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Abstract
We introduce a basic intuitionistic conditional logic IntCK that we show to be complete
both relative to a special type of Kripke models and relative to a standard translation
into first-order intuitionistic logic. We show that IntCK stands in a very natural relation
to other similar logics, like the basic classical conditional logic CK and the basic intu-
itionistic modal logic IK. As for the basic intuitionistic conditional logic ICK proposed
in Weiss (Journal of Philosophical Logic, 48, 447–469, 2019), IntCK extends its lan-
guage with a diamond-like conditional modality ♦→, but its (♦→)-free fragment is
also a proper extension of ICK. We briefly discuss the resulting gap between the two
candidate systems of basic intuitionistic conditional logic and the possible pros and
cons of both candidates.

Keywords First-order logic · Intuitionistic logic · Strong completeness · Conditional
logic

1 Introduction

The present paper was written in an attempt to find and vindicate an answer to the
question, what is a basic intuitionistic conditional logic. By basic logic we mean a
logic that is complete relative to a universal class of suitably defined Kripke models.
This basic logic must also be intuitionistic in the sense of being the intuitionistic
counterpart of the basic classical conditional logic CK (introduced in Chellas [4]; see
also Segerberg [14]). More precisely, its only difference from CK must consist in
the fact that the classical reading of the Kripke semantics for CK is replaced by an
intuitionistic reading, and the classical first-order metalogic of CK is replaced with an
intuitionistic one. Finally, this logic must be fully conditional in that it must enrich the
language of intuitionistic propositional logicwith the full set of conditionalmodalities,
both the stronger box-like �→ and the weaker diamond-like ♦→.
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The existing literature on intuitionistic conditional logic is not vast, but it seems
to have a clear candidate for the role of a basic system. This candidate is the system
ICK, introduced byWeiss in [18] (see also the more detailed exposition in Weiss [19]).
This research was followed by Ciardelli and Liu [5], which was based on a version
of Kripke semantics different from that used in Weiss [18]; however, this change did
not affect the status of ICK which the authors of Ciardelli and Liu [5] have shown to
be also the system complete relative to the universal class of their preferred variety of
Kripke models. ICK also has a claim for the title of the intuitionistic counterpart of CK
in that its complete axiomatization results from replacing the classical propositional
fragment of CK with the intuitionistic one.

However, ICK only features the stronger conditional modality, �→, and no attempt
is made to show the completeness of ICK relative to an intuitionistic reading of the
metatheory of CK. The former shortcoming is openly acknowledged by I. Ciardelli and
X. Liu, who write: “Just like ∀ and ∃ are not interdefinable in intuitionistic predicate
logic, and � and ♦ are not interdefinable in intuitionistic modal logic, also �→ and
♦→ will not be interdefinable in intuitionistic conditional logic. In order to capture
might-conditionals in the intuitionistic setting, we need to add ♦→ to the language as
a new primitive... In this extended setting, the properties of �→ might not uniquely
determine the properties of ♦→. Therefore, it becomes especially interesting to look
at the landscape of intuitionistic conditional logics in a setting where the language
comprises both operators”[5, p. 830].

In this paper, we are going to propose a different system for the role of basic
intuitionistic conditional logic. This system, which we call IntCK, both answers the
concern expressed in the above quote by I. Ciardelli and X. Liu and can be shown
to enjoy a form of strong completeness relative to an intuitionistic reading of its
metatheory. We will also show that the (♦→)-free fragment of IntCK is a proper
extension of ICK, whence it follows that ICK is incomplete relative to an intuitionistic
reading of its metatheory and hence cannot be viewed as a full basic intuitionistic
conditional logic even within the (♦→)-free fragment of the conditional language.

The rest of this paper is organized as follows. Section 2 introduces the notational
preliminaries, followed by Section 3,wherewe explain the syntax and a formofKripke
semantics of IntCK (in Section 3.1) and then axiomatize the logic (in Section 3.2).
Sections 4 and 5 explore the relation of IntCK to other logics, both propositional
(in the former section) and first-order (in the latter one). Section 5 also contains the
completeness theorem for IntCK relative to an intuitionistic reading of its Kripke
semantics.

Finally, in Section 6, we briefly discuss the results of the previous sections, and,
after drawing some conclusions, describe several avenues for continuing the research
lines presented in the paper. The paper also has several appendices where the reader
can find the more technical parts of our reasoning, which we include for the sake of
completeness.

2 Preliminaries

We use this section to fix some notations to be used throughout this (rather lengthy)
paper.
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Wewill use IH as the abbreviation for Induction Hypothesis in the inductive proofs,
andwewill write α := β to mean that we define α as β.Wewill use the usual notations
for sets and functions. As for the sets, we will write X � Y , iff X ⊆ Y and X is
finite. The set of all subsets of X will be denoted by P(X). Furthermore, we will
understand the natural numbers as the finite von Neumann ordinals. We denote by ω

the smallest infinite ordinal; given two ordinals λ, μ, we will use λ ∈ μ and λ < μ

interchangeably. Given a (finite) tuple of any sort of objects α = (x1, . . . , xn), we
will denote by ini t(α) and end(α) the initial and final element of α, that is to say, x1
and xn , respectively. More generally, given any i < ω such that 1 ≤ i ≤ n, we set
that π i (α) := xi , i.e. that π i (α) denotes the i-th projection of α. Given another tuple
β = (y1, . . . , ym), we will denote by (α)�(β) the concatenation of the two tuples,
i.e. the tuple (x1, . . . , xn, y1, . . . , ym). The empty tuple will be denoted by �.

We will extensively use ordered couples of sets which we will also call bi-sets. The
usual set-theoretic relations and operations on bi-sets will be understood componen-
twise, so that, e.g. (X ,Y ) ⊆ (Z ,W ) means that X ⊆ Z and Y ⊆ Y and similarly in
other cases.1

Relations will be understood as sets of ordered tuples where the length of the tuple
defines the arity of the relation. Given binary relations R ⊆ X × Y and S ⊆ Y × Z ,
we will denote their composition by R ◦ S := {(a, c) | for some b ∈ Y , (a, b) ∈
R& (b, c) ∈ S}.

Given a set X , we will denote by id[X ] the identity function on X , i.e. the function
f : X → X such that f (x) = x for every x ∈ X . It is clear that a function f : X → Y
can be understood as a special type of relation f ⊆ X × Y . Therefore, our notation
for the composition of functions is in line with the one used for the composition of
relations: namely, given two functions f : X → Y and g : Y → Z , we denote by f ◦g
the function h : X → Z such that h(x) = g( f (x)) for every x ∈ X .2 In relation to
the operation of composition, functions of the form id[X ] have a special importance
as a limiting case. More precisely, given a set X and a family F of functions from X
to X , we will also assume that the composition of an empty tuple of functions from
F is just id[X ].

Furthermore, if f : X → Y is any function, x ∈ X and y ∈ Y , we will denote by
f [x/y] the unique function g : X → Y such that, for a given z ∈ X we have:

g(z) :=
{
y, if z = x;
f (z), otherwise.

1 Our use of bi-sets will be similar to that in the proof of completeness of intutionistic propositional logic
relative to its Kripke semantics given in Chagrov and Zakharyashchev [3, Ch 2.4]; the technique itself
is a variation of the technique of Hintikka collections, different notational versions of which are widely
employed since mid-20th century; see, e.g. Fitting [9, Ch. 2] for an earlier version of the same idea.
2 It seems that, in the existing literature, the more popular option is to define such function h by g ◦ f
(see, e.g., Awodey [1]). However, in the logical literature our convention on the composition of relations
seems to be more popular than the alternative one, viz., to denote by S ◦ R the relation which we denote by
R ◦ S; and since functions go hand-in-hand with relations, we decided to adopt a similar notation for the
composition of functions as well.
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Despite our efforts to accommodate and represent the intuitionistic reading of the
classical semantics for conditional logic, themeta-logic of this paper remains classical.
Therefore, we presuppose the basic acquaintance with the language of first-order
logic and its classical model theory. Finally, in view of the fact that this paper is about
intuitionistic conditional logic,wepresuppose thebasic acquaintanceof the readerwith
both the propositional and the first-order version of this logic; in particular, the reader
should know of at least one complete Hilbert-style axiomatization of intuitionistic
logic.

3 IntCK, the Basic Intuitionistic Logic of Conditionals

3.1 Language and Semantics

We are going to consider the language L based on a countably infinite set of propo-
sitional variables Var and the following set of logical symbols {⊥,
,∨,∧,→,�→
,♦→}. We will denote the propositional variables by letters p, q, r , s and the formulas
in L by φ,ψ, χ, θ , adding subscripts and superscripts when it is convenient.

We will use ¬φ as an abbreviation for φ → ⊥ and φ ↔ ψ as an abbreviation for
(φ → ψ) ∧ (ψ → φ). The formulas of L are interpreted by the following models:

Definition 1 A model is a structure of the form M = (W ,≤, R, V ), where W �= ∅
is a set of worlds, ≤ is a pre-order (i.e., a reflexive and transitive relation) on W ,
V : Var → P(W ) is such that, for every p ∈ Var and all w, v ∈ W it is true that
(w ≤ v&w ∈ V (p))⇒ v ∈ V (p).

Next, we must have R ⊆ W × P(W ) × W . Thus, for every X ⊆ W , R induces
a binary relation RX on W such that, for all w, v ∈ W , RX (w, v) iff R(w, X , v).
Finally, the following conditions must be satisfied for every X ⊆ W :

(≤−1 ◦RX ) ⊆ (RX◦ ≤−1) (c1)

(RX◦ ≤) ⊆ (≤ ◦RX ) (c2)

Conditions (c1) and (c2) can be naturally reformulated as requirements3 to complete
the dotted parts of each of the following diagrams once the respective straight-line
part is given:

3 For readers interested in intuitions behind (c1) and (c2), the following quote (notation adjusted; see [15,
Ch 3.3, p. 51]) might prove helpful:

However, a more conceptual justification of the two frame conditions is possible. Following the Kripkean
paradigm for intuitionistic logic, atomic facts accumulate as we ascend the partial order. Now, it might
reasonably be held that the fact that a world w sees another world v is a reasonable sort of atomic fact that
should persist in this way. Thus any worldw0 ≥ w should also, in effect, see v; but it is reasonable to expect
that we might have accumulated more facts about v too which may therefore have ‘evolved’ into some
world v0 ≥ v. Formalizing these considerations, we arrive at (c1). A dual argument based on v being seen
by a world w justifies (c2). One might well dispute that the passive property of being seen by another world
is the sort of fact which should persist. Thus (c2) seems to have less justification than (c1). ... Nevertheless,
if one does accept both arguments then (c1) and (c2) should be seen as fundamental and not as artificial
conditions imposed for purely technical reasons.
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The models defined are the so-called Chellas models. The alternatives to Chellas
models include Segerberg models which use a designated family of subsets of W in
place of its full powerset P(W ) as in Definition 1.4 These choices are of no import
on the level of the basic conditional logic, in other words, they all induce one and
the same logic both in the classical and in the intuitionistic case. We have chosen
Chellas models since their definition looks short and simple; yet the Segerberg models
can be perhaps ascribed a deeper foundational meaning. For example, the first-order
intuitionistic theory Th defined in Section 5 gives the intuitionistic encoding of the
Segerberg variety of classical conditional semantics rather than the Chellas one.

Our standard notation for models is M = (W ,≤, R, V ). Any model decorations
are assumed to be inherited by their components, so that, for example, Mn always
stands for (Wn,≤n, Rn, Vn). A pointedmodel is a structure of the form (M, w), where
M is a model and w ∈ W .

The formulas of L are interpreted over pointed models by means of the satisfaction
relation |� defined by the following induction on the construction of φ ∈ L:

M, w |� 

M, w �|� ⊥
M, w |� p⇔ w ∈ V (p) for p ∈ Var

M, w |� ψ ∧ χ ⇔M, w |� ψ andM, w |� χ

M, w |� ψ ∨ χ ⇔M, w |� ψ orM, w |� χ

M, w |� ψ → χ ⇔ (∀v ≥ w)(M, v |� ψ ⇒M, v |� χ)

M, w |� ψ �→ χ ⇔ (∀v ≥ w)(∀u ∈ W )(R‖ψ‖M (v, u)⇒M, u |� χ)

M, w |� ψ ♦→ χ ⇔ (∃u ∈ W )(R‖ψ‖M (w, u) andM, u |� χ)

where we assume, for any given φ ∈ L, that ‖φ‖M stands for the set {w ∈ W |
M, w |� φ}.

Given a pair (,�) ∈ P(L)×P(L), we say that a pointed model (M, w) satisfies
(,�) and write M, w |� (,�) iff we have (∀φ ∈ )(M, w |� φ)& (∀ψ ∈
�)(M, w �|� ψ). We say that (,�) is satisfiable iff some pointed model satisfies
it, and that � follows from  (and write  |� �) iff (,�) is unsatisfiable. We say
that  is satisfiable iff (,∅) is; and if (M, w) satisfies (,∅), then we simply write
M, w |� . If some of , � are singletons, we may omit the figure brackets; in case
some of them are empty, we may omit them altogether. We say that φ ∈ L is valid iff
∅ |� φ, or, in other words, iff |� φ.

4 Yet another alternative is to use families of formula-indexed binary relations {Rφ | φ ∈ L}. However,
note that in this case the minimal version of semantics is not sufficient, and additional constraints need to
be imposed; for instance, the relations indexed by logically equivalent formulas must always coincide.
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We identify our system IntCK with the set of relations of the form  |� �. We
will sometimes use the alternative notation  |�IntCK � to underscore this fact. In
the special case when we have |� φ, we will sometimes express this fact by writing
φ ∈ IntCK.

Given a model M and an X ⊆ W , we say that X is upward-closed in M iff
(∀w ∈ X)(∀v ≥ w)(v ∈ X). Definition 1 clearly implies that, for every Chellas
model M and for every p ∈ Var , the set V (p) = ‖p‖M is upward-closed in M.
The latter observation can be lifted to the level of arbitrary formulas:

Lemma 1 Let M be a Chellas model, and let φ ∈ L. Then ‖φ‖M is upward-closed
inM.

We omit the easy proof by induction on the construction of φ ∈ L. We close this
subsection with our first result about IntCK:

Proposition 1 IntCK has the Disjunction Property. In other words, for all φ1, φ2 ∈ L,
φ1 ∨ φ2 ∈ IntCK iff φ1 ∈ IntCK or φ2 ∈ IntCK.

Proof The right-to-left direction is trivial. As for the other direction, assume, towards
contradiction, that φ1 ∨ φ2 ∈ IntCK, but both φ1 /∈ IntCK and φ2 /∈ IntCK. Then we
can choose pointed models (M1, w1) and (M2, w2) such that Mi , wi �|� φi for all
i ∈ {1, 2}; we may assume, wlog, that W1 ∩ W2 = ∅. We then choose an element w

outside W1 ∪W2 and define the following pointed model (M, w) for which we set:

W := {w} ∪W1 ∪W2

≤ := {(w, v) | v ∈ W }∪ ≤1 ∪ ≤2

R := {(v, X , u) | v, u ∈ W1, (v, X ∩W1, u) ∈ R1} ∪ {(v, X , u) | v, u ∈ W2, (v, X ∩W2, u) ∈ R2}
V (p) := V1(p) ∪ V2(p) for p ∈ Var

We show that M is indeed a model. The only non-trivial part is the satisfaction of
conditions (c1) and (c2) from Definition 1.

As for (c1), assume that some v′, v, u ∈ W and X ⊆ W are such that v′ ≥ v RX u.
Then, by defintion of R, we must have either v, u ∈ W1 or v, u ∈ W2. Assume, wlog,
that v, u ∈ W1. Then wemust have, first, that v (R1)X∩W1 u, and, second, that v

′ ≥1 v

so that also v′ ∈ W1. But then, since M1 satisfies (c1), there must be a u′ ∈ W1 such
that v′ (R1)X∩W1 u

′ ≥1 u whence clearly also v′ RX u′ ≥ u, so that (c1) is shown to
hold forM. We argue similarly for (c2).

Next, the following claim can be shown by a straightforward induction on the
construction of φ ∈ L:

Claim. For every i ∈ {1, 2}, every v ∈ Wi , and every φ ∈ L, we have M, v |� φ

iffMi , v |� φ.
It follows now thatM, wi �|� φi for all i ∈ {1, 2}, and, since we have w ≤ w1, w2,

Lemma 1 implies that M, w �|� φi for all i ∈ {1, 2}, or, equivalently, that M, w �|�
φ1∨φ2, contrary to our assumption. The obtained contradiction shows that IntCKmust
have the Disjunction Property. ��
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3.2 Axiomatization

In this subsection, we obtain a sound and (strongly) complete axiomatization of IntCK.
We consider the Hilbert-style axiomatic system ICK, given by the following list of
axiomatic schemes:

A complete list of axioms of intuitionistic propositional logic Int (α0)

((φ �→ ψ) ∧ (φ �→ χ))↔ (φ �→ (ψ ∧ χ)) (α1)

((φ ♦→ ψ) ∧ (φ �→ χ))→ (φ ♦→ (ψ ∧ χ)) (α2)

(φ ♦→ (ψ ∨ χ))↔ ((φ ♦→ ψ) ∨ (φ ♦→ χ)) (α3)

((φ ♦→ ψ)→ (φ �→ χ))→ (φ �→ (ψ → χ)) (α4)

φ �→
 (α5)

¬(φ ♦→⊥) (α6)

Besides the axioms, ICK includes the following rules of inference:

From φ, φ → ψ infer ψ (MP)

From φ ↔ ψ infer (φ �→ χ)↔ (ψ �→ χ) (RA�)

From φ ↔ ψ infer (χ �→ φ)↔ (χ �→ ψ) (RC�)

From φ ↔ ψ infer (φ ♦→ χ)↔ (ψ ♦→ χ) (RA♦)
From φ ↔ ψ infer (χ ♦→ φ)↔ (χ ♦→ ψ) (RC♦)

We assume the standard notion of a proof in a Hilbert-style axiomatic system for ICK,
namely as a finite sequence of formulas, where every formula is either an axiom or
is derived from earlier formulas by an application of a rule. A proof is a proof of its
last formula. A derivation from premises is a finite sequence of formulas, where every
formula is either a premise, or a provable formula, or is derived from earlier formulas
by an application of (MP). Given a  ∪ {ψ} ⊆ L, we write  � ψ iff there exists a
derivation ofψ fromsome (possibly zero) elements of as premises;weomit thefigure
brackets in case  is either a singleton or empty. On the other hand, we write  � ψ

iff there is a derivable rule allowing to infer ψ from , i.e. iff there is a finite sequence
of formulas in which the last formula is ψ , and every formula in the sequence is either
in , or a provable formula, or is obtained from earlier formulas by an application of
one of the inference rules. Thus, we have φ ↔ ψ � (φ �→ χ) ↔ (ψ �→ χ) but
φ ↔ ψ � (φ �→ χ) ↔ (ψ �→ χ). In particular, it follows from these conventions
that φ is provable iff � φ iff � φ.

Before we go on to prove the soundness and completeness of ICK relative to IntCK,
we would like to quickly address the relations between ICK and the intuitionistic
propositional logic Int.

The language Li of Int is the {�→,♦→}-free fragment of L; a complete axiomati-
zation of Int is provided by (α0) together with (MP). Int is one of the best researched
non-classical propositional logics with numerous detailed expositions to be found in
the existing literature (see, e.g., [6, Ch. 5] for a quick textbook level introduction). The
following lemma sums up the relations between Int and ICK:
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Lemma 2 The following statements hold:

1. If ,� ⊆ Li are such that  |�Int �, and ′,�′ ⊆ L are obtained from ,� by
a simultaneous substitution of L-formulas for variables, then ′ � �′. Moreover,
Deduction Theorem holds for ICK in that for all  ∪ {φ,ψ} ⊆ L we have  �
φ → ψ iff , φ � ψ .

2. If φ ∈ Li , then � φ iff φ ∈ Int

Proof (a sketch) Part 1 is trivial. As for Part 2, its (⇐)-part is also trivial, and its
(⇒)-part follows from the observation that, given a proof of φ ∈ Li in ICK, we can
turn it into a proof in Int by replacing all its subformulas of the form χ �→ θ with

and all its subformulas of the form χ ♦→ θ with ⊥. ��
Turning now to the question of soundness and completeness of ICK relative to IntCK,
we observe, first, that ICK only allows us to deduce theorems of IntCK:

Lemma 3 For every φ ∈ L, if � φ, then φ ∈ IntCK.

The proof proceeds by the usual method, i.e. we show that all the axioms are valid and
that the rules of ICK preserve the validity. We are now going to show the converse of
Lemma 3, and we start our work by proving some theorems and derived rules in ICK,
which we collect in the following lemma:

Lemma 4 Let φ,ψ, χ ∈ L. The following theorems and derived rules can be deduced
in ICK:

φ � (ψ �→ φ) (Nec)

(φ → ψ) � ((χ �→ φ)→ (χ �→ ψ)) (RM�)

(φ → ψ) � ((χ ♦→ φ)→ (χ ♦→ ψ)) (RM♦)
(φ �→ (ψ → χ))→ ((φ �→ χ)→ (φ �→ χ)) (T1)

(φ �→ (ψ → χ))→ ((φ ♦→ ψ)→ (φ ♦→ χ)) (T2)

(φ �→ ψ)→ ((φ ♦→ (ψ → χ))→ (φ ♦→ χ)) (T3)

¬(φ ♦→ ψ)↔ (φ �→ ¬ψ) (T4)

The sketch of its proof is relegated to Appendix A.
A bi-set (,�) ∈ P(L)×P(L) is called consistent iff for no �′ � � do we have

that  � ∨
�′.5 Note that, since ICK extends Int, and also in view of Lemma 2.1,

this definition allows for the following equivalent form:

Lemma 5 A bi-set (,�) ∈ P(L) × P(L) is inconsistent iff, for some m, n ∈ ω

some φ1, . . . , φn ∈  and some ψ1, . . . , ψm ∈ � we have:
∧n

i=1 φi � ∨m
j=1 ψ j , or,

equivalently, � ∧n
i=1 φi →∨m

j=1 ψ j .

Furthermore, the bi-set (,�) is called complete iff  ∪ � = L; and it is called
maximal iff it is both complete and consistent. The next two lemmas present some
properties of the consistent and maximal bi-sets, respectively:

5 As for the limiting cases, we assume that
∨∅ = ⊥ and that

∧∅ = 
.
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Lemma 6 Let (,�) ∈ P(L) × P(L) be consistent. Then the following statements
hold:

1. For every φ ∈ L, either ( ∪ {φ},�) or (,� ∪ {φ}) is consistent.
2. For every φ → ψ ∈ �, ( ∪ {φ}, {ψ}) is consistent.
3. For every φ �→ ψ ∈ �, the bi-set ({χ | φ �→ χ ∈ }, {ψ}) is consistent.
4. For every φ ♦→ ψ ∈ , the bi-set ({ψ}∪{χ | φ �→ χ ∈ }, {θ | φ ♦→ θ ∈ �})

is consistent.

Proof Parts 1 and 2 are proved as in the case of intuitionistic propositional logic. As for
Part 3, assume that φ �→ ψ ∈ �, and assume, towards contradiction, that the bi-set
({χ | φ �→ χ ∈ }, {ψ}) is inconsistent. Then there must be φ �→ χ1, . . . , φ �→
χn ∈  such that, for χ :=∧n

i=1 χi , we have χ � ψ . We reason as follows:

 � φ �→ χ by (α1) (1)

� χ → ψ by Lemma 2.1 (2)

� (φ �→ χ)→ (φ �→ ψ) by (2), (RM�) (3)

 � φ �→ ψ by (1),(3) (4)

The assumption that φ �→ ψ ∈ �, together with (4), clearly contradicts the consis-
tency of (,�). The obtained contradiction shows that ({χ | φ �→ χ ∈ }, {ψ})
must be consistent.

Finally, as for Part 4, assume that φ ♦→ ψ ∈ , and assume, towards contradiction,
that the bi-set ({ψ} ∪ {χ | φ �→ χ ∈ }, {θ | φ ♦→ θ ∈ �}) is inconsistent. Then
there must be some φ �→ χ1, . . . , φ �→ χn ∈  and φ ♦→ θ1, . . . , φ ♦→ θm ∈ �

such that, for χ :=∧n
i=1 χi and θ := ∨m

j=1 θ j , we have χ,ψ � θ . We then reason as
follows:

 � φ �→ χ by (α1) (5)

� χ → (ψ → θ) by Lemma 2.1 (6)

� (φ �→ χ)→ (φ �→ (ψ → θ)) by (6), (RM�) (7)

 � (φ ♦→ ψ)→ (φ ♦→ θ) by (5),(7),(T2) (8)

 � φ ♦→ θ by (8),φ ♦→ ψ ∈  (9)

 � φ ♦→ θ1 ∨ . . . ∨ φ ♦→ θm by (9), (α3) (10)

It follows now from (10) that (,�)must be inconsistent, which contradicts our initial
assumption. The obtained contradiction shows that the bi-set ({ψ} ∪ {χ | φ �→ χ ∈
}, {θ | φ ♦→ θ ∈ �}) must be, in fact, consistent. ��
Lemma 7 Let (,�), (0,�0), (1,�1) ∈ P(L)×P(L) be maximal, let φ,ψ ∈ L.
Then the following statements are true:

1. If  � φ, then φ ∈ .
2. φ ∧ ψ ∈  iff φ,ψ ∈ .
3. φ ∨ ψ ∈  iff φ ∈  or ψ ∈ .
4. If φ → ψ, φ ∈ , then ψ ∈ .
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5. If 0 ⊆ , {ψ | φ �→ ψ ∈ 0} ⊆ 1, and {φ ♦→ ψ | ψ ∈ 1} ⊆ 0 then
(1 ∪ {ψ | φ �→ ψ ∈ }, {ψ | φ ♦→ ψ ∈ �}) is consistent.

6. If 1 ⊆ , {ψ | φ �→ ψ ∈ 0} ⊆ 1, and {φ ♦→ ψ | ψ ∈ 1} ⊆ 0 then
(0 ∪ {φ ♦→ ψ | ψ ∈ }, {φ �→ ψ | ψ ∈ �}) is consistent.

Proof The Parts 1–4 are handled as in the case of Int. E.g., for Part 3 observe that,
if φ ∨ ψ ∈  and φ,ψ ∈ �, then we must have  � φ ∨ ψ , thus contradicting the
consistency of (,�).

As for Part 5, assume its hypothesis and suppose, towards contradiction, that (1 ∪
{ψ | φ �→ ψ ∈ }, {ψ | φ ♦→ ψ ∈ �}) is inconsistent. Then there must exist some
ψ1, . . . , ψn ∈ 1, φ �→ χ1, . . . , φ �→ χm ∈ , and some φ ♦→ θ1, . . . , φ ♦→
θk ∈ �, such that, for ψ := ∧n

i=1 ψi , χ := ∧m
j=1 χ j , and θ := ∨k

r=1 θr we have
ψ, χ � θ . But then:

ψ � χ → θ Lemma 2.1 (11)

χ → θ ∈ 1 (11), Part 1 (12)

φ ♦→ (χ → θ) ∈ 0 (12), {φ ♦→ ψ | ψ ∈ 1} ⊆ 0 (13)

φ ♦→ (χ → θ) ∈  (13), 0 ⊆  (14)

 � (φ �→ χ)→ (φ ♦→ θ) (14), (T3) (15)

 � φ �→ χ (α1) (16)

 � φ ♦→ θ (15), (16) (17)

 � (φ ♦→ θ1) ∨ . . . ∨ (φ ♦→ θk) (17), (α3) (18)

It follows now from (18), that (,�) is not consistent and thus also not maximal,
contrary to our initial assumption. The obtained contradiction shows that the bi-set
(1 ∪ {ψ | φ �→ ψ ∈ }, {ψ | φ ♦→ ψ ∈ �}) must have been consistent.

For Part 6, assume its hypothesis and suppose that (0 ∪ {φ ♦→ ψ | ψ ∈
}, {φ �→ ψ | ψ ∈ �}) is inconsistent. Then there must exist some ψ1, . . . , ψn ∈
0, χ1, . . . , χm ∈ , and some θ1, . . . , θk ∈ �, such that

∧n
i=1 ψi ,

∧m
j=1(φ ♦→

χ j ) � ∨k
r=1(φ �→ θr ). Again, we set ψ := ∧n

i=1 ψi , χ := ∧m
j=1 χ j , and

θ :=∨k
r=1 θr , and reason as follows:

0 �
m∧
j=1

(φ ♦→ χ j )→
k∨

r=1
(φ �→ θr ) Lemma 2.1 (19)

� (φ ♦→ χ)→
m∧
j=1

(φ ♦→ χ j ) (α0), (MP), (RM♦) (20)

�
k∨

r=1
(φ �→ θ j )→ (φ �→ θ) (α0), (MP), (RM�) (21)

0 � (φ ♦→ χ)→ (φ �→ θ) (19),(20),(21) (22)

φ �→ (χ → θ) ∈ 0 (22),(α4), Part 1 (23)

(χ → θ) ∈ 1 (23), {ψ | φ �→ ψ ∈ 0} ⊆ 1 (24)
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By 1 ⊆ , we know that also (χ → θ) ∈ . Now, since clearly  � χ , it follows
that  � θ , whence, by Parts 1 and 3, we know that  � θr for some 1 ≤ r ≤ k, which
clearly contradicts the consistency of (,�). The obtained contradiction shows that
the bi-set (0 ∪{φ ♦→ ψ | ψ ∈ }, {φ �→ ψ | ψ ∈ �}) must have been consistent.

��
We observe, next, that we can use the usual Lindenbaum construction to extend every
consistent bi-set to a maximal one:

Lemma 8 Let (,�) ∈ P(L) × P(L) be consistent. Then there exists a maximal
(�,�) ∈ P(L)× P(L) such that  ⊆ � and � ⊆ �.

Next, we define the canonical model Mc for ICK:

Definition 2 The structureMc is the tuple (Wc,≤c, Rc, Vc) such that:

• Wc := {(,�) ∈ P(L)× P(L) | (,�) is maximal}.
• (0,�0) ≤c (1,�1) iff 0 ⊆ 1 for all (0,�0), (1,�1) ∈ Wc.
• For all (0,�0), (1,�1) ∈ Wc and X ⊆ Wc, we have ((0,�0), X , (1,�1)) ∈

Rc iff there exists a φ ∈ L, such that all of the following holds:

– X = {(,�) ∈ Wc | φ ∈ }.
– {ψ | φ �→ ψ ∈ 0} ⊆ 1.
– {φ ♦→ ψ | ψ ∈ 1} ⊆ 0.

• Vc(p) := {(,�) ∈ Wc | p ∈ } for every p ∈ Var .

First of all, we observe that the definition of Rc does not depend on the choice of the
representative formula φ ∈ L. The following lemma provides the necessary stepping
stone:

Lemma 9 Let φ,ψ ∈ L be such that {(,�) ∈ Wc | φ ∈ } = {(,�) ∈ Wc | ψ ∈
}. Then, for every (′,�′) ∈ Wc and every χ ∈ L we have:

1. φ �→ χ ∈ ′ ⇔ ψ �→ χ ∈ ′.
2. φ ♦→ χ ∈ ′ ⇔ ψ ♦→ χ ∈ ′.

Proof Assume the hypothesis of the Lemma. We will show that in this case we must
have � φ ↔ ψ . Suppose not, and assume, wlog, that � φ → ψ . Then ({φ}, {ψ})
must be consistent and thus extendable to some maximal (0,�0) ⊇ ({φ}, {ψ}). But
then clearly (0,�0) ∈ {(,�) ∈ Wc | φ ∈ } \ {(,�) ∈ Wc | ψ ∈ }, in
contradiction with our initial assumptions. The obtained contradiction shows that we
must have � φ ↔ ψ . The application of (RA�) and (RA♦) then yields that also
� (φ �→ χ) ↔ (ψ �→ χ) and � (φ ♦→ χ) ↔ (ψ ♦→ χ) for every χ ∈ L,
whence our Lemma clearly follows. ��
We have to make sure that we have indeed just defined a model:

Lemma 10 The structureMc, as given in Definition 2, is a model.

Proof We show, first, thatWc �= ∅. Indeed, consider the bi-set (∅,∅). It is well-known
that ⊥ /∈ Int, and since ⊥ ∈ Li , Lemma 2.2 now implies that ⊥ /∈ ICK, in other
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words, that � ⊥. But the latter means that (∅,∅) is consistent. Therefore, by Lemma
8.2, there must exist a maximal (,�) ⊇ (∅,∅); and we will have, by Definition 2,
that (,�) ∈ Wc.

It is also clear from Definition 2 and Lemma 9 that ≤c is a pre-order, and that
Rc ⊆ Wc ×P(Wc)×Wc is well-defined. So it only remains to check the satisfaction
of conditions (c1) and (c2) from Definition 1.

As for (c1), assume that (,�), (0,�0), and (1,�1) are maximal, and that
X ⊆ Wc is such that we have (,�) ≥c (0,�0) (Rc)X (1,�1). Then, in particular,
 ⊇ 0. Moreover, we can choose a φ ∈ L such that all of the following holds:

X = {(�,�) ∈ Wc | φ ∈ �} (25)

{ψ | φ �→ ψ ∈ 0} ⊆ 1 (26)

{φ ♦→ ψ | ψ ∈ 1} ⊆ 0 (27)

By Lemma 7.5, the bi-set (1 ∪ {ψ | φ �→ ψ ∈ }, {ψ | φ ♦→ ψ ∈ �})
must then be consistent, so that, by Lemma 8, this bi-set must then be extendable to
some maximal bi-set (′,�′). In particular, we will have ′ ⊇ 1 whence clearly
(′,�′) ≥c (1,�1).

Next, we get that {ψ | φ �→ ψ ∈ } ⊆ ′ trivially by the choice of (′,�′).
Moreover, if ψ ∈ ′, then we must have ψ /∈ �′ by the consistency of (′,�′).
But this means, in particular, that we cannot have φ ♦→ ψ ∈ �, so that, by the
completeness of (,�) we must have φ ♦→ ψ ∈ . Thus we have shown that also
{φ ♦→ ψ | ψ ∈ ′} ⊆ . Summing this up with (25), we obtain that (,�) (Rc)X
(′,�′). Thus we get that (,�) (Rc)X (′,�′) ≥c (1,�1), and condition (c1) is
shown to be satisfied.

As for (c2), assume that (,�), (0,�0), and (1,�1) are maximal, and that
X ⊆ Wc is such that we have (0,�0) (Rc)X (1,�1) ≤c (,�). Then, in particular,
 ⊇ 1. Moreover, we can choose a φ ∈ L such that all of (25)–(27) hold.

By Lemma 7.6, the bi-set (0 ∪ {φ ♦→ ψ | ψ ∈ }, {φ �→ ψ | ψ ∈ �})
must then be consistent, so that, by Lemma 8, this bi-set must then be extendable to
some maximal bi-set (′,�′). In particular, we will have ′ ⊇ 0 whence clearly
(′,�′) c ≥ (0,�0).

Next, assume that ψ ∈ L is such that φ �→ ψ ∈ ′. If ψ /∈ , then, by the
completeness of (,�), we must have ψ ∈ �, whence it follows that φ �→ ψ ∈ �′.
But the latter contradicts the consistency of (′,�′). Therefore, we must haveψ ∈ .
Since the choice of ψ was arbitrary, we have shown that {ψ | φ �→ ψ ∈ ′} ⊆ .
Moreover, if ψ ∈ , then clearly φ ♦→ ψ ∈ ′ so that {φ ♦→ ψ | ψ ∈ } ⊆ ′ also
holds. Summing this up with (25), we obtain that (′,�′) (Rc)X (,�). Thus we get
that (0,�0) ≤c (′,�′) (Rc)X (,�), and condition (c2) is shown to be satisfied.

��
The truth lemma for this model then looks as follows:

Lemma 11 For every φ ∈ L and for every (,�) ∈ Wc, we haveMc, (,�) |� φ ⇔
φ ∈ .
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Proof We proceed by induction on the construction of φ.
Basis. If φ = p ∈ Var , then the lemma holds by the definition of Mc. If φ ∈

{
,⊥}, then we reason as in the case of Int.
Induction step. The cases associated with ∧, ∨, and→ are solved as in the case of

Int. We treat the two remaining cases:
Case 1. φ = ψ �→ χ .
(⇐) Let (,�) ∈ Wc be such thatφ = ψ �→ χ ∈ , and let (0,�0), (1,�1) ∈

Wc be such that (,�) ≤c (0,�0) (Rc)‖ψ‖Mc
(1,�1). Then we must have, on

the one hand, that  ⊆ 0, so that, in particular, ψ �→ χ ∈ 0. On the other hand,
there must exist a θ ∈ L such that all of the following holds:

‖ψ‖Mc = {(�,�) ∈ Wc | θ ∈ �} (28)

{ξ | θ �→ ξ ∈ 0} ⊆ 1 (29)

{θ ♦→ ξ | ξ ∈ 1} ⊆ 0 (30)

By IH, we know that also ‖ψ‖Mc = {(�,�) ∈ Wc | ψ ∈ �}. We thus get that:

{(�,�) ∈ Wc | ψ ∈ �} = {(�,�) ∈ Wc | θ ∈ �} (31)

Since we have shown that ψ �→ χ ∈ 0, we know that, by Lemma 9 and (31), we
must also have θ �→ χ ∈ 0. It follows now, by (29), that we must have χ ∈ 1.
Next, IH implies that Mc, (1,�1) |� χ . Since the choice of (0,�0), (1,�1) ∈
Wc under the condition that (,�) ≤c (0,�0) (Rc)‖ψ‖Mc

(1,�1) was made
arbitrarily, it follows that we must have Mc, (,�) |� ψ �→ χ = φ.

(⇒) Let (,�) ∈ Wc be such that φ = ψ �→ χ /∈ . By completeness of
(,�), we must then have ψ �→ χ ∈ �. Therefore, by Lemma 6.3, the bi-set
({θ | ψ �→ θ ∈ }, {χ}) must be consistent. By Lemma 8, we can extend the latter
bi-set to a maximal (′,�′) ⊇ ({θ | ψ �→ θ ∈ }, {χ}). Now, consider the bi-set
(0,�0) := ( ∪ {ψ ♦→ θ | θ ∈ ′}, {ψ �→ ξ | ξ ∈ �′}). We claim that (0,�0)

is consistent. Indeed, otherwise we can choose some γ1, . . . , γn ∈ , τ1, . . . , τm ∈ ′
and ξ1, . . . , ξk ∈ �′ such that

∧n
i=1 γi ,

∧m
j=1(ψ ♦→ τ j ) � ∨k

r=1(ψ �→ ξr ). But

then, for γ := ∧n
i=1 γi , τ :=∧m

j=1 τ j , and ξ := ∨k
r=1 ξr , we have:

γ �
m∧
j=1

(ψ ♦→ τ j )→
k∨

r=1
(ψ �→ ξr ) Lemma 2 (32)

� (ψ ♦→ τ) →
m∧
j=1

(ψ ♦→ τ j ) (α0), (MP), (RM♦) (33)

�
k∨

r=1
(ψ �→ ξr )→ (ψ �→ ξ) (α0), (MP), (RM�) (34)

γ � (ψ ♦→ τ) → (ψ �→ ξ) (32), (33), (34) (35)

(ψ �→ (τ → ξ)) ∈  (35), (α4), Lemma 7.1 (36)

(τ → ξ) ∈ ′ (36), choice of (′,�′) (37)
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By (37), (′,�′) must be inconsistent, which contradicts its choice and shows that
(0,�0) must have been consistent. Therefore, (0,�0) is extendable to a maximal
bi-set (1,�1) ⊇ (0,�0).

We now claim that we have both (,�) ≤c (1,�1) and ((1,�1), {(�,�) ∈
Wc | ψ ∈ �}, (′,�′)) ∈ Rc. Indeed, the first part follows from the fact that 1 ⊇
0 ⊇  which is trivial by the choice of (1,�1) and (0,�0). As for the second part,
note that (a) for every θ ∈ L, if ψ �→ θ ∈ 1 and θ /∈ ′, then, by the completeness
of (′,�′), we must have θ ∈ �′. But then ψ �→ θ ∈ �0 ⊆ �1, which contradicts
the consistency of (1,�1). The obtained contradiction shows that {θ | ψ �→ θ ∈
1} ⊆ ′. Next, (b) we trivially get that {ψ ♦→ θ | θ ∈ ′} ⊆ 0 ⊆ 1. Summing
up (a) and (b), we get that ((1,�1), {(�,�) ∈ Wc | ψ ∈ �}, (′,�′)) ∈ Rc.

It remains to notice that, by IH, we must have ‖ψ‖Mc = {(�,�) ∈ Wc | ψ ∈ �},
so that we have shown, in effect that ((1,�1), ‖ψ‖Mc , (

′,�′)) ∈ Rc.
Observe, next, that wemust also haveχ ∈ �′, so that, by the consistency of (′,�′)

we must have χ /∈ ′, whence, by IH,Mc, (
′,�′) �|� χ . Together with the fact that

(,�) ≤c (1,�1) and ((1,�1), ‖ψ‖Mc , (
′,�′)) ∈ Rc, this finaly implies that

Mc, (
′,�′) �|� ψ �→ χ = φ.

Case 2. φ = ψ ♦→ χ .
(⇐) Let (,�) ∈ Wc be such that φ = ψ ♦→ χ ∈ . Then, by Lemma 6.4,

the bi-set ({χ} ∪ {ξ | ψ �→ ξ ∈ }, {θ | ψ ♦→ θ ∈ �}) must be consistent, and,
by Lemma 8, there must be a maximal bi-set (′,�′) ∈ Wc such that (′,�′) ⊇
({χ} ∪ {ξ | ψ �→ ξ ∈ }, {θ | ψ ♦→ θ ∈ �}).

The latter means that χ ∈ ′, so that, by IH, we must have Mc, (
′,�′) |� χ .

On the other hand, IH yields that ‖ψ‖Mc = {(�,�) ∈ Wc | ψ ∈ �}. Next, by the
choice of (′,�′), we know that {ξ | φ �→ ξ ∈ } ⊆ ′. Finally, if θ ∈ ′, then,
by the consistency of (′,�′), θ /∈ �′, whence clearly ψ ♦→ θ /∈ �. But then, by
the completeness of (,�), we must have ψ ♦→ θ ∈ . We have thus shown that
{ψ ♦→ θ | θ ∈ ′} ⊆ . Summing up, we must have ((,�), ‖ψ‖Mc , (

′,�′)) ∈
Rc, and, since we have also shown that Mc, (

′,�′) |� χ , Mc, (,�) |� ψ ♦→ χ

clearly follows.
(⇒) Let (,�) ∈ Wc be such that φ = ψ ♦→ χ /∈ . Assume now that (′,�′) ∈

Wc is such that ((,�), ‖ψ‖Mc , (
′,�′)) ∈ Rc. Let θ ∈ L be such that all of the

following holds:

‖ψ‖Mc = {(�,�) ∈ Wc | θ ∈ �} (38)

{ξ | θ �→ ξ ∈ } ⊆ ′ (39)

{θ ♦→ ξ | ξ ∈ ′} ⊆  (40)

By IH, we know that also ‖ψ‖Mc = {(�,�) ∈ Wc | ψ ∈ �}. We thus get that:

{(�,�) ∈ Wc | ψ ∈ �} = {(�,�) ∈ Wc | θ ∈ �} (41)

Since we have ψ ♦→ χ /∈ , we know that, by Lemma 9 and (41), we must also have
θ ♦→ χ /∈ . It follows now, by (40), that we must have χ /∈ ′. Next, IH implies
that Mc, (

′,�′) �|� χ . Since the choice of (′,�′) ∈ Wc under the condition that
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((,�), ‖ψ‖Mc , (
′,�′)) ∈ Rc was made arbitrarily, it follows that we must have

Mc, (,�) �|� ψ ♦→ χ = φ. ��
The truth lemma allows us to deduce the (strong) soundness and completeness of ICK

relative to IntCK in the usual way:

Theorem 1 For every (,�) ∈ P(L)×P(L), (,�) is consistent iff (,�) is satis-
fiable. In particular, for every φ ∈ L, � φ ⇔ (φ ∈ IntCK).

Proof (⇐) We argue by contraposition. First, note that, in virtue of Lemma 3, we can
show the following claim by induction on the length of a derivation ψ1, . . . , ψn = φ

of φ from the premises in :
Claim. If  � φ, then (, {φ}) is unsatisfiable.
If now (,�) ∈ P(L)×P(L) is inconsistent, then wemust have � ψ1∨ . . .∨ψn

for some ψ1, . . . , ψn ∈ �. But then the Claim implies that (, {ψ1 ∨ . . . ∨ ψn})
is unsatisfiable whence clearly (, {ψ1, . . . , ψn}) is unsatisfiable, so that (,�) ⊇
(, {ψ1, . . . , ψn}) is unsatisfiable as well.

(⇒) If (,�) is consistent, then, by Lemma 11, we have Mc, (,�) |� (,�).
We have thus shown Theorem 1. In particular we have shown that, for every φ ∈ L,

� φ iff (∅, {φ}) is inconsistent iff φ ∈ IntCK. ��
As a usual corollary, we obtain the compactness of IntCK for bi-sets:

Corollary 1 (,�) ∈ P(L) × P(L), (,�) is satisfiable iff, for every (′,�′) �
(,�), (′,�′) is satisfiable.

Proof The (⇒)-part is straightforward, as for the converse, we argue by contraposition.
If (,�) is unsatisfiable, then, by Theorem 1, (,�) is inconsistent, therefore, for
some ψ1, . . . , ψn ∈ � we have  � ψ1 ∨ . . .∨ψn . Let χ1, . . . , χm be any derivation
ofψ1∨ . . .∨ψn from the premises in and let φ1, . . . , φk be a list of all formulas from
 occurring among χ1, . . . , χm . Then χ1, . . . , χm also shows the inconsistency (and
hence, by Theorem 1, the unsatisfiability) of ({φ1, . . . , φk}, {ψ1, . . . , ψn}) � (,�).

��

4 IntCK and Other Intensional Propositional Logics

In the existing literature, one can find several systems which can be viewed as natural
companions to IntCK. On the one hand, there are different intensional propositional
logics, which either treat conditionals from a viewpoint similar to that of IntCK, or
extend Intwith similar additional connectives, or both. On the other hand there is FOIL,
the first-order version of Int, which is naturally viewed as a super-system for IntCK,
in that IntCK can be seen as isolating a special subclass of intuitionistic first-order
reasoning which is relevant to handling conditionals. In both cases, one can expect
that IntCKwill display some sort of natural relation to each of these logics. This section
is devoted to looking into some examples of such relations between IntCK and other
intensional propositional systems; the relations between IntCK and FOIL will be the
subject of the next section.
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Due to the great number of systems that can be related to IntCK, we only confine
ourselves to mentioning a few prominent examples; and, considering the length of this
paper, most of our claims will only be supplied with a rather sketchy proof. We will
mostly consider logical systems given by complete Hilbert-style axiomatizations. If S
is such a system and A1, . . . , An is a finite sequence of axiomatic schemes, we will
denote by S+ {A1, . . . , An} the system obtained from S by adding every instance of
A1, . . . , An and then closing under the applications of the rules of inference assumed
in S. In case n = 1, we will omit the figure brackets.

The first of the systems that we would like to consider is the basic system CK of
classical conditional logic, introduced in Chellas [4] and defined over L. One variant
of a complete axiomatization for CK is given by extending of (α0), (α1), (α5), (MP),
(RA�), and (RC�) with the following axiomatic schemes:

φ ∨ ¬φ (Ax0)

(φ ♦→ ψ) ↔ ¬(φ �→ ¬ψ) (Ax1)

The addition of (Ax0) to (α0) and (MP) transforms the purely propositional base of
the system from Int to the classical propositional logic CL. It is natural to expect that
a similar relation holds between IntCK and CK in that the former is a subsystem of the
latter and that IntCK, in its turn, can be transformed into CK by the addition of (Ax0),
thus giving us the intuitionistic counterpart of CK. This is indeed the case, as we will
show presently. We prepare the result with a technical lemma:

Lemma 12 The following statements are true:

1. Every instance of (α2)–(α4), (α6), (RA♦), and (RC♦) as well as all the theorems
and derived rules given in Lemma 4, are deducible in CK.

2. Every instance of (Ax1) is deducible in (IntCK + (Ax0)).

We sketch the proof in Appendix B.
The relation between IntCK and CK is then analogous to the relation between Int

and CL:

Proposition 2 The following statements are true for every φ ∈ L:
1. If φ ∈ IntCK, then φ ∈ CK.
2. φ ∈ CK iff φ ∈ (IntCK + (Ax0)).

Proof (Part 1) If φ ∈ L and φ1, . . . , φn = φ is a proof in IntCK, then we can transform
it into a proof of φ in CK by replacing every occurrence of (α2)–(α4), (α6), and every
application (RA♦), and (RC♦) by the deductions given in the proof of Lemma 12.1.

(Part 2) If φ ∈ (IntCK+ (Ax0)), then we can argue as in Part 1. The only difference
will be possible presence of instances of (Ax0) which do not require any additional
work. In the other direction, if φ ∈ CK and φ1, . . . , φn = φ is a proof in CK, then we
can transform it into a proof of φ in (IntCK + (Ax0)) by replacing every occurrence
of (Ax1) by the deduction given in the proof of Lemma 12. ��
Another logic that is very natural to compare with IntCK is the system of intuitionistic
conditional logic ICK introduced by Weiss in [18]. ICK is defined over the (♦→)-free
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fragment of L which we denote by L�→. One of its complete axiomatizations is
obtained by simply omitting (Ax0) and (Ax1) from CK. One (Chellas-style) variant of
semantics6 for ICK can be given, if we replace conditions (c1) and (c2) in Definition 1
by the following condition to be satisfied for every X ⊆ W :

≤ ◦RX ⊆ RX◦ ≤ (cw)

We will call the resulting models Weiss models. The satisfaction relation used by Y.
Weiss (we will be denoting it by |�w) is also different from |� in that the inductive
clause for ♦→ is no longer needed and the inductive clause for �→ is given in the
following, more classically-minded7 version:

M, w |�w ψ �→ χ ⇔ (∀u ∈ W )(R‖ψ‖M(w, u) ⇒M, u |�w χ)

The relations between ICK and IntCK can be summarized as follows:

Proposition 3 We have ICK ⊆ IntCK. However, IntCK extends ICK non-conservatively,
in that we have (¬¬(
 �→⊥)→ (
 �→⊥)) ∈ (IntCK ∩ L�→) \ ICK.
Proof It is clear that every proof in ICK is also a proof in IntCK. As for the non-
conservativity claim, it is easy to see that ¬¬(
 �→ ⊥) → (
 �→ ⊥) is derivable
in IntCK:

¬¬(
 �→⊥) ↔ ¬¬¬(
 ♦→
) by (T4), Int (42)

¬¬(
 �→⊥) ↔ ¬(
 ♦→
) by (42), Int (43)

((
 ♦→
) → (
 �→⊥)) → (
 �→⊥) by (α4), Int (44)

¬¬(
 �→⊥) → (
 �→⊥) by (43), (44), Int (45)

However, if we consider the Weiss modelM = (W ,≤, R, V ) whereW := {w, v, u},
≤ is the reflexive closure of {(w, v)}, R := {(w,W , u)}, and V (p) = ∅ for every
p ∈ Var , then we see that M, v |�w 
 �→ ⊥, hence also M, w |�w ¬¬(
 �→
⊥); however, since M, u �|�w ⊥ and we have R‖
‖M(w, u), we get that M, w �|�w


 �→⊥. ��
The question then arises as to how one should interpret this difference between ICK
and IntCK ∩ L�→; is it due to ICK being incomplete over L�→, or is the reason
that IntCK smuggles in some principles that are not intuitionistically acceptable? The
latter answer seems to be favored by the fact that the elimination of double negation
is not very typical for intuitionistic reasoning; moreover, it is clear that the proof

6 The semantics given in Weiss [18] and Weiss [19] uses the formula-indexed binary relations but yields
the same logic as the semantics we give in this paper.
7 The Chellas variety of Kripke semantics of CK is usually defined by adopting this clause over the class
of Kripke models that is given as in Definition 1 except that the pre-order ≤ is now omitted and conditions
(c1) and (c2) are no longer imposed. The clause that we used in Section 3.1 for ♦→ can be derived in this
semantics as a by-product of adopting (Ax1) and thus can be also deemed classical. Cf. the semantic clause
for ∃ which is exactly the same in both classical and intuitionistic first-order logic.
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of (¬¬(
 �→ ⊥) → (
 �→ ⊥)) in IntCK essentially uses principles that are
only expressible with the help of the additional connective ♦→ and can be therefore
seen as, loosely speaking, ‘impure’. However, the former answer is clearly favored by
Theorem 2 of this paper which implies that the standard translation of the questionable
formula (¬¬(
 �→⊥) → (
 �→⊥)) is a valid first-order intuitionistic principle.
Nevertheless, the weight of the latter argument is somewhat diminished by the fact
that the proof of Theorem 2 in this paper depends on classical principles.8

Turning once more to CK, it has been shown that it corresponds to the basic normal
modal logic K, which is defined over the language Lm given by the following BNF:

φ ::= p | 
 | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | �φ | ♦φ.

More precisely, consider the translation Tr : Lm → L defined by the following
induction on the construction of φ ∈ Lm :

Tr(ψ) := ψ ψ ∈ Var ∪ {
,⊥}
Tr(ψ ∗ χ) := Tr(ψ) ∗ Tr(χ) ∗ ∈ {∧,∨,→}
Tr(�ψ) := 
 �→ Tr(ψ) Tr(♦ψ) := 
 ♦→ Tr(ψ)

By Weiss [19, Theorem 4], K is embedded into CK by Tr in the sense that, for every
φ ∈ Lm , φ ∈ K iff Tr(φ) ∈ CK; the idea to use Tr to relate modal and conditional
logics seems to be due to Lowe [12]. It is natural to expect that Tr also embeds
some basic intuitionistic modal logic into IntCK and this is indeed the case for the
basic intuitionistic modal logic IK introduced independently in Fischer-Servi [8] and
Plotkin and Stirling [13].

Just like K, IK is defined over Lm . One variant of its complete axiomatization can
be given by adding to (α0) and (MP) the following additional axiomatic schemes plus
a new rule of inference:

�(φ → ψ)→ (�φ → �ψ) (a1)

�(φ → ψ)→ (♦φ → ♦ψ) (a2)

¬♦⊥ (a3)

♦(φ ∨ ψ) → (♦φ ∨ ♦ψ) (a4)

(♦φ → �ψ)→ �(φ → ψ) (a5)

From φ infer �φ (nec)

8 It is very natural to ask whether the counter-argument against ICK derived from Theorem 2 by
standard-translation considerations can be extended to the set of stronger intuitionistic conditional log-
ics {IV, IVW, IVC, IC2} considered in Ciardelli and Liu [5], and we would like to thank the anonymous
referee of this paper for bringing up this question. It would seem that for these stronger systems, our coun-
terexample won’t work in its current form; the reason for this is that the counter-model given in the proof of
Proposition 3 fails the constraint C2 imposed in Ciardelli and Liu [5] on the Kripke semantics of every logic
in the set {IVW, IVC, IC2}. However, the case of IV appears to be much easier: indeed, consider the model
M′ = (W ,≤,U, R′, V ), where W ,≤, V are defined as in the proof of Proposition 3, U is the set of ≤-
closed subsets of W , and we set R′ := {(w, X , u) | X ∈ {W , {v, u}, {u}}}. It is then easy to check thatM′
satisfies both Definition 3 and the constraints C1 and C3–C5 of Ciardelli and Liu [5]; thus,M′ is a model of
IV and still fails (¬¬(
 �→⊥)→ (
 �→⊥)) as the paper [5] uses theWeiss semantics for intuitionistic
conditional logic. Therefore, also the system IV is seen to be intuitionistically incomplete, which raises
doubts as to whether IV provides the correct intuitionistic counterpart for the classical conditional system
V introduced by Lewis in [11].
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Again, we prepare the result connecting IK to IntCK with a technical lemma:

Lemma 13 The following theorems and rules are deducible in IK for all φ,ψ ∈ Lm:

(�φ ∧�ψ)↔ �(φ ∧ ψ) (t1)

(♦φ ∧�ψ)→ ♦(φ ∧ ψ) (t2)

♦(φ ∨ ψ)↔ (♦φ ∨ ♦ψ) (t3)

�
 (t4)

From φ → ψ infer �φ → �ψ (r1)

From φ → ψ infer ♦φ → ♦ψ (r2)

From φ ↔ ψ infer �φ ↔ �ψ (r3)

From φ ↔ ψ infer ♦φ ↔ ♦ψ (r4)

Proof The theorem (t1) and the rule (r1) can be deduced as inK. To obtain the deduction
of (r2), one needs to replace the occurrence of (a1) in the deduction of (r1) by the
respective occurrence of (a2). Rules (r3) and (r4) are deduced by applying rules (r1)
and (r2), respectively plus the definition of↔. The theorem (t4) can be deduced by
applying (nec) to the provable formula 
; one half of (t3) is just (a4), the other half
follows by applying (r2) to provable formulas φ → (φ ∨ ψ) and ψ → (φ ∨ ψ).
Finally, (t2) can be deduced as follows:

�ψ → �(φ → (φ ∧ ψ)) (α0), (MP), and (r1) (46)

�ψ → (♦φ → ♦(φ ∧ ψ)) (46), (a2), (α0), (MP) (47)

(♦φ ∧�ψ) → ♦(φ ∧ ψ)) (47), (α0), (MP) (48)

��
We now claim that:

Proposition 4 For every φ ∈ Lm, φ ∈ IK iff T r(φ) ∈ IntCK.

Proof If φ ∈ IK then let φ1, . . . , φn = φ be a deduction of φ in IK. Consider the
sequence Tr(φ1), . . . , Tr(φn) = Tr(φ). The translation Tr leaves intact every
instance of (α0) and (MP) and maps every instance of (a1), (resp. (a2), (a3), (a4),
(a5)) into an instance of (T1) (resp. (T2), (α6), one half of (α3), (α4)). Similarly,
every application of the rule (nec) is mapped by Tr into an application of (Nec).
Therefore, one can straightforwardly extend Tr(φ1), . . . , Tr(φn) = Tr(φ) to a proof
of Tr(φ) in IntCK by inserting the variants of deductions sketched in the proof of
Lemma 4.

In the other direction, let ψ1, . . . , ψn = Tr(φ) be a deduction of Tr(φ) in IntCK.
Consider the mapping Tr : L → Lm defined by induction on the construction of
φ ∈ L:

Tr(ψ) := ψ ψ ∈ Var ∪ {
,⊥}
Tr(ψ ∗ χ) := Tr(ψ) ∗ Tr(χ) ∗ ∈ {∧,∨,→}

Tr(ψ �→ χ) := �Tr(χ) Tr(ψ ♦→ χ) := ♦Tr(χ)
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The following can be easily proved by induction on the construction of φ ∈ Lm :
Claim. For every φ ∈ Lm , Tr(Tr(φ)) = φ.
Indeed, both basis and every case in the induction step are pretty straightforward.

As an example, we consider the case when φ = ♦ψ . We have then Tr(Tr(♦ψ)) =
Tr(
 ♦→ ψ) = ♦ψ . Our Claim is proven.

Turning back to our proof of Tr(φ) in IntCK, we consider the sequence of Lm-
formulas Tr(ψ1), . . . , Tr(ψn) = Tr(Tr(φ)) = φ, where the last equality holds by
our Claim. We observe that the translation given by Tr leaves intact every instance
of (α0) and (MP); as for the other axioms and rules, Tr maps every instance of (α1),
(resp. (α2), (α3), (α4), (α5), (α6)) into an instance of (t1) (resp. (t2), (t3), (a5), (t4),
(a3)). Similarly, every application of the rule (RC�) (resp. (RC♦)) is mapped by
Tr into an application of the rule (r3) (resp. (r4)). Finally, the conclusion of every
application of the rule (RA�) (resp. (RA♦)) is mapped by Tr into a formula of the
form �ψ ↔ �ψ (resp. ♦ψ ↔ ♦ψ) which is clearly deducible from (α0) and (MP).
Therefore, one can straightforwardly extend Tr(ψ1), . . . , Tr(ψn) = φ to a proof of
φ in IK by inserting the variants of deductions sketched in the proof of Lemma 13. ��

It is easy to see, that in the clauses Tr(�ψ) := 
 �→ Tr(ψ) and Tr(♦ψ) =

 ♦→ Tr(ψ), 
 can be replaced by an arbitrary fixed χ ∈ L; with this replacement,
the above proof of Proposition 4 will still go through with minimal changes. Our
translation Tr is thus seen as but one member of the infinite family Tr = {Trχ |
ψ ∈ L}, where, for a given χ ∈ L, Trχ is characterized by the inductive clauses
Trχ (�ψ) := χ �→ Tr(ψ) and Trχ (♦ψ) = χ ♦→ Tr(ψ), and commutes with
the other connectives; more precisely, we get that Tr = Tr
 ∈ Tr. The obvious
adaptation of the proof of Proposition 4 then yields us the following:

Corollary 2 For every φ ∈ Lm and every T ∈ Tr, φ ∈ IK iff T (φ) ∈ IntCK.

As a further result of the tight connection between IK and IntCK we observe that
the countermodels that show in Simpson [15, p. 54–55] the mutual non-definability
of � and ♦ in IK can be re-used to show the mutual non-definability of �→ and ♦→
in IntCK, thus answering the concern expressed in the passage from Ciardelli and Liu
[5] quoted in the introduction to this paper.

We add that the gap between IntCK and ICK is also mirrored at the level ofLm as the
gap between the ♦-free fragment of IK and the system HK� introduced in Božić and
Došen [2], which Weiss cites in [19, p. 138–139, Footnote 11] as one of the sources
for ICK. Indeed, one can easily show both that ICK stands to HK� in the same relation
ascribed to IntCK and IK in Proposition 4 above, and that ¬¬�⊥ → �⊥ is in the
♦-free fragment of IK but outside HK�. This is all the more surprising in view of some
confusing claims made in the existing literature.9

9 For example, the author of Simpson [15] is clearly in favor of IK as the basic intuitionistic modal logic;
yet he says, right after introducing the axiomatization of HK� in Figure 3–3 that: “The logic of Figure 3–3
is uncontroversially the intuitionistic analogue of K in the ♦-free fragment”[15, p. 56]. While working on
the final version of this paper, we were also directed to a very interesting discussion at https://prooftheory.
blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/ which shows that the tricky relation
betweenHK� and the♦-free fragment of IK keeps being re-discovered by the logical community since 1990s.
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5 IntCK and First-Order Intuitionistic Logic

We define the first-order intuitionistic logic FOIL over the language L f o,10 based on a
countable set I nd of individual variables and given by the following BNF:

φ ::= px | Rxyz | Ox | Sx | Exy | x ≡ y | 
 | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ | ∀xφ | ∃xφ,

where p ∈ Var and x, y, z ∈ I nd. The formulas of the form px , Rxyz, Ox , Sx ,
Exy, x ≡ y, 
, and ⊥, will be called atomic formulas, or simply atoms. We will
continue to use the abbreviations ↔ and ¬; additionally, we will use (∀x)Oφ as
an abbreviation for ∀x(Ox → φ). Given a formula φ ∈ L f o, we can inductively
define its sets of free and bound variables in a standard way (see, e.g. [6, p. 64]).
These sets, denoted by FV (φ) and BV (φ), respectively, are always finite. These
notions can be extended to an arbitrary  ⊆ L f o, although FV () and BV () need
not be finite. If x ∈ I nd \ (FV (φ) ∪ BV (φ)), then x is said to be fresh for φ.
Given any n ∈ ω and any x1, . . . , xn ∈ I nd, we will denote by L{x1,...,xn}f o the set

{φ ∈ L f o | FV (φ) ⊆ {x1, . . . , xn}}. If φ ∈ L∅f o, then φ is called a sentence. Finally,
given a φ ∈ L f o, and some x, y ∈ I nd such that y is fresh for φ, we can define the
result (φ)

y
x of substituting y for x inφ simply as the result of replacing free occurrences

of x in φ with the occurrences of y.
While the most popular semantics for FOIL is given by Kripke models (see e.g.

[6, Section 5.3]), we will use for this logic a slightly more involved but equivalent
semantics based on intuitionistic Kripke sheaves. The reason for our choice is that
Kripke sheaves allow for highlighting the use of the canonical modelMc in obtaining
the main result of this section. Another reason is that, in the particular case at hand,
Kripke sheaves yield a simpler mainmodel construction than the usual Kripkemodels.
The following definition provides the necessary details:

Definition 3 A Kripke sheaf is a structure of the form S = (W ,≤,A, H) such that:

• W �= ∅ is the set of worlds or nodes.
• ≤ is a pre-order on W .
• A is a function, returning, for every w ∈ W a classical first-order model Aw =

(Aw, ιw) over the vocabulary (sometimes called signature)� = {p1 | p ∈ Var}∪
{R3, O1, S1, E2}, where Aw �= ∅ is the domain and ιw is the function assigning
every P

n ∈ � some ιw(Pn) ⊆ (Aw)n .
• Finally, H is a function defined on {(w, v) ∈ W 2 | w ≤ v}, which, for every pair

(w, v) in its domain returns a (classical) homomorphism Hwv : Aw → Av . This
function has to satisfy the following additional conditions:

– For all w ∈ W , Hww = id[Aw].
– If w, v, u ∈ W are such that w ≤ v ≤ u, then Hwu = Hwv ◦Hvu .

We use S = (W ,≤,A, H) as our standard notation for Kripke sheaves; we will
assume that any decorations of S transfer to its components.

10 More precisely, we only define the version of FOIL over a particular vocabulary. But we will never need
other versions of FOIL in this paper, so, for the purposes of the present discourse, we can identify FOIL with
its particular variant that we introduce below.
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Given a Kripke sheafS, and a w ∈ W , we will call an (S, w)-variable assignment
any function f : I nd → Aw. In order to determine the truth value of a formula, one
needs to supply a Kripke sheafS, a node w ∈ W and an (S, w)-variable assignment
f . With these data, the satisfaction of a formula φ ∈ L f o is given by the relation |� f o

which defined by the following induction on the construction of a formula:

S, w |� f o 
[ f ]
S, w �|� f o ⊥[ f ]
S, w |� f o Px[ f ] ⇔ f (x) ∈ ιw(P) P ∈ Var ∪ {S, O}

S, w |� f o Exy[ f ] ⇔ ( f (x), f (y)) ∈ ιw(E)

S, w |� f o (x ≡ y)[ f ] ⇔ f (x) = f (y)

S, w |� f o Rxyz[ f ] ⇔ ( f (x), f (y), f (z)) ∈ ιw(R)

S, w |� f o (ψ ∧ χ)[ f ] ⇔ S, w |� f o ψ[ f ]&S, w |� f o χ[ f ]
S, w |� f o (ψ ∨ χ)[ f ] ⇔ S, w |� f o ψ[ f ] or S, w |� f o χ[ f ]

S, w |� f o (ψ → χ)[ f ] ⇔ (∀v ≥ w)(S, v |� f o ψ[ f ◦Hwv] ⇒ S, v |� f o χ[ f ◦Hwv])
S, w |� f o (∃xψ)[ f ] ⇔ (∃a ∈ Aw)(S, w |� f o ψ[ f [x/a]])
S, w |� f o (∀xψ)[ f ] ⇔ (∀v ≥ w)(∀a ∈ Av)(S, v |� f o ψ[( f ◦Hwv)[x/a]])

As usual, it follows from this definition that the truth value of a formula φ ∈ L f o

only depends on the values assigned by f to the values of the variables in FV (φ). We
will therefore write S, w |� f o φ[x1/a1, . . . , xn/an] iff φ ∈ L{x1,...,xn}f o and we have
S, w |� f o φ[ f ] for every (equivalently, any) (S, w)-variable assignment f such that
f (xi ) = ai for every 1 ≤ i ≤ n. In particular, we will writeS, w |� f o φ iff φ ∈ L∅f o
andwe haveS, w |� f o φ[ f ] for every (equivalently, any) (S, w)-variable assignment
f .
It is easy to see that |� f o, just like |� before, can be used to introduce the com-

plete set of semantic notions. More precisely, given a Kripke sheaf S, a w ∈ W ,
and a tuple (a1, . . . , an) ∈ Aw, we will call the triple (S, w, (a1, . . . , an)) an n-
evaluation point, and, given a pair (,�) ∈ P(L{x1,...,xn}f o ) × P(L{x1,...,xn}f o ), we say
that an evaluation point (S, w, (a1, . . . , an)) satisfies (,�) and write S, w |� f o

(,�)[x1/a1, . . . , xn/an] iff we have:
(∀φ ∈ )(S, w |� f o φ[x1/a1, . . . , xn/an])& (∀ψ ∈ �)(S, w �|� f o ψ[x1/a1, . . . , xn/an]).

We say that (,�) is first-order-satisfiable iff some n-evaluation point satisfies
it, and that � first-order-follows from  (and write  |� f o �) iff (,�) is
first-order-unsatisfiable. We say that  is first-order-satisfiable iff (,∅) is; and if
(S, w, (a1, . . . , an)) first-order-satisfies (,∅), then we simply write S, w |� f o

[x1/a1, . . . , xn/an]. We say that φ ∈ L is first-order-valid iff ∅ |� f o φ, or, in
other words, iff |� f o φ.

FOIL is known to be strongly complete relative to the semantic of Kripke sheaves;
in other words, we have  |�FOIL � iff  |� f o � for all (,�) ∈ P(L{x1,...,xn}f o ) ×
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P(L{x1,...,xn}f o ), see Gabbay et al. [10, Section 3.6 ff] for details.11 However, in this
paper we will be mainly interested in things that first-order-follow from a specific
subset Th ⊆ L∅f o. This subset includes all and only the sentences that follow below:

∀x(Sx ∨ Ox) (Th1)

∀x¬(Sx ∧ Ox) (Th2)

∀x(px → Ox) (p ∈ Var) (Th3)

∀x∀y(Exy → (Ox ∧ Sy)) (Th4)

∀x∀y∀z(Rxyz → (Ox ∧ Sy ∧ Oz)) (Th5)

∃x(Sx ∧ ∀y(Eyx ↔ py)) (p ∈ Var) (Th6)

∃x(Sx ∧ (∀y)O(Eyx)) (Th7)

∃x(Sx ∧ ∀y¬Eyx) (Th8)

∀x∀y((Sx ∧ Sy)→∃z(Sz∧(∀w)O(Ewz↔(Ewx∗Ewy)))) (∗∈{∧,∨,→}) (Th9)

∀x∀y((Sx ∧ Sy) → ∃z(Sz ∧ (∀w)O(Ewz ↔ ∀u(Rwxu → Euy)))) (Th10)

∀x∀y((Sx ∧ Sy) → ∃z(Sz ∧ (∀w)O(Ewz ↔ ∃u(Rwxu ∧ Euy)))) (Th11)

∀x∀y(Sx ∧ Sy ∧ (∀z)O(Ezx ↔ Ezy) → x ≡ y) (Th12)

It is easy to notice that Th encodes a two-sorted universe, where the sorts are rep-
resented by the unary predicates O (for ‘objects’) and S (for ‘sets’). The predicate
E then represents the elementhood. The principles (Th6)–(Th12) ensure that the sets
assigned to the formulas of L as their extensions by the classical Kripke semantics of
CK, are all present in the domain of any model of Th.

These clauses can be rather straightforwardly formalized in FOIL also in the form
of the following standard translation of L into the two-sorted first-order language.
Given an x ∈ I nd and a φ ∈ L, the formula STx (φ) ∈ L f o is called the standard
x-translation of φ and is defined by the following induction on the construction of φ

(where x, y, z, w ∈ I nd are pairwise distinct):

STx (p) := px p ∈ Var

STx (φ) := φ φ ∈ {
,⊥}
STx (ψ ∗ χ) := STx (ψ) ∗ STx (χ) ∗ ∈ {∧,∨,→}

STx (ψ �→ χ) := ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∀w(Rxyw → STw(χ)))

STx (ψ ♦→ χ) := ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∃w(Rxyw ∧ STw(χ)))

Thus the standard translation simply encodes the (Segerberg version of)Kripke seman-
tics for CK under the assumption that the underlying logic of the meta-language is
intuitionistic rather than classical. The following lemma is then easily proved by
induction on the construction of φ ∈ L:
Lemma 14 For every x ∈ I nd and every φ ∈ L, STx (φ) ⊆ Lx

f o.

11 A lightened version is given in van Dalen [6, Cor. 5.3.16], where the semantics of Kripke sheaves is
referred to as ‘modified Kripke semantics’.
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The next couple of lemmas are more tedious, but still rather straightforward to prove:

Lemma 15 For all φ,ψ ∈ L and for all pairwise distinct x, y, z, w ∈ I nd, the
following statements hold:

1. Th |� f o ∀x(STx (ψ �→ χ)→∀y(Sy ∧ (∀z)O (Ezy ↔ STz(ψ))→∀w(Rxyw→ STw(χ)))).

2. Th |� f o ∀x(STx (ψ ♦→ χ)→ ∀y(Sy ∧ (∀z)O (Ezy ↔ STz(ψ))→ ∃w(Rxyw ∧ STw(χ)))).

Lemma 16 For every φ ∈ L and for all distinct x, y ∈ I nd the following holds:

T h |� f o ∃x(Sx ∧ (∀y)O(Eyx ↔ STy(φ))).

These lemmas provide a stepping stone for our first result on the relations between
Th and IntCK:

Proposition 5 For every φ ∈ L and every x ∈ I nd, if φ ∈ IntCK then T h |� f o

∀x(STx (φ)).

The proofs of Lemmas 15, 16, and of Proposition 5 can be found in Appendix C.
Using the compactness of FOIL, we are now in a position to prove one direction of

the main result for the present section:

Corollary 3 For all ,� ⊆ L and for every x ∈ I nd, if  |�IntCK �, then
T h, {STx (φ) | φ ∈ } |� f o {STx (ψ) | ψ ∈ �}.
Proof If  |�IntCK � then, by Theorem 1, (,�) must be unsatisfiable, whence, by
Corollary 1, there must exist some ′ �  and some �′ � � such that (′,�′) is
unsatisfiable. But then, again, by Theorem 1 and Lemma 5, we must have

∧
′ →∨

�′ ∈ IntCK. Proposition 5 now implies that Th |� f o ∀xSTx (∧ ′ → ∨
�′),

whence clearly Th |� f o ∀x(∧{STx (φ) | φ ∈ ′} → ∨{STx (ψ) | ψ ∈ �}), and,
furthermore: Th, {STx (φ) | φ ∈ ′} |� f o {STx (ψ) | ψ ∈ �′}.

But then, trivially, also Th, {STx (φ) | φ ∈ } |� f o {STx (ψ) | ψ ∈ �} must hold.
��

Example 1 To illustrate the import of Proposition 5, let us consider the intuitionistic
meaning of the formula φ := ¬¬(
 �→ ⊥) → (
 �→ ⊥), whose status as a
part of a basic intuitionistic logic of conditionals is, as we saw in Section 4, disputed
between ICK and IntCK. Setting ψ := Sy ∧ (∀z)O(Ezy), we see that we must have
STx (φ) = ¬¬∃y(ψ ∧ ∀w¬Rxyw) → ∃y(ψ ∧ ∀w¬Rxyw). By (Th7), we know
that Th |� f o ∃yψ , so the whole formula is reduced, modulo Th, to the following
theorem of FOIL: ¬¬∀w¬Rxyw → ∀w¬Rxyw. It is clear now that the case of
double negation elimination claimed in φ is intuitionistically acceptable and that φ

indeed must be accepted as a theorem of a basic intuitionistic conditional logic.

We now intend to prove the converse to Corollary 3; to this end, we need to throw a
more attentive look at the canonical model Mc given in Definition 2. We adopt the
following further definitions:
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Definition 4 For any n ∈ ω, a sequence α = ((0,�0), φ1, . . . , φn, (n,�n)) is
called a (0,�0)-standard sequence of length n+1 iff (0,�0), . . . , (n,�n) ∈ Wc,
φ1, . . . , φn ∈ L, and we have:

(∀i < n)(Rc((i ,�i ), ‖φi+1‖Mc , (i+1,�i+1))).

Given a (,�) ∈ Wc, the set of all (,�)-standard sequences will be denoted
by Seq(,�). The set Seq of all standard sequences is then given by Seq :=⋃{Seq(,�) | (,�) ∈ Wc}.

Finally, given a β = ((�0,�0), ψ1, . . . , ψm, (�m,�m)) ∈ Seq, we say that β

extends α and will write α ≺ β iff (1) m = n, (2) φ1 = ψ1, . . . , φn = ψn(= ψm),
and
(3) (0,�0) ≤c (�0,�0), . . . , (n,�n) ≤c (�n,�n)(= (�m,�m)).

We will need the following facts about standard sequences:

Lemma 17 The following statements hold:

1. If α, β ∈ Seq are such that α ≺ β, and φ ∈ L, (,�) ∈ Wc are such that
α′ = α�(φ, (,�)) ∈ Seq, then there exists a β ′ = β�(φ, (�,�)) ∈ Seq and
α′ ≺ β ′.

2. For all (,�), (�,�) ∈ Wc such that (,�) ≤c (�,�), and every α ∈
Seq(,�), there exists a β ∈ Seq(�,�) such that α ≺ β.

3. For all (,�), (�,�) ∈ Wc and α ∈ Seq(,�) such that end(α) ≤c (�,�),
there exists a β ∈ Seq such that α ≺ β and end(β) = (�,�).

Proof (Part 1) Assume the hypothesis. Sinceα ≺ β, wemust have end(α) ≤c end(β),
and, since α′ = α�(φ, (,�)) ∈ Seq, we must have Rc(end(α), ‖φ‖Mc , (,�)).
SinceMc satisfies condition (c1) of Definition 1, there must exist some (�,�) ∈ Wc

such that both (,�) ≤c (�,�) and Rc(end(β), ‖φ‖Mc , (�,�)). The latter means
that we have both β ′ = β�(φ, (�,�)) ∈ Seq and α′ ≺ β ′.

(Part 2) By induction on the length of α. If α has length 1, then we can set β :=
(�,�). If α has length k + 1 for some 1 ≤ k < ω, then we apply IH and Part 1.

(Part 3) Again, we proceed by induction on the length ofα. Ifα has length 1, thenwe
can set β := (�,�). If α has length k+1 for some 1 ≤ k < ω, then for some α′ ∈ Seq
of length k and some φ ∈ L, we must have α = ((,�), φ)�(α′), with end(α) =
end(α′). Applying now IH to α′, we find some β ′ ∈ Seq such that end(β ′) = (�,�)

and α′ ≺ β ′. But then, in particular, we must have ini t(α′) ≤c ini t(β ′). Moreover,
since α = ((,�), φ)�(α′) ∈ Seq, we must also have Rc((,�), ‖φ‖Mc , ini t(α

′)).
But then, since Mc satisfies condition (c2) of Definition 1, there must exist some
(′,�′) ∈ Wc such that both (,�) ≤c (′,�′) and Rc((

′,�′), ‖φ‖Mc , ini t(β
′)).

But then, for β := ((′,�′), φ)�(α′) we must have β ∈ Seq, end(β) = end(β ′) =
(�,�), and α ≺ β. ��
Given any (,�), (�,�) ∈ Wc such that (,�) ≤c (�,�), a function f :
Seq(,�) → Seq(�,�) is called a local ((,�), (�,�))-choice function iff
(∀α ∈ Seq(,�))(α ≺ f (α)). The set of all local ((,�), (�,�))-choice func-
tions will be denoted by F((,�), (�,�)). The following Lemma sums up some
facts about local choice functions:
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Lemma 18 Let (,�) ∈ Wc. Then the following statements hold:

1. For every (�,�) ∈ Wc such that (,�) ≤c (�,�), we haveF((,�), (�,�)) �=
∅.

2. For every α ∈ Seq(,�) and every (�,�) ∈ Wc such that end(α) ≤c (�,�),
there exist a β ∈ Seq such that end(β) = (�,�), and an f ∈ F((,�), ini t(β))

such that f (α) = β.
3. For every (�,�) ∈ Wc, id[Seq(�,�)] ∈ F((�,�), (�,�)).
4. Given a n ∈ ω, any (0,�0), . . . , (n,�n) ∈ Wc such that (0,�0) ≤c

. . . ≤c (n,�n), and any f1, . . . , fn such that for every i < n we have fi+1 ∈
F((i ,�i ), (i+1,�i+1)), we also have that f1◦. . .◦ fn ∈ F((0,�0), (n,�n)).

Proof (Part 1) By Lemma 17.2 and Axiom of Choice.
(Part 2) Assume the hypothesis. By Lemma 17.3, we can find a β ∈ Seq such

that both α ≺ β and end(β) = (�,�) are satisfied. Trivially, we must also have β ∈
Seq(ini t(β)). Assume,wlog, thatα = ((0,�0), φ1, . . . , φn, (n,�n)) and thatβ =
((�0,�0), φ1, . . . , φn, (�n,�n)). We now set f ((0,�0), φ1, . . . , φi , (i ,�i )) :=
((�0,�0), φ1, . . . , φi , (�i ,�i )) for every i < n and, proceeding by induction on
the length of a standard sequence, extend this partial function to other elements of
Seq(,�) in virtue of Lemma 17.1. The resulting function f clearly has the desired
properties.

Part 3 is trivial, and an easy induction on n ∈ ω also yields us Part 4. ��
However, ((,�), (�,�))-choice functions will mostly interest us as restrictions of
global choice functions. More precisely, F : Seq → Seq is a global choice function
iff for every (,�) ∈ Wc there exists a (�,�) ∈ Wc such that (,�) ≤c (�,�) and
F � Seq(,�) ∈ F((,�), (�,�)). The set of all global choice functions will be
denoted byG. It is easy to see that an analogue of Lemma 18 can be proven for global
choice functions:

Lemma 19 Let (,�) ∈ Wc. Then the following statements hold:

1. For every (�,�) ∈ Wc such that (,�) ≤c (�,�) and for every f ∈
F((,�), (�,�)), there exists an F ∈ G such that F � Seq(,�) = f .

2. For every α ∈ Seq(,�) and every (�,�) ∈ Wc such that end(α) ≤c (�,�),
there exists a β ∈ Seq such that end(β) = (�,�), and an F ∈ G such that
F(α) = β.

3. id[Seq] ∈ G.
4. Given any n ∈ ω and any F1, . . . , Fn ∈ G we also have that F1 ◦ . . . ◦ Fn ∈ G.
5. For every α ∈ Seq and every F ∈ G, we have α ≺ F(α).

Proof (Part 1) Note that we have Seq(0,�0) ∩ Seq(1,�1) = ∅ whenever
(0,�0), (1,�1) ∈ Wc are such that (0,�0) �= (1,�1). Therefore, we can define
the global choice function in question by F := (

⋃{I d[Seq(0,�0)] | (0,�0) �=
(,�)}) ∪ f . Lemma 18.3 then implies that F ∈ G.

(Part 2) Assume the hypothesis. By Lemma 18.2, we can choose a β ∈ Seq such
that end(β) = (�,�), and an f ∈ F((,�), ini t(β)) such that f (α) = β. By Part 1,
we can find an F ∈ G such that F � Seq(,�) = f and thus also F(α) = f (α) = β.
Parts 3 and 4 are, again, straightforward.
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As for Part 5, note that wemust have both α ∈ Seq(ini t(α)) and, for an appropriate
(,�) ∈ Wc, that F � Seq(ini t(α)) ∈ F(ini t(α), (,�)). But then we must have
α ≺ (F � Seq(ini t(α)))(α) = F(α) by definition of a local choice function. ��
The global choice functions are the basis for another type of sequences, that, along
with the standard sequences, is necessary for the main model-theoretic construction
of the present section. We will call them global sequences. A global sequence is any
sequence of the form (F1, . . . , Fn) ∈ Gn where n ∈ ω (thus� is also a global sequence
with n = 0). Given two global sequences (F1, . . . , Fk) and (G1, . . . ,Gm), we say
that (G1, . . . ,Gm) extends (F1, . . . , Fk) and write (F1, . . . , Fk)  (G1, . . . ,Gm) iff
k ≤ m and F1 = G1, . . . , Fk = Gk . Furthermore, we will denote by Glob the set⋃

n∈ω Gn , that is to say, the set of all global sequences.
The final item in this series of preliminarymodel-theoretic constructions is a certain

equivalence relation on L. Namely, given any φ,ψ ∈ L, we define that:

φ ∼ ψ :⇔ (φ ↔ ψ ∈ IntCK).

For any φ ∈ L, we will denote its equivalence class relative to ∼ by [φ]∼.
We now proceed to define a particular sheaf Sc which can be viewed as induced

by the model Mc of Definition 2.

Definition 5 We set Sc := (Glob, ,A, F), where:

• For every F̄ ∈ Glob, AF̄ = A = (A, ι), i.e. every global sequence gets assigned
one and the same classical model A. As for the components of A, we set:

– A := Seq ∪ {[φ]∼ | φ ∈ L}.
– ι(p) := {β ∈ Seq | p ∈ π1(end(β))}, for every p ∈ Var .
– ι(O) := Seq.
– ι(S) := {[φ]∼ | φ ∈ L}.
– ι(E) := {(β, [φ]∼) ∈ ι(O)× ι(S) | φ ∈ π1(end(β))}.
– ι(R) := {(β, [φ]∼, γ ) ∈ ι(O) × ι(S) × ι(O) | (∃(�,�) ∈ Wc)(∃ψ ∈
[φ]∼)(γ = β�(ψ, (�,�)))}.

• For any F̄, Ḡ ∈ Glob such that, for some k ≤ m we have F̄ = (F1, . . . , Fk) and
Ḡ = (F1, . . . , Fm) we have FF̄ Ḡ : A → A, where we set:

FF̄ Ḡ(γ ) :=
{

(Fk+1 ◦ . . . ◦ Fn)(γ ), if γ ∈ Seq;
γ, otherwise.

We show thatS(,�) is, indeed, a structure that can be used for discussing Th and its
relation to IntCK. Again, we begin by establishing another technical fact:

Lemma 20 For all F̄, Ḡ ∈ Glob such that F̄  Ḡ, it is true that:

1. FF̄ Ḡ � Seq ∈ G.
2. For every α ∈ Seq we have α ≺ FF̄ Ḡ(α); in particular, we have end(α) ≤c

end(FF̄ Ḡ(α)), or, equivalently, π1(end(α)) ⊆ π1(end(FF̄ Ḡ(α))).
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Proof Assume the hypothesis; we may also assume, wlog, that, for some k ≤ m < ω,
F̄ and Ḡ are given in the following form:

F̄ = (F1, . . . , Fk) (def-F̄)

Ḡ = (F1, . . . , Fm) (def-Ḡ)

In this case, we also get the following representation for FF̄ Ḡ :

FF̄ Ḡ � Seq = id[A] ◦ Fk+1 ◦ . . . ◦ Fm (def1-FF̄ Ḡ)

FF̄ Ḡ � {[φ]∼ | φ ∈ L} = id[{[φ]∼ | φ ∈ L}] (def2-FF̄ Ḡ)

Part 1 now easily follows from (def1-FF̄ Ḡ) and Lemma 19.4.
As for Part 2, we observe that, if α ∈ Seq, then

FF̄ Ḡ(α) = (id[A] ◦ Fk+1 ◦ . . . ◦ Fm)(α) ∈ Seq.

Now Part 1 and Lemma 19.5 together imply that α ≺ FF̄ Ḡ(α). By Definition 4,
this means that end(α) ≤c end(FF̄ Ḡ(α)), or, equivalently, that π1(end(α)) ⊆
π1(end(FF̄ Ḡ(α))).

Lemma 21 Sc is a Kripke sheaf.

Proof It is clear that Glob is non-empty and that  defines a pre-order on Glob. It is
also clear that A = (A, ι), as given in Definition 5, makes up a classical model, and
that, for any given F̄, Ḡ ∈ Glob such that F̄  Ḡ, we have FF̄ Ḡ : A → A.

As for the conditions imposed by Definition 3 on the functions of the form FF̄ Ḡ ,
it is clear from Definition 5 and from our convention on the compositions of empty
families of functions that (1) for any F̄ ∈ Glob we will have in FF̄ F̄ = id[A] and
that (2) if F̄, Ḡ, H̄ ∈ Glob are such that F̄  Ḡ  H̄ , then FF̄ Ḡ ◦ FḠ H̄ = FF̄ H̄ .

It remains to establish that, for each pair F̄, Ḡ ∈ Glob such that F̄  Ḡ, the
function FF̄ Ḡ is a (classical) homomorphism from A to itself. The latter claim boils
down to showing that the extension of every predicate P ∈ � is preserved by FF̄ Ḡ .
In doing so, we will assume that, for some appropriate k ≤ m < ω, F̄ , Ḡ, and FF̄ Ḡ
are given in a form that satisfies (def-F̄), (def-Ḡ), (def1-FF̄ Ḡ), and (def2-FF̄ Ḡ). The
following cases have to be considered:

Case 1. P ∈ {O, S}. Trivial by (def1-FF̄ Ḡ) and (def2-FF̄ Ḡ).
Case 2. P = p ∈ Var . If α ∈ A is such that α ∈ ι(p), then, by Definition

5 and Lemma 20, we must have all of the following: (1) α, FF̄ Ḡ(α) ∈ Seq, (2)
π1(end(α)) ⊆ π1(end(FF̄ Ḡ(α))), and (3) p ∈ π1(end(α)). But then clearly also
p ∈ π1(end(FF̄ Ḡ(α))), whence, further, FF̄ Ḡ(α) ∈ ι(p), as desired.

Case 3. P = E . If α, β ∈ A are such that (α, β) ∈ ι(E), then, arguing as in Case
2, we must have: (1) α, FF̄ Ḡ(α) ∈ Seq, (2) β ∈ ι(S), in other words, β = [φ]∼
for some φ ∈ L, (3) π1(end(α)) ⊆ π1(end(FF̄ Ḡ(α))), and (4) φ ∈ π1(end(α)) ⊆
π1(end(FF̄ Ḡ(α))), so that we also have, by (def2-FF̄ Ḡ), that (FF̄ Ḡ(α), FF̄ Ḡ(β)) =
(FF̄ Ḡ(α), FF̄ Ḡ([φ]∼)) = (FF̄ Ḡ(α), [φ]∼) ∈ ι(E)
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Case 4. P = R. If α, β, γ ∈ A are such that (α, β, γ ) ∈ ι(R), then, arguing as in
Case 2, we must have: (1) α, γ, FF̄ Ḡ(α), FF̄ Ḡ(γ ) ∈ Seq, (2) β ∈ ι(S), in other words,
β = [φ]∼ for some φ ∈ L, (3) α ≺ FF̄ Ḡ(α), and γ ≺ FF̄ Ḡ(γ ), and, finally, (4) for
some (�,�) ∈ Wc and some ψ ∈ [φ]∼ we must have γ = α�(ψ, (�,�)). Now,
Definition 4 implies that, for some (�′,�′) ∈ Wc such that (�,�) ≤c (�′,�′) we
must have FF̄ Ḡ(γ ) = FF̄ Ḡ(α)�(ψ, (�′,�′)). Therefore, by Definition 5, we must
have

(FF̄ Ḡ(α), FF̄ Ḡ(β), FF̄ Ḡ(γ )) = (FF̄ Ḡ(α), FF̄ Ḡ([φ]∼), FF̄ Ḡ(γ )) = (FF̄ Ḡ(α), [φ]∼, FF̄ Ḡ(γ )) ∈ ι(R).

Next, we show that the Kripke sheaf Sc satisfies (Th12):

Lemma 22 Sc |� f o (Th12).

Proof Let F̄ ∈ Glob and let a, b ∈ A be such that Sc, F̄ |� f o Sx ∧ Sz ∧
(∀y)O(Eyx ↔ Eyz)[x/a, z/b]. Then a, b ∈ ι(S), that is to say, for some φ,ψ ∈ L,
we must have a = [φ]∼ and b = [ψ]∼. Assume, towards contradiction, that
a = [φ]∼ �= [ψ]∼ = b, then we must have (φ ↔ ψ) /∈ IntCK; in view of Lemma 11,
we can suppose, wlog, that for some (,�) ∈ Wc we have φ ∈  but ψ /∈ .
Since we clearly have (,�) ∈ Seq ⊆ A, it follows from Definition 5 that we must
haveSc, F̄ |� f o Sx ∧ Sz ∧ Oy ∧ Eyx[x/a, y/(,�), z/b], and, on the other hand,
Sc, F̄ �|� f o Eyz[y/(,�), z/b], which contradicts our assumption. Therefore, we
must have a = b.

The next lemma can be seen as a version of ‘truth lemma’ for Sc.

Lemma 23 Let F̄ ∈ Glob, α ∈ Seq, x ∈ I nd, and let φ ∈ L. Then the following
statements hold:

1. Sc, F̄ |� f o STx (φ)[x/α] ⇔ φ ∈ π1(end(α)).
2. Sc, F̄ |� f o Sx ∧ (∀y)O(Eyx ↔ STy(φ))[x/[φ]∼].
Proof Weobserve, first, that, for any given φ ∈ L, Part 1 clearly implies Part 2. Indeed,
if Part 1 holds for a given φ and for all instantiations of F̄ , α, and x , then we clearly
must have Sc, F̄ |� f o Sx[x/[φ]∼], and, as for the other conjunct, assume that a
Ḡ ∈ Glob is such that F̄  Ḡ. Then, by Part 1, we must have, for every β ∈ Seq:

E(β, [φ]∼)⇔ φ ∈ π1(end(β)) ⇔ Sc, Ḡ |� f o STx (φ)[x/β].

Since we have [φ]∼ = FF̄ Ḡ([φ]∼), we conclude that Sc, F̄ |� f o (∀y)O(Eyx ↔
STy(φ)))[x/[φ]∼].

We will therefore prove both parts simultaneously by induction on the construction
of φ ∈ L; but, in view of the foregoing observation, we will only argue for Part 1.

Basis. Assume that φ ∈ L is atomic. The following cases are possible:
Case 1. φ = p ∈ Var . Then STx (φ) = px and Definition 5 implies that we have:

Sc, F̄ |� f o px[x/α] ⇔ α ∈ ι(p) ⇔ p ∈ π1(end(α)).
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Case 2 and Case 3, where we have φ = 
 and φ = ⊥, respectively, are solved
similarly.

Induction step. Again, several cases are possible:
Case 1. φ = ψ ∧ χ . Then STx (φ) = STx (ψ) ∧ STx (χ) and we have, by IH and

Lemma 11:

Sc, F̄ |� f o (STx (ψ) ∧ STx (χ))[x/α] ⇔ Sc, F̄ |� f o STx (ψ)[x/α]&Sc, F̄ |� f o STx (χ)[x/α]
⇔ ψ ∈ π1(end(α))&χ ∈ π1(end(α))

⇔Mc, end(α) |�c ψ &Mc, end(α) |�c χ

⇔Mc, end(α) |�c ψ ∧ χ

⇔ ψ ∧ χ ∈ π1(end(α))

Case 2. φ = ψ ∨ χ . Similar to Case 1.
Case 3. φ = ψ → χ . Then STx (φ) = STx (ψ)→ STx (χ), and, by Lemma 11, we

know that:

ψ →χ ∈ π1(end(α))⇔Mc, end(α) |�c ψ → χ

⇔ (∀(�, �) ∈ Wc)(end(α) ≤c (�, �)&Mc, (�, �) |�c ψ ⇒Mc, (�, �) |�c χ)

⇔ (∀(�, �) ∈ Wc)(end(α) ≤c (�, �)&ψ ∈ �⇒ χ ∈ �) (→)

We now argue as follows:
(⇐) Assume that ψ → χ ∈ π1(end(α)), and let Ḡ ∈ Glob be such that F̄  Ḡ.

Then, by Lemma 20.2, end(α) ≤c end(FF̄ Ḡ(α)), so that (→) implies that ψ ∈
π1(end(FF̄ Ḡ(α))) ⇒ χ ∈ π1(end(FF̄ Ḡ(α))), whence, by IH, it follows that

Sc, Ḡ |� f o STx (ψ)[x/FF̄ Ḡ(α)] ⇒ Sc, Ḡ |� f o STx (χ)[x/FF̄ Ḡ(α)].

Since Ḡ " F̄ was chosen in Glob arbitrarily, we have shown that Sc, F̄ |� f o

(STx (ψ)→ STx (χ))[x/α], or, equivalently, that Sc, F̄ |� f o STx (φ)[x/α].
(⇒) We argue by contraposition. Assume that ψ → χ /∈ π1(end(α)). By (→),

there must be a (�,�) ∈ Wc such that end(α) ≤c (�,�), ψ ∈ �, and χ /∈ �. By
Lemma 19.2, we can choose a β ∈ Seq such that end(β) = (�,�), and a F ∈ G such
that F(α) = β. But then we can set Ḡ := F̄�(F) ∈ Glob; we clearly have Ḡ " F̄ ,
FF̄ Ḡ(α) = F(α) = β, and π1(end(β)) = �. Therefore, under these settings, we
also get thatψ ∈ π1(end(FF̄ Ḡ(α))), but χ /∈ π1(end(FF̄ Ḡ(α))). Thus we must have,
by IH, that Sc, Ḡ |� f o STx (ψ)[x/FF̄ Ḡ(α)] but Sc, Ḡ �|� f o STx (χ)[x/FF̄ Ḡ(α)].
The latter means that Sc, F̄ �|� f o (STx (ψ) → STx (χ))[x/α], or, equivalently, that
Sc, F̄ �|� f o STx (φ)[x/α].

Case 4. φ = ψ �→ χ . Then we have

STx (φ) := ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∀w(Rxyw → STw(χ))),
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and, by Lemma 11, we know that:

ψ �→χ ∈ π1(end(α))⇔Mc, end(α) |�c ψ �→ χ

⇔ (∀(�, �), (�′, �′) ∈ Wc)

(end(α) ≤c (�, �)& Rc((�, �), ‖ψ‖Mc , (�
′, �′))⇒Mc, (�

′, �′) |�c χ)

⇔ (∀(�, �), (�′, �′) ∈ Wc)

(end(α) ≤c (�, �)& Rc((�, �), ‖ψ‖Mc , (�
′, �′))⇒ χ ∈ �′) (�→)

We now argue as follows:
(⇐) Assume that ψ �→ χ ∈ π1(end(α)), let β ∈ Seq, and let Ḡ ∈ Glob be such

that F̄  Ḡ. If (FF̄ Ḡ(α), [ψ]∼, β) ∈ ι(R), then we must have, by Definition 5, that,
for some (,�) ∈ Wc and some θ ∈ [ψ]∼, we have β = FF̄ Ḡ(α)�(θ, (,�)). But
then, by Definition 4, also Rc(end(FF̄ Ḡ(α)), ‖θ‖Mc , (,�)); and, since θ ∈ [ψ]∼,
Lemma 11 implies that ‖θ‖Mc=‖ψ‖Mc , so that Rc(end(FF̄ Ḡ(α)), ‖ψ‖Mc , (,�)).
ByLemma20.2,wemust further have end(α) ≤c end(FF̄ Ḡ(α)), andnow (�→) yields
thatχ ∈  = π1(end(β)). Therefore, it followsby IH thatSc, Ḡ |� f o STw(χ)[w/β].

Since the choice of β ∈ Seq and Ḡ ∈ Glob such that F̄  Ḡ was made arbitrarily,
we have shown thatSc, F̄ |� f o ∀w(Rxyw → STw(χ))[x/α, y/[ψ]∼].Moreover, IH
for Part 2 implies thatSc, F̄ |� f o Sy∧ (∀z)O(Ezy ↔ STz(ψ)))[y/[ψ]∼]. Summing
up the two conjuncts and applying the existential generalization to y, we obtain that:

Sc, F̄ |� f o ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∀w(Rxyw → STw(χ)))[x/α],

or, in other words, that Sc, F̄ |� f o STx (φ)[x/α], as desired.
(⇒) Arguing by contraposition, we assume that ψ �→ χ /∈ π1(end(α)). In this

case, (�→) implies the existence of (�,�), (�′,�′) ∈ Wc such that end(α) ≤c

(�,�), Rc((�,�), ‖ψ‖Mc , (�
′,�′)), and χ /∈ �′. By Lemma 19.2, there exist

a β ∈ Seq such that end(β) = (�,�) and an F ∈ G such that F(α) = β.
But then clearly Ḡ = F̄�(F) ∈ Glob and F̄  Ḡ. Moreover, Definition 5
implies that FF̄ Ḡ(α) = β. Next, Rc((�,�), ‖ψ‖Mc , (�

′,�′)) implies that γ =
β�(ψ, (�′,�′)) ∈ Seq, whence, by Definition 5, (β, [ψ]∼, γ ) ∈ ι(R). So, all in all
we get that Sc, Ḡ |� f o Rxyw[x/FF̄ Ḡ(α), y/[ψ]∼, w/γ ], and, on the other hand,
since χ /∈ �′ = π1(end(γ )), IH for Part 1 implies that Sc, Ḡ �|� f o STw(χ)[w/γ ].
Therefore, given that F̄  Ḡ, it follows that:

Sc, F̄ �|� f o ∀w(Rxyw → STw(χ))[x/α, y/[ψ]∼] (†)

If now a ∈ A is such that we have:

Sc, F̄ |� f o Sy ∧ (∀z)O(Ezy ↔ STz(ψ))[y/a] (‡)

then note that, by IH for Part 2 we also have Sc, F̄ |� f o Sy ∧ (∀z)O(Ezy ↔
STz(ψ))[y/[ψ]∼]. Therefore, Lemma 22 implies that we must have a = [ψ]∼
in this case. But then (†) implies that we must have Sc, F̄ �|� f o ∀w(Rxyw →
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STw(χ))[x/α, y/a]. Since a was chosen in A arbitrarily under the condition given by
(‡), we have shown that

Sc, F̄ �|� f o ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∀w(Rxyw → STw(χ)))[x/α],

or, in other words, that Sc, F̄ �|� f o STx (φ)[x/α], as desired.
Case 5. φ = ψ ♦→ χ . Then we have

STx (φ) := ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∃w(Rxyw ∧ STw(χ))),

And, by Lemma 11, we know that:

ψ ♦→χ ∈ π1(end(α)) ⇔Mc, end(α) |�c ψ ♦→ χ

⇔ (∃(�,�) ∈ Wc)(Rc(end(α), ‖ψ‖Mc , (�,�))&Mc, (�,�) |�c χ)

⇔ (∃(�,�) ∈ Wc)(Rc(end(α), ‖ψ‖Mc , (�,�))&χ ∈ �) (♦→)

We now argue as follows:
(⇐) Assume that ψ ♦→ χ ∈ π1(end(α)). Then, by (♦→), we can choose a

(�,�) ∈ Wc such that both Rc(end(α), ‖ψ‖Mc , (�,�)) and χ ∈ �. The former
means, by Definition 4, that β = α�(ψ, (�,�)) ∈ Seq, and the latter means that
χ ∈ π1(end(β)) whence, by IH for Part 1, it follows thatSc, F̄ |� f o STw(χ)[w/β].

Finally, note that Definition 5 implies that Sc, F̄ |� f o Rxyw[x/α, y/[ψ]∼, w/

β] and that, by IH for Part 2 we have Sc, F̄ |� f o Sy ∧ (∀z)O(Ezy ↔
STz(ψ))[y/[ψ]∼]. Summing everything up, we have thus shown that

Sc, F̄ |� f o ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∃w(Rxyw ∧ STw(χ)))[x/α],

in other words, we have shown that Sc, F̄ |� f o STx (φ)[x/α], as desired.
(⇒) Again, we argue by contraposition. Assume that ψ ♦→ χ /∈ π1(end(α)). In

this case, (♦→) implies that for every (�,�) ∈ Wc such that Rc(end(α), ‖ψ‖Mc , (�,

�)), we must have χ /∈ �. Now, if β ∈ Seq is such that (α, [ψ]∼, β) ∈ ι(R), then,
by Definition 5, there must exist a (,�) ∈ Wc and a θ ∈ [ψ]∼ such that β =
α�(θ, (,�)). Since β ∈ Seq, Definition 4 implies that Rc(end(α), ‖θ‖Mc , (,�));
but, since θ ∈ [ψ]∼, the latter means that we must have Rc(end(α), ‖ψ‖Mc , (,�)).
But then our assumption implies that χ /∈  = π1(end(β)), whence, by IH for Part
1, we must have Sc, F̄ �|� f o STw(χ)[w/β]. Since β was chosen in Seq arbitrarily
under the condition that (α, [ψ]∼, β) ∈ ι(R), we have shown that:

Sc, F̄ �|� f o ∃w(Rxyw ∧ STw(χ))[x/α, y/[ψ]∼] (�)

Next, suppose that a ∈ A is such that we have:

Sc, F̄ |� f o Sy ∧ (∀z)O(Ezy ↔ STz(ψ))[y/a] (�)

then note that, by IH for Part 2 we have Sc, F̄ |� f o Sy ∧ (∀z)O(Ezy ↔
STz(ψ))[y/[ψ]∼]. Therefore, Lemma 22 implies that we must have a = [ψ]∼ in
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this case. But then (�) implies that Sc, F̄ �|� f o ∃w(Rxyw ∧ STw(χ))[x/α, y/a].
Since a was chosen in A arbitrarily under the condition given by (�), we have shown
that

Sc, F̄ �|� f o ∃y(Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∃w(Rxyw ∧ STw(χ)))[x/α],

or, in other words, that Sc, F̄ �|� f o STx (φ)[x/α], as desired. ��
Before we move on, we would like to draw a corollary from our lemma:

Corollary 4 Let F̄ ∈ Glob, α ∈ Seq, x ∈ I nd, and let ψ, χ ∈ L. Then the following
statements hold:

1. Sc, F̄ |� f o STx (ψ �→ χ)[x/α] ⇔ Sc, F̄ |� f o ∀w(Rxyw → STw(χ))[x/α,

y/[ψ]∼].
2. Sc, F̄ |� f o STx (ψ ♦→ χ)[x/α] ⇔ Sc, F̄ |� f o ∃w(Rxyw ∧ STw(χ))[x/α, y/
[ψ]∼].

Proof (Part 1) (⇐) Trivial by Lemma 23.2.
(⇒) If Sc, F̄ |� f o STx (ψ �→ χ)[x/α], then we can choose an a ∈ A such that:

Sc, F̄ |� f o Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) ∧ ∀w(Rxyw → STw(χ))[x/α, y/a]

But then, by Lemmas 22 and 23.2, we must have a = [ψ]∼, so that Sc, F̄ |� f o

∀w(R(x, y, w) → STw(χ))[x/α, y/[ψ]∼] follows. Part 2 is proved similarly to Part
1.

It only remains now to show that Sc is a model of Th:

Lemma 24 For every F̄ ∈ Glob, we have Sc, F̄ |� f o T h.

Proof That the Kripke sheaf Sc must satisfy (Th1)–(Th5) is clear from Definition 5.
The satisfaction of (Th6)–(Th8) is implied by Lemma 23.2 (one needs to instantiate
y by [p]∼, [
]∼, or [⊥]∼, respectively). The satisfaction of (Th12) was shown in
Lemma 22. We consider the remaining parts of Th in more detail below:

(Th9). Let ∗ ∈ {∧,∨,→}, F̄ ∈ Glob, and a, b ∈ ι(S). Then, by Definition 5, there
must exist some φ,ψ ∈ L such that a = [φ]∼ and b = [ψ]∼. But then Lemma 23.2
implies that we have all of the following:

Sc, F̄ |� f o Sx ∧ (∀w)O(Ewx ↔ STw(φ))[x/a] (§)

Sc, F̄ |� f o Sy ∧ (∀w)O(Ewy ↔ STw(ψ))[y/b] (¶)

Sc, F̄ |� f o Sz ∧ (∀w)O(Ewz ↔ STw(φ) ∗ STw(ψ))[z/[φ ∗ ψ]∼]

whence Sc, F̄ |� f o (Th9) clearly follows.
(Th10). Again, let F̄ ∈ Glob and a, b ∈ ι(S). Then let φ,ψ ∈ L be such that

a = [φ]∼ and b = [ψ]∼. Lemma 23.2 implies that both (§) and (¶) hold, and that we
have:

Sc, F̄ |� f o Sz ∧ (∀w)O(Ewz ↔ STw(φ �→ ψ))[z/[φ �→ ψ]∼].
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By Corollary 4, it follows now that we must have:

Sc, F̄ |� f o Sz ∧ (∀w)O(Ewz ↔ ∀w′(Rwxw′ → STw′(ψ)))[x/a, z/[φ �→ ψ]∼].

whence Sc, F̄ |� f o (Th10) clearly follows. The case of (Th11) is similar. ��
We are now finally in a position to prove a converse to Corollary 3:

Proposition 6 For all ,� ⊆ L and for every x ∈ I nd, if T h, {STx (φ) | φ ∈ } |� f o

{STx (ψ) | ψ ∈ �}, then  |�IntCK �.

Proof We argue by contraposition. If  �|�IntCK �, then (,�)must be satisfiable, and
therefore, by Lemma 8, we can choose a (′,�′) ∈ Wc such that (′,�′) ⊇ (,�).
By Definition 4, we have (′,�′) ∈ Seq, therefore, Lemmas 23.1 and 24 together
imply thatSc,� |� f o (Th ∪ {STx (φ) | φ ∈ }, {STx (ψ) | ψ ∈ �})[x/(′,�′)], or,
equivalently, that Th, {STx (φ) | φ ∈ } �|� f o {STx (ψ) | ψ ∈ �}, as desired. ��
We can now formulate and prove the main result of this section:

Theorem 2 For all ,� ⊆ L and for every x ∈ I nd, we have  |�IntCK � iff
T h, {STx (φ) | φ ∈ } |� f o {STx (ψ) | ψ ∈ �}.
Proof By Corollary 3 and Proposition 6. ��

6 Conclusion, Discussion, and FutureWork

We have shown that IntCK is indeed the correct version of basic intuitionistic con-
ditional logic in the sense outlined in the opening paragraphs of this paper. Thus,
Theorem 1 shows that IntCK is basic in the sense that it is strongly complete relative
to a (suitably defined) universal class of Kripke models; Theorem 2 then shows that
IntCK is intuitionistic in the sense that it is strongly complete relative to an intuition-
istic reading of the classical semantics of conditional logic. Finally, IntCK is fully
conditional in that it features the full set of conditional connectives {�→,♦→}which
are not definable in terms of one another.

It seems that the construction of Sc used in the proof of Theorem 2 is relatively
novel, since similar results for intuitionistic modal logic are proved by other methods;
in particular, Simpson [15] proceeds proof-theoretically whereas Ewald [7] uses the
method of selective filtration forming a countable chain of finite models. The latter
method was not very convenient to use in the case of conditional logic since one has to
keep a supply of counterexamples distinguishingmodal accessibility relations induced
by formulas that fail to be provably equivalent.

Our answer to the question of what is the basic intuitionistic conditional logic is
still open to criticism, mainly in relation to the intuitionistic component of our claims.
We would like to briefly mention here two possible counter-arguments. First, despite
the fact that Theorem 2 shows that the reasoning given in IntCK is but a subsystem of
the first-order intuitionistic reasoning and can be embedded into the latter by the same
standard translation that is also appropriate in the classical case, the fact that our proof
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of Theorem 2 is itself decidedly classical, diminishes the foundational importance of
this result in the eyes of an intuitionist. Secondly, the theory Th used in this result is
open to doubts as to whether it smuggles in too many classical set-theoretic principles
to be acceptable for an intuitionist.

As for the second concern, we note that (Th1)–(Th5) are clearly harmless principles
typical for two-sorted formulations of FOIL, and (Th12) is a form of extensionality
axiom; the latter is generally uncontroversial and present in every known form of con-
structive set theory. Finally, (Th6)–(Th11) are particular formsof comprehension.Even
though the question about the intuitionistically acceptable amount of comprehension is
definitely open and contested, the comprehension principles given in (Th6)–(Th11) all
seem to be very tame in that they only use the formulas with guarded quantifiers over
the object sort. It seems reasonable to expect, therefore, that they will be acceptable
under any of the existing accounts of intuitionistc set theory.

As for the first concern, however, we can only acknowledge it as a drawback of our
work; to do better in this respect, one should rather prove Theorem 2 in the spirit of
Simpson [15, Ch. 5], and we hope that we will be able to publish in the near future
some sort of continuation to the present paper in which we will close this gap.

Another major direction for future work is to extend the methods and results of this
paper to the treatment of conditionals in constructive logics with strong negation, for
example, to Nelson’s logics N3 and N4, and to the negation-inconsistent connexive
logic C introduced by Wansing in [16]. Among these three systems, C looks, perhaps,
themost promising one, given that this subject has already seen its first rather intriguing
steps in Wansing and Unterhuber [17], and the methods of the current paper seem to
open a way to a considerable refinement of these first results.

Appendix A Proof of Lemma 4

We sketch the respective proofs and derivations in ICK:

(Nec) : φ premise (A1)

φ ↔ 
 (A1), (α0), (MP) (A2)

(ψ �→ φ)↔ (ψ �→
) (A2), (RC�) (A3)

ψ �→ φ (A3), (α5), (α0), (MP) (A4)

(RM�) : φ → ψ premise (A5)

(φ ∧ ψ)↔ φ (A5),(α0), (MP) (A6)

(χ �→ (φ ∧ ψ))↔ (χ �→ φ) (A6), (RC�) (A7)

(χ �→ φ)→ (χ �→ ψ) (A7), (α1), (α0), (MP) (A8)
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(RM♦) : φ → ψ premise (A9)

(φ ∨ ψ) ↔ ψ (A9),(α0), (MP) (A10)

(χ ♦→ (φ ∨ ψ)) ↔ (χ ♦→ ψ) (A10), (RC♦) (A11)

(χ ♦→ φ)→ (χ ♦→ ψ) (A11), (α3), (α0), (MP) (A12)

(T1) :(ψ∧ (ψ → χ))→ χ (α0), (MP) (A13)

(φ�→(ψ ∧ (ψ → χ)))→ (φ �→ χ) (A13), (RM�) (A14)

((φ�→ψ)∧(φ�→(ψ→χ)))→(φ�→χ) (α1), (A14),(α0), (MP) (A15)

(T2) : ((φ♦→ ψ)∧(φ�→(ψ→χ)))→(φ♦→(ψ∧(ψ → χ))) (α2) (A16)

(ψ ∧ (ψ → χ))→ χ (α0), (MP) (A17)

(φ ♦→ (ψ ∧ (ψ → χ)))→ (φ ♦→ χ) (A17), (RM♦) (A18)

((φ♦→ψ)∧(φ�→(ψ→χ)))→(φ♦→χ) (A16), (A18),(α0), (MP) (A19)

(T3) : ψ → ((ψ → χ)→ χ) (α0), (MP) (A20)

(φ �→ ψ)→ (φ �→ ((ψ → χ)→ χ)) (A20), (RM�) (A21)

(φ�→ψ)→((φ♦→(ψ→χ))→(φ♦→χ)) (A21),(T2),(α0), (MP) (A22)

(T4) : (φ �→ (ψ →⊥)) → ((φ ♦→ ψ)→ (φ ♦→⊥)) (T2) (A23)

((φ ♦→ ψ) → (φ ♦→⊥)) → ((φ ♦→ ψ)→⊥) (α6),(α0), (MP) (A24)

(φ �→ ¬ψ)→ ¬(φ ♦→ ψ) (A23),(A24),(α0), (MP) (A25)

((φ ♦→ ψ) →⊥) → ((φ ♦→ ψ)→ (φ �→⊥)) (α0), (MP) (A26)

¬(φ ♦→ ψ) → (φ �→ ¬ψ) (A26),(α4),(α0), (MP) (A27)

Appendix B Proof of Lemma 12

(Part 1) Note that (α3) follows from (α1) in CK by applying (Ax1) plus duality prin-
ciples; (α6) can be deduced from (α5) similarly. Moreover, (RM�) and (T1) can be
deduced in CK in the same way as in IntCK. We sketch the proofs for the remaining
axioms and inference rules:

(α2) : (φ�→χ)→ (φ �→ (¬(ψ ∧ χ)→ ¬ψ)) (α0),(MP),(RM�) (B28)

(φ�→χ)→((φ�→¬(ψ∧χ))→(φ�→¬ψ)) (B28),(T1),(α0),(MP) (B29)

(φ�→χ)→(¬(φ�→¬ψ)→¬(φ�→¬(ψ∧χ))) (B29),(α0),(MP) (B30)

(φ�→χ)→((φ♦→ψ)→(φ♦→(ψ∧χ))) (B30),(Ax1),(α0),(MP) (B31)
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(α4) : (φ ♦→ ψ)→ (φ �→ χ) premise (B32)

¬(φ�→¬ψ)→(φ�→χ) (B32), (Ax1),(α0),(MP)(B33)

(φ�→¬ψ)→(φ �→ (ψ → χ)) (α0),(MP),(RM�) (B34)

(φ�→χ)→(φ�→(ψ→χ)) (α0),(MP),(RM�) (B35)

¬(φ�→¬ψ)→(φ�→(ψ→χ)) (B33),(B35),(α0),(MP) (B36)

((φ�→¬ψ)∨¬(φ�→¬ψ))→(φ�→(ψ→χ)) (B34),(B36),(α0),(MP) (B37)

(φ�→¬ψ)∨¬(φ�→¬ψ) (Ax0) (B38)

φ�→(ψ→χ) (B37),(B38),(MP) (B39)

(RA♦) : φ ↔ ψ ∈ CK premise (B40)

(φ �→ ¬χ)↔ (ψ �→ ¬χ) ∈ CK (B40),(RA�) (B41)

¬(φ �→ ¬χ) ↔ ¬(ψ �→ ¬χ) ∈ CK (B41),(α0),(MP) (B42)

(φ ♦→ χ)↔ (ψ ♦→ χ) ∈ CK (B42),(Ax1),(α0),(MP) (B43)

(RC♦) : φ ↔ ψ ∈ CK premise (B44)

(χ �→ ¬φ) ↔ (χ �→ ¬ψ) ∈ CK (B44),(α0),(MP),(RC�) (B45)

(χ ♦→ φ)↔ (χ ♦→ ψ) ∈ CK (B45),(Ax1),(α0),(MP) (B46)

Having now every element of ICK deduced in CK, we can deduce the remaining parts
of Lemma 4 as it was done in Section 3.2.

As for Part 2, note that (Ax0) intuitionistically implies ¬¬(φ ♦→ ψ) ↔ (φ ♦→
ψ), whence (Ax1) follows by (T4).

Appendix C Proofs of Some Technical Results from Section 5

All of the sketches in this Appendix are semi-formal but allow for an easy completion
into full proofs in any complete Hilbert-style axiomatization of FOIL. The following
lemma lists most of the intuitionistic principles assumed in this appendix:

Lemma 25 Let∪{φ,ψ} ⊆ L f o, and let x ∈ I nd. Thenall of the following statements
hold:

, φ |� f o ψ ⇔  |� f o φ → ψ (DT)

 |� f o φ → ψ ⇒  |� f o ∃xφ → ψ x /∈ FV ( ∪ {ψ}) (Bern)
 |� f o φ ⇒  |� f o ∀xφ x /∈ FV () (Gen)

In case our formulas get too long, we will be replacing them with their labels, writing
e.g. (C123) → (C124) instead of φ → ψ in case φ did occur earlier as equation
(C123) and ψ as equation (C124).
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Proof of Lemma 15 (Part 1) Consider the following deduction D1 from premises:

Sy′ ∧ (∀z)O(Ezy′ ↔ STz(ψ)) premise (C47)

∀w(Rxy′w → STw(χ)) premise (C48)

Sy ∧ (∀z)O(Ezy ↔ STz(ψ)) premise (C49)

(∀z)O(Ezy ↔ Ezy′) by (C47), (C49) (C50)

y ≡ y′ by (C50), (Th12) (C51)

∀w(Rxyw → STw(χ)) by (C48), (C51) (C52)

We now reason as follows:

Th, (C47), (C48) |� f o ∀y(Sy ∧ (∀z)O (Ezy↔ STz(ψ))→∀w(Rxyw→ STw(χ))) (D1, (DT), (Gen))

Th |� f o ∃y′((C47) ∧ (C48))→∀y(Sy ∧ (∀z)O (Ezy ↔ STz(ψ))→∀w(Rxyw → STw(χ))) ((DT), (Bern))

Now the definition of ST yields the result claimed for Part 1. Part 2 is proved by a
parallel argument. ��

Proof of Lemma 16 We proceed by induction on the construction of φ ∈ L.
Basis. If φ = p ∈ Var (resp. φ = ⊥,
), then the Lemma follows by (Th6) (resp.

(Th7), (Th8).
Induction step. The following cases are possible:
Case 1. φ = ψ ∗ χ , where ∗ ∈ {∧,∨,→}. We consider first-order deduction D2:

Sx ∧ (∀w)O(Ewx ↔ STw(ψ)) premise (C53)

Sy ∧ (∀w)O(Ewy ↔ STw(χ)) premise (C54)

Sz ∧ (∀w)O(Ewz ↔ (Ewx ∗ Ewy)) premise (C55)

(∀w)O((Ewx ∗ Ewy)↔(STw(ψ)∗STw(χ))) by (C53), (C54) (C56)

(∀w)O(Ewz ↔ (STw(ψ) ∗ STw(χ))) by (C55), (C56) (C57)

∃z(Sz∧(∀w)O(Ewz↔ STw(ψ ∗ χ))) by (C55), (C57), def. of ST (C58)

We now reason as follows:

Th, (C53), (C54) |� f o ∃z(C55)→ ∃z(Sz ∧ (∀w)O (Ewz ↔ STw(ψ ∗ χ))) (D2, (DT), (Bern))

Th, (C53), (C54) |� f o Sx ∧ Sy (trivially)

Th, (C53), (C54) |� f o (Sx ∧ Sy)→ ∃z(C55) (Th9)

Th, (C53), (C54) |� f o ∃z(Sz ∧ (∀w)O (Ewz ↔ STw(ψ ∗ χ))) (MP)

Th |� f o ∃x(C53)→ (∃z(C54)→ ∃z(Sz ∧ (∀w)O (Ewz ↔ STw(ψ ∗ χ)))) (DT), (Bern)

Th |� f o ∃x(C53) ∧ ∃y(C54) (IH)

Th |� f o ∃z(Sz ∧ (∀w)O (Ewz ↔ STw(ψ ∗ χ))) (MP)

Case 2. φ = ψ �→ χ . We consider the following deductions from premises.
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Deduction D3:

Sy′ ∧ (∀w)O(Ewy′ ↔ STw(ψ)) premise (C59)

∀w(Rxy′w → STw(χ)) premise (C60)

∃y(((C59) ∧ (C60))yy′) by (C59), (C60) (C61)

STx (ψ �→ χ) by (C61), def. of ST (C62)

Deduction D4:

(C59) premise

Sy ∧ (∀w)O(Ewy ↔ STw(ψ)) premise (C63)

∀w(Rxyw → STw(χ)) premise (C64)

(∀w)O(Ewy ↔ Ewy′) by (C59), (C63) (C65)

y ≡ y′ by (C65), (Th12) (C66)

∀w(Rxy′w → STw(χ)) by (C64), (C66) (C67)

D3 and D4 lead to the following intermediate results:

Th, (C59) |� f o ∀w(Rxy′w → STw(χ))→ STx (ψ �→ χ) (D3, (DT)) (C68)

Th, (C59) |� f o ∃y((C63) ∧ (C64))→∀w(Rxy′w→ STw(χ)) (D4, (DT), (Bern)) (C69)

Th, (C59) |� f o STx (ψ �→ χ)→ ∀w(Rxy′w → STw(χ)) ((C69), def. of ST ) (C70)

Th, (C59) |� f o ∀x(STx(ψ �→χ)↔∀w(Rxy′w→ STw(χ))) (C68),(C70), (Gen) (C71)

We now feed these results into the next deduction D5:

(C59) premise

Sz ∧ (∀w)O(Ewz ↔ STw(χ)) premise (C72)

Sy′ ∧ Sz by (C59), (C72) (C73)

∃z′(∀x)O(Exz′ ↔ ∀w(Rxy′w → Ewz)) by (C73), (Th10) (C74)

∃z′(∀x)O(Exz′ ↔ ∀w(Rxy′w → STw(χ))) by (C72), (C74) (C75)

∃z′(∀x)O(Exz′ ↔ STx (ψ �→ χ)) by (C75), (C71) (C76)

We now finish our reasoning as follows:

Th |� f o ∃y′(C59)→ (∃z(C72)→ ∃z′(∀x)O (Exz′ ↔ STx (ψ �→ χ))) (D5, (DT), (Bern))

Th |� f o ∃y′(C59) ∧ ∃z(C72) (IH)

Th |� f o ∃z′(∀x)O (Exz′ ↔ STx (ψ �→ χ))) (MP)

Case 3. φ = ψ ♦→ χ . Parallel to Case 2.
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Proof of Proposition 5 We show that the standard translation of every axiom of ICK

first-order follows from Th and that the rules of ICK preserve this property. First, note
that every instance of (α0) is translated into an instance of (α0) and hence a FOIL-valid
formula; the same is true for every instance of (α6). By Lemma 16, we also know that
every instance of (α5) first-order-follows from Th. Next, the applications of (MP)
translate into applications of this same rule (MP), and the applications of every rule
in the set {(RA�), (RC�), (RA♦), (RC♦)} translate to applications of some FOIL-
deducible rule. It remains to consider the instances of axiomatic schemas (α1)–(α4),
which is a tedious but straightforward exercise in first-order intuitionistic reasoning.
We display the reasoning for (α4) as an example.

Let φ,ψ, χ ∈ L. Consider the following first-order deduction D6 from premises:

STx (φ ♦→ ψ)→ STx (φ �→ χ) premise (C77)

Sy ∧ (∀z)O(Ezy ↔ STz(φ)) premise (C78)

Rxyw ∧ STw(ψ) premise (C79)

∃w(Rxyw ∧ STw(ψ)) by (C79) (C80)

∃y((C78) ∧ (C80)) by (C78), (C80) (C81)

STx (φ ♦→ ψ) by (C81), def. of ST (C82)

STx (φ �→ χ) by (C77), (C82) (C83)

∀y(Sy ∧ (∀z)O(Ezy ↔ STz(φ)))→
→ ∀w(Rxyw → STw(χ))) by (C83), Lemma 15 (C84)

∀w(Rxyw → STw(χ)) by (C78), (C84) (C85)

STw(χ) by (C79), (C85) (C86)

We now reason as follows:

Th, (C77), (C78) |� f o ∀w(Rxyw → (STw(ψ)→ STw(χ))) (D6, (DT), (Gen))

Th, (C77), (C78) |� f o ∀w(R(x, y, w)→ STw(ψ → χ)) (def. of ST )

Th, (C77), (C78) |� f o ∃y((C78) ∧ ∀w(Rxyw → STw(ψ → χ)))

Th, (C77), (C78) |� f o STx (φ �→ (ψ → χ)) (def. of ST )

Th, (C77) |� f o ∃y(C78)→ STx (φ �→ (ψ → χ)) (DT ), (Bern)

Th |� f o ∃y(C78) (Lemma 16)

Th, (C77) |� f o STx (φ �→ (ψ → χ)) (MP)

Th |� f o (C77)→ STx (φ �→ (ψ → χ)) (DT )

Th |� f o STx (((φ ♦→ ψ)→ (φ �→ χ)) → (φ �→ (ψ → χ))) (def. of ST )
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