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Abstract. Recently, the research on efficient extraction of previously unknown, frequently appearing patterns
in a time-series data has received much attention. These patterns are called ‘motifs’. Motifs are useful for various
time-series data mining tasks. In this paper, we propose a motif discovery algorithm to extract a motif that represents
a characteristic pattern of the given data based on Minimum Description Length (MDL) principle. In addition,
the algorithm can extract motifs from multi-dimensional time-series data by using Principal Component Analysis
(PCA). In experimental evaluation, we show the efficiency of the motif discovery algorithm, and the usefulness
of extracted motifs to various data mining tasks.
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1. Introduction

Many researchers have been studying the extraction of various characteristics from time-
series data. One of these challenges, efficient extraction of ‘motifs’ has received much
attention (Lin et al., 2002). The motif is known as a previously unknown pattern that
appears frequently in a time-series data. Figure 1 depicts the concept of motifs that can be
perceived from intuition. Formal definition of motifs will be discussed in the next section.

Motif extraction is useful for various time-series data mining tasks described as follows:

— We can apply the motif to mining association rules in time-series data. For example, Mori
and Uehara (2001) extract association rules from the 3-dimensional time-series data that
represents the human motion while doing some actions. This extraction requires time-
series subsequences called ‘primitive motion’ that represent a basic movement of a human
body part. A ‘Time-Series Subsequence (TSS)’ is a part of a time-series data. By using
the motif as the primitive motion, we can extract more useful and efficient association
rules to obtain novel knowledge about the human motions.

— In the field of physiotherapy, Caraca-Valente and Lopez-Chavarrias (2000) discover ‘se-
quential patterns’ from an isokinetics machine for muscular diagnosis and rehabilita-
tion, etc. We can use motif discovery algorithm for efficient extraction of the sequential
patterns.
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Figure 1. (a) An example of a motif that appears two times (bold lines) in an 1-dimensional time-series data. (b)
A zoom-in of two time-series subsequences of motif. These figures show that two time-series subsequences are
similar to each other.

— In financial domain, Koopman and Ooms (2003) model the characteristics of the tax
revenues series by finding the ‘recurring patterns’ from daily tax revenues. We can
regard these recurring patterns as motifs.

Many researchers have proposed algorithms for discovering a motif (Lin et al., 2002;
Berberidis et al., 2002; Chiu, Keogh, & Lonardi, 2003; Tanaka & Uehara, 2003). Among
them, our previous algorithm (Tanaka & Uehara, 2003) can extract motifs from multi-
dimensional time-series data. First, the motif discovery algorithm transforms multi-
dimensional time-series data into 1-dimensional time-series data by using PCA (Principal
Component Analysis) (Heras et al., 1996) for reducing dimensions of the data. Then, to ex-
tract patterns that have appeared in the 1-dimensional time-series data, we transform the data
into a sequence of symbols. Finally, we discover a motif by calculating a ‘description length’
of a pattern based on the Minimum Description Length (MDL) principle (Rissanen, 1989).

Our motif discovery algorithm reported in Tanaka and Uehara (2003) is useful based
on the assumption that the lengths of all TSS’s in the same pattern are identically same.
Hereafter, we call such pattern ‘Same Length pattern (SL pattern)’. However, in the real
world, the lengths of each TSS in a pattern are a little bit different from each other. Hereafter,
we call such pattern ‘Different Lengths pattern (DL pattern)’.

For instance, a pattern that appeared in an electrocardiogram is described in figure 2.

| [ORS complex
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Figure 2. An example of a pattern in an electrocardiogram.
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Every TSS represents a series of heartbeat that includes a P wave, a QRS complex and
a S wave. However, the lengths of the time series are a little bit different from each other.
In this example, the first TSS has a length of about 520, the second has a length of about
550 and the third has about 560 (A sampling frequency of the time-series data is 1 kHz).
Here, we mention about our interesting level of DL pattern length. We want to extract TSS’s
whose length is little bit different. As in this instance, we can say that most of the patterns
in real time-series data are DL patterns. Therefore, we must extract motifs that are not only
SL patterns but also DL patterns.

This paper extends the work previously introduced in Tanaka and Uehara (2003). We
extend this motif discovery algorithm by modifying the following two points. First, we
transform the symbol sequence that represents a behavior of a given time-series data to
extract DL patterns. Second, we augment the definition of a description length of a time-
series data to process not only SL patterns but DL patterns as well.

The rest of this paper is organized as follows. In Section 2, we introduce some approaches
related to our motif discovery algorithm. In Section 3, we show the efficiency of PCA
to reduce dimensions of a multi-dimensional time-series data. In addition, we note the
efficiency of Independent Component Analysis (ICA) (Hyvrinen & Oja, 2000) for the
same purpose. Section 4 describes in detail the motif discovery algorithm introduced in
Tanaka and Uehara (2003), upon which our algorithm is based. In this section, by showing
experimental evaluation, we note the efficiency of MDL principle for detecting motif that
is the characteristic pattern of a given time-series data. In Section 5, we extend our previous
algorithm to extract a motif that is the DL pattern. We call the algorithm ‘Extended Motif
Discovery (EMD) algorithm’. We show the efficiency of EMD algorithm by comparing it
with motifs extracted by our previous algorithm. Furthermore, we also show the usefulness
of motifs to various data mining tasks. Finally, we note the directions for future work in
Section 6, and conclude our work in Section 7.

2. Background
2.1. Definitions

In this section, we present some definitions used in this paper. /-dimensional time-series
data T of length n is represented as follows:

T:xl,...,xn (l)

Every x; is areal-valued variable. In particular, m-dimensional time-series data T,, of length
n is a sequence of m set of real-value variables. It is represented as follows:

Tm:(-xlla~--7-xm1)s---v(-xlm--wxmn) (2)
Time-series subsequence (TSS) C of length q is a part of T'. It is represented as follows:

Cpg=%Xp,-- - Xprg-1(@=n,1<p=n—g+1) 3)
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Figure 3. Constraints of a pattern: (a) ‘behavior constraint’, (b) ‘distance constraint’ and (c) ‘non-overlapping
constraint’. Figure 3(c) represents an example of non-overlapping constraint violation.

Here, we define the pattern of a time-series data. All TSS’s that belong to the same pattern
need to conform to the following constraints:

Behavior constraint: Every TSS has the same behavior (temporal variation) as described
in figure 3(a).

Distance constraint: Distances between all possible pairs of TSS’s are lower than the thresh-
old R. R is a user defined threshold distance. For example, figure 3(b) represents that all
distances between B and other TSS’s are lower than R. Therefore, these TSS’s conform
to the ‘distance constraint’. We call B the center of the pattern.

Non-overlapping constraint: TSS’s should not overlap to each other. For example, the two
TSS’s described in figure 3(c) have the same behavior. However, these TSS’s are overlap-
ping (represented by the bold line). Therefore, they do not belong to the same pattern. By
introducing this non-overlapping constraint, our motif algorithm can be categorized as a
tool for a segmentation of time-series. For example, if overlapping is accepted, “CABB-
BABBBAA”, ABBBA can be extracted as a motif. But, in this case, two subsequences
share the same A, and we can get two possible segmentations: The one is C, ABBBA
and BBBAA. The other is CABBB, ABBBA and A. Whereas, if we introduce the non-
overlapping constraint, ABBB can be extracted as a motif. In this case, the sequence can
be segmented as C, ABBB, ABBB and AA.

2.2.  Related works
Data mining tasks for time-series data, such as indexing (Vlachos et al., 2003), clustering

(Cyril et al., 1999), discovery of association rules (Mori & Uehara, 2001; Das et al., 1998),
have some common purposes. One of them is to reduce calculation time. For this purpose,
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many approaches are proposed to obtain a discrete representation from a time-series data.
Our approach transforms a time-series data into a symbol sequence by SAX algorithm (Lin
et al., 2002, 2003). We will note the details of SAX algorithm in Section 4.1.

Similar to our approach, ‘time-series active search’ (Kashino, Smith, & Murase, 1999)
and pattern recognition based on ‘episode’ (Colomer, Melendez, & Gamero, 2002) use a
discrete representation. The time-series active search transforms a time-series data into a
sequence of symbols based on histograms that obtained by the short-time spectrum analysis.
The time-series active search is used for the discrete representation at a frequency domain.

The work in Colomer, Melendez, and Gamero (2002) divides a time-series data into some
‘episodes.” Each episode represents a basic behavior of the data. Then, this method obtains
a symbol sequence by assigning a unique symbol to each type of episode. However, this
discrete representation is easily influenced by the noise in the data. In addition, ambiguity
in the definition of the distance between episodes is also a problem.

Similar to our approach, there are some approaches for extracting unknown patterns
(motifs) in a time-series data, such as ‘ Enumeration of Motifs through Matrix Approximation
(EMMA) algorithm (Lin et al., 2002)’ and the motif discovery algorithm using random
projection (Chiu, Keogh, & Lonardi, 2003). The EMMA algorithm discovers a motif by
obtaining all possible TSS’s with a user defined length. On the other hand, the approach
(Chiu, Keogh, & Lonardi, 2003) is extended from EMMA algorithm by adapting the random
projection (Buhler & Tompa, 2001) to discover motif more efficiently. Note that they can
deal with only SL patterns.

On the other hand, ‘Approximates Periodicity Detection’ (APPD) algorithm (Berberidis
et al., 2002) discovers unknown patterns by using Fast Fourier Transform (FFT) and auto-
correlation function. Although APPD algorithm can deal with DL patterns, it can extract
only patterns that occur periodically in a given time-series data. Most of the patterns in
real time-series data appear non-periodically, so APPD algorithm is not adequate to be
considered as the motif discovery algorithm.

3. Transforming multi-dimensional time-series data
into 1-dimensional time-series data

This section presents our approach relative to multi-dimensional time-series data. Generally,
there are two approaches. One is to treat each time-series data separately and another
is dimensionality reduction. Navarro and Baeza-Yates (1999) and Vlachos et al. (2003)
proposed a method which treats multi-dimensional time-series data separately, matching the
approximate patterns that appear in the multi-dimensional time-series data. This method can
be used as a tool for data mining. However, treating multi-dimensional time-series separately
needs much more calculation time. For example, our approach without dimensionality
reduction takes about 468 seconds for discovering a motif from 63-dimensional time-series
of length 3600. But, our approach with dimensionality reduction takes almost 7.43 second
for discovering a motif from the same data.

Furthermore, dimensionality reduction, that is transforming multi-dimensional time se-
ries data into a 1-dimensional time-series data seems to be an easier method. Because ana-
lyzing 1-dimensional time-series data is easier then analyzing multi-dimensional time-series
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sources. Many research efforts have been focussed on pattern discovery from 1-dimensional
time-series data (Das et al., 1998).

Due to these reasons, we transform multi-dimensional time-series data into 1-dimensional
time-series data. However, for the purpose of motif discovery, we need to maintain at least
the characteristic patterns that appear frequently in the original multi-dimensional time-
series data.

3.1. Different methods of transformation

To transform a multi-dimensional time-series data into a 1-dimensional time-series data,
some dimensionality reduction methods have already been proposed. For example, RP (ran-
dom projection) (Buhler & Tompa, 2001), PCA (Principal Component Analysis) (Heras
et al., 1996), ICA (Independent Component Analysis) (Hyvrinen & Oja, 2000) are popular
methods. First, we focus on RP and PCA. Recently RP has appeared as a tool for dimen-
sionality reduction and performs better than PCA in most of the cases. However, in Fradkin
and Madigan (2003), RP predictively underperforms PCA in some conditions. For example,
RP leads to good results for high-dimensional data such as 2000 and 3571 dimensions. But,
PCA is able to do better for relative low-dimensional data such as 34 and 57 dimensions.
In this paper, we mainly experiment time-series data obtained from the motion capture
system. So, the dimension of our experimental data is at most 63-dimensions. Therefore,
we consider that PCA is more adequate for our experiments than RP method. Second, we
focus on PCA and ICA. PCA and ICA are effective methods to find the characteristics of
the data expressed by some observed variables. For example, PCA is used to extract an
index for two or more stock prices (Levin, Leen, & Moody, 1993). ICA is used to separate
brain activity from artifacts in Magnetoencephalograrhy (MEG) (Vigario et al., 1998).

Both methods extract ‘components’ (called ‘principal components’ in PCA, and ‘inde-
pendent components’ in ICA) that are linear combinations of the original variables. Assume
that we observe n linear mixtures x; ... x, of n components s; ...s,, each component is
represented by the equation:

Si = aj1x1 + appxy + -+ QipXy (€]

Both methods estimate s; without any background knowledge of the original data. How-
ever, an assumption for estimating principal components by PCA is different from that of
ICA. PCA estimates s; based on the assumption that every principal component is statis-
tically non-correlate to each other. So, PCA extracts a projective representation that maxi-
mizes the variance of the data as principal components. On the other hand, ICA estimates s;
based on the assumption that every independent component is statistically independent to
each other. So, ICA extracts a projective representation that maximizes the nongaussianity
of the data as independent components.

In our approach, we use principal components instead of independent components. Be-
cause, we notice several problems in using ICA to reduce dimensions of the time-series
data. First, ICA cannot determine the order of the independent components. But, PCA de-
termines the order of principal components by eigenvalues calculated from eigenvectors of
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original data. The first principal component maintains the largest amount of information
of the original data in all principal components (Heras et al., 1996). On the other hand, it
is known that the order of independent components is random (Hyvrinen & Oja, 2000).
Therefore, we cannot uniquely determine the independent component for reduction of di-
mensions. So, we use the first principal component to effectively reduce the dimensions of
multi-dimensional time-series data.

The second problem is that it is not quite comprehensible what is represented by indepen-
dent components. From a view point of ‘Projection Pursuit (Friedman & Tukey, 1974)’, we
can say that independent components are the most interesting projective representations.
However, it is not clear what kind of statistical information of the original data remains.
Therefore, a motif extracted from an independent component may not be a characteristic
pattern in the original time-series data.

The third problem is a contradiction between the assumption for ICA and our motif dis-
covery algorithm. ICA needs the assumption that every observed variable x; and independent
component s; do not have Gaussian distribution. It is well known that we cannot estimate
independent components if every s; has Gaussian distribution (Hyvrinen & Oja, 2000). In
addition, if every x; has Gaussian distribution, then statistically non-correlated components
are always independent to each other. Therefore, the input time-series data needs to have
non-Gaussian distribution for ICA. On the other hand, in our algorithm, we transform the
1-dimensional time-series data into a sequence of symbol based on PAA representation.
SAX representation is obtained based on the assumption that the given data has a Gaussian
distribution. Due to the fact, we cannot use ICA to transform the multi-dimensional time-
series data into the 1-dimensional time-series data for motif detection. In contrast, PCA
assumes that the original time-series data has a Gaussian distribution. Therefore, we can
use PCA for discovering motifs.

3.2.  Principal component analysis

In this section, we illustrate the specific method to apply PCA to the m-dimensional time-
series data T, of length n. First, we need to calculate a covariance matrix Ar, by using the
following equation:

DoXuXt D XuXy o Y, XiXmy
Zt X2 X1t Zt Xt X2 v Z, X2t Xmt
AT = . . .

m

(5)
thmtxlt thmert Z,xmrxmr

Each eigenvalue A; is ordered as A; > X, > --- > A,,. The eigenvector is represented as
[e1x,€25, - - - ems;]. Then, the i-th principal component pc; ,, is calculated by using means
of x1, x2, ..., Xp.

PCra, = e, (X1, — X1) + e, (xor — X2) + - - - + ey, (e — X)) (6)
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In our approach, we use the first principal component to effectively transform the multi-
dimensional time-series data into 1-dimensional time-series data. Finally, we obtain 1-
dimensional time-series data T as follows:

T =X1,... Xty .0.,%Xn (N

X = e, (X1 — Xp) +ex, (o — X2) + - -+ ey (Xmr — Xin) ¥

PCA dynamically detects the significant coordinates that include characteristic patterns
of the original data 7,,, because the significance of each coordinate is represented in each
coefficient ¢;;,. In addition, the first principal component maintains the largest amount of
information of the original data (Heras et al., 1996). So, we can say that the first principal
component is a linear combination of the original variables weighted according to the
contribution in the original data. Therefore, we can assume that the discovered motif from
T is same as that of the original multi-dimensional time-series data 7,,,.

4. The motif discovery algorithm

In this section, we present an overview of our motif discovery algorithm. The motif discovery
algorithm dynamically detects a motif from the 1-dimensional time-series data based on
information theoretic criterion. We mention about the reason why we exploit MDL principle
for discovering a motif. As for information theoretic criterion, we know AIC (Akaike’s
Information Criterion) (Akaike, 1969), BIC (Bayesian Information Criterion) (Schwarz,
1981) and MDL (Minimum Description Length) principle (Rissanen, 1989). First of all,
AIC estimates the best model based on “prediction capability”. But, our approach is finding
frequent patterns rather than prediction of time-series. Secondly, BIC is the way to estimate
the best model based on bayesian theorem. Finally, MDL principle states that the best model
to describe a set of data is the model which minimizes the description length of the entire data
set. Here, BIC equals to MDL from the viewpoint of selecting a simpler model. We focus
on the concept of MDL. The concept of MDL is to select the best model which compresses
data well. Here, our motif discovery algorithm can be used as a method for summarizing
time-series data. So, we consider that the model which has minimum description length is
the best model for summarization of time-series data. Therefore, we consider that the MDL
principle is adequate for our approach.

4.1. Transforming time-series into a sequence of symbols

We use MDL principle for extracting a pattern that is expected to be a motif. However, there
lies the problem that the same patterns hardly appear in time-series. In addition, we want to
extract a pattern without the influence of the “noise” of the time-series. For these reasons,
we transform the time-series data into a sequence of symbols that represents the behavior
excluding the noise. For the purpose, we use dimensionality reduction algorithm based on
PAA representation. Here, we show the visualization of this transformation algorithm in
figure 4.
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Figure 4. Visualization of the algorithm to transform a time-series into a symbol sequence. (a) we obtain TSS’s
by shifting the analysis window. (b) Each TSS is transformed into a SAX symbol sequence. (c) ‘behavior symbol’
is assigned for every SAX symbol sequence.

First, we prepare the analysis window of T, (figure 4(a)). Thin is the minimum length of
motif for the data. By shifting the analysis window, we obtain all TSS’s with length of T,
in the data. Second, each TSS is represented by PAA representation, and transformed into a
sequence of ‘PAA symbols’ (figure 4(b)). PAA representation is a vector expression obtained
by dividing a time-series data into some segments and calculating the average value in each
segment. In figure 4(b), each TSS is divided into 4 segments. By using PAA representation,
a time series T = xy, ..., x,, of length n can be represented as w-dimensional space by a
vector C = ¢, ..., ¢y as follows:

= | Z Xi ©))
Jj=5—=D+1

In figure 4(b), PAA representation of each TSS is represented by the vector C. Then,
‘break points’ are determined to transform the vector of w-dimension into a sequence
of ‘SAX symbols’. Break points provide some equiprobable regions of PAA representation
under a Gaussian distribution (Lin et al., 2002). For example, in figure 4(b), two breakpoints
are determined and three regions are provided. Then, every region is assigned a unique SAX
symbol, and every PAA coefficient is transformed into the SAX symbol in the area where
PAA coefficient belongs to. For example, C of the first TSS is transformed into SAX symbol
sequence ‘cbba’.

Here, we obtain SAX symbol sequences for every TSS. To obtain a sequence of symbols
that represents the behavior of T, every SAX symbol sequence is transformed into a single
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unique symbol. We call the symbol ‘Behavior Symbol (BS)’, since every SAX symbol
sequence represents the behavior of each TSS. For example, in figure 4(c), the behavior
symbol ‘A’ is assigned to SAX symbol sequence ‘cbba’, and ‘B’ is assigned to SAX symbol
sequence ‘bcba’ and so on. Finally, we obtain a ‘Behavior Symbol sequence (BS sequence)’
of T. Here, we present in detail the meaning of behavior symbols. A behavior symbol
represents a unique behavior in the data. For example, in figure 4(b), SAX symbols obtained
from the data in initial window are ‘cbba’ where ‘c’ is high, ‘b’ is middle and ‘a’ is low. So,
the string ‘cbba’ can be assigned to the letter ‘A’ which conceptually means “the time-series
has two peaks, the second one being lower than the first one”. The string ‘bcba’ can be
assigned to the letter ‘B’ which conceptually means “the time-series starts in middle range,
reaches one high peak and then decrease”. In this way, by introducing behavior symbols, we
can detect TSS’s with the same behavior. Another reason for introducing behavior symbol
is to reduce memory space for symbol sequences and search space for discovering a motif
rather than SAX symbol sequences.

4.2. Estimating extracted patterns based on MDL principle

To estimate the optimality of BS subsequence patterns by MDL principle, we need to define
a description length of BS sequence. The ‘BS subsequence’ is a part of the BS sequence,
and we call BS subsequence ‘BSS’ hereafter. In addition, the BS subsequence pattern is
called a BSS pattern. We assume that 7, is the length of the BSS pattern SC and s, is the
number of unique BSs in SC. First, we need log, n, bits to express the number of BSs of
SC. Then, we need n, log, s, bits to express the number of unique BSs of SC. Hence, the
description length of SC is defined as follows:

DL(SC) =logyn, +n,log, s, (10)

In addition, we need to define the description length DL(C | SC) where C represents BS
sequence. This is the description length of C where SC is replaced with one symbol. We
assume that the length of such a sequence is n,, the number of unique BSs in C is s, and
the frequency of appearance SC in C is ¢. The description length DL(C | SC) is calculated
as follows:

DL(C | SC) = log, n, + n, logy(s, + q) an

Here, log, 1, is the number of bits required to express the number of BSs in C. In addition,
n410g,(s, + q) is the number of bits required to encode the number of unique BSs of C.
Finally, MDL estimation function MDL(C | SC) is defined as follows:

MDL(C | SC) = DL(C | SC) + DL(SC)
= logy ng +nglogy(sq +q) +logyny +nplog, s, (12)



DISCOVERY OF TIME-SERIES MOTIF 279

Now, this MDL(C | SC) should be small. In order to obtain small values for MDL(C | SC),
the length of the pattern and its the number of unique BSs in SC should be small, that is
the number of types of patterns should be small. In the other words, the frequency of the
patterns should be high, and the complexity of the model should be large. That is, we want to
extract a high-frequency and complex patterns. We consider the BSS pattern SC which has
the minimum value of MDL estimation function is the ‘MDL pattern’ of C. It corresponds
to a motif of the time-series data.

4.3. Discovering motif from a BS sequence

In this section, we illustrate the MDL pattern detection algorithm. Figure 5 shows the
visualization of the algorithm.

Figure 5(a) is a BS sequence C. Here, we prepare an analysis window with certain
length. By shifting the window, we obtain BSS’s whose lengths are equal to the length of
the window. For example, we shift the analysis window with the length of 3, and obtain
BSS’s, such as ‘ABC’, ‘BCB’ and ‘CBC’. Then, we extract the most frequently appearing
BSSin C.Infigure 5(b), ‘BCB’ appears 5 times, so ‘BCB’ is extracted as the most frequently
appearing BSS pattern in C.

Here, we should recall that all TSS’s that belong to the same pattern have to conform
to the ‘distance constraint’ defined in Section 2.1. However, all TSS’s that correspond to
the extracted BSS pattern do not always conform to the ‘distance constraint’. Because, this
pattern conforms to only ‘behavior constraint’. Therefore, to obtain a pattern that conforms
to ‘distance constraint’, we need to calculate distances between every two TSS’s.

Figure 5(c) represents TSS’s that correspond to the BSS pattern ‘BCB’. Then, we calculate
Euclidean distances between every two TSS’s and make the ‘distance matrix’ described in
figure 5(d). For example, the distance matrix shows that the Euclidean distances between
the first TSS and the others are 10, 50, 20 and 45 respectively. Next, we count the number
of TSS’s whose distance are lower than threshold R. In this example, we assume R = 30
and the count of the first TSS is 2.

Furthermore, to determine members of the pattern, we need to determine the ‘center of the
pattern’. In the approach, TSS that has the maximum count is considered to be the candidate
of ‘center of the pattern’. In figure 5(d), the maximum count is 2, and three TSS’s (first,
second and fourth one) are considered to be the candidates of the center of the pattern. Next,
we calculate the sum of distances that are lower than R for each of them. For example, the
sum value of the first TSS is 10 + 20 = 30, the second TSS is 10 + 25 = 35, and the fourth
TSS is 20 + 25 = 45. Then, the minimum sum value is 30, so the first. TSS is regarded as
the center of the pattern. Finally, we extract TSS’s whose distance from the center are lower
than R. These TSS’s are considered as members of the pattern. In figure 5(e), the first, the
second and the fourth are extracted as members of the pattern. Then, in figure 5(f), BSS’s
that correspond to these TSS’s are considered as members of the BSS pattern ‘BCB’.

Next, we calculate MDL estimation function M of the BSS pattern ‘BCB’. At the same
time, we calculate the length of the pattern L; and the location of the pointer P; which
shows the beginning of every BSS. For instance, in figure 5(f), the length L, is 3 and the
obtained pointers are located at 2, 9 and 21. Then, in figure 5(g), we extract another pattern
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Figure 5. Visualization of the MDL pattern detection algorithm.
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‘DDB’ with the length of 3, and calculate MDL estimation function M, and the pointer
P, of the pattern. If we find all patterns whose lengths are 3, In figure 5(h), by using the
analysis window with length of 4, we extract a pattern ‘BCBC’. In figure 5, a BS sequence
pattern length is determined by MDL principle mentioned above. And, the range of varying
sequence pattern length is from 3 to at most the length of C. So, our analysis stops looking
for other patterns if no patterns have been discovered for that specific length.

The above analysis is repeated until we find all patterns with arbitrary length in C. When
it is finished, the pattern with the smallest value of MDL estimation function is considered
as the MDL pattern in C. Using the length of the MDL pattern L;, the length of the motif
Tmotit 1 calculated as follows:

Tmotif = Tmin + Li (13)

Then, we regard the MDL pattern as a motif of 7.

4.4. Experimental evaluation

In this section, we show the efficiency of our motif discovery algorithm. In the experiment,
we use 3-dimensional time-series data set of human motion obtained from the motion
capture system. In this system, an actor puts on 18 markers which reflect infra-red light, and
performs some actions being surrounded with 6 cameras (figure 6(a)). These cameras record
the actor’s action as video images and calculate 3-dimensional locations of the markers.
Finally, the 3-dimensional time-series data is obtained as shown in figure 6(b). The figure
represents the movement of ‘the right hand while the actor is pitching a ball’.

This dataset includes various data such as stable data, fluctuating data, periodic data,
non-periodic data etc. By using these datasets, we can estimate the efficiency of our motif
discovery algorithm to various type of time-series data. In addition, by comparing extracted

8O0
T00 b
00
800
400 |
300
200 |
0o

100
200

Figure 6. (a) The motion capture system and the actor who puts on 18 markers (white spots). (b) An example of
the 3-dimensional time-series data obtained from the motion capture system.
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Figure 7. Motifs discovered from 1-dimensional time-series data: (a) ‘Feet movement while walking’ and
(b) ‘Feet movement while running’.

motif with a real human motion, we can confirm whether the extracted motif is a charac-
teristic pattern in the given data or not.

4.4.1. Efficiency of MDL principle for discovering motif. Figure 7 shows the motifs
extracted from some time-series data. Both time-series data have a common characteristic
pattern, i.e. single peak with high amplitude (bold lines). However, the length and the interval
of occurrence of the peaks are different from each other. From the result, our algorithm can
discover motif whose length are approximately equal to the peak’s length.

Here, we can find that the motif of figure 7(b) is not the most frequently occurring pattern.
Because, the number of appearance of a pattern with small peak indicated by arrows is larger
than the number of motif’s appearance. However, based on MDL principle, this motif can
describe the given time-series data with the shortest description length. It is due to the
fact that MDL principle takes account of not only the number of pattern’s appearance but
also the description length of the given time-series data. Therefore, we can say that MDL
principle is useful for discovering motif from time-series data.

4.4.2. Efficiency of our algorithm for multi-dimensional time-series data. Next, we direct
our attention toward the validity of multi-dimensionality. Figure 8 shows the example of
the motif extracted from a motion data ‘ Feet movement while walking’. As seen from these
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Figure 8. An example of motif in the original 3-dimensional time-series data, ‘Feet movement while walking.’

5 <

From left to right, the figures represent coordinate ‘x’, ‘y’, ‘z’, respectively.
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results, the motif of coordinate ‘y’ satisfies the definition of motif, because we can intuitively
find that these TSS’s have the same behavior. On the other hand, the motif of coordinate
‘x’ and ‘7’ are far from the characteristic of a motif. Because, in both of coordinate ‘x’ and
‘z’, the behavior of first and fourth TSS’s are different from that of second and third one.
It occurs due to the transformation of the original multi-dimensional time-series data. In
this process, the PCA regards coordinate ‘y’ as significant coordinate, whereas coordinate
‘x’ and ‘7’ are insignificant. So, the algorithm mainly extracts information based on the
coordinate ‘y’.

However, it has validity from the viewpoint of human motion. We can recognize intuitively
the feature of motion while walking. That is, the coordinate ‘y’ (expressing the movement
towards upper and lower sides), the coordinate ‘x’ (expressing the movement towards left
and right), and the coordinate ‘z’ (expressing movement towards backward and forward).

In addition, by checking the human motion, we find the motif represents the movement of
‘raising and lowering the actor’s leg’. We can intuitively understand that this movement is
a characteristic pattern appeared frequently in the motion ‘walking’. So, we can say that the
motif discovery algorithm can detect motif that represents the feature of the human motion.
Therefore, our motif discovery algorithm is useful for analyzing various multi-dimensional
time-series data.

5. Extended motif discovery (EMD) algorithm

As mentioned in Section 1, to make the motif discovery algorithm useful in real world
problems, we must extend the motif discovery algorithm to discover a motif that is the DL
pattern. We call this extended motif discovery algorithm ‘EMD algorithm’. In this section,
we introduce two modifications for extending the motif discovery algorithm.

5.1.  Modifying the BS sequence

The behavior symbol sequence C represents a behavior of the given time-series data. So, it
is preferred that we should detect patterns from the behavior symbol sequence. However,
all patterns extracted from C are always SL patterns. For example, we assume that a BSS
pattern ‘ABC” is extracted from a BS sequence described in figure 9(a). Here, we recall

(a) BSseaece ABICCDEABCBDDABCBDFF

analysis window
| | |

lengthof TSS  Tmind 3 Toin+ 3 Toin+ 3

(Ib) Modiied BS sequence A B/CIDEABCBD/ABCBOF

BSlength| 1 1/2)1 1 1 1 1 1/ 2/1 111 1|2
A" i A" J A" J
| | I
length of TSS Toin+ 4 Tenin+ 3 Tonin+ 3

Figure 9. (a) BS sequence obtained from the time-series data. (b) Modified BS sequence.
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that each BS represents a behavior of each TSS of length T,,;,. Therefore, all TSS’s that
correspond to the BSS pattern ‘ABC’ have the length of Tp,;, + 3 and it is a SL pattern.

To solve this problem, we attempt to modify the original BS sequence. First, we detect
BSS’s where the same BS appears repeatedly, and count the number of it (this number is
called ‘BS length’). For example, in figure 9(a), the third BS and the fourth BS are ‘C’, so
we find BSS ‘CC’ with BS length of 2. Then, we transform such BBS into one unique BS.
For example, ‘CC’ is transformed into ‘C’ with BS length 2. This is called ‘modified BS
sequence’. By extracting BSS pattern from the modified BS sequence, we can detect the
DL pattern.

Here, by using figure 10, we note the reason that DL patterns extracted from the modified
BS sequence conform to the ‘behavior constraint’. In figure 10(a), the first BS ‘A’ represents
a behavior in area from 1 to 3. The TSS in area from 2 to 4 has the same behavior. So, the
second BS is assigned also ‘A’. Here, it is inferred that the TSS in area from 1 to 4 has
almost same behavior. Therefore, we can transform the first two ‘AA’ into a single BS ‘A’.
Similar to this example, we can transform the rest of such BSS into a single BS.

As mentioned above, we can extract DL patterns. But, we cannot calculate Euclidean
distances between every two TSS’s of DL patterns. Because two TSS’s of DL patterns
might have different lengths. Therefore, we must introduce DTW (Dynamic Time Warping)
(Myers & Rabiner, 1981) distance function rather than Euclidean distance function. DTW
calculates the distance between two TSS’s whose lengths are different. We calculate DTW
distances between every TSS’s and make a ‘distance matrix’, such as described in figure 5(d).

(@) original BS sequence

A time-series data

A I
Area (102131 4I(5/ 6/ 7181 91011121314 1516171819 -

(b)Modified BS sequence

(AN ZANAATICS

Figure 10. (a) An original BS sequence and (b) a modified BS sequence.
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5.2.  New definition of description length of a time-series data

We must augment the definition of description length according to the modified BS sequence.
That is, for the purpose of extracting a motif of DL pattern, we must redefine the description
length of a time-series data. Here, we assume that if we segment a time-series data using a
motif, the cost for this segmentation is minimized. Therefore, we consider a new assumption
for motif discovery: ‘the best model of a time-series data is the best segmentation using the
motif.” Based on the new assumption, we redefine the description length of time-series data
using cost of the segmentation.

We are concerned about the significant behavior. This means that we are interested in
the variation of BS sequences along time. This kind of variation can be measured by the
number of bits in which BS sequence can be encoded. The motif using very few bits is
simple, and the more bits mean more complex and significant. Secondly, according to MDL
principle, the length of the motif should be short. Finally, the number of segments should be
small. In order to, express our idea, we define new description length based on Chakrabarti,
Sarawagi, and Dom (1998).

It is used for detecting “surprising patterns” in a binary time-series data ‘market basket
sequence’. We apply the definition of the description length to the modified BS sequence.
The new description length of a time-series data consists of three costs, ‘data encoding
cost’, ‘parameter encoding cost’ and ‘segmentation cost’. Data encoding cost is the lower
bound of description length that is required to encode each segment. This description length
is calculated based on the Shannon’s theorem. Parameter encoding cost is the description
length that is required to describe the order of BS in each segment. Segmentation cost is
required to describe the location of all segments.

We illustrate these costs in figure 11. We assume that a modified BS sequence C is
extracted from a time-series data in figure 11(a). In addition, we assume that we find the BSS
pattern ‘BCD’. Then, we divide C into m segments by ‘BCD’. For example, in figure 11(b),
we obtain 7 segments. Next, we calculate the data encoding cost and the parameter encoding
cost for each segment.

In case of calculating the data encoding cost of the i-th segment, we calculate the length
of the i-th segment #;. For example, in figure 11(c), the length of the first segment is #; = 2,
the length of the second segment is 7, = 8 and so on. In addition, we assume that the j-th
BS has a length [;;. A data encoding cost for the j-th BS in the ith segment is calculated as
follows:

—lijlog, 7 (14)

For example, in figure 11(c), the first BS of the second segment is ‘B’, and the data encoding
cost of ‘B’ is —21log, %. By calculating the data encoding cost of all unique BSs in the i-th
segment, we obtain the data encoding cost of the segment as follows:

I
Z —lijlog, t_J (15
7 i
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(a) aBS sequence: €

ABCDCACBCDEFEBCDEB
(BSlength) 2 2 3 3 3 1 513 25 2 213231

‘ A pattern SC = "BCD" ‘

\

(b) AlBCDCACBCDEFEBCDEB
202 33|315|132|522|132|31
segment (1) (@ @ @ ® @ @
(c) ;
segment | length of Data encoding cost enﬁ:?;;:;t:;st
©) 2 Ax2: -2log 2 log,2
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) 8 Cx3: -3log 2% log,8
Dx3: -3log,3
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® 9 %8 log,9
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[ ]
[ ]
[ ]
L ]
E x3: -3log 3
©) 4 2‘1‘ log,4
B x1: -llog ;-
sum " DL1(C|"BCD") |DL2(C|"BCD")

Segmentation cost: DL3(C|"BCD") = 7 log 44

(d) mpL (€|"BCD") =
DL1(C|"BCD") + DL2(C|"BCD") + DL3(C|"BCD")

Figure 11. Calculation by using the new definition of the description length.

By using the following equation, we calculate the data encoding cost DL1(C | SC) of C
that is segmented by the pattern SC:

3 " l;;
DL1(C | SC) = ZZ—Z,-j log, TJ (16)
i i !
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On the other hand, we calculate the parameter encoding cost of each segment as follows:
log, t; a7

For example, in figure 11(c), the parameter encoding cost of the first segment is log, 2,
second segment is log, 8 and so on. Thus, we calculate it DL2(C | SC) of C as follows:

DL2C |SC) =) log,t; (18)
Next, we calculate the segmentation cost DL3(C|SC) of C as follows:
DL3(C | SC) = mlog, (Zr,) (19)
i

For example, in figure 11(c), the length of C is 44, so the segmentation cost is 7 log, 44.
Finally, in figure 11(d), we obtain the description length of C that is segmented by the
pattern SC as follows:

MDL(C | SC) = DL1(C | SC) + DL2(C | SC) + DL3(C | SC) (20)

We use Eq. (20) as the MDL estimation function for the MDL pattern detection algorithm.
Thus, the EMD algorithm can extract a motif of DL pattern.

5.3.  Experimental evaluation

In the section, we show the efficiency of EMD algorithm. In the experiment, we also use
3-dimensional time-series data sets of human motion.

5.3.1. Efficiency of EMD algorithm. Figure 12(a) shows an example of motif extracted
by EMD algorithm. Extracted motifs have the same behavior that includes a valley with
high amplitude. In figure 12(b), we also find that the lengths of TSS are different from each
other. In addition, all of them represent the movement of ‘lowering the actor’s head’. So,
we can say that the motif satisfies the definition of motif.

To compare EMD algorithm with our previous algorithm, we show a motif extracted
by the previous algorithm in figure 12(c). Two TSS’s of the motif also include the valley.
However, the third valley indicated by an arrow is not extracted as a motif. The phenomenon
occurs due to the fact that our previous algorithm can detect only SL patterns. On the other
hand, EMD algorithm regards the TSS with the third valley as the motif because it can
detect DL patterns. Hence, EMD algorithm is more efficient than our previous algorithm.

Furthermore, figure 13 shows a time-series data that represents an actor’s right hand
movement while performing ‘kendo’. ‘Kendo’ is a series of different motions (attack, de-
fense, strike etc.) like ‘fencing.’ In figure 13(b), it is inferred that the lengths of three
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Figure 12. The motif discovered from the motion data ‘Head movement while walking’. (a) The motif extracted
by using EMD algorithm. (b) A zoom-in of three TSS’s of the motif. (c) A motif extracted by using our previous
algorithm.
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Figure 13. This data represents the right hand movement while performing ‘kendo’. (a) Three TSS’s are extracted
as a motif of ‘kendo’ data. (b) A zoom-in shows the difference of their lengths.

TSS’s are different from each other. However, we find intuitively that they have the same
behavior. Therefore, the EMD algorithm is useful to extract motifs from the time-series
data.

Next, to evaluate a motif obtained from higher dimensional data, we experimented
on even higher dimensional data. Figure 14 shows an example of motif extracted from
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Figure 14. This data represents 45-dimensional data while ‘running’ and ‘walking’. (a) Five TSSs are extracted

as a motif. This figure shows first principal component. (b) 6-dimensional time-series data.
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45-dimensional time-series data. Figure 14(a) shows an example of motif extracted from
first principal component of 45-dimensional time-series data. Figure 14(b) shows only 6-
dimensional time-series data, although the original is 45-dimensional time-series data of
actor’s body parts while performing ‘running’ and ‘walking’. Here, compared with the
time-series data in figure 14(b), the first principal component data in figure 14(a) preserves
characteristic of ‘walking’ and ‘running’ movements, and the discovered motif represents
‘walking’ movement. It can be said that the ‘walking’ movement pattern is correctly ex-
tracted as a motif. So, we can state that our approach is also useful for high dimensional
data.

Up to here, we mainly experimented on a time-series data which is obtained from motion
capture system. Next, we experiment on more general data. The purpose is to evaluate
a motif extracted from general and public data. So, we experimented on the fetal ECG
data (Keogh, 2004). The fetal ECG data in figure 15 is 8-dimensional time-series data,
and each TSS of shaded region represents a motif. Figure 15(a) shows the first principal
component. Figure 15(b) presents only 4-dimensional time-series data, although the original
is 8-dimensional fetal ECG data. Here, in figure 15(a), the first principal component data
preserves the large variance of each time-series in figure 15(b). So, the motif extracted from
the data in figure 15(a) represents the characteristic pattern of time-series of each dimension.

Up to here, we mainly experimented on time-series data which are periodical and corre-
lated with each other. Next, we experiment on the shuttle data (Keogh, 2004). The purpose
is to evaluate the extraction of a motif from non-periodical data. The shuttle data in figure 16
is 6-dimensional time-series data, and each TSS in the shaded region represents a motif.
Figure 16(b) presents the original time-series data. Figure 16(a) shows the first principal
component. Here, the first two time-series data are correlated with each other. The others are
also correlated with each other but almost independent relative to the first two series. But,
in figure 16(a), the first principal component data preserves the behavior of original time-
series data. So, although the shuttle data is not periodical data, our algorithm discovered
two TSS’s as a motif.

The readers may be concerned that a motif which is extracted from the first principal
component is not representative for the motifs which are extracted from each original multi-
dimensional time-series data separately. We extracted motifs from original 8-dimensional
fetal ECG data separately in figure 17(a). Figure 17(a) shows only 4-dimensional time-
series data, although the original is 8-dimensional time-series data. Figure 17(b) shows
a motif extracted from the first principal component. In figure 17, the frequency and oc-
currence of TSS’s in A, B and D are almost same and correlated with each other. The
first principle component indicates that there is a considerable inter-correlation between
A, B and D. But, the frequency of TSS’s occurrence in C differs from that expected.
Therefore C is not correlated with A, B, and D, the contribution ratio of C for first prin-
cipal component is low. So, we consider that a motif extracted from the first principle
component may not be representative, if the contribution ratio of the time-series data is
low.

5.3.2. Usefulness of motifs to data mining tasks. Each time-series data described in
figure 18 represents the movements of left shoulder, left biceps, left arm and left hand while
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Figure 15. This data represents the 8-dimensional fetal ECG data. (a) Thirteen TSSs are extracted as a motif of
the fetal ECG data. (b) 4-dimensional fetal ECG data.
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Figure 16. This data represents the 6-dimensional shuttle data. (a) Two TSSs are extracted as a motif of the
shuttle data. This figure shows the first principal component. (b) Original 6-dimensional shuttle data.
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Figure 17. This data represents the 8-dimensional fetal ECG data. (a) 4-dimensional fetal ECG data. Each TSS
is extracted from a time-series separately. (b) Thirteen TSSs are extracted from the first principle component of
the fetal ECG data.
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Figure 18. Each time-series data represents the movement of left shoulder, left bicep, left arm and left hand
while an actor is skipping.

an actor is skipping. Each motif has different behavior from the others. However, we find an
interesting phenomenon that every motif appears at almost the same time. In the example,
every motif appears during 210 to 330 and 430 to 530. Here, by comparing these motifs with
a real human motion, we find that these motifs represent the movement of ‘raising arm’.
So, we can assume that ‘raising arm’ has a big influence on the human motion ‘skipping’.
Therefore, we consider that we can model the human motion ‘skipping’ by using these
motifs.

Furthermore, figure 19 shows motifs that represent the movement of head and right foot
while an actor performs ‘skipping’, ‘running’ and ‘walking’ respectively. For each kind of
human motion, both head movement and right foot movement appear at almost same time.
From the result, we assume that there is a relationship between the head and right foot
when the actor performs various actions. As described above, we consider that the motif
detection is useful for discovering association rules of the multi-dimensional time-series
data.

6. Open problems

There are several directions to extend this work. One of them is to dynamically deter-
mine several parameters in our motif discovery algorithm. These are a number of seg-
ments, unique SAX symbols and the threshold of distance R. In particular, the number of
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Figure 19. Comparing the motif the head movement with that of the right foot movement.

segments of PAA representation has a big influence on the result of our motif discovery
algorithm. Figures 20 and 21 show PAA representations using 5, 10 segments respec-
tively.

Here, we will compare figure 20(b) with figure 21(b). While being segmented dif-
ferenty, we can obtain the same behavior, symbol sequence ABC. On the other hand,
we can get the behavior symbol sequence ABC from figure 20(c) whereas DEF from
figure 21(c).

However, from the view point of Shannon’s sampling theorem (Shannon, 1949), it is
not surprising that the phenomenon has occurred in the above example, because the phe-
nomenon is similar to ‘aliasing’ in the theorem. The theorem states that, when sampling
a signal at discrete intervals, the ‘sampling frequency’ must be greater than twice of the
‘highest frequency’ of the input signal to reconstruct the original signal perfectly from the
sampled version. If the ‘sampling frequency’ is less than twice of the ‘highest frequency’,
then the frequencies in the original signal that are above half of the sampling rate will
be aliased and will appear in the reconstructed signal as lower frequencies. By the phe-
nomenon ‘aliasing’, PAA representation of figure 20(B) cannot reconstruct the original
data.

Here, we consider that the number of segments of PAA representation is equal to the
number of the sampling frequency described in the Shannon’s sampling theorem. However,
note that our motivation is to represent only significant behavior of a given time-series
data. So, based on the Shannon’s sampling theorem, if we find the ‘highest frequency’ of
a time-series data for representing at least significant behavior, the number of segments
should be larger than the number of the ‘highest frequency’. However, there is no criterion
for determining which behavior is significant for the time-series data, so we cannot find
such ‘highest frequency’.

Another problem is about discovering DL pattern. We can not extract TSS’s whose
lengths are greatly different from each other though they have the same behavior. We
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symbols of TSS in (B).

illustrate the situation in figure 22. All three TSS’s have the same behavior with different
lengths. For example, in TSS (a) is transformed into ‘AABCD’, and TSS (b) is transformed
into ‘ABCD’. However, by transforming the BSS (a) into ‘ABCD’, they are quite same.
On the other hand, the TSS (c) has the length that is greatly different from TSS (b). In
figure 22, BSS (c) is quite different from BSS (b) although their behaviors are almost
same.
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Figure 21. A result of a motif using 10 PAA segments. (a) (A) and (B) is analysis window. (b) By shifting
analysis window, we obtain 3 behavior symbols of TSS in (A). (c) By shifting analyasis window, we obtain 3
behavior symbols of TSS in (B).

For instance, in experiment, figure 23 shows the movement of the right foot while ‘walking
and running’ in coordinate ‘y’ (expressing the movement towards the upper and lower sides).
All TSS’s indicated by ‘A’ to ‘D’ represent ‘the movement of feet while walking.’ Here, we
can find that ‘E” has the same behavior. However, from figure 23(b), the length of ‘E’ is
different from them. Therefore, ‘E’ and TSS’s from ‘A’ to ‘D’ doesn’t belong to the same
pattern.
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Figure 23. (a) A time-series data ‘feet movement while running and walking’ obtained from motion capture
system. (b) A zoom-in reveals the difference between the length of ‘E’ and the lengths of ‘A’ to ‘D’.

7. Conclusions

In this paper, we presented an algorithm for efficiently discovering a motif of DL pattern from
multi-dimensional time-series data. We proved our algorithm’s advantage that, it can extract
a motif that can be recognized intuitively by human. From the result of our experiments, it
is evident that our algorithm is effective to mine the various unexpected periodicities and
extract association rules from time-series, etc. However, to make the algorithm more useful
in the real world data, we need further development of the motif discovery algorithm by
solving the problem mentioned above.
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