) 64:183–208 199

1 100 10000

0
0

0
0

1
0

0
1

1

no adjustment

cutoff

d
e

h
c

r
a

e
s

s
e

s
u

al
c

#

1 100 10000

0
0

0
0

1
0

0
1

1

time/clause adjustment

cutoff

]
s

m
[

e
mi

t

u
p

c

1 100 10000

0
0

0
0

1
0

0
1

1

bottom clause construction total time

cutoff

]
s

m
[

e
mi

t

u
p

c

1 100 10000

0
0

0
0

1
0

0
1

1

time/clause and time/bottom adjustment

cutoff

]
s

m
[

e
mi

t

u
p

c

Fig. 8 GSAT on Mutagenesis, ssu f = 35: expected number of clauses searched (upper-left), expected time
taken ignoring time for bottom clause construction (upper-right), expected total time spent on bottom clause
construction (lower-left) and expected total time taken (lower-right). The horizontal line corresponds in all
panes to DTD

estimating the average cpu time taken on evaluating a single clause for the respective search

strategies. The measurement procedure followed the regime described in 3.2, except that

besides the performance vector ci recording the cost (growing number of clauses searched)

we also recorded a corresponding vector of current processor times ti . For each execution i
we then calculated

ti = t l
i − t1

i

cl
i

(5)

where cl
i (t l

i) is the last element of ci (ti) and t1
i is the cpu time at the beginning of the

execution of run i (c1
i = 0). Averaging over of ti ’s, we obtained the estimate of cpu time per

one clause evaluation, amounting to5 2.25 ms (standard deviation 1.15) for DTD, 2.86 ms (st.

dev. 1.26) for RTD and 65.25 ms (st. dev. 59.83) for GSAT (WSAT and RRR differing only

insignificantly from GSAT). Figure 8 (upper-left pane) shows a projection of the Mutagenesis

cost-score Fig. 3 for the score ssu f = 35 (half of the maximum score), comparing the GSAT

strategy with DTD (horizontal line). The upper-right pane in the Figure shows instead the cpu

time obtained by multiplying the number of clauses searched by the time-per-clause estimate

obtained for GSAT and DTD, respectively.

5 All cpu times further reported were measured on a 64-bit single-processor computer with 3 GHz of system
clock frequency.

Springer

200 Mach Learn (2006) 64:183–208

Second, our measurement scheme did not assign any cost to the computation needed to

construct a bottom clause for each restart. To take this factor into account, we calculated the

average time per bottom clause construction, which in Mutagenesis amounted to 158 ms (st.

dev. 38.04). Then for a given cutoff γ , each restarted method incurs an additional expected

cpu time overhead

C̄(ssu f , γ)

γ
· 158[ms] (6)

(where the left fraction expresses the expected total number of restarts made). The lower-left

pane of Fig. 8 shows the expected total time spent of bottom clause construction by GSAT

and, finally, the lower-right pane shows the expected total cpu time where both time per

clause evaluation and time per bottom construction are accounted for.

Although the large superiority of GSAT (as well as RRR and WSAT characterized by

similar time overheads) w.r.t. DTD clearly reduces when changing the cost unit from the

amount of evaluated clauses to cpu time spent, a significant gap in favor of the restarted

methods is maintained in the neigbourhoods of both the cost minimum around γ = 100 (a

local minimum we have observed in all tested domains) as well the one close to γ = 10 (a

minimum characteristic for Mutagenesis).

Although this study was not concerned with direct measurement of the generalization

performance of the learning algorithms, two evident factors may create variance in this

respect among the five search methods: (i) the complexity of rules produced, and (ii) the

volume of search space explored by the respective methods. Penalizing model complexity is

a traditional technique used to avoid overfitting (Hastie, Tibshirani & Friedman 2001), which

would suggest that the general-to-specific (DTD and RTD) methods biased towards simpler

clauses are less prone to overfitting than the rest of the strategies (RRR, GSAT, WSAT).

There is however mounting evidence (Domingos, 1999a) that the risk of overfitting grows in

fact with the latter factor, i.e. the total number of models tested in the search process, with the

representational complexity being only indirectly linked to overfitting (Domingos, 1999b) (as

learning algorithms usually avoid complex models when reducing the search space volume).

As a result, we have reason to expect those strategies examining on average fewer clauses to

achieve a given training-data fit (i.e. all the restarted strategies with a suitable cutoff value)

to generalize better than those examining more clauses (DTD).

It is encouraging that four apparently very different domains and all restarted strategies

have yielded a similar range of ‘good’ values for the γ parameter. However, the plots,

especially for the graphs domain, highlight a further aspect: there is quite a sharp increase

in costs for values of γ that are just below the optimum. This suggests that it would thus be

useful to consider a restarted algorithm that is less dependent on the location of the optimal

γ . A solution may lie in a cutoff value gradually (for example, geometrically) growing with

each restart. This idea of dynamic restarts has been considered before (Kautz et al., 2002)

and may result in a more robust search algorithm.

4. Concluding remarks

Search is at the heart of most modern Inductive Logic Programming systems, and most have

thus far employed well-known deterministic search methods.6 In other fields confronted

6 We note the exceptions of kernel-based approaches (Gaertner et al., 2004), which are not based on search
as understood in this paper, and (Kovac̆ic̆ et al., 1992; Serrurier et al., 2004), which employ stochastic, rather
than deterministic search.

Springer

Mach Learn (2006) 64:183–208 201

with very large search spaces, there is now substantial evidence that the use of randomised

restarted strategies yield superior results to deterministic ones (often making the difference

between getting a good solution, or none at all). Randomised search strategies thus seem to

represent a suitable approach to achieve ‘any-time’ ILP algorithms (Zilberstein, 1998), able

to efficiently trade off between the quality of results and the resources consumed.

In this paper, we have presented what appears to be the first systematic study of a number

of randomised restarted search strategies for ILP. Specifically, we have adopted a Monte

Carlo method to estimate the search cost—measured by the number of clauses explored

before a ‘good’ clause is found—of these strategies on two quite different ILP problems.

The result is encouraging: in each domain, for a wide range of values for a parameter γ

controlling the number of restarts, randomised restarted methods have a lower search cost

than a deterministic general-to-specific search.

The performance sample generated has also provided some useful insights into the ran-

domised techniques. First, it appears that there may be a ‘good’ value for γ that works

adequately across many domains. Second, although they differ in the choice of the first el-

ement of the search and the refinement strategy employed, all randomised methods appear

to perform similarly. Third, there may be some value in exploring a randomised restarted

search strategy with a dynamically growing value of γ .

While accepting all the usual caveats that accompany an empirical study such as this, we

believe the results here to be sufficiently encouraging for researchers to explore further the

use of randomised restarted search methods in ILP, especially with other data domains and

scoring functions; and on problems where the target hypotheses lie in ‘difficult’ locations

identified by the research in Botta et al. (2003).

Appendix

A. Randomized start clause selection

Here we address the method for the random selection of a start clause at each restart, employed

by all the considered search strategies except DTD and RTD.

The principal difficulty of its implementation lies in devising a procedure for uniform

random sampling of clauses from the search space. Here, we describe a procedure that does

not require prior generation of all elements of the search space. Recall that these are definite

clauses obtained from subsets of literals drawn from a most specific (definite) clause ⊥.

Additional provisos are that each subset is of cardinality at most c + 1 (where c is a user-

specified maximum number of negative literals) and is in the language L. Let C denote all

such clauses. Further, let the number of clauses in C with exactly l literals be nl and N
denote the subset of natural numbers {1, . . . , |C|}. Define a function h : C → N such that

h(C) = ∑|C |−1
i=1 ni + j where |C | is the number of literals in C and 1 ≤ j ≤ n|C |. That is,

h provides a sequential enumeration of clauses by length. While many functions fit this

requirement (depending on the enumeration adopted), it is easy to show that any such h
is both 1–1 and onto. It follows that h is invertible—that is, given a number in N , it is

possible to find a unique clause in C provided the ni (and c) are known. In principle, it is

therefore possible to achieve the selection required by randomly choosing a number n in

N and returning C = h−1(n). Such an inverse function works as follows. Given a number

n > 0: (a) find the largest number l = 0 . . . c such that j = n − ∑l
i=0 ni > 0; (b) generate a

sequence of clauses in L of length l + 1. C is the j th clause in this sequence. If n is randomly

generated, then the clause generation process does not have to be so, and can be made more

Springer

202 Mach Learn (2006) 64:183–208

Fig. 9 A procedure for estimating the number of “legal” clauses of length l > 1. The estimate obtained in
Step 3 above is unbiased. The value of the sample size s needs to be decided. An option is to be guided by
statistical estimation theory. This states that if values of pl are not too close to 0 or 1, then we can be at least
100 × (1 − α)% confident that the error will be less than a specified amount e when s = z2

α/2/(4e2). Here z
represents the standard normal variable as usual

efficient by various devices. Some examples are: (a) take C to be the first clause of that length

(and inL) that has not been drawn before; (b) a once-off generation of the appropriate number

of clauses in L at each length (“appropriate” here means that the proportion of clauses of

length i in the sample is ni/|N |); and (c) using a dependency graph over literals in ⊥ to

ensure that the random clause construction always results in clauses within the language L.

In practice, without prior generation of the set C, the ni are not known for i > 1 and we

adopt the procedure in Fig. 9 for estimating them.

B. Calculating expected values from performance vectors

We describe here a technique for estimating the conditional expectations C̄(ssu f , γ) and

S̄(call , γ), defined in Section 2.2, for each of the five strategies in Section 2.1. We exploit

the fact that the expectations for arbitary ssuf (call, respectively) and γ parameters can be

estimated from a sample of executions of the algorithm in Fig. 1 where ssu f = P (where P
is the maximum possible score) and γ = ∞. Since we require all trials terminate in a finite

time, we let call equal to some large finite value cmax (for the experiments in the paper cmax =
200,000) for each of the random trials. As we shall see below, setting a finite call will bias

the estimates of C̄(ssu f , γ) for DTD, but will still allow us to obtain unbiased estimates for

restarted strategies for all values of γ < call .

B.1. Calculating the expected cost

Recall that executing the experimental method described in Section 3.2 results, for each

strategy and problem, in a set of ‘performance’ vectors ci = [ci (0), . . . , ci (smaxi)] where 1 ≤
i ≤ 6000 for the randomised strategies RTD, RRR, GSAT and WSAT; and 1 ≤ i ≤ P = |E+|
for the deterministic strategy DTD. With each ci ci (s) is the number of clauses evaluated

before achieving (or exceeding) score s for the first time and smaxi is the maximum score

achieved on run i
For DTD, C̄(ssu f , γ = ∞) is obtained by simply averaging the ci (ssu f) over all i’s. How-

ever, it is possible that in some of the trials i , the maximum score P is not achieved after

evaluating cmax clauses. In such cases, there exist values ssu f ≤ P such that ci (ssu f) is not

Springer

Mach Learn (2006) 64:183–208 203

defined. Here we set ci (ssu f) ≡ cmax + 1. Thus, the cost we associate to DTD will represent

a lower bounds of its expected cost.

Remind that for the restarted searches RTD, RRR, GSAT and WSAT, the sequence of

steps 4–14 in Fig. 1 is called a try. The probability that ssu f is achieved in the t-th try (and

not in tries 1 . . . t − 1), given the cutoff value γ , is

F(γ |ssu f)
(
1 − Fs(γ |ssu f)

)t−1
(7)

where the conditional cumulative distribution F(x |s) = P(C ≤ x |s) represents the probabil-

ity of achieving or exceeding the score s having evaluated x or fewer clauses. It is estimated

for a given score s from the empirical data as the fraction

F(x |s) ≈ |{ci |ci (s) ≤ x}|
|{ci }| (8)

Note that the consequence of s not being achieved in a particular run i is simply that the

condition ci (s) ≤ x does not hold. That is, run i is counted as a realization of the random trial

with an ‘unsuccessful’ outcome. Thus to estimate F(x |s) we do not need to assign a value

to ci (s) in such a case (as was done above for DTD) and the estimate remains unbiased.

Denoting the expected number of tries initiated before achieving ssu f as T̄ (ssu f , γ),

T̄ (ssu f , γ) = F(γ |ssu f)
∞∑

t=1

t
(
1 − F(γ |ssu f)

)t−1
(9)

It equals 1 for F(γ |ssu f) = 1 and for F(γ |ssu f) = 0 we set T̄ (ssuf , γ) = ∞. If 0 <

F(γ |ssu f) < 1, it can be shown that Expression 9 converges to

T̄ (ssu f , γ) = 1

F(γ |ssu f)
(10)

If we simply assumed that the algorithm evaluates exactly γ clauses in each try including

the last, then the expected number of evaluated clauses would be

C̄(ssu f , γ) = γ T̄ (ssu f , γ) = γ

F(γ |ssu f)
(11)

However, C̄(ssu f , γ) is imprecise because the algorithm may achieve ssu f evaluating fewer

than γ clauses in the last try. The expected total number of clauses evaluated in all but the

last try is

γ · (T̄ (ssu f , γ) − 1) = γ ·
(

1

F(γ |ssu f)
− 1

)
(12)

Due to the linearity of the expectation operator, we can determine the correct total expected

cost by adding to the above value the expected number of clauses evaluated in the last try.

For this purpose, consider the family of conditional probability distributions

Dt (n) = P(N = n|(t − 1)γ < C ≤ tγ, ssu f , γ) (13)

Springer

204 Mach Learn (2006) 64:183–208

For t = 1, 2, . . . , each Dt describes the probability distribution of the number of evaluated

clauses in the t-th try under the specified parameters ssu f , γ , and given that the t-th try is

the last in the search, i.e. an acceptable clause is found therein. Since individual tries are

mutually independent, the distributions Dt are identical for all t , that is, for an arbitrary t it

holds Dt (n) = D1(n). Because in the first try it holds7 that N = C , we can write

D1(n) = P(C = n|C ≤ γ, ssu f) (14)

We did not include γ in the conditional part because its value does not affect the probability of

the event C = n given that C ≤ γ , i.e. given that no restart occurs. Applying basic probability

algebra,

D1(n) = P(C = n, C ≤ γ |ssu f)

P(C ≤ γ |ssu f)
(15)

If n > γ then D1(n) = 0. Otherwise, we can drop the C ≤ γ conjunct (implied by C = n)

from the numerator expression:

D1(n) = P(C = n|ssu f)

P(C ≤ γ |ssu f)
= F(n|ssu f) − F(n − 1|ssu f)

F(γ |ssu f)
(16)

Now we can calculate the expected number of clauses evaluated in the last try E[N |(t − 1)γ <

C ≤ tγ, ssu f , γ] as

∞∑
n=1

nDt (n) =
γ∑

n=1

nD1(n) =
γ∑

n=1

n
F(n|ssu f) − F(n − 1|ssu f)

F(γ |ssu f)
(17)

Denoting this value by L F (γ |ssu f) and adding it to Eq. (12), we get the expected total number

of evaluated clauses:

C̄(ssu f , γ) = γ ·
(

1

F(γ |ssu f)
− 1

)
+ L F (γ |ssu f) (18)

Recall that the conditional distribution F(.|.) used above can be estimated from the perfor-

mance vectors as described by Eq. 8.

B.2. Calculating the expected score

Here we are concerned with estimating the expectation S̄(call , γ). The probability P(S ≥
s|call , γ) of achieving at least score s by exploring call clauses (always restarting after γ

clauses explored) is equal to the probability P(C ≤ call |s, γ) of exploring at most call clauses

until one with at least the score s is found.

For the non-restarted DTD, P(C ≤ call |s, γ) = F(call |s), estimated without bias from

|E+| performance vectors (each corresponding to one possible saturant) using Eq. 8. The

7 Within the first try, the total number of evaluated clauses equals the number of clauses evaluated in the
current try.

Springer

Mach Learn (2006) 64:183–208 205

expected score can then be calculated as

S̄(call) =
smax∑
s=1

s
[
F(call |s) − F(call |s + 1)

]
(19)

For a restarted strategy with cutoff γ , consider that the algorithm conducts call ÷ γ (integer

division) complete tries and then spends call mod γ (integer division remainder) of cost in a

non-restarted search. Then

P(S ≥ s|call , γ) = P(C ≤ call |s, γ) = 1 − P(C > call |s, γ) (20)

where the probability P(C > call |s, γ) corresponds to the simultaneous occurrence of call ÷
γ independent events of not achieving score s within a single complete try (each such event

has the probability 1 − P(C ≤ γ |s) = 1 − F(γ |s)) and one event of not achieving score

s exploring call mod γ clauses in a non-restarted search (this event has the probability

1 − P(C ≤ call mod γ |s) = 1 − F(call mod γ |s)). That is

P(S ≥ s|call , γ) = 1 − [1 − F(γ |s)]call÷γ
[
1 − F(call mod γ |s)

]
(21)

which we abbreviate by ε(s, call , γ). To obtain the expected score, one again estimates the

values F(.|.) by Eq. (8) and calculates

S̄(call , γ) =
smax∑
s=1

s
[
ε(s, call , γ) − ε(s − 1, call , γ)

]
(22)

C. Proofs of theorems

Lemma 1 (Arithmetic-harmonic means inequality). Let a1, a2, . . . an ∈ R+, n ≥ 1. Then

1

n

n∑
i=1

ai ≥
(

1

n

n∑
j=1

1

a j

)−1

(23)

where the means are equal if and only if all ai are equal.

Proof: Can be found in many mathematical handbooks, see eg. (Kenney & Keeping, 1962).

It follows from the well known arithmetic-geometric-harmonic means inequality. �

Theorem 1. Let St1 and St2 be two instances of the algorithm search in Fig. 1, running on
the same inputs and differing only in that the Select command on line 3 is

– deterministic for St1, that is, Select yields the same saturant e+ ∈ E+ in all tries (e+ has
been drawn from E+ with uniform probability prior to executing St1).

– stochastic for St2, that is, in each try Select draws e+ randomly with uniform probability
from E+.

Springer

206 Mach Learn (2006) 64:183–208

Then C̄(St1, ssu f , γ) ≥ C̄(St2, ssu f , γ) for any ssu f , γ .

Proof: For St1, we can condition the expected cost expressed in Eq. (18) on the positive

saturated example e+
i drawn from E+ = {e+

1 , e+
2 . . . e+

p }, p ≥ 1, randomly with uniform

probability P(e+
i) = 1/p prior to execution of St1:

C̄(St1, ssu f , γ) = 1

p

p∑
(index)=1

C̄(ssu f , γ, e+
i] (24)

= γ

(
1

p

p∑
(index)=1

1

F(γ |ssu f , e+
i)

− 1

)
(25)

+ 1

p

p∑
(index)=1

L F (γ |ssu f , e+
i) (26)

where L F (γ |ssu f , e+) abbreviates Expression 17 (with all conditional parts extended by the

e+ condition). For St2, there is no saturant selected prior to execution, but here the expected

cost from Eq. (18) can be expressed as

C̄(St2, ssu f , γ) = γ

(
p∑p

(index)=1 F(γ |ssu f , e+
j)

− 1

)
(27)

+ 1

p

p∑
(index)=1

L F (γ |ssu f , e+
k) (28)

In 27 we decomposed F(γ |ssu f) by conditioning on the example e+
j saturated at the beginning

of a non-terminal try, while in 28 we conditioned L F (γ |ssu f) on the example e+
k saturated in

the last try.

Comparing 25 with 27 and 26 with 28, we get that C̄(St1, ssu f , γ) ≥ C̄(St2, ssu f , γ)

whenever the inequality holds between the respective left terms in the parentheses in 25 and

27, namely

1

p

p∑
(index)=1

1

F(γ |ssu f , e+
i)

≥ p∑p
(index)=1 F(γ |ssu f , e+

j)
(29)

Taking the inverse value of both sides of the inequality and reverting its sign, the inequality

follows from Lemma 1. �

A further, obvious consequence of Lemma 1 is that the expected search costs of St1 and

St2 are equal if and only if the probability F(γ |ssu f , e+) of achieving at least score ssu f

exploring γ clauses using the bottom clause obtained from saturating e+ is the same for all

positive examples e+ ∈ E+. Otherwise St1 will incur a larger expected cost that the “more

randomized” strategy St2.

Theorem 2. Let D = R+ ∪ {0} and { f1, . . . fm, fm+1, . . . , fn, μ, ν} (1 < m < n) be a finite
set of bijective functions D → D such that μ(x) ≡ 1

n

∑n
i=1 fi (x), ν(x) ≡ 1

n

∑n
i=1 f −1

i (x)

Springer

Mach Learn (2006) 64:183–208 207

and for all 1 ≤ i ≤ n, x ∈ D: fi (0) = 0, f ′′
i (x) exists, and the following holds iff i ≤ m:

f −1
i (x) < ν(x), f ′′

i (x) is positive. Then μ(x) > ν−1(x) for all x ∈ D.

Proof: Since μ(0) = ν−1(0) = 0, it suffices to show that μ′(x0) ≥ ν−1′
(x0) for all x0 ∈ D.

Here μ′(x0) = 1
n

∑n
i=1 f ′(x0). Applying twice the rule of inverse function differentiation, we

also get

ν−1′
(x0) = 1

ν ′(y0)
= n∑n

i=1 f −1
i

′
(y0)

= n∑n
i=1

1
f ′
i (xi)

(30)

where y0 = ν−1(x0) and xi = f −1
i (y0). We further decompose ν−1′

(x0)

ν−1′
(x0) = n∑m

i=1
1

f ′
i (xi)

+ ∑n
j=m+1

1
f ′

j (x j)

(31)

For 1 ≤ i ≤ m, y0 ∈ D, we assumed that f −1
i (y0) < ν(y0), that is, xi < x0. Similarly x j > x0

for m < j ≤ n. Due to the positivity of f ′′
i and non-positivity of f ′′

j , we can bound f ′
i (xi) <

f ′
i (x0) and f ′

j (x j) ≤ f ′
j (x0), so

ν−1′
(x0) <

n∑m
i=1

1
f ′
i (x0)

+ ∑n
j=m+1

1
f ′

j (x0)

= n∑n
k=1

1
f ′
k (x0)

(32)

To show that indeed μ′(x0) > ν−1′
(x0), it remains to verify the inner inequality in:

μ′(x0) = 1

n

n∑
i=1

f ′
i (x0) ≥ n∑n

k=1
1

f ′
k (x0)

> ν−1′
(x0) (33)

which, however, follows instantly from Lemma 1. �

Acknowledgments The authors would like to thank the ILP 2004 referees as well as the MLJ special issue
referees for their informative suggestions. A.S. would like to acknowledge the generous support provided by
the Computing Laboratory, Oxford University during the course of this work and for continuing to act as
the primary source for the Aleph program. F. Ž is supported by the Grant Agency of the Czech Academy of
Sciences through the project KJB201210501. Part of this study was conducted during F. Ž.’s stay at the Dept.
of Biostatistics at UW Madison in 9-10/2005, enabled by the project MSM 1P05ME755 of the Czech Ministry
of Education.

The Condor Software Program (Condor) was developed by the Condor Team at the Computer Sciences
Department of the University of Wisconsin-Madison. All rights, title, and interest in Condor are owned by the
Condor Team. Analysis of collected data was possible thanks to the open-source “R” System for Statistical
Computing. Access to SGI Altix 3700 was kindly provided by the Supercomputing Services Center of the
Czech Technical University in Prague.

References

Botta, M., Giordana, A., Saitta, L., & Sebag, M. (2003). Relational learning as search in a critical region.
Journal of Machine Learning Research, (4), 431–463.

Chen, H., Gomes, C. P., & Selman, B. (2001). Formal models of heavy-tailed behavior in combinatorial search.
Proceedings of the 7th international conference on principles and practice of constraint programming.
Springer-Verlag, (pp. 408–421).

Springer

208 Mach Learn (2006) 64:183–208

Domingos, P. (1999a). Process-oriented estimation of generalization Error. IJCAI99 (pp. 714–721).
Domingos, P. (1999b). The role of Occam’s Razor in knowledge discovery. Data Mining and Knowledge

Discovery, 3, 409–425.
Džeroski, S. (2001). Relational data mining applications: An Overview. Relational data mining. Springer-

Verlag (pp. 339–364).
Gaertner, T., Lloyd, J. W., & Flach, P. A. (2004). Kernels and distances for structured data. Machine Learning

57(3), 205–232.
Giordana, A., & Saitta, L. (2000).Phase transitions in relational learning. Machine Learning, 41(2), 217–251.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
Gomes, C., & Selman B. (1999). On the fine structure of large search spaces. Proceedings the eleventh

international conference on tools with artificial intelligence.
Gomes, C., Selman, P. B., Crato, N., & Kautz, H. A. (2000). Heavy-tailed phenomena in satisfiability and

constraint satisfaction problems. Journal of Automated Reasoning 24(1/2), 67–100.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference,

and prediction. Springer.
Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., & Selman, B. (2002). Dynamic restart policies. Proceedings of

the eighteenth national conference on artificial intelligence.
Kenney, J. F., & Keeping, E. S. (1962). Harmonic mean. Van Nostrand.
Kovačič, M., Lavrač, N., Grobelnik, M., Zupančič, D., & Mladenič, D. (1992). Stochastic search in inductive

logic programming. In Proceedings of the European Conference on Artificial Intelligence. (pp. 444–445).
Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Computing, Special issue on Inductive

Logic Programming 13(3-4), 245–286.
Pompe, U., Kononenko, & I., Makše T. (1996). An application of ILP in a musical database: Learning

to compose the two-voice counterpoint. Proceedings of the MLnet Familiarization Workshop on Data
Mining with Inductive Logic Programming. (pp. 1–11).

Pompe, U., Kovačič, M., & Kononenko I. (1993). SFOIL: Stochastic approach to inductive logic programming.
Proceedings of the 2nd slovenian conference on electrotechnical engineering and computer science.

Selman, B., Levesque, H. J., & Mitchell D. (1992). A new method for solving hard satisfiability problems. In
Proceedings of the tenth national conference on artificial intelligence (pp. 440–446). AAAI Press.

Serrurier, M., Prade, H., & Richard G. (2004). A simulated annealing framework for ILP. In Proceedings of
the 14th international conference. (pp. 289–304) Springer.

Srinivasan, A., Muggleton, S., Sternberg, M. J. E., & King, R. D. (1996). Theories for mutagenicity: A study
in first-order and feature-based induction’. Artificial Intelligence, 85(1–2), 277–299.

Trefethen, N. (1998). Maxims about numerical mathematics, computers, science, and life. SIAM News.
Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-search runtime distributions may be heavy-tailed. In

Proceedings of the 12th international conference on inductive logic programming (pp. 333–345).
Zilberstein, S. (1998). Satisficing and bounded optimality. In AAAI Spring symposium on satisficing models.

Springer

