@ Machine Learning, 58, 231-267, 2005
== 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Fast and Exact Warping of Time Series Using
Adaptive Segmental Approximations

YUTAO SHOU ytshou@cs.hku.hk
NIKOS MAMOULIS nikos@cs.hku.hk
DAVID W. CHEUNG dcheung@cs.hku.hk

Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong

Editor: Eamonn Keogh

Abstract. Similarity search is a core module of many data analysis tasks, including search by example, clas-
sification, and clustering. For time series data, Dynamic Time Warping (DTW) has been proven a very effective
similarity measure, since it minimizes the effects of shifting and distortion in time. However, the quadratic cost
of DTW computation to the length of the matched sequences makes its direct application on databases of long
time series very expensive. We propose a technique that decomposes the sequences into a number of segments
and uses cheap approximations thereof to compute fast lower bounds for their warping distances. We present sev-
eral, progressively tighter bounds, relying on the existence or not of warping constraints. Finally, we develop an
index and a multi-step technique that uses the proposed bounds and performs two levels of filtering to efficiently
process similarity queries. A thorough experimental study suggests that our method consistently outperforms
state-of-the-art methods for DTW similarity search.

Keywords: time series analysis, similarity search, nearest neighbor search

1. Introduction

Time series is an ordered sequence of real-valued elements. Time series data are found in
a variety of domains, e.g., product sales, sensor transmissions, telecommunication signals,
medical and financial data. There is a need for efficient similarity search in databases of time
sequences (Agrawal, Faloutsos, & Swami, 1993; Faloutsos, Ranganathan, & Manolopoulos,
1994; Goldin & Kanellakis, 1995; Moon, Whang, & Han, 2002; Keogh, 2002a; Kim, Park,
and Chu, 2001; Yi, Jagadish, & Faloutsos, 1998; Zhu & Shasha, 2003), due to its wide use
by data analysts. As a typical application, consider an investor who is interested in finding
stocks that have similar behavior to a certain query stock. Similarity search is also a core
module of classification or clustering algorithms that apply on time series. For instance,
nearest-neighbor search based classifiers assign class labels to a new sample according to
its nearest neighbor in the samples of known labels. In addition, partitioning clustering
algorithms, like k-medoids (Kaufman & Rousseeuw, 1990), assign a sample to the cluster
corresponding to the nearest medoid.

Similarity queries are classified into two categories. The first is whole sequence match-
ing (Agrawal, Faloutsos, & Swami, 1993; Keogh, 2002a; Kim, Park, and Chu, 2001; Yi, Ja-
gadish, & Faloutsos, 1998; Zhu & Shasha, 2003); given a collection S of |S| data sequences,

232 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

._Jr.l-,;Jr

(a) non-intuitive similarity (b) sequences of different lengths

Figure 1. Ineffectiveness of Euclidean distance as a similarity measure.

a query sequence ¢, and a threshold e, the goal is to find all sequences s € S, such that
D(s, q) < €, where D is a distance (i.e., dissimilarity) function. The second category is
subsequence matching (Faloutsos, Ranganathan, & Manolopoulos, 1994; Moon, Whang,
& Han, 2002); this time we search for all (contiguous) sub-sequences it 5 of any 5 € S,
such that D(i, §) < €. In this paper, we focus on the whole sequence matching problem.!

A popular distance measure (Agrawal, Faloutsos, & Swami, 1993; Faloutsos, Ran-
ganathan, & Manolopoulos, 1994; Moon, Whang, & Han, 2002) is the Euclidean distance.
Although it can be computed relatively fast and has nice properties (e.g., it satisfies the
triangular inequality), it is not an intuitively effective distance measure when there are fluc-
tuations or phase shifts in time. Two time series may be considered dissimilar, although
they have similar shape, if their fluctuations do not occur at the same time moments. Con-
sider, for instance, the three series of figure 1(a). Intuitively, § is more similar to # than
it is to 7, since 5 and u fluctuate in the same way. However, s is closer to 7 than it is to
u, considering Euclidean distance as a measure. Besides, Euclidean distance can only be
used to efficiently measure the similarity between two sequences of the same length. For
instance, we cannot directly use Euclidean distance to measure similarity between 5 and 7 in
figure 1(b), since these two (similar) series have different lengths. We have to reinterpolate
the two time series to be of the same length and then use Euclidean distance to measure
similarity.

Dynamic time warping (DTW) has been used as a technique to calculate more robust
distance for time series data, since it allows elastic shifting of sequence in order to detect
similar shapes with different phases. Furthermore, it can be used to measure similarity
between sequences of different lengths. Based on these advantages, DTW has been widely
used in different kinds of applications such as signature verification (Munich & Perona,
1999) and voice recognition (Rabiner & Juang, 1993). Recent studies (Berndt & Clifford,
1994; Chu, Keogh, and Pazzani, 2002; Keogh, 2002a; Kim, Park, and Chu, 2001; Yi,
Jagadish, & Faloutsos, 1998; Zhu & Shasha, 2003) have adopted DTW for generic analysis
and mining tasks on time series.

However, DTW has its own limitations; it is quite expensive to compute and it does
not obey the triangular inequality (Yi, Jagadish, & Faloutsos, 1998), showing resistance
to indexing. In order to overcome these limitations, several studies (Keogh, 2002a; Kim,
Park, and Chu, 2001; Yi, Jagadish, & Faloutsos, 1998; Zhu & Shasha, 2003) have defined
computationally cheap lower bounds Lb(g, 5) for DTW distance and indices that are used
to prune fast sequences that may not be included in the query results. Thus, similarity search
is performed in two steps. First, all sequences 5 € S, such that Lb(é,) < € are discovered

FAST AND EXACT WARPING OF TIME SERIES 233

(filter step). Then, for each s € S that passes the filter step, the expensive Dy, (g, 5) is
computed in order to accurately verify the distance predicate (refinement step).

In this paper, we adopt this multi-step processing technique for similarity queries using
DTW. We study the application of an approximation scheme that can provide improved
bounds for DTW distance. Each data sequence s € S is decomposed into a small number of
segments, using a dimensionality reduction technique (Keogh et al., 2001). We then apply
a version of DTW on the segmented approximations of the data and query sequences to
compute fast tight lower bounds for DTW distance. Our technique resembles the segmented
dynamic time warping approach proposed in Keogh, and Pazzani (1999) and Chu, Keogh,
and Pazzani (2002), in that we apply DTW on segmented sequences. However, we use the
segmented sequences to derive lower bounds for exact DTW distance, guaranteeing no false
dismissals. We propose several, progressively tighter bounds depending on the existence or
not of warping constraints, to be introduced in Section 2.1. Finally, we develop an index and
a multi-step technique that uses the proposed bounds and performs two levels of filtering
to efficiently process similarity queries. A thorough experimental study suggests that our
method consistently outperforms state-of-the-art methods (Keogh, 2002a; Kim, Park, and
Chu, 2001; Yi, Jagadish, & Faloutsos, 1998; Zhu & Shasha, 2003) for DTW similarity
search.

The rest of paper is organized as follows. Section 2 provides background and related work.
Section 3 describes our approach to efficiently solve the similarity search under time warp-
ing problem. Section 4 evaluates the proposed techniques with extensive experimentation.
Finally, Section 5 concludes the paper.

2. Background and related work

A time series (or time sequence) s is an ordered list of elements ((s1, t1), . .., (5., £,)), each
consisting of a value s; and a timestamp ;. The values in a time sequence are typically real
numbers. The timestamps are non-decreasing with respect to the sequence indices, which
means that ; < t; < i < j. In typical applications, timestamps are strictly increasing.
Moreover, time sequences (e.g., stock ticks) are usually obtained by sampling values at a
certain rate, i.e., Vi, t;+1 — t; = T, where 1 is a positive constant. For such cases, a time
sequence 5 could be expressed by § = (s1,...,s,), without any information loss (i.e.,
when t is known). In this paper, in accordance to past research (Agrawal, Faloutsos, &
Swami, 1993; Moon, Whang, & Han, 2002; Faloutsos, Ranganathan, & Manolopoulos,
1994; Keogh, 2002a; Kim, Park, and Chu, 2001; Yi, Jagadish, & Faloutsos, 1998; Zhu &
Shasha, 2003), we consider such constant-sampled time sequences only.

Let S be a collection of data sequences. Let g be a query sequence. Let D(g, s) be a
distance function that quantizes the dissimilarity between two sequences § and 5. We can
identify two interesting similarity query types:

o range similarity search: given a distance threshold e, find alls € S suchthat D(g,s) < €
e k-nearest neighbor (k-NN) search: given a k < |S|, find 8’ C S, such that |S'| = k

-

andVu € 8,5 € S—8',D(q,u) < D(q,5)

234 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

Table 1. Distance matrix of ¢ and 5.

S1 52 53 S4 S5 S6 57 58 S9
q1 3.76 8.07 1.64 1.08 2.86 0.00 0.06 1.88 1.25
q2 2.02 5.38 0.58 243 4.88 0.31 0.59 3.57 2.69
q3 6.35 11.70 3.46 0.21 1.23 0.29 0.11 0.62 0.29
q4 16.89 25.10 11.90 1.28 0.23 4.54 3.69 0.64 1.10
qs 3.20 7.24 1.28 1.42 3.39 0.04 0.16 2.31 1.61
g6 3.39 7.51 1.39 1.30 3.20 0.02 0.12 2.16 1.49
q7 4.75 9.49 2.31 0.64 2.10 0.04 0.00 1.28 0.77
g3 0.96 3.53 0.10 4.00 7.02 1.00 1.46 5.43 4.33
q9 0.02 1.08 0.27 8.07 12.18 3.39 4.20 10.05 8.53

Both query types are useful to data analysts who wish to find in S similar sequences to
an interesting case (i.e., query q). However, the effectiveness of search heavily depends on
the distance function D used. In the next paragraphs, we describe dynamic time warping
(DTW) and provide related work on time series similarity using DTW.

2.1. Dynamic time warping

Given two time sequences g of length n and s of length m, dynamic time warping (DTW)
aligns each element g; of g to one or more elements s; of 5 and vice versa. DTW is performed
by applying dynamic programming on an n x m distance matrix (Kruskall & Liberman,
1983; Rabiner & Juang, 1993). Each cell (i, j) of the distance matrix DM contains the local
distance d(g;, s;) = (gi — j)2 between elements g; of ¢ and s; of 5. Table 1 shows the
distance matrix for sequences g = (—0.06, 0.46, —0.64, —2.23, 0.09, 0.04, —0.30, 0.90,
1.74) and 5 = (1.88,2.78,1.22, —1.10, —1.75, —0.10, —0.31, —1.43, —1.18), plotted in

figure 2.
From the distance matrix, a n x m warping matrix WM is constructed. Let s,_§ denote
the subsequence (s;, si+1, ..., s;) of a sequence s (i < j). The value D(i, j) of each cell

e—e sequence q
o—— sequence s
< DTW alignment

Figure 2. Two sequences ¢ and 5 and their DTW alignment.

FAST AND EXACT WARPING OF TIME SERIES 235

Table 2. (Constrained) warping matrix of ¢ and .

S1 52 53 S4 S5 56 57 58 59
q1 3.76 11.83 13.47

q2 5.78 9.14 9.72 12.15

q3 12.13 17.48 12.60 9.93 11.16

qa 37.23 24.50 11.21 10.16 14.70

qs 25.78 12.63 13.55 10.20 10.36

q6 13.93 15.83 10.22 10.32 12.48

q7 16.03 10.26 10.22 11.50 12.27
q3 11.26 11.68 15.65 15.83
q9 15.46 21.73 24.18

(i, j) in WM corresponds to the minimum warping distance that aligns gr; with 57;; via a
warping path. Formally, D(i, j) for each cell (i, j) is defined by:

D@, j)=min{D(G —1,j—1), D(@G—-1,j), DG j—D}+4d@,j), (1)

where d(i, j) is the corresponding value in the distance matrix. The initial conditions
D(0,0) = 0, and D(0, j) = D(i, 0) = oo, provide a basis for a dynamic-programming
algorithm that computes the warping matrix progressively. The square root of the final
warping distance D(n, m) defines D4,,(g,). For example, Table 2 shows the warping ma-
trix of sequences ¢ and s, from which we can derive Dy,(q,5) = +/D(9,9) = 4.9173.
The global optimal alignment between the two sequences is defined by the warping path
W = (wy, wa, ..., wg) (max(m,n) < K < m+n — 1) in WM, which minimizes the
global distance between the two sequences; each w;, 1 </ < K corresponds to an (i, j)
cell of WM a lue of w; is equal to the corresponding d(i, j) in DM.? Thus,
Dii(g,s) = ZzK: , w;. A warping path obeys three constraints. It should be monotonic;
both i and j either stay the same or increase in WM. It should be continuous; i and/or j
advance by 1 at a time in WM. Finally (boundary condition) the path starts at the top left and
ends at the bottom right of WM. In Table 2, the elements in bold form the optimal warping
path W of the two sequences g and 5. Figure 2 connects ¢ and § according to this path.
Calculating the whole warping matrix and the DTW distance comes at a high O(n - m)
computational cost. In order to reduce this cost, a warping path constraint could be used
to limit how far the warping path may stray from the diagonal. Two popular warping path
constraints are the Sakoe-Chiba band and the Itakura Parallelogram (Rabiner & Juang,
1993; Sakoe & Chiba, 1978). In this work, we focus on Sakoe-Chiba band also used by
Keogh (2002a) and Zhu & Shasha (2003). In Table 2, all but the faded-out cells correspond to
a Sakoe-Chiba band which allows element g; to map only with elements s;_5, ..., s;4» (and
vice versa for each s;). Formally, a warping width coefficient w (w = 0.25 in this example)
allows the i-th element of one sequence to match with elements from the other at any
positionin [i —x, i +x], where x = |w-max{|g|, |5|}]. Such constraints speed up the DTW

236 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

distance calculation and prevent pathological warping (Keogh, 2002a; Ratanamahatana &
Keogh, 2004), where a small section of one sequence maps onto a relatively large section of
another.

2.2. Lower bounds and indices for DTW

In this section, we briefly summarize previous work related to similarity search in time
series databases using DTW. Due to the expensive computation of DTW, most approaches
employ the multi-step query processing strategy (Seidl & Kriegel, 1998). A computationally
cheap lower bounding function Lb(q, 5) for DTW distance is defined, such that Lb(g, 5) <
Dns(q,5). Let € be the distance threshold for range similarity search or distance of the
k-th nearest neighbor found so far for k-NN search. If for a sequence s, we know that
Lb(q,s) > €, we can immediately prune the sequence from search, since it cannot be in the
response set. In order for a lower bounding function Lb(g, 5) to be effective, (i) it should
be fast to compute and (ii) it should be as tight as possible.

Yi and Faloutsos (1998) proposed a lower bounding function (denoted by Lb_Yi), based on
the following observation. Any element from each sequence that is above the minimum of the
two maxima of the sequences (denoted by min_max) should contribute to the DTW distance.
For example, in figure 3(a), note that s; and s, are greater than the maximum of g. According
to the continuity property of the warping path, these elements should be mapped to at least
one element of g. Thus, s; and s, should contribute at least d(s;, max(q)) + d(s2, max(g))
to the (squared) DTW distance. A symmetric observation holds for the elements smaller
than the maximum of the two minima (denoted by max_min).> In figure 3(a), max_min =
max{min(s;),min(g;)} = ss = —1.75 and min_max = min{max(s;), max(g;)} = q¢ = 1.74,
wherel <i <9and1 < j <9.Thus, Lb_Yi(G,5)* = d(s;, min_.max)+d(s», min_max)+
d(q4,max_min) = 1.3316 = Lb_Yi(g,5) = 1.1539.

——e scquence q

——e sequence
o—0 sequence s

2, ! #-eoeeo DTW alignment min_mi z

s =—s bounding envelope of sequence g
O——0 sequence s

ORP—

/\ ' B “
i E 1
2k V,,-" max_min -2
(a) warping path and extrema (b) with envelope of §
&—& transformed sequence of sequence s
OO ransformed envelope

() PAA on the bounding envelope

Figure 3. Two sequences ¢ and 5 and lower bounding techniques.

FAST AND EXACT WARPING OF TIME SERIES 237

Kim, Park, and Chu (2001) proposed a lower bounding function (denoted by Lb_Kim),
which is based on a 4-tuple feature vector (F(5), L(5), G(5), S(5)) extracted from each
sequence 5. F(5) and L(s) are the first and the last elements, whereas G(s) and S(5) are
the greatest and smallest elements of 5, respectively. For our running example, Feature(s) =
(1.88, —1.18,2.78, —1.75) and Feature(q) = {—0.06,1.74,1.74, —2.23). The lower
bounding function Lb_Kim(q, §) is defined by the maximum absolute difference of the corre-
sponding features, or formally by L, (Feature(q), Feature(s)). In our example, Lb_Kim(q, 5)
= max{1.94,2.92, 1.04, 0.48} = 2.92. Note that Lb_Kim is usually looser than Lb_Y1i, since
it uses just one difference between the vector scalars.

On the other hand, Lb_Kim facilitates the development of an indexing scheme that can
be used to efficiently prune sequences s, for which Lb_Kim(g, 5) > € (Kim, Park, and Chu,
2001). Based on Feature(s), each sequence s is mapped to a point in 4-dimensional space
and inserted into a multi-dimensional index (e.g. R*-tree (Beckmann et al., 1990)). For
a query sequence ¢, Feature(q) is first extracted and then a range query is performed to
obtain candidate sequences for which Lb_Kim(g,s) < e. The range query is defined by
extending each dimension of Feature(q) by € in both directions (i.e., the L, range around
Feature(q)). For example, the range for F(q) is [F(§) — €, F(q) + €]. Finally, D4;,(g, 5)
is computed for each candidate.

Keogh (2002a) proposed two lower bounding functions for the case where the warp-
ing path is constrained (e.g., by a Sakoe-Chiba band). The first lower bound (denoted
by Lb_Keogh) is the sum of the squared distances from every part of the data sequence
5, which does not fall in the bounding envelope of the query sequence g, to the near-
est orthogonal edge of the bounding envelope. For example, in figure 3b, the shaded
area is the bounding envelope of sequence g, corresponding to the Sakoe-Chiba band
shown in Table 2. The bounding envelope captures the temporal range where each el-
ement from g can be shifted in order to be aligned to an element of 5. Let U and L
denote the upper and lower boundaries of the envelope, respectively. Each U; is defined by
max{g;_»:qi+»} and each L; by min{g;_»:q;+»}. In our running example, Lb_Keogh(g, 5)* =
d(Sl, U[) + d(Sz, Uz) + d(S3, U3) + d(S7, L7) + d(Sg, LS) + d(Sg, Lg) = 10.0278. Thus,
Lb_Keogh(q,5s) = 3.1667.

Due to lack of an efficient indexing scheme that employs Lb_Keogh, Keogh (2002a)
also proposed another bound and an indexing scheme, which were later optimized by Zhu
& Shasha (2003). First, the data sequence 5 is transformed into s’ using the Piecewise
Aggregate Approximation (PAA) dimensionality reduction technique. PAA approximates
a time series by dividing it into M equi-length segments and using the average values of all
the elements in each segment as its data reduced representation. For example, for M = 3,
PAA transforms 5 of figure 3a to s = (1.96, —0.98, —0.97). Then, the upper_envelope
U and lower envelope L of the query sequence g are also transformed into U and L’
using PAA. For example, figure 3(c) shows the PAA transformation for the envelope of
sequence ¢, where U = (0.46, 0.48 1.74) and L = (—1.7, —2.23, —0.3). The sum of
squared distances from every part of s’ , which does not fall in the transformed envelope to
the nearest orthogonal edge of U’ and L/ defines Lb_PAA. For example, Lb_PAA(q, 5)° =

(d(sy, U)) +d(s§, Ly)) = 8.0967. Thus, Lb_PAA(q, 5) = 2.8455.

Keogh (2002a) and Zhu & Shasha (2003) suggested an indexing scheme for the PAA

segmentations of all s in S that supports similarity search in the presence of warping

238 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

constraints. A multi-dimensional index, i.e., R*-tree, organizes the transformed sequences.
For a given query g, the warping envelope boundaries U and L are converted to U’ and
L’ as already explained, and the index is used to retrieve sequences whose approximations
are no further than € from the envelope approximation. A limitation of this scheme (and
also of Lb_Keogh and Lb_PAA bounds) is that it works efficiently only when all the data
and query sequences are of the same length. In addition, it cannot be applied when there is
no warping path constraint. Although a recent study (Ratanamahatana & Keogh, 2004) has
shown that tight warping constraints usually provide better classification results compared
to unconstrained warping, there may still be cases where unconstrained warping is useful.
In the following section, we propose a methodology that can be applied for sequences and
queries of varying lengths and in the presence or not of warping constraints.

3. Proposed methodology

In this section, we propose a methodology for efficient warping of time series. First, we
describe a technique that approximates each sequence by a short sequence of M segments.
Then, we provide a lower bound that can be efficiently computed from the segmented
sequences by applying a small scale version of the DTW dynamic programming algorithm
described in Section 2.1. Next, we show how to employ the min_max and max_min extrema
of Lb_Yi to tighten the lower bound. We also describe how the bound can be further
tightened in the presence of warping constraints. Finally, we extend Lb_Kim to a tighter
global sequence bound and describe an indexing scheme and a multi-step process that
efficiently processes similarity queries, using the proposed bounds.

3.1. Sequence segmentation

Our technique is based on the segmentation of each sequence into an Adaptive Piecewise
Constant Approximation (APCA) (Keogh et al., 2001; Vlachos et al., 2003). APCA ap-
proximates a time sequence by a set of constant value segments of varying lengths such that
their individual reconstruction errors are minimal. APCA is a better approximation than
PAA, since it can approximate sequence parts of low variance with few segments and parts
of high variance with many segments.

Obtaining an optimal APCA for a sequence of length n costs O(n?), using dynamic
programming. In this work, we use an approximate technique, based on Keogh et al. (2001),
which computes the APCA in O(n log n) time. However, the original algorithm merges the
pair of segments that lead to the least rise of reconstruction error, whereas we merge the pair
of segments that results in the least increase in the area of the minimum bounding rectangle in
the time/value dimensions, which contains all elements that belong to the merged segment.
Details are omitted for the sake of readability. .

seg

We represent the APCA of a sequence 5 = (sl, $2y e ey Sm) by a sequence s

(sieg 555, ..., 5y). Each segment s;°® is a triplet (s, .low, s;%.up, s;"%.cnt). s;% low and

s; € up is the m1n1mum and maximum value among all the elements of s contalned ins; e
respectively; s; S; °¢.cnt is the number of elements contained in the segment. e.g., the segment

shown in figure 4(a) is represented by (4, 8, 6).

FAST AND EXACT WARPING OF TIME SERIES 239

‘ b

Yy Mg dl

) Mg T

8 Mg| | M=

o ® e © - do W
4 [] Ms a2
. -4
Ms
I p» Cascl: Case 2: Case 3:
x disjoint overlap enclose
(a) a segment (b) 3 arrangements

Figure 4. Segments and arrangements thereof.

APCA was used in Keogh et al. (2001) to index time series for Euclidean distance based
similarity retrieval. In the next paragraphs, we show how we can use APCA segmentations
to derive lower bounds for DTW.

3.2. Segmented DTW

Given two sequences ¢ of length n and s of length m and a compression ratio ¢ (1 <
¢ < min{m, n}), we can obtain two APCA segmented sequences (ﬁg and s?g, where N =
|q?”g | = [n/c] and M = |§?g| = |m/c]. By examining these segmental approximations
of the two sequences, we can derive a segmental lower bound Lb_seg(g, 5) for Dy;,(q, 5).
For this, we employ a Segmented Dynamic Time Warping (SDTW) algorithm, which is a
modification of the DTW algorithm, described in Section 2.1.* The intuition behind this
approach is to use the compressed information contained in each segment to derive fast a
lower bound Lb_seg of the true DTW distance.
To compute Lb_seg(q,s), we first construct an N x M matrix, whose (i, j) element
contains a segmental distance d**¢(i, j) between segments qf ¢ and s;eg, defined as follows:
di*® (g%, s7®) ifi=1landj=1
d*8(i, j) = ori=Nandj=M)
dy (g, s;eg) otherwise

Before we discuss how to derive d,° and d5®, let us examine the possible arrangements for a
pair of segments qiseg and s;eg. LetM, = (qiseg.low, qiseg.up) and M, = (s‘;eg.low, s;eg.up)
denote the ranges where these two segments can fluctuate. Figure 4(b) shows the three
possible arrangements for these two ranges, assuming that g; *.up > s;eg .up (the other
case is symmetric); (1) M, and M; are disjoint, (2) M, and M, overlap, and (3) M, encloses

M;. We can now define d,™* and d;® as follows:

min {qfeg.cnt, s;eg.cnt} -d0 casel
dy®(q;, s;eg) = { min{d1, d2} case 2 3)
0 case 3
. . . d0 casel
A8 (g5, §5°) = 4
2 (q, J) 0 case 2 and case 3 @)

240 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

In Egs. (3) and (4), dO = d(qiseg.low,s;eg.up), dl = d(qiseg.up,s;eg.up), and d2 =
d(g;*® low, s;eg.l ow). d,*® is the minimum warping distance of two subsequences contained
in segments ¢;* and 5%, where all the elements in one segment must be mapped to the
elements in the other segment and the mappings satisfy the monotonicity and continuity
constraints defined in Section 2.1. Thus, dfeg lower bounds the DTW distance of two
subsequences contained in segments ¢;* and s}, where all the elements in one segment
must be mapped to the elements in the other segment. This holds for the pairs of first and
last segments of g% and 5. dy*® captures min(d(x, y)), where g, € ¢;" s, € 57%, i.e., it
lower bounds the DTW distance of two subsequences in segments ¢;* and s;eg , where at
least one element in one segment is mapped to at least one element in the other segment
and the mappings satisfy the monotonicity and continuity constraints. This holds for any
other pair of segments of q?g and 5%,

We can apply the same DTW algorithm described in Section 2.1 to derive the optimal
warping path between the two approximated (segmented) sequences by replacing d(i, j)
in Eq. (1) by d*®¢(i, j). For example, figure 5 shows the segmentations q?g and 5% of
sequences g and s of figure 3(a). Table 3 and table (a) in figure 6 show the segmental
distance matrix and segmental warping matrix of qﬁ and 5%, respectively. We can now
give our first DTW lower bounding function for sequences g and §:

Lb_segl(q,s)=+/D(N, M), &)

where D(N, M) is obtained by using SDTW described above.
Note that d;*(¢;"*, s}®) is only used for calculating elements (1,1) and (N,M) of the

L
segmental distance matrix. Note also that the first (and last) elements of two sequences g and

== sequence q
o—¢ Sequence s min_max

max_min

Figure 5. Segmented sequences of ¢ and 5.

ssegq ssego ssegs ssegy ssego ssegs

gseg; | 4.0328 | 4.6104 | 4.6104 qsegi 5.78 6.3576 | 6.3576
gsegs | 4.9932 | 4.1352 | 4.1352 gsegs | 6.7404 | 5.8824 | 5.8824
gsegs | 5.0128 | 4.4056 | 7.5208 gsegs 6.76 | 6.1528 | 14.4088

(a) using Equation 3 (b) using Equation 6

Figure 6. Segmental warping matrix (N = M = 3).

FAST AND EXACT WARPING OF TIME SERIES 241

Table 3. Segmental distance matrix (N = M = 3).

5s€g1 ssego ss5€eg3

(1.88,2.78,2) (1.22,1.22, 1) (=1.75, —0.1, 6)
gseg 2%4(0.46,1.88) d(1.22,0.46) 0
(—2.23,0.46, 4) =4.0328 =0.5776
gsegs d(1.88,0.9) d(1.22,0.9) 0
(=0.3,0.9, 4) =0.9604 =0.1024
gsegs d(1.88,1.74) d(1.74,1.22) d(1.74,—0.1)
(1.74,1.74,1) =0.0196 =0.2704 =3.3856

s must be mapped together for obtaining their DTW distance, i.e., cells (1, 1) and (n, m) are
always in the warping path. Following this observation, we can tighten the distance bound
of Eq. (3) for (¢;°%, 5,°®) as follows:

(min {qfeg.cnt, s;eg.cnt} —1)-d0+d(q1,s1) casel
dy® (418, 51°%) = { max{min{d1, d2}, d(q1, s1)} case 2 (6)
d(q1, s1) case 3

d;*(gyt, sh) can be derived by replacing d(qi, s1) by d(gn, s) in Eq. (6). In this im-
provement, we explicitly consider the definite mappings s; <> ¢; and s, <> g, in the DTW
distance. By using Eq. (6) instead of Eq. (3), D(N, M) becomes (7.5208+(d(1.88, —0.06)—
d(1.88,0.46)) + (d(1.74, —1.18) — d(1.74, —0.1))) = 14.4088 and Lb_segl(g,s) =
~/D(N, M) = 3.7959. The corresponding segmental warping matrix is shown in Table (b)
of figure 6.

The cost of computing D(N, M) is O(N - M) and much lower compared to the O(n - m)
cost of Dyy,(g,5), since N < n and M < m. The cost reduction factor is O(c?), where ¢
is the compression ratio of APCA. Larger values of ¢ result in a cheaper lower bound, and
smaller values of ¢ in a tighter one. Lemma 1 proves the correctness of Lb_segl.

Lemma 1. For any two time sequences q of length n and s of length m, approximated
by q?g of length N and 5 of length M, respectively, the following inequality holds:

Lb_seg1(q,s) < Dgn(q,5).

Proof: Let WM be the warping matrix for g and 5. Let W = wy, wy, ..., wg, max{m, n}
< K < m+n—1 be the optimal warping path in WM. Let W M S be the segmental warping
matrixforﬁ; ands_s%.Let P=pi,ps,...,pg,max{M, N} < K' < M + N — 1 be the
corresponding warping path of W in WM S. Due to the continuity constraint, all w; € W in
a specific p; € P form a contiguous sub-path of W. Therefore, we can denote each p; by a
sub-path wy, ... w,,, where wy, is the first cell in W contained in p; and w,, is the last one.
Finally let R = r|, rp, ..., rgr,max{M, N} < K” < M + N — 1 be the optimal warping
path in WM S using the SDTW algorithm.

242 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

We wish to prove that \/ Z,K=1 ri < \/ Z,K=1 w;. First of all, we can easily prove that
pi < Y%, wj, forany p; (1 <i < K'), based on the correctness of d}*® and d5°® (Egs. (3),
(4), and (6)). Thus:

K’ K u;
ZPi—ZZwJ—Zw:)
i=1 i=1 j=l;

We also know that Z£1 rp < Z{il pi, because R is the optimal path in the segmen-
tal warping matrix. By transitivity, due to Eq. (7), we have Z,K: h < Z,K: | w;, or else

\/ZiKz”lrif\/ZiKzlwi’ g

3.2.1. An improved bound using extrema. The lower bound Lb_segl is not very tight due
to the approximate nature of the segments. Specifically, d>* considers only the minimum
distances between the two segments which is too small to be useful in practice. In order to
derive a tighter bound, without trading much computational time, we make use of the prop-
erty used by Lb_Yi; the sum of squared differences from all elements larger than min_max
(or smaller than max_min), must contribute to the squared DTW distance. The difference
from Lb_Yi is that we use the segmented information instead of the actual sequences. From
two segmented (query and data) sequences ¢*°¢ and s°°¢, we can compute the min_max and
max_min values and characterize their segments by one of the following three types:

e SegTypeA: the whole segment is outside range [max_min, min_max]
e SegTypeB: part of the segment is outside range [max_min, min_max]
e SegTypeC: the whole segment is inside range [max_min, min_max]

Figure 7 shows two segmented sequences, their max_min and min_max values and the types
of their segments. Assume a data segment ;" is of type SegTypeA, where s;°.low >

min_max (it is located above the min_max line). In this case, sSe .cnt — 1 of its elements
have at least distance d(mln_max, s; *€ low) and exactly one of its elements has at least
distance d(min_max, s; *.up) from any segment of g. If the segment is of type SegTypeB,
then at least one of its elements has distance at least d(min_max, s;°®.up) from any segment

Jirthest pos f'ﬁﬁ&fiﬁ”:fi.:n“’ - B SegTypeA
s it . [CJ[] SegTypeB
\5 (L] SegTypeC

s min_max
— 7 =

= — i I max_min

D]

Figure 7. Three segment types.

FAST AND EXACT WARPING OF TIME SERIES 243

—
Algorithm getSegDiff(r*¢Y min_max, max_min)

1. SegDiffs:=0;

2. if r{*.low >min_max then /* SegTypeA */

3. segDif fs = (r;®.cnt — 1) * d(min_max, r; *9.low) + d(min_max, r; 9 .up);
4. 7% low:=min_max; r;*.up:=min_max;

5. else if 77 .up >min max then /* SegTypeB */

6. segDif fs := d(min_max, ;% .up);

7. 3% up:=min_max;

8. else if 7;°%.up <max_min then /* SegTypeA */

9. segDif fs = (r;*.cnt — 1) * d(max_min, r; *9.up) + d(max_min, r;* .low);
10. rfeg.up::max_min; rfeg.low::max_min;

11. else if r;*.low <max.min then /* SegTypeB */

12. segDif fs := d(maxmin, r;* .low);

13. ;% low:=max_min;

14. return SegDiffs;

Algorithm getDiﬁ'(@ ,qs—eg’ , M, s_min, s_max, ¢_min, g-max)

/* s_max(s_min) and q-max(q-min) are two maxima(minima) of sequences § and ¢ respectively */

1. Diff:=0;

min_max := min(s_max,q-max);

max-min := max(s_min,q-min);

for each segment s;* in 5% do /* process seq. %9 */
Diff += getSegDiff(@, min_max, max_min);

if min(s) >max(q) then /* § is completely above ¢ */
max_min:=min_max;

if min(¢) >max(5) then /* §'is completely above § */
min_max:=max._min;

© NSO W

—
e

— —
for each segment ¢;* in ¢°*9 do /* process seq. ¢°°¢ */

11. Diff += ge’cSegDiﬁ'((ﬁJ> , min_max, max_min);
12. return Dif f;

Figure 8. Lb_seg2 preprocessing.

of g. Based on the symmetric cases for below max min and for data segments s, the
getDiff algorithm of figure 8 accumulates these distances for segments of types SegTypeA
and SegTypeB.

After accumulating the distances in the Diff variable, we run the SDTW algorithm to
geta D(N, M) (as for Lb_segl). In order to avoid overestimation of the lower bound, the
getSegDiff algorithm, in addition to computing the distances, projects the parts of type
SegTypeA and SegTypeB segments that are above the min_max line (below the max_min
line) onto the corresponding line (pseudocode lines 4, 7, 10, and 13). A subtle point to note
is that if one sequence is completely above the other (see algorithm getDiff lines 6-9), the
segments are projected onto the same min_max or max_min line in order to avoid erroneous
calculation during SDTW. The Lb_seg2 lower bound can now be defined by the following
equation:

Lb_seg2(§,5) = /Diff + D(N, M) (8)

244 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

min_max

qseg,

max_min

Figure 9. Segmented ¢ and s after preprocessing.

Let us now see how Lb_seg2 can be computed for our running example. Figure 9 shows the
segmented sequences of sequences s and g after applying the getDiff algorithm. Observe
that the first segment of s°* is projected on the min_max line since it is totally above it.
Also the part of cﬁg below the max_min line is truncated. The accumulated Diff distance is
(2 — 1)d(1.88, min_max) + d(2.78, min_max) + d(max_min, —2.23) = 1.3316.

Table 4 shows the converted segmented sequences after getDiff has been applied (first row
and column) and the new distances between the segments. Table 5 shows the corresponding
segmental warping matrix. One thing to note is that the adjustments also affect the first and
last values of the segments g and 5, which are considered in the calculation of D(N, M) (i.e.,
see Eq. (6)). For example, s is adjusted to 1.74. Thus, in our example, Lb_seg2(g, s) =
VDiff + D(N, M) = 3.8521. Although D(N, M) for Lb_seg2(q, 5) becomes smaller than

Table 4. Segmental distance matrix after conversion.

sssegi sssegy sssegs3

(1.74, 1.74, 2) (1.22,1.22, 1) (—=1.75, 0.1, 6)
qqsegi (2—1)*d(0.46,1.74) d(1.22,0.46) 0
(—1.75,0.46, 4) +d(1.74, —0.06) =0.5776

=4.8784

qqsegr d(1.74,0.9) d(1.22,0.9) 0
(—0.3,0.9,4) =0.7056 =0.1024
qqsegs 0 d(1.74,1.22) d(1.74,—1.18)
(1.74,1.74,1) =0.2704 =8.5264

Table 5. Segment warping matrix after conversion.

sssegy sssegy ssseg3
qqsegy 4.8784 5.456 5.456
qqsegn 5.584 4.9808 4.9808

qqsegs 5.584 5.2512 13.5072

FAST AND EXACT WARPING OF TIME SERIES 245

Lb_segl(q,s), Diff captures global warping distances contributed to DTW distance and
finally Lb_seg2(g,) turns out to be tighter than Lb_segl(g, 5). Besides capturing global
warping distances contributed to DTW, like Lb_Yi (described in Section 2.2), SDTW also
takes the three constraints of warping path (as stated in Section 2.1) into consideration.

Lemma 2 states the correctness of Lb_seg2. Before we give its case-based proof, we prove
the following proposition, used in several parts of the proof of Lemma 2.

Proposition 1. Foranyx,y,z € R, ifx <y < z,thend(x, y)+d(y, z) < d(x, z), where
d(a,b) = (a — b)%.

Proof:

dx,y) +d(y,2) —d(x,2) = (x =)’ +(y =2’ = (x = 2)*

(* +y* = 2xy + y* + 27 = 2y7) — (x* + 2° — 2x2)
2(y* — xy — zy + x2)
=2(y—2(0—x)<0=dx,y)+d(y,z) <d(x,2)

|

Lemma 2. For any two time sequences q of length n and 5 of length m, approximated

by cﬁg of length N and s?”g of length M, respectively, the following inequality holds:
Lb_seg2(q.5) < Dar(q, 3).

Proof: W.l.o.g., assume thatmax(g) > max(s). Let K be the length of the optimal warping
path of g and 5. We can replace 5 and g by two K -length sequences ¢’ and s/, respectively,
such that foreach1 <i < K, qi/ and s/ correspond to the elements of g and 5, respectively,
that are mapped at the warping element w;. Thus, Dy, (G, 5)* = ZLK=1 d(q]., s)).

Let 7 be the sequence that is derived from s’ such that s/ = min_max, if s, > min_max,
s/ = max_min, if s/ < max_min, and s/ = s/, otherwise (1 < i < K). ¢" is similarly
derived from ¢/, if § and 5 overlaps or § encloses 5. If § and 5 are disjoint, q! = q]
(1<i<K).

If we consider the relative positions of the minima and maxima of the two sequences,
we can distinguish three possible arrangements thereof, which are shown in figure 4(b)
(considering whole sequences instead of segments). For each of the three cases, we will
first prove that Dgy,(G, 5)* > Diff + Z,K:1 d(q/', s!"), where Diff is obtained by using the
algorithm of figure 8.

Case 1: g and 5 are disjoint (i.e., min(g) > max(s))

K

Dy(@.5)° =) d(gj.s))=) (d(max_min, 5}) + d(g], max-min))
i=1 i=1
(due to proposition 1)

K

K K K
= Zd(max_min, s+ Zd(q,-”, s;') > Diff + Zd(%‘”v 57
i=1 i=1 i1

246 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

Case 2: g and § overlap (i.e., min(g) < max(s) A min(g) > min(s))

K
Dar(§.5)* =) _d(q].s))
i=1

> Z (d(g;, min_max) + d(q/, s;') + d(max_min, s;))
g}>min_maxAs; <max_min
+ > (d(q], min-max) + d(q/ . s/"))
q}>min_maxAs;>max_min
+ > (CIOARD)
g} <min_maxAs;>max_min
+ Z (d(g], s!") + d(max_min, s;))(due to proposition 1)

g} <min_maxAs;<max_min

K
- Z d(g/, min_max) + Z d(s;,maxmin)+2d(q;’,s;’)

g/>min_max 5 <max_min i=1

K
> Diff + Y d(q].s)
i=1
Case 3: if g encloses 5 (i.e., min(§) < min(s))

K
Dy(@.5)" =) _d(q]. s}
i=1
>), (g minmax) +d(g/ . 5)
g;>min_max
+ Z (d(q}, max_min) + d(q7}, s7)) (due to proposition 1)

q} <max_min

K
= Z d(g;, min_max) + Z d(q},max,min)—i—Zd(qi”,s{’)
1

g}>min_max q} <max_min i=

K
> Diff + Y _d(g/.s)

i=1

Having shown that Dy;,,(§,5)* > Diff + Z,K=1 d(q/,s/") in all cases, we will now prove
that Zszl d(q!,s/) = D(N, M), where D(N, M) is computed using the mapped sequences
on the max_min (and/or min_max) axes. Let 5§ be a sequence derived from 5, such that
§s; = min_max, if s; > min_max, ss; = max_min, if s; < max_min (1 <i < m), and
ss; = s;, otherwise. ¢ is similarly derived from g, if § and 5 overlaps or g encloses 5. If g

and s are disjoint, gq; = ¢; (1 <i < n).

FAST AND EXACT WARPING OF TIME SERIES 247

Let s5°€ and g¢*® be the segmental representations derived from 5§, 74, 5% and q?g,

where 5% and ¢*% are the segmental representations of 5 and g respectively. To derive s5°¢,
seg seg seg seg . X

we set ss; —.cnt =s; -.cnt, but ss; ~.low and ss; " .up are obtained by using sequence ele-

ments contained in the i -th segment of 55 . Similarly, we get g¢*%€. s5°% and ¢¢*® correspond

to the segmental representations after the algorithm of figure 8 has been applied. Recall that
D(N, M) is obtained by applying SDTW using ¢¢** and 5%, Since ZIK:1 d(q/, s!)is the

distance corresponding to the optimal warping path, we know ZlK: ,d(g!, sy > D(N, M)
from Lemma 1. Thus,

Lb_seg2(§.5) = Diff + DN, M) < Diff + Y& d(g/.s}) < Y5, d(g].s) =
Dy, 5)° O

Note that Lb_segl and Lb_seg2 are independent of the existence of warping constraints.
Next, we show how we can take advantage of such constraints to derive a tighter lower
bound, which can be computed efficiently.

3.2.2. A bound for warping constraints. In the presence of warping constraints, we im-
prove our SDTW technique in two ways. First, we restrict the cells of the segmental warping
matrix to only those which contain at least one cell of the constrained warping matrix. Fig-
ure 10(a) shows an example of a warping matrix constrained by a Sakoe-Chiba band,
indicated by the heavy-shaded cells around the diagonal. The heavy border defines the seg-

mental warping matrix of 5% and q?g. The corresponding constrained segmental warping
matrix is shown in figure 10b. When applying SDTW, only shaded cells are considered for
the optimal segmental warping path. The second improvement is based on the following
observation. A specific segment siS °¢ can only map with some segments from q?g, according
to the constrained segmental warping matrix, described above. Thus, instead of using the
global min_max, max_min extrema for sis °¢ in the getDiff algorithm of figure 8, we consider
only the extrema based on the segments with which each s; “¢ and q;eg can map. For example,
in figure 11 assume that segment sg © can only map with segments g; °, ¢; ™, gg = and gq ©
based on the segmental constrained warping matrix. up and low are the extrema for this

S182 e s S16
qi
a2 SSeg) ssegs
asegy| |
qsegs
Qe

(a) (b)

Figure 10. Constrained segmented matrix.

248 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

group of segments, as shown in the figure. Since sgeg is completely above up, the segDiffs

quantity for it becomes (séeg.cnt — 1) x d(up, sgeg.low) + d(up, séeg.up), as opposed to
the looser d(min_max, sg -.up) computed by the unconstrained getDiff algorithm. After the
computation of segDiffs, sy © is converted to (up, up, sq *.cnt) in order to avoid overesti-
mation of SDTW, like in the algorithm of figure 8. Note here that this improvement is for
5% only. This means we make no change in the loop of process sequence q?g to avoid
overestimation.

The improved Lb_seg3 bound is then defined by Eq. (9), similarly to Lb_seg2, but now
Diff” is the accumulated distance in the constrained version of getDiff and D’(N, M) is the
optimal SDTW distance in the constrained segmental warping matrix.

Lb_seg3(q.5) = /Diff + D'(N, M))

For our running example of figure 3, if we use the Sakoe-Chiba band shown in figure 3(c)
and the segmentation of figure 5, the converted segmented sequences and the corresponding
distance and warping matrices are shown in figure 12 and Tables 6 and 7, respectively. In this
case, Diff = (2—1) x d(0.46, 1.88) +d(2.78, 0.46) + d(1.22,0.9) + d(—1.75, —2.23) =
7.7316 and Lb_seg3(q,s) = «/Diff" + D'(N, M) = 4.0655.

Compared with Lb_seg2(q, 5), Diff’ of Lb_seg3(q, 5) is much larger than Difffor Lb_seg?2
(¢, 5) by taking advantage of using the warping envelope constraint, although D'(N, M)
becomes smaller than D(N, M) shown in Table 5.

[m B scerypea

I - DD SegTypeB
SegTypeC
I—E:'H_.I RD:I min_max
ey ——
= . [0
J |_|| up
= E gseg max_min
98— g "gseg, T |
gseg,

Figure 11. Segment distances in constrained SDTW.

gseg,

Figure 12. Segmented g and § after constrained preprocessing.

FAST AND EXACT WARPING OF TIME SERIES 249

Table 6. Segmental distance matrix for Lb_seg3.

sssegi sssegn ssseg3
(0.46, 0.46, 2) (0.9,0.9.1) (—1.75, —0.1, 6)

qqsegi d(0.46, —0.06) d(0.9, 0.46) 0

(—1.75,0.46, 4) =0.2704 =0.1936

qqsegn / 0 0

(—0.3,0.9,4)

qqsegs d(1.74, —1.18)

(1.74,1.74,1) / / =8.5264

Table 7. Segmental warping matrix for Lb_seg3.

sssegi sssegy ssseg3
sssegy 0.2704 0.464 0.464
ssseg / 0.2704 0.2704
ssseg3 / / 8.7968

3.3. Animprovement over Lb_Kim

In this section, we propose an improvement of the Lb_Kim bound, discussed in Section 2.2.
Recall that we can approximate a sequence s by a 4-tuple Feature(s) = (F(5), L(s), G(5),
S(s5)), storing the first, last, greatest, and smallest elements of 5. Kim, Park, and Chu
(2001) have shown that Lb_Kim(g, 5) = Lo (Feature(q), Feature(s)) is a lower bound for
Ddtw(av E)

We say that sequence s is oscillating iff its maximum is larger than its first and last
elements and its minimum is smaller than its first and last elements. Otherwise we say
that it is not oscillating. Formally, § is oscillating iff G(5) > max{F(s), L(5)} A S(5) <
min{F(5), L(s}). For example, in figure 3(a), 5 is oscillating, but g is not (L(g) = G(q)).
We can prove the following lemma:

Lemma 3. Let g and s be two time sequences. If both g and s are oscillating then
Lo(Feature(q), Feature(s)) < Dgr(q, 5), (10)

where Ly(Feature(q), Feature(s)) denotes the Euclidean distance between the two global
feature vectors.

Proof: Assume that max(g) > max(s). If this assumption does not hold, the roles of §
and g are exchanged. Let K be the length of the optimal warping path of ¢ and 5. We
can replace 5 and g by two K-length sequences ¢’ and s’, respectively, such that for each
1 <i < K, g/ and s/ correspond to the elements of g and 5, respectively, that are mapped
at the warping element w;. Thus, Dg;,,(q, E)Z = Z,K=1 d(q}, s!). We can rewrite the optimal

250 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

warping distance as:

K
Ddtw(ga 5)2 = Z d(q,,, Sl/)
i=1

K—1
=d(q;.s)) + Y _ d(g].s) +d(qk. s)
i=2
K—1

=d(F(@), FG) + Y _ d(g].s)) +d(L(G), L))
i=2

Thus it suffices to prove that Zle_zl d(g], s)) = d(G(q), G(5)) + d(5(q), S(5)). Since both
g and § are oscillating, S(5), G(5), S(¢), and G(g) are not the first and last elements in
each sequence. Thus, they should contribute to the ZZK;ZI d (q{ , s{) distance. Based on three
possible arrangements of 5 and ¢, we show that for each case the above inequality holds.

Case 1:5 and g are disjoint (S(g) > G(5))

Let us first assume that G(§)«S(s), i.e., the greatest element of g is not mapped to the
smallest of § in the optimal warping path. In this case, ZIK;ZI d(g;, s{) will contain a com-
ponent corresponding to a mapping of G(g) to some element s; in § and a component
corresponding to a mapping of S(5) to some element ¢; in g. Since G(5) > s;, and g is
above s, we know that d(G(q). s;) > d(G(g), G(5)). Similarly, d(S(5), q;) > d(S(5), S(g)).
Thus:

K—1

Z d(g;, s}) = d(G(q), sj) +d(G(), q) = d(G(g), G(5)) +d(S(q), S()).

i=2
Now, let us consider the special case, where G(g) <> S(5). We know that apart from this
mapping, S(¢) should also map to an element from 5. The minimum distance contributed
by S(§) is when it maps to G(5). Thus, Y_~>" d(g/, s)) = d(G(§), SG)) + d(5(G), G()).
We can now show that

d(G(@), GB)) + d(S5(@), SG))) — (d(G(@G), S()) + d(5@). G(5)))
= (G(§)* + G’ —2G(@)GG) + 5@)° + SG)* = 28(9)S()) — (G(g)*
+5G)* = 2G()SE) + S(@) + GG) — 25(9)G ()
2AG@SG) + S@GE) — G@GE) — S@)SE))
2(G(@) — S(@)SG) — GE) <0
= [d(G(@), GG)) + d(S(@), SG))) < (d(G(@), SG)) + d(5@), G()))

Thus, Y XV d(gl, s)) > d(G(§), G()) + d(S(G), S(5)) also in this special case.
i=2 i’V P

Case 2: 5 and g overlaps (S(g) < G(5) A S(g) > S(5))

FAST AND EXACT WARPING OF TIME SERIES 251

Because all elements in each sequence must be mapped to at least one element in another
sequence, G(g) and S(5) must be mapped. The mapping which gives the smallest mapping
distance is G(q) <> G(5), S(g) < S(5), because for G(q) the closest element in sequence
5 is G(5) and for S(5) the closest element in sequence g is S(g). Due to S(§) < G(s), the
mapping distance of G(§) <> G(5), S(¢) <> S(5) is not greater than the mapping distance
of G(§) < SG).

Thus, YX>'d(q), s)) > d(G(@G), G3)) +d(S(G), S()), when 5 and § overlap.

Case 3: g encloses 5 (S(q) < S(5))

Because all elements in each sequence must be mapped to at least one element in another
sequence, G(g) and () must be mapped. The mapping which gives the smallest mapping
distance is G(g) <> G(5), S(§) <> S(5), because for G(g) the closest element in sequence
5 is G(5) and for S(q) the closest element in sequence s is S(5).
Thus, YK5' d(q], s}) > d(G(G), G3)) + d(5(4), S(5)), when § encloses 5.
Inall cases, Y 1, d(q],s}) = d(G(§), G()) + d(S(@), S)), thus we get
K-1
Du(§, 5 = d(F(@), FG) + Y _ d(g].s)) + d(L(G), L))
i=2
> d(F(q@), F(5)) +d(G(q), G(5)) + d(S(q), SG5)) + d(L(q), L(5))
= Lo(Feature(q), Feature(s)) < Dg,(q,s).

O

The rationale behind Lemma 3 is that every one of the four features in the vectors should
contribute to the DTW distance if both sequences are oscillating. If one of sequences is not
oscillating then we can still improve Lb_Kim, since we know that the first two and last two
elements should always match together:

Lb_glob,, ,..(q.5) = y/max{dr + dr,dg, ds}, (11)

where dy is an abbreviation for d(X(g), X(5)) (e.g., dr = d(F(q), F(5)). Summarizing,
based on whether both sequences are oscillating (case A) or not (case B) we can define a
global lower bound Lb_glob based on the feature vectors of the sequences as follows:

.. Lo(Feature(q), Feature(s)) case A
Lb_glob(q, s) = . (12)
Lb_glob,, ,.(q,s) case B

3.4. Indexing scheme and similarity search

Our indexing scheme organizes the global feature vectors Feature(s) of all s € S in a
4-dimensional R*-tree. Note that the same scheme is used in Kim, Park, and Chu (2001),
however, (i) we employ the tighter bound Lb_glob to guide search and (ii) we use segmented

252 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

Algorithm RSimSearch(query ¢, S, ¢)

ok

1. compute Feature(q) and ¢°¢9;

2. perform an Ly € range query to get all §
such that Lo, (Feature(q), Feature(s)) < ¢;

3 put s.id of each result §to C if:

4 (i) Lb_glob(q,s) < € and

5 (ii) Lb-seg(q,5) < €;

6. for each s.id € C

7 access exact representation of §;

8 if Dyt (g, 5) < € then report §;

Figure 13. Range similarity search algorithm.

representations of the sequences to apply an additional filter using Lb_seg (i.e., one of
Lb_segl, Lb_seg2, or Lb_seg3) before computing the exact D, (g, 5). Thus, each entry in
a leaf node of the R*-tree corresponds to a s € S and stores (i) Feature(s), (ii) a bit osc(s)
indicating whether s is oscillating, (iii) the segmented approximation 5 of 5, and (iv) a
pointer s.id to the exact representation of 5. Each entry in a directory node of the R*-tree
contains a 4-dimensional minimum bounding box, enclosing the entries in the node pointed
by it.

Figure 13 describes a multi-step process for evaluating range similarity queries using this
indexing scheme. First, Feature(g) and q?g are constructed for the query vector g (line 1).
Then, an L., range query is applied first and the results are passed through the Lb_glob
filter (line 4) and an Lb_seg filter (line 5) that applies on the segmented representations of
the sequences (i.e., Lb_segl, Lb_seg2, or Lb_seg3). If the lower bound is smaller than €, the
identifier of 5 is added to a candidate set C. Finally, the exact representations of all candidates
ins € C are accessed to verify whether Dy, (g, 5) < € (line 8).0In summary, the sequences
in S are passed through two filters (i) Lb_glob, with the help of the index and feature vectors
and (ii) Lb_seg, with the help of the segmented representations, before the expensive DTW
distance is computed.

Figure 14 shows a pseudo-code for the neighbor search algorithm, which is processed by
employing the same filter and refinement steps in combination with the incremental nearest
neighbor search algorithm of (Hjaltason & Samet, 1999), as suggested by the multi-step
paradigm of Seidl & Kriegel (1998). A priority queue is used to organize R*-tree node
entries and sequences s based on their lower bounding distance from g computed so far.
Initially, the R*-tree root entries are enqueued. If the next dequeued heap entry e is a
directory R*-tree entry, the corresponding node is loaded and its entries are enqueued. If e
is a leaf entry corresponding to 5, Lb_glob(q, 5) is computed and re-enqueued. If it is some
s, for which Lb_glob(g,) has already been computed, Lb_seg(g, 5) is computed and § is
re-enqueued. If the next heap entry is a s for which Lb_seg(g, 5) has been computed, then
Dyn(g, 5) is computed and 5 is re-enqueued. Finally, if Dg,,(g, 5) has been computed for
the dequeued entry 5, we know that this is the next nearest neighbor. The process continues
until k& neighbors have been dequeued.

FAST AND EXACT WARPING OF TIME SERIES 253

Algorithm NNSimSearch(query ¢, S)
—

1. compute Feature(q) and ¢°%;
2. initialize a priority queue Q;
3. enqueue all root entries of the R*tree to Q organized by
the Lo, distance of their MBRs from Feature(q);
4. while (not empty Q)
5 e:=dequeue(Q);
6. if e is a directory R*-tree entry then
7 load corresponding R*~tree node and enqueue its entries in Q;
8 else if e is a leaf R*~tree entry seen for the first time then

9. compute Lb_glob(q, 5) for the corresponding §;

10. enqueue e with its Lb_glob distance to @;

11. else if e is a leaf R*~tree entry seen for the second time then
12. compute Lb_seg(q, 3) for the corresponding

13. enqueue e with its Lb_seg distance to Q;

14. else if ¢ is a leaf R*~tree entry seen for the third time then
15. access the corresponding § and compute Dyyy, (4, 5);

16. enqueue § with its DTW distance to @

17. else /* e is a sequence whose DTW has been computed

18. output § as next nearest neighbor;

Figure 14. Nearest neighbor search algorithm.

3.4.1. Improving indexing with two R*-trees. The indexing scheme described above
can be further improved by using the Lb_glob filters at an earlier stage. To achieve this,
we build two separate R*-trees, S_osc and S_non_osc. The R*-tree S_osc indexes all se-
quences which are oscillating, while the R*-tree S_non_osc indexes non-oscillating data
sequences.

Figure 15 describes the process for evaluating range similarity queries using this improved
indexing scheme. First, Feature(q) and q{?‘g are constructed for the query vector g. Then,
we perform the range query on S_osc (lines 2—7). The algorithm distinguishes two cases. If
g is oscillating, then it suffices to perform an e-range query on the index, using Euclidean
distance, in order to obtain all 5§ € S which pass the Lb_glob filter (line 3). On the segmented
representation of each of those sequences, Lb_seg is then applied. If the lower bound is
smaller than ¢, the identifier of 5 is added to a candidate set C. In the case where ¢ is not
oscillating, an L, range query is applied first and then the results are passed through the
Lb_glob and Lb_seg filters, before they are added to C. After processing the data index by
S_osc, the range query is also performed on the S_non_osc, where the procedure is the same
as described in algorithm RSimSearch. Finally, the exact representations of all candidates
ins € C are accessed to verify whether Dy, (¢, 5) < €.

The major difference between two indexing schemes is that some data sequences can
be filtered earlier (lines 2—4) if g is oscillating, when using two indices instead of one. By
indexing oscillating data with a separate R*-tree, the application of the Lb_glob filter is
combined with the R*-tree search, which is now more efficient, since L, restricts the search
space more compared to L.

Nearest neighbor search can also be improved by using two indices. The two trees are
accessed concurrently, but the entries from S_osc are organized based on their L, distance

254 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

Algorithm RSimSearch2(query ¢, S, €)
—
1. compute Feature(q) and ¢°¢9;
/* perform range query on S_osc */
2. if ¢'is oscillating then

3. perform an Ls € range query to get all §

such that Lo(Feature(q), Feature(s)) < ¢
4. put s.id of each result § to C if Lb_seg(q,5) <¢;
5. else /* 7is NOT oscillating */
6. perform an L, € range query to get all §

such that Lo, (Feature(q), Feature(s)) < ¢
7 put s.id of each result § to C if:

(i) Lb_glob(q,5) < € and
(i) Lb_seg(q.5) < &
/* perform range query on S_non_osc */
8. perform an L., € range query to get all §
such that Lo (Feature((q)), Feature((5))) < ¢;
9. put s.id of each result §to C if:
(i) Lb_glob(q,35) < € and
(i) Lb_seg(z,5) < &
/* retrieve full sequences from database */
10. for each s.id € C
11. access exact representation of &}
12. if Dyt (G, §) < € then report §;

Figure 15. Range similarity search using two indices.

from Feature(q), whereas the entries from S_non_osc are organized using L, assuming
that g is oscillating. When a leaf entry from S_osc is dequeued, Lb_glob needs not be
tested (Lb_seg is immediately computed), whereas leaf entries from S_non_osc must pass
the Lb_glob filter and be re-inserted. If g is not oscillating, entries from both trees are treated
in the same way and the Lb_glob filter is always used, as in the algorithm of figure 14.

4. Experimental evaluation

We evaluate the performance of the proposed methodology by using a wide range of real
datasets obtained from the UCR Time Series Data Mining Archive (Keogh, 2002b). The
datasets, listed in Table 8, cover a variety of disciplines including finance, medicine, chem-
istry, astronomy, etc. The third column of Table 8 shows the length of each sequence in the
dataset and the number of sequences in it.

In order to demonstrate the generality of our methodology, we conducted two sets of
experiments based on whether there is an envelope constraint or not. First, we compared the
tightness (i.e., pruning effectiveness) of the proposed bounds Lb_segl, Lb_seg2, Lb_seg3,
and Lb_glob against Lb_Yi (Yi, Jagadish, & Faloutsos, 1998), Lb_Kim (Kim, Park, and Chu,
2001), Lb_Keogh (Keogh, 2002a), and Lb_PAA (Keogh, 2002a; Zhu & Shasha, 2003). In
addition, we compared the search performance of our methodology to that of previous
methods (Yi, Jagadish, & Faloutsos, 1998; Kim, Park, and Chu, 2001; Keogh, 2002a; Zhu

FAST AND EXACT WARPING OF TIME SERIES 255

Table 8. Tightness without envelope constraints.

ID Name length*no Lb_Kim Lb_glob Lb.Yi Lb_segl Lb_seg2
1 Sunspot 2899*1 0.20 0.25 0.28 0.18 0.34
2 Power 35040%1 0.18 0.21 0.23 0.36 0.44
3 Spot Exrates 2567*12 0.16 0.23 0.71 0.43 0.62
4 Shuttle 1000*6 0.16 0.22 0.58 0.63 0.72
5 Water 2191%#3 0.47 0.48 0.65 0.70 0.74
6 Chaotic 1800%1 0.19 0.23 0.24 0.26 0.36
7 Steamgen 9600*4 0.14 0.19 0.64 0.37 0.56
8 Ocean 4096*1 0.16 0.20 0.33 0.52 0.56
9 Tide 8746*1 0.23 0.29 0.33 0.22 0.40

10 CSTR 7500%3 0.15 0.22 0.64 0.44 0.65

11 Winding 2500%7 0.21 0.26 0.22 0.21 0.37

12 Dryer2 867%6 0.16 0.25 0.63 0.31 0.56

13 Robot Arm 1024%2 0.2 0.25 0.2 0.12 0.34

14 Ph Data 2001%*3 0.14 0.18 0.53 0.28 0.49

15 Power Plant 2400*1 0.14 0.20 0.29 0.44 0.53

16 Evaporator 6305%6 0.18 0.23 0.2 0.11 0.27

17 Ballbeam 1000%#2 0.16 0.21 0.57 0.40 0.60

18 Fetal ECG 2500%9 0.45 0.59 0.49 0.76 0.79

19 Balloon 2001%2 0.24 0.29 0.23 0.57 0.62

20 Stand’& Poor 17610*1 0.13 0.24 0.81 0.47 0.82

21 Speech 1020*1 0.25 0.29 0.15 0.12 0.34

22 Soil Temp 2306%1 0.16 0.23 0.26 0.23 0.31

23 Wool 310%9 0.14 0.23 0.81 0.45 0.74

24 Infrasound 8192*1 0.17 0.22 0.62 0.38 0.53

25 EEG 512%22 0.18 0.23 0.15 0.15 0.29

26 Koski EEG 144002*1 0.25 0.28 0.31 0.41 0.56

27 Buoy Sensor 13991*4 0.18 0.23 0.45 0.29 0.44

28 Burst 9382%1 0.16 0.21 0.54 0.40 0.54

29 Random Walk 65536%1 0.18 0.23 0.27 0.37 0.45

& Shasha, 2003), which utilize the aforementioned bounds and appropriate indices. The
implementation language was C++- and the experiments were performed on a Pentium III
700 MHz workstation, running Unix.

4.1. Tightness of the lower bounds

In the first set of experiments, we compared the tightness of the proposed lower bounds
Lb_segl, Lb_seg2, Lb_seg3, and Lb_glob against Lb_Yi (Yi, Jagadish, & Faloutsos, 1998),
Lb_Kim (Kim, Park, and Chu, 2001), Lb_Keogh (Keogh, 2002a), and Lb_PAA (Zhu &
Shasha, 2003). Let g and s be two sequences. The tightness T of a lower bound Lb(q,)

256 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

of Dy1,(q, §) is defined in Keogh (2002a) and Zhu & Shasha (2003) by:

_ Lb(q_: Sz (13)

D dtw(q S)

T is in the range of [0, 1], because both Lb(g, s) and Dg;,,(g, 5) are positive and Lb(g, 5)
must be no greater than D;,,(¢, 5). The higher T is, the tighter Lb(g, 5) is. For each dataset
of Table 8 we first randomly extracted a set S of 50 subsequences® of length m = 256.
Each sequence was normalized by subtracting from each value the mean of the sequence,
so that the resulting sequence has mean 0. Then for each distinct pair (i, j) of sequences,
where 1 <i < j < 50, we set ¢ = S[i], 5 = S[j] and computed the tightness of each
bound, according to Eq. (13). Finally, for each bound we averaged its tightness over all
pairs. The same methodology was used to evaluate tightness in Keogh (2002a) and Zhu &
Shasha (2003). As a warping constraint, we used a Sakoe-Chiba band with width coefficient
w = 0.1. The PAA and APCA segmentations used by Lb_PAA and our Lb_seg bounds were
16-dimensional (i.e., N = M = 16). Table 8 compares the tightness of the bounds that can
be applied without a warping (i.e., envelope) constraint. Lb_seg?2 is clearly the tightmost
bound, being on the average 1.435 times tighter than Lb_Yi and 2.5 times tighter than
Lb_Kim. As expected, it is consistently tighter than Lb_segl, whereas it it (slightly) less
tight than Lb_Yi in only few datasets. Moreover, as expected, Lb_glob (our indexable bound)
is consistently tighter than Lb_Kim.

Table 9 compares the tightness of various bounds for the case when there exists an en-
velope constraint, using the same sequences as in Table 8. In this case, the numbers for
Lb_Kim, Lb_glob, Lb_Yi, and Lb_seg?2 are different from those in Table 8 because the op-
timal warping distance in the constraint envelope may be larger than the unconstrained
one. As expected, Lb_seg3 is always tighter than Lb_seg2, since it considers the enve-
lope constraints. Moreover, on the average, Lb_seg3 is 1.53 times tighter than Lb_PAA
and 1.01 times as tight as Lb_Keogh (which, however, does not facilitate indexing). In
addition, Lb_glob always improves upon Lb_Kim. In summary, our bounds Lb_seg2 and
Lb_seg3 are much tighter than the previous techniques, in the presence or not of enve-
lope constraints. In the next section, we show how this affects the search efficiency of our
methodology.

4.2. Pruning power and response time

We evaluated our bounds and the indexing scheme discussed in Section 3.4, by compar-
ing their performance with the previous approaches for DTW with and without envelope
constraints. The previous techniques included in the evaluation are (i) indexed search using
Lb_Kim (Kim, Park, and Chu, 2001) (denoted by KimSearch) (ii) linear scan using Lb_Yi
(Yi, Jagadish, & Faloutsos, 1998) (denoted by YiSearch), ” (iii) linear scan using Lb_Keogh
(Keogh, 2002a) (denoted by KeoghSearch), and (iv) indexed search using Lb_PAA (Keogh,
2002a; Zhu & Shasha, 2003) (denoted by PAASearch). We also included (v) indexed search
using Lb_glob and Lb_seg? (denoted by SegSearch2), (vi) indexed search using Lb_glob and
Lb_seg3 (denoted by SegSearch3), and (vii) indexed search using Lb_glob only (denoted

FAST AND EXACT WARPING OF TIME SERIES 257

Table 9. Tightness with envelope constraints.

1D Lb_Kim Lb_glob Lb.Yi Lb_Keogh Lb_PAA Lb_seg2 Lb_seg3

1 0.15 0.25 0.22 0.5 0.36 0.23 0.37
2 0.14 0.2 0.23 0.59 0.5 0.33 0.52
3 0.14 0.22 0.67 0.67 0.63 0.55 0.70
4 0.14 0.2 0.55 0.8 0.76 0.57 0.92
5 0.43 0.47 0.65 0.6 0.37 0.64 0.78
6 0.17 0.23 0.23 0.48 0.25 0.28 0.37
7 0.12 0.19 0.63 0.74 0.7 0.59 0.7
8 0.13 0.2 0.31 0.77 0.75 0.42 0.63
9 0.2 0.27 0.31 0.48 0.23 0.34 0.47
10 0.13 0.21 0.61 0.68 0.61 0.57 0.68
11 0.18 0.23 0.22 0.33 0.11 0.33 0.38
12 0.14 0.23 0.6 0.6 0.46 0.5 0.59
13 0.19 0.23 0.2 0.23 0 0.29 0.35
14 0.12 0.17 0.52 0.46 0.33 0.42 0.48
15 0.11 0.18 0.28 0.67 0.58 0.41 0.6
16 0.18 0.2 0.19 0.23 0.06 0.25 0.28
17 0.14 0.21 0.51 0.58 0.49 0.42 0.65
18 0.28 0.58 0.33 0.59 0.01 0.44 0.85
19 0.21 0.29 0.19 0.44 0.02 0.46 0.71
20 0.12 0.22 0.8 0.8 0.75 0.77 0.85
21 0.21 0.29 0.13 0.38 0.01 0.28 0.39
22 0.15 0.21 0.25 0.35 0.09 0.27 0.33
23 0.13 0.23 0.79 0.73 0.67 0.69 0.75
24 0.14 0.21 0.55 0.64 0.59 0.5 0.63
25 0.17 0.22 0.15 0.32 0.08 0.25 0.30
26 0.18 0.27 0.31 0.63 0.49 0.39 0.77
27 0.16 0.23 0.43 0.49 0.31 0.34 0.44
28 0.13 0.2 0.49 0.71 0.68 0.5 0.63
29 0.15 0.23 0.25 0.65 0.59 0.37 0.51

by GlobSearch). GlobSearch corresponds to a technique which directly applies DTW after
Lb_glob filtering (without filtering by some Lb_seg before DTW).

For this set of experiments, we used Koski EEG, the longest sequence from Table 8 and
Fetal ECG, a dataset with special properties, to be discussed in Section 4.2.2. We extracted
all subsequences of length m = 256 from it, inserted a random subset 50 of subsequences
in a query set, and constructed a dataset S for the remaining ones. Unless otherwise stated,
the number of segments used in the segmental approximations was M = 16. We then
evaluated the performance of the various techniques for range and nearest neighbor queries.
Performance is measured in terms of two factors. The first is the average response time for
each query. The second, referred to as candidate ratio, is the percentage of sequences for

258 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

which the exact (and expensive) D, must be computed for each query. In each experimental
instance, we averaged these performance measures over all tested 50 queries.

4.2.1. Queries without warping constraints. In the first set of experiments we compare
the methods for queries without envelope constraints. We include KimSearch, YiSearch,
SegSearch2, and GlobSearch3; these are the only methods that can be applied in this case.
figure 16(a) plots the execution cost of applying k-NN queries on the Koski EEG dataset
using the four methods. Figure 16(b) plots the performance of the four methods on the same
dataset in terms of the percentage of time sequences for which exact DTW has to be applied
(candidate ratio). Note that the response time is directly proportional to this percentage.
Thus, the burden of all algorithms is the number of exact DTW computations, which is
greatly reduced thanks to the tight lower bounds. Observe that SegSearch? is several times
faster than the previous similarity search techniques that do not use envelope constraints.
YiSearch is not efficient, since it does not employ any index; Lb_Y1i has to be applied on all
sequences of the database (linear scan) at a non-trivial cost. In addition, figure 16(b) suggests
that it is not an effective bound, as a large percentage of DTW computations have to be
applied. KimSearch, on the other hand, can effectively prune large parts of the database, since
search is directed by the tree and a close NN used for pruning can be found fast. On the other
hand, it is looser than our GlobSearch improvement. Finally, the additional application of
the Lb_seg?2 filter on the candidates found by GlobSearch (i.e., method SegSearch2) further
improves search by drastically reducing the number of sequences on which exact DTW
has to be applied. Figures 16(c) and (d) show similar trends for range similarity queries.
For other datasets such as Fetal ECG (Figures 16(e) to (h)), we derive similar conclusions.
We have also included a comparison on the Steamgen dataset, where Lb_Yi is tighter than
Lb_seg2 (see Table 8). Observe that even in this case SegSearch2 is much faster than Lb_Yi
due to the effectiveness of the index.

4.2.2. Queries with warping constraints. Next, we compare methods that are applica-
ble in the presence of warping constraints. Figures 17(a) to (d) compare the six methods
(SegSearch? is omitted since it is always not better than SegSearch3) for k-NN and range
e-range queries on the Koski EEG dataset. Note that SegSearch3 dominates over all other
methods. YiSearch is the slowest method, just as for search without warping constraints.
On the other hand, KeoghSearch is quite fast, even though it is based on linear scan, since
Lb_Keogh is a very tight bound. KimSearch and GlobSearch are fast for small £ and ¢, but
their performance degrades for large numbers. Finally, PAASearch is quite efficient, but not
as good as SegSearch3 and KeoghSearch. First, the approximations used by PAASeach do
not provide very accurate bounds, compared to the APCA segments used by SegSearch3.
Second, the area defined of the approximated bounding envelope of g covers a large area
of the search space and accesses many candidate sequences.

Figures 17(e) to (h) confirm that the PAA-based bounding envelope of § can cover a
large area. This time, we used another dataset (Fetal ECG), where PAASearch has very poor
performance. Note that Lb_PAA in this case hardly prunes any sequence during search (see
also Table 9), on most of which exact DTW has to be applied. The sequences in this dataset
have special properties where each sequence is quasi-periodic, with no fixed width; every
positive spike is immediately followed by a negative one of the same width. Such sequences

FAST AND EXACT WARPING OF TIME SERIES 259

30
B KimSearch -~ g 2
2 GlobSearch o K
2 150 YiSearch z 20 -
= SegSearch2 . SegSearch2 -
3 5 15 X
g 100 3 X
8 § 10
8 s
& 131
50 5
0% 0
1
k k
(a) Koski EEG, k-NN (Response Time) (b) Koski EEG, k-NN (Candidate Ratio)
200 KimSearch - % KimSearch
GlobSearch GlobSearch
YiSearch YiSearch
SegSearch2 20 segSearch2
< 150 =
g =
T 2
E &
= 100 °
g 3
L 50 S
0 P
20 40 60 80 100
epsilon epsilon
(c) Koski EEG, e-range (Response Time) (d) Koski EEG, e-range (Candidate Ratio)
70 60
KimSearch -—>¢-— KimSearch ¢
60 GlobSearch ——
YiSearch - ﬁ’ 50
g 50 SegSearch - A s
- o o 40
E 404 B A
@ 2 30
2 30 3
g 5
§ 20 § 2
10 10
0
1 5 20 50 100 5 20 50 100
v v
(e) Fetal ECG, k-NN (Response Time) (f) Fetal ECG, k-NN (Candidate Ratio)
60 KimSearch - KimSearch
GlobSearch —— 50 [GlobSearch ——
YiSearch - YiSearch -4
_. 50 | SegSearch2 . SegSearch2
(3 x
2 &
T 40 -]
£ s
2 30 -
S z
10
iy = —
50 100 150 200 250 50 100 150 200 250
epsilon epsilon
(g) Fetal ECG, e-range (Response Time) (h) Fetal ECG, e-range (Candidate Ratio)
120 KimSearch -->¢-- 0 KimSearch —>¢-—
GlobSearch GlobSearch
100 YiSearch =-#- 50 YiSearch ==&
. SegSearch2 - . SegSearch2 -~
8 *
% 80 5 40
E s -
< 60 @ 30 VSt
g 1 Y S
& 40 2 20
e A 8
20 10
0 = (O
1 5 20 50 100 1 5 20 50 100
k k
(i) Steamgen, k-NN (Response Time) (j) Steamgen, k-NN (Candidate Ratio)

Figure 16. Performance comparison of search techniques with no envelope constraints.

260 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

35
30
7 K GlobS:
2 GlobSearc 25 lobSearc
3 i < YiSearc|
% P, Jigeard 2 2 KF‘Aﬁgearc
E KeoghSearch ® eoghSearc|
o SegSearch o SegSearch:
2 3
2 2
e 8
Ki T
& G 25 GlobSearch
YiSearc YiSearch -
g % KPA’T\\ L Kp hi h
o £0 earch 80 earc
g SegSearch 8 20 A archs
T 40 °
£ [
3 30 s
s =
5
epsilon epsilon
(c) Koski EEG, e-range (Response Time) (d) Koski EEG, e-range (Candidate Ratio)
35 100
—————— e PDUR—— =, 4
& . >) L > KimSearcl
30 KimSearcl GlobSearc|
GIon_gearc 80 YiSearc|
o ISearct)
£ Wt : e
_é 20 SegSearch: ® 60 egSearc
2 £
3]
£ 5 0%
@ 2
4 8
20
9
0 A P
1 5 20 50 100
k
(f) Fetal ECG, k-NN (Candidate Ratio)
100 = *
30 — i e A Ki
lam ¢ GlobSearcl
_ . YiSearcl
§ 25)
k3 2
£ [
2)
4 S
2 2
@
4 8
50 100 150 200 250 50 100 150 200 250
epsilon epsilon
(g) Fetal ECG, e-range (Response Time) (h) Fetal ECG, e-range (Candidate Ratio)
PAASearch - 8 PAASearch -4 3
25 + KeoghSearch KeoghSearch
SegSearch3 - 7 SegSearch3 -
e 20 £
3 s
£ §°
2 10 ‘g 3
8 I
e 2 2
1
. e A- -
0.1 0.14 0.18 0.02 0.06 0.1 0.14 0.18
warping width warping width
(i) Koski EEG, e-range (j) Koski EEG, e-range
(Response Time, ¢ = 60) (Candidate Ratio, ¢ = 60)

Figure 17. Performance comparison of search techniques with envelope constraints.

FAST AND EXACT WARPING OF TIME SERIES 261

are very common in medical applications, e.g., Fetal ECG contains cardiograms of patients.
In such cases, most PAA segments have the same average, and the approximation of any
sequence is close to a flat line. On the other hand, APCA is a more flexible transformation,
since it uses more segments for areas of high variance.

Finally, we compared the performance of PAASeach, KeoghSearch, and SegSearch3 as
a function of the width coefficient w that constrains the warping path. Figures 17(i) and (j)
show that the performance of SegSearch3 is not affected as much by w as KeoghSearch and
PAASeach. The performance of PAASeach degrades especially fast, due to the looseness
of the warping envelope approximations. In summary, our methodology is much faster
compared to previous methods for DTW similarity queries with and without envelope
constraints.

4.2.3. Indexing efficiency. In the next experiment, we compare the efficiency of the two
indexing schemes proposed in Section 3.4. The first uses a single R*-tree, whereas the
second scheme divides the sequences to oscillating and non-oscillating ones and indexes
each set by a separate R*-tree, as discussed in Section 3.4.1. In order to show the effec-
tiveness of indexing, we also included two linear scan approaches SegSearch2_noindex and
SegSearch3_noindex, that apply the corresponding filters with linear scan. Figures 18(a) and
(b) show the performance of SegSearch2 (no warping constraint) and SegSearch3 (warp-
ing constraint w = (.1), when applied on one or two indices of Koski EEG (denoted by

35 [SegSearch2_Index2 —@— J 7 SegSearch3_Index2 —&—
SegSearch2_Index1 -~ 6 | SegSearch3_Index1
30 SegSearch2_noindex - SegSearch3_noindex

response time(sec)
responce time(sec)

80 100 60 80 100
epsilon epsilon
(a) Koski EEG, e-range (no constraint) (b) Koski EEG, e-range (constrained)
25| SegSearch2_Index2 - *] 2.5 | SegSearch3 Index2 —— X
SegSearch2_Index1 SegSearch3_Index1
SegSearch2_noindex ¥ o | SegSearch3_noindex
o 20)
D Q
s & .
g 10} § 1f
w 7]
o 1<)
57 0.5
"
0 . . . 0 . . .
50 100 150 200 250 50 100 150 200 250
epsilon epsilon
(c) Fetal ECG, e-range (no constraint) (d) Fetal ECG, e-range (constrained)

Figure 18. Performance comparison of the two indexing schemes.

262 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

30 A 30
SegSearch3 & g SegSearch3 -

25 PAASearch AA e 25 PAASearch -

b

20 fyo 20 el A\

response time(sec)
&
response time(sec)
&
g

1 5 20 50 100 1 5 20 50 100
k k

(a) k-NN, M = 4 (b) k-NN, M = 8

SegSearch3 &
o5 | PAASearch -

response time(sec)
o
o
B>
N
P

1 5 20 50 100
(c) k-NN, M = 16

Figure 19. k-NN queries for M = 4, 8, 16.

Index1 and Index2, respectively). Using two indices provides a slight performance advan-
tage, since L, manages to prune more space compared L, during search. The experiments
also demonstrate that using the index before the filter results in much lower response time,
compared to using the filters after linear scan. The results for Fetal ECG are similar as
shown in figure 18(c) and (d). We only compare response time, since the candidate ratio for
exact DTW is not sensitive to the index used. Finally, we did not include experiments on
NN search, since they also show similar results.

4.2.4. Effect of the number of segments. In the next experiment, we compare the perfor-
mances of SegSearch3 and PAASearch as a function of M, the number of segments used by
the methods to approximate the sequences. Other methods do not use segmental approxi-
mations or other approximation techniques, so we only include these two in the comparison.
The experiments were performed, using the Koski EEG dataset. Figures 19 and 20 compare
the two algorithms for three values of M on nearest neighbor and range search queries.
Observe that our method maintains a performance advantage over PAASearch for different
values of M. For the range of tested M values, the efficiency of the two techniques increases
with M, since the segmented representations are more accurate and exact DTW must be
applied on fewer candidates. Nevertheless, too high values for M degenerate the R*-tree
index (used by PAASearch) and make SDTW (used by SegSearch3) less efficient. We

FAST AND EXACT WARPING OF TIME SERIES 263

30 30
SegSearch3 &

25 PAASearch -

SegSearch3 -
el e 25 | PAASearch --

o
o

response time(sec)
&
response time(sec)
&
B

20 40 60 80 100 20 40 60 80 100
epsilon epsilon

(a) e-range, M = 4 (b) e-range, M = 8

30

SegSearch3 &
25 | PAASearch -

N
o

response time(sec)
o o
o (&)
iy
B

3
IS
el

20 40 60 80 100
epsilon

(c) e-range, M = 16

o

Figure 20. e-range queries for M = 4, 8, 16.

have found that M = 16 is a good trade-off between approximation accuracy and filtering
efficiency.

4.2.5. Effect of the sequence length. We also tested the robustness of our technique
as a function of the lengths of the sequences in S. Again, we used Koski EEG, set
M = 16, and constructed four datasets, extracting all subsequences of length m = 128,
256, 512, and 1024, respectively and excluding a random sample of 50 queries from
them.

Figure 21 compares the relative performance of SegSearch3, PAASearch, and
KeoghSearch for nearest neighbor (k = 20) and range search queries (¢ = 40) on the
three collections of sequences. We did not include experiments for similarity search without
warping constraints, since we found SegSearch2 much faster compared to previous meth-
ods that are applicable in this case (see Section 4.2.1). Also, we did not include YiSearch,
KimSearch, and GlobSearch due to their inferior performance.

The results show that SegSearch3 is faster than its competitors in all cases. Observe
that for both k-NN and range queries, the performance of the three methods degrades
fast with m mainly because the cost of DTW increases quadratically with m. On the
other hand, from the diagrams (b) and (d), we can see that the effectiveness of the PAA
and APCA approximations is not affected much by the lengths of the sequences. For

264 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

10000

SegSearch3 X T 25 [SegSearch3 - 2 44444
KP hgearclr-: - Kp hgeamn g)
1000 eoghSearcl A eoghSearcl /
s r 9
2 <
T i)
£ B
® o
2 3
e o
o1 \ . 0% =
128 256 512 1024 128 256 512 1024
m m
(a) Koski EEG, k-NN (k = 20) (b) Koski EEG, k-NN (k = 20)
1600 SegSearch3’ &) 4 N SegSearch3 2
PAASearch &~ 35 A PAASearch —-£&---
KeoghSearch - b VAN KeoghSearch
1 g
£ S
© o
12} @
5 S
2 8
e o
128 256 512 1024
m m
(c) Fetal ECG, e-range (¢ = 40) (d) Fetal ECG, e-range (¢ = 40)

Figure 21. Performance as a function of m.

k-NN search, we observe that it becomes harder for KeoghSearch to find a good nearest-
neighbor bound that can prune the search space early, using the effective Lb_Keogh. This
can be attributed to the “curse of dimensionality” effect; for large m, most sequences
have large distances to ¢ and it takes longer to find the close neighbors. On the other hand,
PAASearch and SegSearch3 are affected less by this problem, since they use indices to guide
search.

4.2.6. Using Lb_Keogh with Lb _glob indices. As we have seen in Table 9, Lb_Keogh is
a tight bound, however, we have used it so far only in combination with linear scan. We
can replace Lb_seg by Lb_Keogh in the algorithms of Section 3.4 in order to make better
use of the bound. In other words, we can use Feature(s) to index each sequence s using
an R*-tree, and for each candidate that passes Lb_glob we can apply Lb_Keogh (instead of
Lb_seg) as a filter prior to DTW matching. In this section, we compare the efficiency of this
search method, denoted by GlobKeoghSearch, against SegSearch3.

Figure 22 shows the performance of the two schemes for queries on the Koski EEG and
Fetal ECG datasets. Observe that SegSearch3 is faster than GlobKeoghSearch for the tested
queries. We expect the performance of GlobKeoghSearch to degrade with the warping width
constraint w, since Lb_Keogh more sensitive to it compared to our Lb_seg3 bound, as shown
in Section 4.2.2.

FAST AND EXACT WARPING OF TIME SERIES 265

SegSearch3 - ' A 4 SegSearchd & " A
2571 GlobKeoghSearch =& 35 GlobKeoghSearch =&
2y ' 3 ;
25 A

response time(sec)
(4]
response time(sec)

1t 15
1
05
0 0%
1 5 20 50 100 50 100 150 200 250
k epsilon
(a) Fetal ECG, k-NN (b) Fetal ECG, e-range

SedSearchB <>
10 | GlobKeoghSearch &~

SedSearchs »»»»»» <> -----
10 + GlobKeoghSearch A

S o .
k3 s 8 e
@ I >
£ =
= S 5 B
3 3 A
g g)
I &
] o e
0
1 5 20 50 100 80 100
k epsilon
(c) Koski EEG, k-NN (d) Koski EEG, e-range

Figure 22. Effect of using Lb_Keogh filter after GlobSearch.

5. Conclusions

In this paper, we presented an efficient methodology for indexing and querying time series
using dynamic time warping (DTW). We have shown how to use APCA approximations
to compute fast three progressively more tight lower bounds for DTW distance, which
are based or not on warping path constraints. In addition, we showed an improvement of
the Lb_Kim global bound (Kim, Park, and Chu, 2001), which can be used to index the
segmentations. Finally, we proposed a multi-step query processing technique that applies
two levels of filtering, minimizing the search effort and the number of sequences on which
exact DTW has to be applied.

The proposed methodology is generic enough to be applied in the case where no warping
constraints are specified, whereas it can also be optimized to take advantage of warp-
ing constraints. It was compared with previous state-of-the-art methods (Yi, Jagadish, &
Faloutsos, 1998; Kim, Park, and Chu, 2001; Keogh, 2002a; Zhu & Shasha, 2003) and found
consistently superior to them, for both cases where warping path constraints exist or not.

The main contributions of this work can be summarized as follows:

e This is the first work which uses APCA approximations to compute fast progressively
tight lower bounds for DTW distance. Due to the nice properties of APCA, which can
approximate sequence parts of low variance with few segments and parts of high variance

266 Y. SHOU, N. MAMOULIS AND D. W. CHEUNG

with many segments, the proposed lower bounds are still very tight for the data sets with
special features (i.e., quasi-periodic); while Keogh’s and Zhu’s lower bounds using PAA
representations are much looser for these datasets.

e We have proposed a multi-step query processing technique, which applies two levels of
filtering. The advantage of this approach is that it is able to filter out unqualified sequences
at very low cost at the first step, and use another much refined filter to make second level
filtering, such that the search effort and the number of sequences on which exact DTW
has to be applied is minimized.

e We have conducted an thorough experimental study, which suggests that our multi-step
query processing technique is more efficient and robust than existing state-of-the-art
methods. Our proposed indexing and filtering schemes are consistently superior for var-
ious types and lengths of sequences and different numbers of segments used to represent
the sequences. Finally, our method adapts well to the presence and extent of envelope
constraints.

In the future, we plan to further optimize this multi-step query processing methodology
by exploring the application of additional lower-bounds and filters. In addition, we plan to
test its efficiency as a module of classification and clustering algorithms that use DTW to
measure similarity.

Notes

1. The subsequence matching problem is converted to the whole matching problem by employing sliding window
techniques (Faloutsos, Ranganathan, & Manolopoulos, 1994; Moon, Whang, & Han, 2002).

2. The value of a cell (i, j) in the warping matrix W M is the warping distance D(i, j), however, each element of
a warping path W corresponds to d(i, j); W accumulates these distances.

3. If all elements of one sequence are larger than all elements of the other, we should set min_max = max_min,
before the computation of Lb_Yi.

4. Theterm Segmented Dynamic Time Warping was used in Keogh, and Pazzani (1999) to describe an approximate
DTW distance which, however, is not a lower bound. Our proposed SDTW derives a lower bound computed
and used in a different way.

5. In fact, there is no need to construct C, since the candidates can directly be accessed at the time they pass the
lower bounding filters. C is included in figure 13 for the ease of presentation.

6. If a dataset consists of more than one long sequences, we first pick a random sequence and then a subsequence
of it.

7. In Yi, Jagadish, & Faloutsos (1998) a multi-step similarity query processing method that uses Lb_Yi and a
multi-dimensional index was proposed. However, it is not appropriate for exact DTW search, since it allows
false dismissals of query results.

References

Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence databases. Proc. 4th Int.
Conf. on Foundations of Data Organization and Algorithms (FODO) (pp. 69-84).

Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: An efficient and robust access
method for points and rectangles. Proc. of the ACM SIGMOD Int. Conf. on Management of Data (pp. 322-331).
Atlantic City, New Jersey.

Berndt, D. J. & Clifford, J. (1994). using dynamic time warping to find patterns in time series. Proc. of AAAI
Workshop: Knowledge Discovery in Databases (pp. 359-370). Seattle, Washington, .

FAST AND EXACT WARPING OF TIME SERIES 267

Chu, S., Keogh, E., Hart, D., & Pazzani, M. (2002). Iterative deepening dynamic time warping for time series. In:
Proc of SIAM International Conference on Data Mining.

Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases.
Proc. of the ACM SIGMOD Int. Conf. on Management of Data (pp. 419-429). Minneapolis, Minnesota.

Goldin, D. & Kanellakis, P. (1995). On similarity queries for time-series data: constraint specification and im-
plementation. Proc. of the st Intl Conference on the Principles and Practice of Constraint Programming
(pp- 137-153). Cassis, France.

Hjaltason, G. & Samet, H. (1999). distance browsing in spatial databases. ACM Transactions on Database Systems
24:2,265-318.

Kaufman, L. & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley.

Keogh, E. (2002a). Exact indexing of dynamic time warping. Proc. of 28th International Conference on Very
Large Data Bases (pp. 406-417). Hong Kong, China.

Keogh, E. (2002b). The UCR Time Series Data Mining Archive. Computer Science & Engineering Department,
University of California, Riverside CA, http://www.cs.ucr.edu/"eamonn/TSDMA /index.html.

Keogh, E., Chakrabarti, K., Mehrotra, S., & Pazzani, M. (2001). Locally adaptive dimensionality reduction for
indexing large time series databases. Proc. of the ACM SIGMOD Int. Conf. on Management of Data (pp. 151—
162). Santa Barbara, California, .

Keogh, E. & Pazzani, M. (1999). scaling up dynamic time warping to massive datasets. Proc. of the Eur. Conf on
Principles of Data Mining and Knowledge Discovery (PKDD) (pp. 1-11). Prague, Czech Republic.

Kim, S. W., Park, S., & Chu, W. W. (2001). An indexed-based approach for similarity search supporting time
warping in large sequence databases. Proc. of the 17th International Conference on Data Engineering (pp. 607—
614). Heidelberg, Germany.

Kruskall, J. B. & Liberman, M. (1983). The symmetric time warping algorithm: From continuous to discrete. In:
Time Warps, String Edits and Macromolecules. Addison-Wesley.

Moon, Y. S., Whang, K. Y., & Han, W. S. (2002). GeneralMatch: A subsequence matching method in time-series
databases based on generalized windows. Proc. of the ACM SIGMOD Int. Conf. on Management of Data
(pp. 382-393). Madison, Wisconsin.

Munich, M. E. & Perona, P. (1999). continuous dynamic time warping for translation-invariant curve alignment
with applications to signature verification. Proc. of the 8 th Int’l Conf. on Computer Vision (pp. 20-25). Corfu,
Greece.

Rabiner, L. & Juang, B. H. (1993). Fundamentals of Speech Recognition. Prentice Hall.

Ratanamahatana, C. A. & Keogh, E. (2004). making time-series classification more accurate using learned con-
straints. Proc. of SIAM International Conference on Data Mining (SDM ’04) (pp. 11-22). Lake Buena Vista,
Florida.

Sakoe, H. & Chiba, S. (1978). dynamic programming algorithm optimization for spoken word recognition. /[EEE
Trans. Acoustics, Speech and Signal Processing 26:1, 43-49.

Seidl, T. & Kriegel, H.-P. (1998). Optimal multi-step k-nearest neighbor search. Proc. of the ACM SIGMOD Int.
Conf. on Management of Data (pp. 154—165). Seattle, Washington.

Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., & Keogh, E. (2003). indexing multi-dimensional time-series
with support for multiple distance measures. Proc. of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 216-225). Washington, DC.

Yi, B., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval of similar time sequences under time warping.
Proc. of the Fourteenth International Conference on Data Engineering. pp. 201-208, Orlando, Florida.

Zhu, Y. & Shasha, D. (2003). warping indexes with envelope transforms for query by humming. Proc. of the ACM
SIGMOD Int. Conf. on Management of Data (pp. 181-192). San Diego, California.

Received March 18, 2004
Revised October 9, 2004
Accepted October 9, 2004

Final manuscript October 9, 2004

