
Journal of Philosophical Logic (2024) 53:463–491
https://doi.org/10.1007/s10992-023-09738-z

A Semantic Framework for the Impure Logic of Ground

Louis deRosset1

Received: 17 January 2023 / Accepted: 15 December 2023 / Published online: 25 January 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
There is a curious bifurcation in the literature on ground and its logic. On the one hand,
there has been a great deal of work that presumes that logical complexity invariably
yields grounding. So, for instance, it is widely presumed that any fact stated by a
true conjunction is grounded in those stated by its conjuncts, that any fact stated by
a true disjunction is grounded in that stated by any of its true disjuncts, and that any
fact stated by a true double negation is grounded in that stated by the doubly-negated
formula. This commitment is encapsulated in the system GG axiomatized and seman-
tically characterized by [deRosset and Fine, 2023] (following [Fine, 2012]). On the
other hand, there has been a great deal of important formal work on “flatter” theories
of ground, yielding logics very different fromGG [Correia, 2010] [Fine, 2016, 2017b].
For instance, these theories identify the fact stated by a self-conjunction (φ ∧ φ) with
that stated by its conjunct φ. Since, in these systems, no fact grounds itself, the “flatter”
theories are inconsistent with the principles of GG. This bifurcation raises the question
of whether there is a single notion of ground suited to fulfill the philosophical ambi-
tions of grounding enthusiasts. There is, at present, no unified semantic framework
employing a single conception of ground for simultaneously characterizing both GG
and the “flatter” approaches. This paper fills this gap by specifying such a framework
and demonstrating its adequacy.
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464 L. deRosset

There is a curious bifurcation in the literature on ground and its logic. On the one hand,
there has been a great deal of work that presumes that logical complexity invariably
yields grounding. So, for instance, it is widely presumed that the fact stated by a true
conjunction is grounded in those stated by its conjuncts, that the fact stated by a true
disjunction is grounded in that stated by any of its true disjuncts, and that the fact stated
by a true double negation is grounded in that stated by the doubly-negated formula.1

These commitments are encapsulated in the system GG axiomatized and semantically
characterized in [6] (following [8]).

On the other hand, there has been a great deal of important formal work on “flatter”
theories of content, including concomitant explorations of corresponding logics of
ground very different from GG. So, for instance, the semantic approaches of [3] and
[9, 11] each yield a theory of content, AC, characterized axiomatically by [1]; see
Section 3 below for a specification. AC requires, among other things, that we identify
the fact stated by a self-conjunction (φ∧φ)with that stated by its conjunct φ. Since, in
these systems, no fact grounds itself, any “flatter” theory implying AC is inconsistent
with the principles of GG. According to GG, conjoining φ with itself “raises” the
content of φ, yielding something new; according to the “flatter” theories, by contrast,
self-conjunction just gives us back the old fact.

So, we have two very different logics of ground, and also two very different views of
the conditions under which sentences are equivalent, in the sense that they express the
same fact.2 As it turns out, the semantic approaches cited above andused to characterize
these two different views are also very different, and neither seems readily adaptable
to handle the logic of ground yielded by the other. So, we have no unified semantic
framework suited to treat both the “raised” approach to content characteristic of GG
(with one set of constraints on contents) and the various “flatter” approaches (with a
different set of constraints on contents).

This bifurcation is regrettable. In particular, the “raised” approach differs from the
extant “flatter” treatments in its interpretation of grounding claims. This motivates the
idea that we do not have a single notion of ground treated by the disparate logics and
challenges the claim that there is a single notion to treat.3 It has even been suggested
that the lack of a unified semantic framework for interpreting claims of ground provides
a reason to be skeptical about the cogency or utility of the idea [12, p. 327].

1 See [8], [14], and [15] for discussion and citations.
2 This intuitive way of expressing the sort of equivalence at issue is potentially misleading, since the notion
of expressing a fact may reasonably taken to be factive: a sentence expresses a fact only if the sentence is
true. In the present context I intend the idea to be taken non-factively. So, for instance, the “flatter” theories
imply that (φ ∧φ) and φ are equivalent in the relevant sense even when φ is false. So, in the idiom I indulge
in the main text, this claim can be expressed by saying that (φ ∧φ) and φ express the same fact, even when
φ is false. Correia [3, 4] calls this non-factive notion factual equivalence.
3 In this connection, Correia [3, 4] explicitly distinguishes the notions of representational grounding and
worldly grounding. In [3], he draws the distinction by appeal to the fact that worldly grounding has a more
coarse-grained conception of the relata of the grounding relation. But, as indicated in the main text, the
differences between extant “raised” and “flatter” treatments cannot be characterized merely by differences
in how fine-grained the relata are supposed to be. The different treatments also involve different conceptions
of the notion of ground itself.
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A Semantic Framework for the Impure Logic of Ground 465

To meet the challenges posed by these charges, we would like a single framework,
with a single conception of ground, which, given different constraints on equivalence,
yield the different logics of ground. A model for a unified framework of this sort is
the now-standard relational possible worlds semantics for propositional modal logic.
There we have a single conception of necessity as truth at all accessible worlds.
Different constraints on accessibility then yield different modal logics. We are aiming
for something similar for the logic of ground.

This paper offers reason for thinking that such a framework is ready to hand. For
reasons that will become clear, there is no prospect of adapting the “raised” approach
of [6] by differently constraining contents so that we get a “flatter” theory instead
of GG. In particular, the conception of ground specified by deRosset and Fine [6,
D2.1, p. 426] is unsuitable for a “flatter” treatment, because it encodes a characteristic
commitment of the “raised” approach.4 But a small variation on that semantics is more
serviceable for the purpose. As we will see, the variant semantics, featuring a tweaked
conception of ground, yields the logic GG on one set of constraints on contents, and
AC and its associated logic of ground on another. The variant semantics thus provides
a framework that unifies the hitherto bifurcated treatments of ground in the literature.

We will start (Section 1) by reviewing the semantics for GG specified by [6]. The
variant semantics is then described, and GG’s soundness and completeness are estab-
lished (Section 2). This variant semantics appeals to a single constraint on contents,
dubbed (≤- maximality). The soundness and completeness results show that, in the
framework described, this constraint characterizes GG. Next, we state an alternative
set of constraints, inconsistent with (≤- maximality) in the framework described,
and establish the soundness (Section 3) and completeness (Section 4) of AC on the
resulting semantics. Finally (Section 5), we show that the resulting interpretation of
ground exactly corresponds to the definition of ground given by [3] and [8, 11]. Thus,
we have a single semantic framework encapsulating a single conception of ground
that is suitable for exactly characterizing the semantic assumptions of our disparate
logics of ground.

1 Original Semantics for GG

Let’s begin by describing the semantics for the impure logic of ground of [6, Section
2], which we will call the selection space semantics. We take as given the familiar
idea of a space of conditions, which, intuitively, may either obtain or fail to obtain.
We can pair these conditions into propositions, or candidate contents for sentences,
which comprise both a truth-condition and a falsity-condition.

We are also given twoways in which conditions may be constructed out of contents.
deRosset and Fine [6, pp. 421, 425-6] dub these two modes of construction choice
and combination, respectively. They characterize them by appeal to what, following
[10, p. 637ff.], they call the theory of menus. To appreciate the idea, consider a typical

4 deRosset and Fine [6, p. 492] assert that their approach “can be modified and extended” to accommodate
a “flatter” theory. But they do not say how, nor do they suggest a way of capturing both the “flatter” theory
and the “raised” theory by employing a single conception of ground.
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466 L. deRosset

breakfast menu, offering a choice of either oatmeal with fruit or eggs with toast. Each
of the two options is itself a combination of items, and the toast might itself comprise
a choice between whole wheat and white toast. Thus, on typical menus, there is a
hierarchical organization of choices and combinations, with the menu itself generally
offering, at the highest level, a choice of options. Clearly, the character of choices on
a menu is, intuitively, disjunctive, since any of the options on offer may be selected.
Likewise, the character of combinations is, intuitively, conjunctive, since any selection
includes all of the items together.

The choice and combination operations in selection space semantics are analogous
operations on finite sequences of contents, with choice providing a semantic analogue
of disjunction and combination a semantic analogue of conjunction. Thus, we may
think of the choice of contents v and w (written [v + w]), as a condition comprising
two ways in which it might obtain. So, if the condition in fact obtains, circumstances
must somehow include a selection of one of those ways in which the condition obtains.
Similarly, the combination of v and w (written [v.w]) may be thought of, intuitively,
as a condition whose actual obtaining requires that circumstances include both v

and w. Since there is, on this conception, no intuitive difference between a singleton
combination and a singleton choice of a content v, deRosset and Fine [6] identify
them, writing [v] to denote such a choice/combination. Intuitively, one might think of
[v] as an “a la carte” item. Any non-empty set of conditions, together with choice and
combination operations (denoted � and �, respectively), is a member of the class of
selection spaces that gives selection space semantics its name.

The selection space semantics interprets sentences of a propositional language with
negation, conjunction, and disjunction compositionally, mapping each sentence to a
content, i.e., a pairing of truth- and falsity-conditions. We take as given an assignment
of contents to atomic sentences. The truth-condition of¬φ is the falsity condition of φ,
and the falsity-condition of ¬φ is the “a la carte” choice/combination of φ’s content.
The truth-condition of a disjunction is the choice of the contents of the disjuncts, and
its falsity-condition is the combination of the contents of the disjuncts’ negations.
Similarly, the truth-condition of a conjunction is the combination of the contents of
the conjuncts, and its falsity-condition is the choice of the contents of the conjuncts’
negations. Formally, an interpretation is a function ·̄ given by an assignment of contents
to atomic sentences that is extended inductively to molecular sentences in the way just
described:

1. ¬φ = ( φ̄�, [φ̄] );
2. (φ ∧ ψ) = ( [φ̄ . ψ̄ ], [ ¬φ + ¬ψ ] ); and
3. (φ ∨ ψ) = ( [ φ̄ + ψ̄ ], [ ¬φ .¬ψ ] ).

It remains to interpret claims of ground. Here deRosset and Fine [6] appeal to a
distinction, standard in the literature on the logic of ground, between notions of strict
ground (<) andweak ground (≤). Strict ground is the more familiar idea, deployed by
philosophers across a wide range of areas. Weak ground is indispensable for logical
purposes, but is less familiar and lesswidely used. deRosset andFine [6] note, however,
that their target logic GG requires that weak ground be specifiable by appeal to strict
ground: weak grounds for φ are exactly strict grounds for¬¬φ.5 ButGG also requires

5 This is their definition (W/S), [6, p. 423].
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A Semantic Framework for the Impure Logic of Ground 467

that strict ground be specifiable by appeal to weak ground: ψ1, ψ2, . . . strictly ground
φ iff they irreversibly weakly ground φ, i.e., they weakly ground φ, and there are no
� such that φ, together with �, weakly grounds any of the ψi .6

Of course, at most one of these specifications can be designated as a formal defi-
nition of the relevant sort of grounding. deRosset and Fine [6] choose to elevate the
specification of weak ground by appeal to strict ground to a definition. That is, they
define weak grounds for φ, in effect, as strict grounds for ¬¬φ. They then define
strict ground directly, by appeal to selection. The definition is inductive, starting with
a notion of immediate selection. So, any content v is an immediate selection from a
choice of contents that includes v, and the contents v,w, . . . are, collectively, an imme-
diate selection from their combination. Immediate selections from the truth-condition
of a content are strict grounds for that content: whenever G is an immediate selection
from the truth condition of v (written v⊕), G is a strict ground of v. The definition of
strict ground is then rounded out by closing under a series of natural chaining oper-
ations. It is worth stating the definition in full, since it will figure in what follows. In
this definition, �F is used for immediate selection (relative to a given selection space
F),<F for strict selection, and a weak selection claim of the form G ≤F v abbreviates
(∃d)G <F ([v], d):7

Definition 1.1
1. Basis: if G �F v⊕, then G <F v;
2. Ascent: if G <F w and [w] = v⊕ , then G <F v;
3. Lower Cut: if (Gi ≤F vi ), and (vi ) <F v, then (Gi ) <F v; and
4. Upper Cut: if (Gi <F vi ), and (vi ) ≤F v, then (Gi ) <F v. [6, D2.1, p. 426]

With this definition in hand,we can consider the resulting logic of grounding claims.
deRosset and Fine show that two constraints on selection spaces yield a class ofmodels
for whichGG is sound and complete. Thus, those constraints characterize the semantic
presuppositions of GG, given the conception of ground captured by their definition
Definition 1.1. The first constraint we have already encountered: it says, in effect, that
strict ground is irreversible weak ground. Let’s indicate a connection of partial weak
selection in a selection spaceF using	F: v 	F w iff there is aG such that v,G ≤F w.
This gives us a concise way to express irreversibility:

Irreversibility G <F v iff G ≤F v and (∀w ∈ G)v �F w. [6, pp. 423-4,426]
The specification of strict ground as irreversible weak ground is a shared commit-

ment of both GG and the “flatter” theories of ground mentioned above [3, 9, 11].
(irreversibility) is needed because it is not guaranteed by the definitions in [6] of
selection spaces and ground on their own. Nothing in those definitions, for instance,
prohibits there being a selection space F in which the singleton choice/combination
[v] of a content v is the truth-condition of v. Then the content v will be an imme-
diate selection from v⊕ = [v], and hence, by the definitions of both strict and weak
selection, v is both a strict and a weak selection from itself. Since the weak selection
v ≤F v is obviously reversible, F witnesses a failure of (irreversibility).

6 This is their definition (S/W), [6, p. 424].
7 In what follows, we will refer to indexed sets using standard notation, writing (xi )i<n for {xi |i < n}. We
will almost always omit the subscripted restriction ‘i < n’.
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468 L. deRosset

As already noted, the specification of strict ground as irreversible weak ground is
shared with the “flatter” treatments. So (irreversibility) does not capture a distinc-
tive commitment of GG. Thus, deRosset and Fine [6] must impose a further constraint
to give a semantics for GG. One distinctive commitment of GG is already captured
by the definition of ground offered above. Given that definition together with the
assignment of contents to sentences, logical complexity of the sort treated invari-
ably yields grounding connections. For instance, since the content of φ is always
an immediate selection from its singleton choice/combination, and that singleton
choice/combination is always the truth-condition of ¬¬φ, the claim that φ (strictly)
grounds ¬¬φ is valid. But GG is also committed to the claim that grounds for a logi-
cally complex sentence must “go through” the contents of its immediate constituents.
Every (strict) ground for ¬¬φ, for instance, must somehow “go through” φ, in the
sense of being aweak ground for φ. Thus, φ is a kind ofmaximal strict ground of¬¬φ.
Similar commitments govern grounds for conjunctions, disjunctions, and theirDeMor-
gan equivalents. Say that G1,G2, . . . are a covering of G iff G = G1 ∪ G2 ∪ . . . .
Then this constraint can be encapsulated thus:

Maximality:

1. G <F ([v0.v1. . . . ], d) only if there is a covering G0,G1, . . . of G such that
Gi ≤F vi , for each i ; and

2. G <F ([v0 + v1 + . . . ], d) only if there is a non-empty subset w0, w1, . . . of
v0, v1, . . . and a covering G0,G1, . . . of G such that Gi ≤F wi for each i .[6,
D2.2.2, p. 427]

deRosset and Fine show that GG is sound and complete for the class of models
whose selection spaces satisfy (irreversibility) and (maximality) [6, T3.1, T8.6,
pp. 429, 489]. Please see [6, Section 2, pp. 425-7] for a formal specification of the
semantics and [6, Section 3, pp. 427-9] for an explicit specification of the correspond-
ing system of derivation GG.

2 The Variant Semantics

GG’s characteristic commitments concerning the fineness of grain of contents are
highly controversial. For instance, GG requires that we distinguish the content of φ

from each of ¬¬φ, φ ∧ φ, and φ ∨ φ, since φ ≤ φ is a theorem of GG, but each of
¬¬φ ≤ φ, (φ ∧ φ) ≤ φ, and (φ ∨ φ) ≤ φ is inconsistent in GG. Use ≈ to express
ground-theoretic equivalence between formulae, so that φ ≈ ψ iff φ ≤ ψ andψ ≤ φ.
GG also requires counter-examples to the general ground-theoretic equivalence of
(φ ∨ (ψ ∨ χ)) with ((φ ∨ ψ) ∨ χ) [6, Section 9.3]. For, as one might expect from
inspection of (maximality), GG requires that a strict ground for (φ ∨ ψ) be either
a weak ground for φ, a weak ground for ψ , or split (perhaps non-exclusively) into a
weak ground for φ and a weak ground for ψ . Also, φ and ψ are each required in GG
to be strict grounds for their disjunction. So, if ((φ ∨ψ)∨ψ) ≈ (φ ∨ (ψ ∨ψ)), then,
according to GG, we have:
((φ ∨ ψ) ∨ ψ) ≤ (φ ∨ (ψ ∨ ψ))

� (φ ∨ ψ) < (φ ∨ (ψ ∨ ψ))
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A Semantic Framework for the Impure Logic of Ground 469

� (φ ∨ ψ) ≤ (ψ ∨ ψ)

� φ < (ψ ∨ ψ)

� φ ≤ ψ.

Since φ is arbitrary, we may substitute ¬¬ψ for φ in this derivation, yielding

((¬¬ψ ∨ ψ) ∨ ψ) ≤ (¬¬ψ ∨ (ψ ∨ ψ)) � ¬¬ψ ≤ ψ � ψ < ψ.

In GG, however, nothing grounds itself, so ψ < ψ is inconsistent. Thus, GG
requires that disjunction not be associative. GG also turns out to require similar
counter-examples to both the associativity of conjunction and the boolean distribu-
tion equivalences (φ ∨ (ψ ∧ χ)) ≈ ((φ ∨ ψ) ∧ (φ ∨ χ)) and (φ ∧ (ψ ∨ χ)) ≈
((φ ∧ ψ) ∨ (φ ∧ χ)). Moreover, GG allows us to distinguish all instances of φ ∨ ψ

from ψ ∨ φ, though it also allows their general ground-theoretic equivalence. Similar
remarks apply to DeMorgan equivalences. These facts demonstrate the way in which
GG imposes interesting constraints on the individuation of content. They thereby dif-
ferentiate the theory of content required by GG from the “flatter” treatments we have
already mentioned, which presuppose these ground-theoretic equivalences [3, 8, 11].

Our aim is to recover the impure logic of ground given by those “flatter” treatments
by revising the constraint on selection spaces imposed by (irreversibility) and
(maximality). Since (irreversibility) is a commitment shared between the “raised”
conception articulated by GG and the “flatter” treatments, one might hope that simply
revising (maximality) would do the trick. The hope is forlorn. The conception of
ground encapsulated in deRosset and Fine’s [6] definition of strict selection is itself
unsuitable for the “flatter” treatments. As we saw in Section 1, on that definition, φ

invariably strictly (and so irreversibly) grounds¬¬φ, andweakly grounds itself. These
two commitments are inconsistent with any of the “flatter” views, which identify the
content of any sentence and its double negation, and maintain that strict ground is
irreversible weak ground. So, as we saw above, the very conception of ground at issue
incorporates a characteristic commitment of GG. Selection systems cannot provide the
unified semantic frameworkwe are seeking, on the conception of ground characterized
by deRosset and Fine’s Definition 1.1.

This problem can only be solved by starting with a different definition of selection.
Fortunately, there is such a definition in the offing. Recall that weak and strict ground,
in GG, can each be specified in terms of the other. As we saw, deRosset and Fine elect
to take the specification of weak ground in terms of strict ground as a definition ofweak
ground: weak grounds for φ are defined, in effect, as strict grounds for ¬¬φ. Strict
ground is then defined directly, as in Definition 1.1. We can do better by following the
opposite procedure, defining weak ground directly, and then defining strict ground as
irreversible weak ground.

Suppose we are given a selection space F.

Definition 2.1 The relation ≤1 for F is defined inductively:

1. Basis: G � v⊕ or G � [v] ⇒ G ≤1 v;
2. Cut: (Gi ≤1 vi ) and (vi ) ≤1 v ⇒ (Gi ) ≤1 v; and
3. Level: (Gi � vi⊕) and (vi ) ≤1 ([v], d) ⇒ (Gi ) ≤1 v.
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470 L. deRosset

(basis) and (cut) are familiar and straightforward. (level), by contrast, is more
difficult. It is plausible to think that a weak grounding claim indicates that the weak
grounds of some content v are at or below the explanatory level of v. What (level)
says, on this way of thinking, is that if some contents v0, v1, . . . are at or below [v]’s
level, we go down a level from v0, v1, . . . to get G0,G1, . . . , and we go down a level
from [v] to get v, then the level of the G’s will be at or below the level of v. A picture
illustrates the idea:

Level (α + 1) : v0, v1, . . . ([v], d)

Level α : G0, G1, . . . v

Here the dotted arrow represents ≤ 1 and the solid arrows represent relations of
immediate selection connecting entities of a given level with entities one level up. In
the context ofGG’s specification ofweak selections froma content v as strict selections
from the “a la carte” item [v], the definition of ≤1 can be seen as a way of adapting
the original definition of strict selection in Definition 1.1 to yield a direct definition
of weak selection. The immediate selection clause and ascent in Definition 1.1 get
bundled into basis. The cut clause in Definition 2.1 is a special case of lower cut,
where the major premise (vi ) <F v has the form (vi ) <F ([w], d), and so says, in
the present context, that (vi ) are a weak selection from w. And level is a special
case of the upper cut clause of Definition 1.1 and the basis case. Whenever (Gi )

are immediate, hence strict, selections, respectively, from (vi ) and (vi ) are, in turn,
a weak selection from ([v], d), application of upper cut implies that (Gi ) are a
strict selection from ([v], d), and hence a weak selection from v. In fact, we will
show (Theorem 2.5) that deRosset and Fine’s original definition of weak selection
and the new definition Definition 1.1 are equivalent in any selection space. So, the
new definition Definition 1.1 of weak selection simply presents the old relation in a
somewhat unfamiliar guise.8

The framework of selection systems, together with the conception of ground cor-
responding to this definition of ≤1, provides the unified approach we seek. What we
will show is that the framework of selection spaces, together with this conception of
ground, can be constrained one way to yield GG, and a different way to yield the logic
of the “flatter” treatments.

We start by showing that there is a single, natural constraint on selection systems,
obtained by strengthening deRosset and Fine’s (maximality) constraint, that yields
the logic GG given the conception of ground corresponding to Definition 2.1. For
this purpose, we will show that the class of selection systems meeting deRosset and
Fine’s two constraints is a subclass of the class meeting the strengthened (maxi-
mality) constraint, and that, for each selection system in that class, the two pairs of
definitions of strict and weak selection exactly coincide. This immediately implies,
via deRosset and Fine’s completeness theorem, that GG is complete for the class of

8 The new definition of strict selection, however, is different from deRosset and Fine’s notion. In particular,
the new definition Definition 2.7 of strict selection, unlike Definition 1.1, does not imply without further
constraints that φ strictly grounds each of ¬¬φ, (φ ∨ φ), and (φ ∧ φ).

123



A Semantic Framework for the Impure Logic of Ground 471

selection systems meeting the strengthened maximality constraint; the soundness of
GG is straightforwardly established by a routine induction on derivations in GG.

The relation of strict selection < is (directly) defined as before in Definition 1.1,
and, to prevent confusion, we write G ≤2 v (instead of G ≤ v) for (∃d)G < ([v], d).
Lemma 2.2-Theorem 2.5 establish the somewhat surprising equivalence of≤1 and≤2
in any selection system. This vindicates the assertion above that the two definitions of
weak selection present a single underlying phenomenon in two different ways.

The implication in one direction, from the new definition to deRosset and Fine’s
original definition, is straightforward.

Lemma 2.2 G ≤1 v ⇒ G ≤2 v.

Proof We prove the result by induction on Definition 2.1.

Basis: Suppose G � v⊕. By Definition 1.1:

G � v⊕
basis��⇒ G < v

ascent����⇒ G < ([v], d) �⇒ G ≤2 v.

Suppose instead that G � [v]. By Definition 1.1:

G � [v] Basis���⇒ G < ([v], d) ⇒ G ≤2 v.

cut: Suppose (Gi ≤1 vi ) and (vi ) ≤1 v. By IH, (Gi ≤2 vi ) and (vi ) ≤2 v. By
Definition 1.1, lower cut, (Gi ) ≤2 v.

level: Suppose (Gi � vi⊕) and (vi ) ≤1 ([v], d). By IH, (vi ) ≤2 ([v], d). By
Definition 1.1,basis, (Gi < vi ). So, by Definition 1.1,upper cut, (Gi ) < ([v], d),
i.e., (Gi ) ≤2 v.

To show the implication in the opposite direction, we prove a utility lemma that
shows, in effect, that every strict selection in deRosset and Fine’s sense can be rep-
resented in a convenient normal form. Write G ≤1 v0, . . . , vi , . . . when there is a
covering G0, . . . ,Gi , . . . of G such that G0 ≤1 v0, . . . ,Gi ≤1 vi , . . . . It is obvious
by Cut that, if G ≤1 H and H ≤1 I , then G ≤1 I .

Write (Gi ) � (vi ) for (Gi � vi⊕).

Lemma 2.3 If G < v then there are (ui ) and (Hi ) such that

G ≤1 (Hi ) � (ui ) ≤1 v.

Proof We prove the result by induction on Definition 1.1.

basis: Suppose G � v⊕. Then G ≤1 G � v ≤1 v.

ascent: Suppose G < w and [w] = v⊕. By IH, G ≤1 (Hi ) � (ui ) ≤1 w (for some
(Hi ), (ui )). By Definition 2.1,basis and cut, G ≤1 (Hi ) � (ui ) ≤1 w ≤1 v.

Lower cut: Suppose (Gi ≤2 vi ) and (vi ) < v. By IH, (vi ) ≤1 (H j ) � (u j ) ≤1 v

(for some (H j ), (u j )). Also by IH, for each i , Gi ≤1 (I k) � (xk) ≤1 ([vi ], di ) (for
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472 L. deRosset

some (I k), (xk)). By Definition 2.1,level, (I k) ≤1 vi ; and so, by Definition 2.1,cut,
Gi ≤1 vi . So,

(Gi ) ≤1 (vi ) ≤1 (H j ) � (u j ) ≤1 v.

By Definition 2.1,cut, (Gi ) ≤1 (H j ) � (u j ) ≤1 v.

upper cut: Suppose (Gi < vi ) and (vi ) < ([v], d). By IH applied to (Gi < vi ),
for each i , Gi ≤1 (Hi j ) j � (ui j ) j ≤1 vi (for some (Hi j ) j , (ui j ) j ). By IH applied
to (vi ) < ([v], d), (vi ) ≤1 (I k) � (xk) ≤1 ([v], d) (for some (I k), (xk)). So, by
Definition 2.1,level (vi ) ≤1 (I k) ≤1 v. Putting all of this together:

(Gi ) ≤1 (Hi j ) � (ui j ) ≤1 (vi ) ≤1 (I k) ≤1 v

So, by Definition 2.1,cut, (Gi ) ≤1 (Hi j ) � (ui j ) ≤1 v.

Now we can establish a convenient cut principle.

Lemma 2.4 If (Gi < vi ) and (vi ) ≤1 ([v], d), then (Gi ) ≤1 v.

Proof By Lemma 2.3, for each i , Gi ≤1 (Hi j ) j � (ui j ) j ≤1 vi (for some
(Hi j ) j , (ui j ) j ). So, (Gi ) ≤1 (Hi j ) � (ui j ) ≤1 (vi ) ≤1 ([v], d). By Definition
2.1, cut and level, (Hi j ) ≤1 v. So, (Gi ) ≤1 (Hi j ) ≤1 v.

This permits us to prove that weak selection in deRosset and Fine’s original sense
(≤2) implies weak selection in the new sense corresponding to Definition 2.1 (≤1),
thereby establishing the equivalence of ≤1 and ≤2 in any selection system.

Theorem 2.5 G ≤1 v ⇔ G ≤2 v.

Proof ⇒: Lemma 2.2

⇐: We prove the result by induction on Definition 1.1:

basis: Suppose G � [v]. By Definition 2.1,basis, G ≤1 v.

ascent: Suppose G < w and [w] = [v]. Then w � [v]. So, by Definition 2.1, basis,
w ≤1 ([v], d). So, by Lemma 2.4, G ≤1 v.

lower cut: Suppose (Gi ≤2 vi ) and (vi ) < ([v], d). By IH, (Gi ) ≤1 (vi ) ≤1 v.

upper cut: Suppose (Gi < vi ) and (vi ) ≤2 ([v], d). By IH, (vi ) ≤1 ([v], d). By
Lemma 2.4, G ≤1 v.

Following [6, D2.2, p. 426], call a selection system a <-frame iff it meets both
(maximality) and (irreversibility). The next two lemmas use Lemma 2.5 to
straightforwardly establish similar equivalences for the other grounding operators
treated by [6] in every <-frame (not: in every selection system). Write v 	1 w for
(∃H)v, H ≤1 w; v 	1 w says that v is a partial, weak selection from w, in the newly
defined sense.

Lemma 2.6 Suppose F = 〈F, �,�〉 is a <-frame. Then G <F v iff G ≤1 v and
(∀w ∈ G)v �1 w.
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Proof F is a <-frame and thus satisfies (irreversibility):

G <F v iff G ≤2 v and (∀w ∈ G)(∀H)v, H �2 v.

The result is therefore immediate by Theorem 2.5.

Suppose F = 〈F, �,�〉 is a <- frame. To prevent confusion as we establish a
correspondence between the two definitions of strict selection on hand, we will now
write <2 for <F, the original variety of strict selection defined by Definition 1.1. We
offer a new definition of a variety of strict selection relation <1, on which it is defined
as irreversible weak selection:

Definition 2.7 G <1 v ⇔ G ≤1 v and v �1 w.

The following is then an immediate consequence of Lemma 2.6:

Lemma 2.8 Suppose F = 〈F, �,�〉 is a <-frame, and let <2 and <1 be defined as
specified above. Then G <2 v iff G <1 v.

We can now specify our new semantics for GG, appealing to a strengthened maxi-
mality principle, defined by appeal to our new strict selection relation <1.

Definition 2.9 A selection space F = 〈F, �,�〉 is a ≤-frame iff it satisfies

≤-maximality

1. G <1 ([v0.v1. . . . ], d) iff G ≤1 (vi ); and
2. G <1 ([v0 + v1 + . . . ], d) iff there is a subset (w j ) of (vi ) such that G ≤1 (w j ).

It is now straightforward to show that GG is sound and complete for the new
semantics. We first prove a utility lemma, establishing that any <-frame satisfies a
strengthened version of deRosset and Fine’s [6] (maximality) constraint.

Lemma 2.10 If F is a <-frame, then F satisfies

Strengthened Maximality

1. G <2 ([v0.v1. . . . ], d) iff G ≤2 (vi ); and
2. G <2 ([v0 + v1 + . . . ], d) iff there is a subset (w j ) of (vi ) such that G ≤2 (w j ).

Proof Suppose F is a <-frame. It already satisfies (maximality). So, we need only
show (1.) and (2.) in the right-to-left direction.

(1.) Suppose G ≤2 (vi ). By Definition 1.1, basis, (vi ) < ([v0.v1. . . . ], d). So, by
Definition 1.1, lower cut, (Gi ) <2 ([v0.v1. . . . ], d).

(2.) Suppose there is a subset (u j ) of (vi ) such thatG ≤2 (u j ). ThenG has a covering
(G j ) such that (G j ≤2 u j ). Let v = ([v0 + v1 + . . . ]). By Definition 1.1, basis,
(u j <2 v). So, by applications of Definition 1.1, lower cut, (G j ≤2 v). Also,
by Definition 1.1, basis, v ≤2 v. So, we have (G j ≤2 v) and v, v, · · · ≤2 v. By
Definition 1.1, lower cut, (G j ) ≤2 v.

This lemma makes it easy to show that satisfaction of deRosset and Fine’s con-
straints on selection spaces implies satisfaction of our new constraint≤- maximality.
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Lemma 2.11 If F is a <-frame, then it satisfies (≤- maximality).

Proof Lemma 2.10, Lemma 2.8, and Theorem 2.5.

Nowwe can define a notion of a model appropriate to our new definition of ground.

Definition 2.12 A ≤-frame is a selection space that satisfies (≤- maximality), and a
≤-model is a quadruple 〈F, �,�, ·̄〉, where ·̄ is an interpretation, and F = 〈F, �,�〉
is a ≤-frame.

Define truth in a ≤-model (�1) for grounding claims 	 < φ, 	 ≤ φ, etc., in the
obvious way, analogously to [6, D2.4, p. 427]. Write �2 for the notion of truth in a
model in deRosset and Fine’s semantics. The key relation between the two semantics
is now easy to show:

Lemma 2.13

1. Every model M = 〈F, �,
, ·〉 for a language L is also a ≤ −model for L ;
and

2. for all models M and grounding claims σ ,M �1 σ iffM �2 σ.

Proof By Lemma 2.11, we need only check that M �1 σ iff M �2 σ . We do this
separately for the four kinds of grounding claims:9

<: Suppose σ = 	 < φ. Then

M �1 	 < φ ⇔ 	 <1 φ
Lemma 2.8⇐����⇒ 	 <2 φ ⇔ M �2 	 < φ

.
≤: Suppose σ = 	 ≤ φ. Then

M �1 	 ≤ φ ⇔ 	 ≤1 φ
Theorem 2.5⇐�����⇒ 	 ≤2 φ ⇔ M �2 	 ≤ φ

.
	: Suppose σ = δ 	 φ. Then

M �1 δ 	 φ ⇔ δ 	1 φ ⇔ (∃H)δ, H ≤1 φ
Theorem 2.5⇐������⇒ (∃H)δ, H ≤2 φ ⇔ M �2 δ 	 φ

.
≺: By Theorem 2.5,

(★) (∃H)w, H ≤1 v iff (∃H)w, H ≤2 v.

Suppose σ = δ ≺ φ. Then

M �1 σ ⇔ (∃H)δ, H ≤1 φ and ¬(∃I )φ, I ≤1 δ

(★)⇐⇒ (∃H)δ, H ≤2 φ and ¬(∃I )φ, I ≤2 δ ⇔ M �2 σ.

9 Strict partial ground is indicated by ≺. φ is a strict partial ground of ψ iff φ 	 ψ , but ψ � φ.
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Recall that deRosset and Fine prove that GG is complete for their original semantics
[6, T8.6, p. 489]. We can use that result, together with Lemma 2.13 to prove the
completeness of GG for our variant semantics. Write S �1 T to indicate that, for
every ≤-model M, if (∀σ ∈ S)M �1 σ , then (∃τ ∈ T )M �1 τ .

Theorem 2.14 (Completeness) If S �1 T , then S � T .

Proof Suppose S � T . By deRosset and Fine’s completeness theorem [6, T8.6, p.
489], there is a model M such that M �2 S, but, for each τ ∈ T M � τ . By Lemma
2.13, M witnesses that S �1 T .

Soundness is easily proved by a routine induction on the length of derivations, omitted
here. So, GG is sound and complete for our variant semantics.

One feature of the variant semantics bears mention. As we have seen, deRosset and
Fine’s [6] treatment distributes the characteristic commitments of GG between one
of the two constraints on selection systems and the definition of ground. By contrast,
the variant semantics encapsulates the characteristic commitments of GG into a single
constraint, ≤- maximality. It thus brings the characteristic commitments of GG into
clearer view.

3 The System AC, Semantics for AC, and Soundness

The previous section showed that GG is sound and complete for the class of≤-models.
Semantically, the fineness of grain for contents required by ≤-models is enforced by
the (≤-maximality) constraint. We now turn to the question of whether the “flatter”
logics of ground that presuppose AC can be captured, semantically, by replacing that
constraint with some alternative. If they can, then we have the semantic framework
we seek.

We start by characterizing AC and a corresponding semantics. Previously, we used
≈ to express ground-theoretic equivalence. Abusing notation, let us now use ≈ to
express the claim that formulae are equivalent, so that φ ≈ ψ says, intuitively, that φ
and ψ express the same fact, or, alternatively, that for it to be the case that φ is for it
to be the case that ψ and vice versa [7].10 Angell’s theory AC can be characterized by
the following axioms and rules:11

10 Given that full, weak ground is reflexive, if φ and ψ are equivalent, then it will follow that they are
mutual full, weak grounds of one another. A failure of ground-theoretic equivalence would show that the
two sentences are not equivalent. So, the intuitive interpretation of ≈ as expressing equivalence entails its
prior interpretation as expressing ground-theoretic equivalence. It turns out that the converse entailment
also holds, on the interpretation of ground that accompanies Angell’s theory of equivalence; see below.
11 This axiomatization is stated in [9], following [1].
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The System AC:

INVOL � φ ≈ ¬¬φ

IDEM(∧) � φ ≈ (φ ∧ φ)

COMMUT(∧) � (φ ∧ ψ) ≈ (ψ ∧ φ)

ASSOC(∧) � (φ ∧ (ψ ∧ χ) ≈ ((φ ∧ ψ) ∧ χ)

IDEM(∨) � φ ≈ (φ ∨ φ)

COMMUT(∨) � (φ ∨ ψ) ≈ (ψ ∨ φ)

ASSOC(∨) � (φ ∨ (ψ ∨ χ) ≈ ((φ ∨ ψ) ∨ χ)

DM(¬∧) � ¬(φ ∧ ψ) ≈ (¬φ ∨ ¬ψ)

DM(¬∨) � ¬(φ ∨ ψ) ≈ (¬φ ∧ ¬ψ)

DISTRIB(∧/∨) � (φ ∧ (ψ ∨ χ)) ≈ ((φ ∧ ψ) ∨ (φ ∧ χ))

DISTRIB(∨/∧) � (φ ∨ (ψ ∧ χ)) ≈ ((φ ∨ ψ) ∧ (φ ∨ χ))

SYMM φ ≈ ψ � ψ ≈ φ

TRANS φ ≈ ψ,ψ ≈ χ � ψ ≈ χ

SUB(∧) φ ≈ ψ � (φ ∧ χ) ≈ (ψ ∧ χ)

SUB(∨) φ ≈ ψ � (φ ∨ χ) ≈ (ψ ∨ χ)

Intuitively, AC requires the identification of the contents of sentences that have the
same disjunctive normal forms. This requires fewer identifications of content than,
for instance, a boolean approach, which requires the identification of the contents of
tautologically equivalent sentences. For example, AC allows us to deny φ ≈ φ ∨ (φ ∧
ψ). The boolean approach, by contrast, would require it, since φ ⇔ φ ∨ (φ ∧ ψ) is a
tautology. But AC also requires the identification of the contents of sentences in cases
in which GG demands their distinctness. For instance, AC requires the equivalence of
φ and ¬¬φ, while, as we have seen, GG demands that the second sentence express
the result of “raising” the content of φ to yield something new. So, the conception of
content characterized by AC is much “flatter” than that required by GG, though not
nearly as “flat” as that required by a boolean approach.

We define the notion of anAngellic frame (anA-frame) in away similar to the notion
of a ≤-frame, but replacing strengthened maximality with four constraints. The
first is:
Commutativity + Unipolarity: [(a1, c1).(a2.c2). · · · ] = [(b1, c1).(b2.c2). · · · ] if
{a1, a2, . . . } = {b1, b2, . . . }; and [(a1, c1)+(a2.c2)+· · · ] = [(b1, c1)+(b2.c2)+· · · ]
if {a1, a2, . . . } = {b1, b2, . . . }.
Intuitively, (Commutativity + Unipolarity) (or (c+u) for short) says that the
choice and combination operations on contents are blind to order, repetitions, and
falsity conditions. (c+u) thus permits the definition of choice and combination oper-
ations on conditions, rather than contents, where [a1.a2. · · · ] is the combination, for
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any (bi ), of 〈(a1, b1), (a2, b2), . . . 〉, and, similarly, for [a1+a2+· · · ]. The other three
constraints on Angellic frames are then:12

(Involution): [a] = a;

(Associativity): [a.[b.c]] = [[a.b].c] and [a + [b + c]] = [[a + b] + c]; and
(Distribution): [a + [b.c]] = [[a + b].[a + c]] and [a.[b + c]] = [[a.b] + [a.c]].
The notion of an interpretation · for a language L has already been defined in Sec-
tion 1. An Angellic model (A-model) is then a quadruple 〈F, �,�, ·̄〉, where ·̄ is an
interpretation, and F = 〈F, �,�〉 is an A-frame. Sentences φ and ψ are equivalent
when they have the same truth-condition: φ ≈ ψ is true in an A-model iff φ⊕ = ψ⊕.
φ ≈ ψ is valid iff it is true in every A-model.

This semantics is sound and complete for AC. It is useful to note some basic facts
concerning the interaction of the interpretation function and the choice and combina-
tion operations:

Lemma 3.1 For any A-model 〈F, �,�, ·̄〉,
1. ¬φ

(invol)= (φ̄�, φ̄⊕).
2. For � ∈ {+, . },

[v � w] (c+u)= [w � v];
[v � (φ ∧ ψ)] (c+u)= [v⊕ � (φ ∧ ψ)⊕] = [v⊕ � [φ̄.ψ̄]] (c+u)= [v⊕ � [φ̄⊕.ψ̄⊕]]; and

[v � (φ ∨ ψ)] (c+u)= [v⊕ � (φ ∨ ψ)⊕] = [v⊕ � [φ̄ + ψ̄]] (c+u)= [v⊕ � [φ̄⊕ + ψ̄⊕]].
3. (φ ∧ ψ)⊕ = [φ̄.ψ̄] (c+u)= [φ̄⊕.ψ̄⊕] and (φ ∨ ψ)⊕ = [φ̄ + ψ̄] (c+u)= [φ̄⊕ + ψ̄⊕].
Lemma 3.1 gives us structural information that makes it easy to prove the soundness

of AC for the class of A-models by a straightforward induction on derivations in AC.

Lemma 3.2 (Soundness) If � φ ≈ ψ , then φ ≈ ψ is valid.

4 Completeness of AC

AC is also complete for the space of A-models in the sense that � φ ≈ ψ if φ ≈
ψ is true in every A-model.13 Completeness could be shown, as in [9] by directly
constructing a canonicalA-model inwhichφ ≈ ψ is true iff it is a theoremofAC.Here,
for the sake of brevity, we instead show how, given a model of the semantics of [9],
to construct a corresponding A-model in which exactly the same equivalence claims
are true. We then use the completeness of Fine’s semantics for AC to establish the
completeness of the selection space semantics described in Section 3. This procedure
has the added benefit of showing how themodels of Fine’s semantics are systematically

12 (associativity) and (distribution) have infinitary analogues, but for present purposes, the weaker,
finitary versions suffice.
13 This is a weak completeness result. See n. 14 below.
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related toA-models. In particular, it enables us to see howFine’smodels can be thought
of as a special case of A-models, and thus of selection-spaces more generally.

Let’s begin by recapitulating Fine’s semantics. A statespace is a pair 〈S,�〉, where
S is nonempty and

1. � is a partial order on S, i.e., � is reflexive, transitive, and anti-symmetric; and
2. Every subset of S has a �-least upper bound.

Use lowercase letters r , s, and t (perhaps with superscripts or subscripts) for members
of S, and a, b, and c for subsets of S. Intuitively, a state s is a part of a state t when
part of what it is for t to obtain is that s obtains. Thus, if t is a state in which a certain
house h in prehistoric Sumeria is a red house, part of what it is for t to obtain is for the
state r in which h is red to obtain. By contrast, the obtaining of state r ′ in which either
tea is expensive in China or it is not is presumably no part of what it is for t to obtain,
since t’s obtaining, intuitively, has nothing to do with the price of tea in China. The
least upper bound of a set of states a is, intuitively, the state whose obtaining involves
the obtaining of exactly the states in a and no more. Thus, we might think of the least
upper bound of a as the state-theoretic analogue of conjunction. The requirement that
every set of states has a least upper bound can then be understood as the apparently
benign commitment that every set of states has such a conjunction. Fine [9, p. 205]
calls this analogue of conjunction the fusion of the states. Unlike a conjunction of
sentences, however, fusions are not generally uniquely decomposable. The fusion, for
instance, of r , s, and t has a decomposition into r and the fusion of s and t , and another
decomposition into t and the fusion of r and s.

We can now define analogues, in Fine’s semantics, for the choice and combination
operations in selection-space semantics. In fact, these operations will serve, in effect,
as the choice and combination operations of anA-model wewill define, corresponding
to a given model of Fine’s semantics. For any a ⊆ S write

⊔
a for the least upper

bound of a, and, if {s1, s2, . . . } ⊆ S, write s1 � s2 � . . . for
⊔{s1, s2, . . . }. Define

two operations on sets {a1, a2, . . . } of subsets a1, a2, . . . of S, and a unary operation
on subsets a of S:

Definition 4.1

1. (a1.a2. · · · ) = {s1 � s2 � . . . |(si ∈ ai )};
2. (a1 + a2 + · · · ) = a1 ∪ a2 ∪ . . . ; and
3. The complete, convex closure [a]′ of a is {t |(∃s ∈ a)s � t � ⊔

a}.
I often omit parentheses for (a1.a2. · · · ) and (a1+a2+· · · ) for readability. I also omit
the superscript ′ from [a]′ when it will not result in any confusion. So, for instance, in
a convenient abuse of notation, we write [a1.a2. · · · ] for the complete, convex closure
of (a1.a2. · · · ). Our strategy will be to show that the closure of (a1.a2. · · · ), denoted
either [(a1.a2. · · · )]′ or [a1.a2. · · · ], can serve as the combination of a1, a2, . . . in an
appropriately defined A-model, and, similarly, for + and choice; see Definition 4.12.

For the moment, however, we will focus on understanding Fine’s semantics. We
carry out that task by establishing results Lemma 4.2-Theorem 4.9. It is important to
bear in mind in our discussion of these results that ‘+’ and ‘.’ are used to indicate
the operations in Fine’s statespace semantics defined above, rather than choice or
combination in some selection space.
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We first note some structural principles governing the interaction of our operations.
It will often be convenient to appeal to the fact that

⊔
a is the least upper bound of

a, so that, if t bounds a, then
⊔

a � t . We will abbreviate our appeal by saying that⊔
a � t by leastness. Thus,

⊔
a � ⊔

b whenever a ⊆ b by leastness.

Lemma 4.2 (Associativity of
⊔
)
⊔{⊔ a1,

⊔
a2, . . . } = ⊔

(a1 + a2 + · · · ).
Proof It is enough to show that every bound of {⊔ a1,

⊔
a2, . . . } is a bound of (a1 +

a2 + · · · ), and vice versa. Suppose that t bounds {⊔ a1,
⊔

a2, . . . }. For each i , ⊔ ai

bounds ai . So, t bounds (a1 + a2 + · · · ). Suppose, then, that t bounds a1 + a2 + · · · .
By leastness, (

⊔
ai � t). So, t bounds {⊔ a1,

⊔
a2, . . . }.

Say that a is complete iff, for every non-empty subset b of a,
⊔

b ∈ a. Complete
sets of states are closed under fusion. Say that a is convex if whenever there are r , s,
and t such that r , t ∈ a and r � s � t , s is also in a. Convex sets of states contain no
“gaps”: any state between two states in the set is also in the set. So, if we have three
states r , s, and t , the set {r � s, t} may turn out to be incomplete because it does not
contain its own fusion r � s � t . If we were to throw the fusion in, then we get the set
{r � s, t, r � s � t}. Now, this new set may turn out to be non-convex if it does not
contain s � t , which lies between t and r � s � t . The next two lemmas justify calling
[a] the “complete, convex” closure of a, as we did in Definition 4.1.

Lemma 4.3 [a] is complete and convex. [10, L1, p. 648]

Proof The result is trivial if a = ∅. For completeness, suppose s1, s2, · · · ∈ [a], so
that (t i � si � ⊔

a), for some (t i ) ⊆ a.
⊔

a bounds {s1, s2, . . . }, so, by leastness,⊔ {s1, s2, . . . } � ⊔
a. Also, t1 � ⊔ {s1, s2, . . . }, so ⊔{s1, s2, . . . } ∈ [a]. For

convexity, suppose s1, s2 ∈ [a] and s1 � t � s2. Then (∃t ′ ∈ a)t ′ � s1 � t � s2 �⊔
a. So, s ∈ [a].

Lemma 4.4 If a is complete and convex, then [a] = a.

Proof Suppose a is complete and convex. If a = ∅, then there are no t ∈ a, so [a] = ∅.
Suppose s ∈ a. Then s � s � ⊔

a, so s ∈ [a]. Suppose s ∈ [a]. Then t � s � ⊔
a

for some t ∈ a. Since a is complete and non-empty,
⊔

a ∈ a. So, since a is convex,
s ∈ a.

The following utility lemma, due to Fine [9, pp. 207-8], is helpful for proving
identity claims among closures of subsets of S.

Lemma 4.5 [a] = [b] iff (i)
⊔

a = ⊔
b; (ii) (∀s ∈ a)(∃t ∈ b)t � s; and (iii)

(∀t ∈ b)(∃s ∈ a)s � t .

Proof⇒: Suppose [a] = [b]. If a = ∅, then [a] = ∅ = [b], so b = ∅, and (i)-(iii) are
trivially true. Suppose both a and b are non-empty. Then

⊔
a ∈ [a] = [b], and so⊔

a � ⊔
b. By symmetry,

⊔
b � ⊔

a, so, by anti-symmetry of �,
⊔

a = ⊔
b,

establishing (i). Suppose s ∈ [a] = [b]. Then (∃t ∈ b)t � s � ⊔
b, establishing

(ii) and (by symmetry) (iii).
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⇐: Suppose (i)-(iii) are each true. Suppose s ∈ [a]. Then (∃t ∈ a)t � s � ⊔[a] ((i))=⊔ [b]. By (2), ∃t ′ ∈ [b]t ′ � t � s, and we already have s � ⊔
b. So, s ∈ [b].

The result follows by symmetry.

The next two lemmas establish that our two operations are associative and idempotent
when applied to non-empty subsets of states.

Lemma 4.6

1. If a1, a2, . . . are each non-empty, then
⊔

(a1.a2. · · · ) = ⊔
(a1 + a2 + · · · ).

2.
⊔

a = ⊔[a].
3.

⊔
([a1] + [a2] + · · · ) = ⊔

(a1 + a2 + · · · ).
4. If a1, a2, . . . are each non-empty, then

⊔
(a1.a2. · · · ) = ⊔{⊔ a1,

⊔
a2, . . . }.

Proof

1. Suppose a1, a2, . . . are each non-empty. It is enough to show that every bound
of (a1.a2. · · · ) also bounds (a1 + a2 + · · · ) and vice versa. Suppose t bounds
(a1.a2. · · · ), and that s ∈ ai , for some i . Then, because each of (a j ) is non-empty,
s � s1 � s2 � · · · � si (= s) � . . . , for some (s j ) such that (s j ∈ a j ). So, since t
bounds (a1.a2. · · · ), s � s1 � s2 � · · · � t . So t bounds (a1 + a2 +· · · ). Suppose,
then, that t bounds (a1 + a2 + · · · ). Consider any (si ) where (si ∈ ai ). Since
{s1, s2, . . . } ⊆ (a1 + a2 + · · · ), s1 � s2 � · · · � t by leastness. So, t bounds
(a1.a2. · · · ).

2. Suppose t ′ bounds a. By leastness,
⊔

a � t ′. Suppose s ∈ [a], so that t � s �⊔
a, for some t ∈ a. Then s � ⊔

a � t ′, so t ′ bounds [a]. Conversely, since
a ⊆ [a], any bound t ′ of [a] also bounds a.

3.

⊔
([a1]+[a2]+· · · ) (Lemma 4.2)=

⊔
{
⊔

[a1],
⊔

[a2], · · · } (2)=
⊔

{
⊔

a1,
⊔

a2, · · · } (Lemma 4.2)=
⊔

(a1+a2+· · · ).

4. Suppose a1, a2, . . . are each non-empty.

⊔
(a1.a2. · · · ) (1)=

⊔
(a1 + a2 + · · · ) (Lemma 4.2)=

⊔
{
⊔

a1,
⊔

a2, . . . }

Lemma 4.7 (Associativity and Idempotence)

1. [[a1].[a2]. · · · ] = [a1.a2. · · · ].
2. [[a1] + [a2] + · · · ] = [a1 + a2 + · · · ].
3. [a.a. · · · ] = [a].
4. [a + a + · · · ] = [a]
5. [a1.a2. · · · .[b1.b2. · · · ].[c1.c2. · · · ]. · · · ] = [a1.a2. · · · .b1.b2. · · · .c1.c2. · · · ].
6. [a1 + a2 + · · · + [b1 + b2 + · · · ] + [c1 + c2 + · · · ] + · · · ] = [a1 + a2 + · · · +

b1 + b2 + · · · + c1 + c2 + · · · ].
7. [a.[b.c]] = [[a.b].c].
8. [a + [b + c]] = [[a + b] + c].
Proof (4) is trivial, since (a + a + · · · ) = a. Since [b1.b2. · · · ] = [(b1.b2. · · · )] has
the form [b], (5) follows from (1) and Lemma 4.2 (Associativity of

⊔
). Similarly,
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(6) follows from (2) and the associativity of the set-union operation. (7) follows from
(5) and the commutativity of

⊔
, and (8) from (6) by the commutativity of of

⊔
and

set-union. We prove each of (1), (2), and (3) by Lemma 4.5.

1. Suppose that ai = ∅, for some i . Then [ai ] = ∅ ⇒ [[a1].[a2]. · · · ] = ∅ =
[a1.a2. · · · ]. Suppose, then, that a1, a2, . . . are each non-empty.

(i):
⊔[[a1].[a2]. · · · ] (Lemma 4.6(2))= ⊔

([a1].[a2]. · · · ) (Lemma 4.6(1))= ⊔
([a1] + [a2] +

· · · ) (Lemma 4.6(3))= ⊔
(a1 + a2 + · · · ) (Lemma 4.6(1))= ⊔

(a1.a2. · · · ) (Lemma 4.6(2))=⊔[a1.a2. · · · ]
(ii): Suppose s ∈ ([a1].[a2]. · · · ). Then s has the form s1 � s2 � . . . where (si ∈

[ai ]). So, for each i , (∃t i ∈ ai )t i � si � s. So, s bounds {t1, t2, . . . } for some
t1, t2, . . . such that (t i ∈ ai ). By leastness, t1 � t2 � · · · � s. So, there is a
t ′ = t1 � t2 � · · · ∈ (a1.a2. · · · ) such that t ′ � s.

(iii): Suppose s ∈ (a1.a2. · · · ). Then s has the form s1 � s2 � . . . where (si ∈ ai ).
For each i , since ai ⊆ [ai ], si ∈ [ai ]. So, s = s1 � s2 � · · · ∈ ([a1].[a2]. · · · )
and s � s.

2.

(i):
⊔[[a1] + [a2] + · · · ] (Lemma 4.6(2))= ⊔

([a1] + [a2] + · · · ) (Lemma 4.6(3))= ⊔
(a1 +

a2 + · · · )
(Lemma 4.6(2))=

⊔
[a1 + a2 + · · · ]

(ii): Suppose s ∈ [ai ], for some i . By construction, there is a t ∈ ai such that t � s.
(iii): Suppose s ∈ ai , for some i . Since ai ⊆ [ai ], s ∈ [ai ]. s � s.

3.

(i): Suppose t bounds a. Then, for any set {s1, s2, . . . } ⊆ a, t bounds {s1, s2, . . . }.
By leastness, s1 � s2 � · · · � t , so t bounds (a.a. · · · ). Suppose t bounds
(a.a. · · · ), and let s ∈ a. Then s � s � s � · · · ⊆ t , so t bounds a.

(ii): Suppose s ∈ a. Then s = s � s � · · · ∈ (a.a. . . . ), and s � s.
(iii): Suppose s ∈ (a.a. . . . ). Then there are s1, s2, · · · ⊆ a such that s = s1 � s2 �

. . . . So, s1 ∈ a and s1 � s1 � s2 � · · · = s.

Now we can prove the requisite distributivity laws.

Lemma 4.8 (Distributivity) If a, b, and c are each non-empty, then

1. [a + [b.c]] = [[a + b].[a + c]]; and
2. [a.[b + c]] = [[a.b] + [a.c]].
Proof We prove both results by Lemma 4.5.

1. Suppose a, b, and c are each non-empty.

(i): It’s easy to see that by Lemma 4.6 and Lemma 4.2 (Associativity of
⊔
),

⊔[a+
[b.c]] = ⊔

(a+(b+c)). Similarly,
⊔[[a+b].[a+c]] = ⊔

((a+b)+(a+c)).
But (a + (b + c)) = (a + b + c) = ((a + b) + (a + c)).
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(ii): Suppose s′ ∈ (a + [b.c]). Suppose s′ ∈ a.

s′ ∈ a ⇒ s′ ∈ (a + b), (a + c) ⇒ s′ ∈ [a + b], [a + c] ⇒ s′ = s′ � s′ ∈ ([a + b].[a + c])
⇒ (∃t = s′ ∈ ([a + b].[a + c]))t � s′.

Suppose, instead, that s′ /∈ a, and so s′ ∈ [b.c]. Then there are sb ∈ b and
sc ∈ c such that sb � sc � s′. sb ∈ b ⇒ sb ∈ (a + b) ⇒ sb ∈ [a + b].
Similarly, sc ∈ [a + c]. So, there is a t(= sb � sc) ∈ ([a + b].[a + c]) such
that t � s′.

(iii): Suppose s ∈ ([a+b].[a+c]). Then there are s′
b ∈ [a+b] and s′

c ∈ [a+c] such
that s = s′

b�s′
c. So, (∃sb ∈ (a+b))sb � s′

b and (∃sc ∈ (a+c))sc � s′
c. Suppose

sb ∈ a. Then sb ∈ (a+[b.c]) ⇒ (∃t(= sb) ∈ (a+[b.c]))t � s′
b � s′

b�s′
c = s.

Similarly, if sc ∈ a, then we’re done. Suppose, then, that sb ∈ b and sc ∈ c.
Then sb � sc ∈ (b.c) ⊆ [b.c] ⊆ (a + [b.c]). Since s′

b � s′
c bounds {s′

b, s
′
c}, it

also bounds {sb, sc}, and so, by leastness, sb � sc � s′
b � s′

c = s.

2. Suppose a, b, and c are each non-empty.

(i): Similar to (1)(i).
(ii): Suppose s ∈ (a.[b + c]). Then there are sa ∈ a and s′

b ∈ [b + c] such that
s = sa � s′

b. Since s
′
b ∈ [b+ c], for some sb ∈ (b+ c), sb � s′

b. By symmetry,
we may (wlog) assume sb ∈ b. Then sa � sb ∈ [a.b] ⊆ ([a.b] + [a.c]). Also,
s bounds {sa, sb}, so, by leastness, sa � sb � s.

(iii): Suppose s ∈ ([a.b] + [a.c]). By symmetry, we may (wlog) assume s ∈ [a.b].
Then, for some sa ∈ a and sb ∈ b, sa�sb � s. Also, sb ∈ b ⊆ (b+c) ⊆ [b+c].
So, there is a t = sa � sb, such that t ∈ (a.[b + c]) and t � s.

With these preliminaries concerning features of statespaces out of the way, we can
now specify Fine’s notion of a model for a language L . A Fine-model (F-model) M
for a languageL is a triple 〈S,�, |·|〉, where 〈S,�〉 is a statespace, and |·| takes every
atomic sentence ofL to a pair (a, b) of non-empty subsets of S. If |φ| = (a, b), then
I denote a by φ⊕ (with no bars over the top or on the sides) and b by φ�. Intuitively,
φ⊕ is the set of verifiers for φ, that is, the set of states in which φ is true. Similarly, φ�
is, intuitively, the set of falsifiers for φ. Recursively extend | · | to molecular sentences:

1. |¬φ| = (φ�, φ⊕);
2. |φ ∧ ψ | = ((φ⊕.ψ⊕), (φ� + ψ�)); and
3. |φ ∧ ψ | = ((φ⊕ + ψ⊕), (φ�.ψ�)).

On this definition, the falsifiers for φ are exactly the verifiers for ¬φ. Notice that there
is no requirement that the set of verifiers or falsifiers for a sentence be closed. Still,
Fine’s semantics ultimately interprets equivalence by appeal to the closures of semantic
values. Sentences φ and ψ are equivalent when their respective sets of verifiers have
the same complete, convex closure: φ ≈ ψ is true in an F-model iff [φ⊕] = [ψ⊕]
[9, pp. 208, 210]. When we construct an A-model (which is, recall, a certain kind of
selection-space model) from a given F-model, we will assign to φ a pair comprising
the closures of φ’s verifiers and falsifiers, respectively. We will define choice and
combination using the operations + and . defined in Definition 4.1 above. We will
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then see that the resulting function is an interpretation in the sense defined in Section
1 above. So, for instance, the assigning the closure of the set of (φ ∧ ψ)’s verifiers as
that sentence’s truth condition turns out to be equivalent to assigning the combination,
in the defined sense, of the contents of φ and ψ .

Fine [9, T23, p. 216] proves that F-models are weakly complete for AC:

Theorem 4.9 (F-Completeness) If φ ≈ ψ is true in every F-model, then � φ ≈ ψ .14

We will show how, given an arbitrary F-model M for a language L , to construct an
A-model 〈FM, �M,�M, ·̄M〉 in which the very same equivalences φ ≈ ψ are true.
Let’s suppose for the remainder of the section that we have fixed an arbitrary F-model
M = 〈S,�, | · |〉. Recall that φ⊕ is the truth-condition for atomic φ: a non-empty
subset of the set of states S in the statespace of M. We start by defining, for every
sentence φ ofL , a function ·̄mapping sentences to pairs of subsets of S. The mapping
·̄ will turn out to be our interpretation in the A-model we are defining, and, as we said
above, it will become clear that it meets requirements specified in Section 1 for being
an interpretation in selection space semantics. To make this easy to see, we define ·̄ to
mirror the specification of the extension of a selection-space semantics interpretation:

Definition 4.10

1. φ̄ = ([φ⊕], [φ�]), for atomic φ;
2. ¬φ = (φ̄�, [φ̄⊕]);
3. (φ ∧ ψ) = ([φ̄⊕.ψ̄⊕], [φ̄� + ψ̄�]); and
4. (φ ∨ ψ) = ([φ̄⊕ + ψ̄⊕], [φ̄�.ψ̄�]).
Bear in mind that [v + w + · · · ] indicates an application of the operation of Fine’s
statespace semantics defined in Definition 4.1: the closure of the union of v,w, . . . .
It is not meant here to indicate a choice in some selection space, though we will soon
see that it can do double duty as such a choice in a space, defined in Definition 4.12,
which satisfies (c+u). Similar remarks apply to [v.w. · · · ].

A simple induction on complexity of formulae, using Lemma 4.3, easily confirms
that, for any formula φ, φ̄⊕ and φ̄� are each complete and convex. So, Lemma 4.4
applies: φ̄⊕ = [φ̄⊕] and φ̄� = [φ̄�]. Also, for all φ, Lemma 4.7(1) applies:

[φ̄⊕.ψ̄⊕] = [[φ̄⊕].[ψ̄⊕]].

[φ̄�.ψ̄�] = [[φ̄�].[ψ̄�]],
[φ̄⊕ + ψ̄⊕] = [[φ̄⊕] + [ψ̄⊕]], and

[φ̄� + ψ̄�] = [[φ̄�] + [ψ̄�]].
So, a simple induction on complexity of formulas shows that, if we think of φ̄⊕ as the
truth condition for φ, then ·̄ identifies the truth condition for φ with the closure of the
set of its verifiers:

14 This is a weak completeness result. By contrast, AC is strongly complete for the class of F-models iff,
if every F-model in which every member of a set S of equivalence claims is true is also a model in which
φ ≈ ψ is true, then φ ≈ ψ is derivable from S in AC. The question of whether AC is strongly complete for
the class of F-models (and so, by Lemma 4.15 below, the class of A-models) is an interesting open problem.
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Lemma 4.11 [φ⊕] = φ̄⊕ and [φ�] = φ̄�.

We are now ready to define our selection space and corresponding A-model
〈FM, �M,�M, ·̄M 〉:
Definition 4.12 The A-structure corresponding to M is the quadruple
〈FM, �M,�M, ·̄M〉 where
1. FM is the set of all complete, convex closures of subsets of S;

2. �M(〈(a1, b1), (a2, b2), ...〉) =
{

[a1 + a2 + · · · ]′, if a1, a2, . . . are each non-empty; and

∅, otherwise;

3. �M(〈(a1, b1), (a2, b2), ...〉) =
{

[a1.a2. · · · ]′, if a1, a2, . . . are each non-empty; and

∅, otherwise;

4. �M(∅) = ∅;
5. �M(∅) = {⊔ ∅};
6. �M(〈(a, b)〉) = �M(〈(a, b)〉) = [a]′; and
7. φ

M = ([φ⊕]′, [φ�]′), for atomic φ.

We will show that the A-structure corresponding toM is a model. 〈FM, �M,�M〉 is
clearly a selection system, since�M and�M are defined on all sequences ofmembers
of FM, and converge on singletons.

We need to show that the A-structure corresponding toMmeets the four constraints
for a selection space to be an A-frame. We first show that it meets (c+u).

Lemma 4.13 If (ai ) = (b j ), then �M(〈(a1, c1), (a2, c2), ...〉) = �M(〈(b1, c1),
(d2, d2), ...〉) and �M(〈(a1, c1), (a2, c2), ...〉) = �M(〈(b1, d1), (b2, d2), ...〉)
Proof Suppose (ai ) = (b j ). Suppose (ai ) = ∅. Then �M(〈(a1, c1), (a2, c2), ...〉) =
∅ = �M(〈(b1, d1), (b2, d2), ...〉) and �M(〈(a1, c1), (a2, c2), ...〉) = {⊔ ∅} =
�M(〈(b1, d1), (b2, d2), ...〉). Suppose, instead, that (ai ) is non-empty. Suppose ai =
∅, for some i . Then �M(〈(a1, c1), (a2, c2), ...〉) = ∅ = �M(〈(b1, d1), (b2, d2), ...〉)
and �M(〈(a1, c1), (a2, c2), ...〉) = ∅ = �M(〈(b1, d1), (b2, d2), ...〉). If 〈(a1, c1),
(a2, c2), ...〉 is a singleton 〈(a1, c1)〉, then (ai ) = (b j ) = {a}, for some a, and Lemma
4.7(3) and (4) imply the result. By symmetry, we are also done if 〈(b1, d1), b2, d2), ...〉
is a singleton. So, assume that neither 〈(a1, c1), (a2, c2), ...〉 nor 〈(b1, d1), b2, d2), ...〉
is a singleton, and that (ai ) are each non-empty. Then �M(〈(a1, c1), (a2, c2), ...〉) =
[a1.a2. . . . ]′. Now, since (ai ) = (b j ), ai has the form {a11, a12, . . . , a21 , a22 , . . . }, where
a j
k j

= b j for all j, k j . Suppose c ∈ (a1.a2. · · · ), so that c has the form s1 � s2 � . . . ,

where (si ∈ ai ), for all i . Then (si ) has the form {s11 , s12 , . . . , s21 , s22 , . . . }, where
s jk j ∈ a j

k j
= b j for all j, k j . Since, for all j , b j (∈ FM) is complete, s j1 �s j2 �· · · ∈ b j .

So,
c =

⊔
{s1, s2, . . . } =

⊔
{s11 , s12 , . . . , s21 , s22 , . . . }

(Lemma 4.2)= (s11 � s12 � . . . ) � (s21 � s22 � . . . ) � . . . ) ∈ (b1.b2. · · · )
By symmetry, if c ∈ (b1.b2. · · · ), then c ∈ (a1.a2. · · · ). So, (a1.a2. · · · ) =
(b1.b2. · · · ) ⇒ [a1.a2. · · · ]′ = [b1.b2. · · · ]′. A similar argument shows [a1 + a2 +
· · · ]′ = [b1 + b2 + · · · ]′.
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φ
M

is clearly an interpretation, and can be extended to molecular sentences in the
way specified in Section 1. Moreover, by Lemma 4.13 the A-structure corresponding
to M satisfies (c+u). So we can define the choice [a1 + a2 + · · · ] and combination
[a1.a2. · · · ] operations on conditions (ai ) (rather than contents, i.e., pairs of such
conditions) as previously specified in Section 3 just below the statement of (c+u). A
routine induction on the complexity of formulas then yields

Lemma 4.14 φ
M
⊕ = φ̄⊕ and φ

M
� = φ̄�

Thus, by Lemma 4.11, the interpretation of any sentence φ in our A-structure can be
obtained either directly, by just taking the closures of the sets of verifiers and falsifiers
for φ in the original F-model, or inductively, by building them in the way specified in
Section 1, using the choice and combination operations defined in Definition 4.12.

Notice that, if (ai ) are each non-empty, then [a1.a2. · · · ] = [a1.a2. · · · ]′ and [a1 +
a2+· · · ] = [a1+a2+· · · ]′. So, if (ai ) are each non-empty,we can,without ambiguity,
drop the superscript ′, and simply regard the choice [a1+a2+· · · ] and the combination
[a1.a2. · · · ] as the complete, convex closures, respectively, of (a1 + a2 + · · · ) and
(a1.a2. · · · ).

We now have everything we need to show that the A-structure we have defined from
our given F-model meets the remaining constraints (involution), (associativity),
and (distribution) for being an A-model, and that the F-model and the A-structure
countenance exactly the same equivalences among sentences.

Lemma 4.15 The A-structure 〈FM, �M,�M, ·̄M〉 corresponding to M is an A-
model, and φ ≈ ψ is true inM iff it is true in 〈FM, �M,�M, ·̄M〉.
Proof (C+U): Lemma 4.11

(Involution): If a = ∅, [a] = ∅. Suppose, then, that a is non-empty. Then, since for

all a ∈ FM, a is complete and convex, [a] = [a]′ (Lemma 4.4)= a.

(Associativity): Suppose at least one of a, b, and c is empty. Then [a.[b.c]] = ∅ =
[[a.b].c], and [a + [b + c]] = ∅ = [[a + b] + c]. Suppose, then, that a, b, and c are
each non-empty. Lemma 4.7(7) and (8) imply the result.

(Distribution): As in the previous case, the result is trivial when a, b, or c is empty.
If a, b, and c are each non-empty, then Lemma 4.8 implies the result.

Finally, φ ≈ ψ is true inM ⇔ [φ⊕] = [ψ⊕] (Lemma 4.11)⇔ φ̄⊕ = ψ̄⊕
(Lemma 4.13)⇔ φ

M
⊕ =

ψ
M
⊕ ⇔ φ ≈ ψ is true in the A-structure corresponding toM.
Completeness follows straightforwardly.

Theorem 4.16 (Completeness) If φ ≈ ψ is true in every A-model, then � φ ≈ ψ .

Proof Theorem 4.9 and Lemma 4.15.

Given the fairly straightforward construction in Definition 4.12 of a selection-space
from an F-model, it is plausible to regard the statespace semantics for AC as presenting
in simplified form a special case of the selection space semantics: the class of F-
models offers a simplified specification of the class of selection-space models given
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by Definition 4.12. In this sense, we may regard the statespace semantics for AC as
a special case of selection-space semantics. This result is unsurprising: of course we
can constrain choice and combination so they behave the way that the corresponding
relations in Fine’s semantics do, yielding the “flatter” conception of content required
by AC.

Wewill now establish amore surprising result: the conception of groundwe defined
above (Definition 2.1) in the context of≤-models automatically corresponds exactly, in
any A-frame, to the completely different definition of ground deployed in the “flatter”
treatments [3, 11]. This suggests that the “flatter” conception of ground specifies
exactly the same idea as the “raised” conception, with the differences in extension in
the two treatments completely explained by differences in the individuation of content.

5 “Flatter” Ground

As I have indicated, the Angellic conception of content pairs naturally with a cer-
tain view of ground which defines ground in terms of disjunction, conjunction, and
equivalence. For convenience, we will confine ourselves to finitary grounding claims,
with only finite numbers of sentences appearing on the LHS of any grounding claim.
Then, on this view, φ1, φ2, . . . , φn ≤ φ iff (φ1 ∧ φ2 ∧ . . . φn) ∨ φ ≈ φ, that is, iff the
conjunction is a disjunctive part of φ.15 The notions of weak partial ground (	), strict
partial ground (≺), and strict full ground (<) are defined in terms of ≤ in the standard
way:

ψ 	 φ iff there is a χ such that ψ, χ ≤ φ;
ψ ≺ φ iff ψ 	 φ and φ � ψ ; and
	 < φ iff 	 ≤ φ and (∀δ ∈ 	)δ ≺ φ (for finite 	).

This is the view of ground (on an Angellic conception of content) that is characterized
semantically in [11] and semantically and axiomatically in [3]. Astonishingly, so long
as equivalence is a logical notion, then ground, on this conception, also turns out to be
a logical notion [11, p. 686]. We now verify that the interpretation of ≤ in A-models
exactly corresponds to this view of ground.

We start by reviewing how to capture the definition of weak ground in terms of
disjunctive parthood. Intuitively, A is a disjunctive part of B when there is some C
such that the truth-condition for (A ∨ C) is the truth-condition for B. In an A-model,
we would characterize the idea by appeal to choice. If a and c are conditions, then a
is a disjunctive part of c just in case [a + b] = c, for some b. Then, for any content
(a, d), (a, d) is a disjunctive part of (c, e) iff a is a disjunctive part of c. Similarly, we
can define a correlative notion of conjunctive part: a condition a is a conjunctive part
of c iff [a.b] = c, for some condition b, and (a, d) is a conjunctive part of (c, e) iff a
is a conjunctive part of c. It conveniently turns out that, given the four constraints on
A-models, the quantification over conditions b in these definitions are dispensable.

15 In the limit case in which there is only one occurrence of any sentence φ′ on the LHS, we exploit the
fact that the grounding claim φ′ ≤ φ is identical to the claim φ′, φ′ ≤ φ, and, applying the previous truth
condition, φ′ ≤ φ iff (φ′ ∧ φ′) ∨ φ ≈ φ iff φ′ ∨ φ ≈ φ iff φ′ itself is a disjunctive part of φ. In the further
limit case in which there are no sentences on the LHS of≤, we appeal to a “null fact”�, which is an identity
element for conjunction: for all φ, (� ∧ φ) ≈ φ. Then ∅ ≤ φ iff � ∨ φ ≈ φ.
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Lemma 5.1 [3, pp. 265-6]

1. [a + b] = c ⇒ [a + c] = c,
2. [a.b] = c ⇒ [a.c] = c, and
3. [[a.b] + c] = c ⇒ [[a.c] + c] = c

Proof

1. Suppose

(★) [a + b] = c.

c
(invol)= [c] (c+u)= [c+c] (★)= [[a+b]+[a+b]] (assoc)= [a+b+a+b] (c+u)= [a+a+b] (assoc)=

[a + [a + b]] (★)= [a + c].

2. Similar to (1).
3. Suppose

(✢) [[a.b] + c] = c.

c
(✢)= [[a.b] + c] (dist.)= [[a + c].[b + c]] (2)= [[a + c].c] (dist.)= [[a.c] + [c.c]] (c+u)=

[[a.c] + [c]] (invol)= [[a.c] + c].

An immediate corollary of Lemma 5.1 is that (∃b)[a + b] = c iff [a + c] = c,
(∃b)[a.b] = c iff [a.c] = c, and (∃b)[[a.b] + c] = c iff [[a.c] + c] = c. So, for
A-models, disjunctive parthood, conjunctive parthood, and being a conjunctive part
of some disjunctive part can be all be defined without quantification.

We can now show that, in every A-frame, ≤1 corresponds to the view of ground
we have described. In what follows, Lemma 3.1 is generally assumed, so that we can
move back and forth between use of + and . for operations on sequences of contents
and their correlative use for operations on sequences of conditions, and we will write
a � b (where a is a condition) whenever any content (a, c) whose truth-condition is
a is an immediate selection from b.

Lemma 5.2 Let F = 〈F, �,�〉 be an A-frame. Then v1, v2, . . . vn ≤1 v ⇒
[[v1.v2. · · · ] + v⊕] = v⊕.

Proof We prove the result by induction on ≤1.

(Basis) Suppose v1, v2, · · · � v⊕. There are two cases:

v⊕ =v⊕ =v⊕ = [v1.v2. · · · ][v1.v2. · · · ][v1.v2. · · · ]: Then v⊕
(invol)= [v⊕] (c+u)= [v⊕ + v⊕] (supp.)= [[v1.v2. · · · ] + v].

This argument handles the case in which 〈v1, v2, . . . 〉 = 〈v〉 and the case
in which 〈v1, v2, . . . 〉 = ∅.

v⊕ =v⊕ =v⊕ = [w + w1 + · · · ][w + w1 + · · · ][w + w1 + · · · ] and v1, v2, · · · = wv1, v2, · · · = wv1, v2, · · · = w: Then v⊕
(invol)= [v⊕] (c+u)= [v⊕ +

v⊕] (supp.)= [[w + w1 + · · · ] + v⊕] (c+u)= [[w + w + w1 + · · · ] + v⊕] (assoc.)=
[[w+[w+w1+· · · ]]+v⊕] (supp.)= [[w+v⊕]+v⊕] (assoc.)= [w+[v⊕+v⊕]] (c+u)=
[w + [v⊕]] (invol)= [w + v⊕]
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Suppose, now, that v1, v2, · · · � [v] (idem)= v⊕. Since [v] (c+u)= [v⊕] (idem)= v⊕, the
argument above establishes the result.]

(Cut): Since we are restricting ourselves to the finitary grounding claims, it is
enough to prove the result when the application of (cut) has a single minor
premise. Suppose, then, that w1, w2, · · · ≤1 w and w, v1v2, · · · ≤1 v. By IH,

[[w1.w2. · · · ] + w⊕] = w⊕ and [[w.v1.v2. · · · ] + v⊕] = v⊕. Then v⊕
(supp.)=

[[w.v1.v2. · · · ] + v⊕] (assoc)= [[w.[v1.v2. · · · ]] + v⊕] (supp.)= [[[[w1.w2. · · · ] +
w⊕].[v1⊕.v2⊕. · · · ]] + v⊕] (dist.)= [[[[[w1.w2. · · · ].[v1⊕.v2⊕. · · · ]] + [w⊕.[v1⊕.v2⊕.

· · · ]]]] + v⊕] (assoc)= [[[w1.w2. · · · .v1.v2. · · · ] + [w.v1.v2. · · · ]] + v⊕] (assoc)=
[[w1.w2. · · · .v1.v2. · · · ] + [w.v1.v2. · · · ] + v⊕] (assoc)= [[w1.w2. · · · .v1.v2.

· · · ] + [[w.v1.v2. · · · ] + v⊕]] (supp.)= [[w1.w2. · · · .v1.v2. · · · ] + v⊕]
(Level): Suppose ((wi

j ) � vi⊕) and (vi ) ≤1 ([v], b). By IH, [[v1.v2. · · · ] + [v]] =
[v] (invol)⇒ [[v1.v2. · · · ] + v⊕] = v⊕. By the argument in the case of (basis),
[[wi

1.w
i
2. · · · ] + vi⊕] = vi⊕. So, by the argument in the case of (cut),

[[w1
1.w

1
2. · · · .w2

1 .w
2
2 . · · · ] + v⊕] = v⊕.

We can now show that, in any A-model, the relevant disjunctive part relation is just
our old friend ≤1:

Theorem 5.3 [[v1.v2. · · · ] + v⊕] = v⊕ ⇔ v1, v2, · · · ≤1 v.

Proof Lemma 5.2 establishes the right-to-left direction. Suppose that [[v1.v2. · · · ] +
v⊕] = v⊕. Then [v1.v2. · · · ] � v⊕. [v1.v2. · · · ] � v⊕ �⇒ ([v1.v2. · · · ], b) ≤1 v,
and v1.v2. · · · � [v1.v2. · · · ] �⇒ v1.v2. · · · ≤1 ([v1.v2. · · · ], b), for all b. So, by
(cut), v1, v2, · · · ≤1 v.

It follows immediately from Theorem 5.3 and Lemma 5.1 that we can define the other
grounding relations in terms of choice and combination:

Corollary 5.4

1. (a, b) 	1 (c, d) iff [[a.c] + c] = c;
2. (a, b) ≺1 (c, d) iff [[a.c] + c] = c, but [[c.a] + a] �= a; and
3. (a1, b2), (a2, b2), · · · < (c, d) iff [[a1.a2. . . . ] + c] = c and, for all ai , [[c.ai ] +

ai ] �= ai .

Clearly, we can express corresponding claims using the object language expressions∨,
∧, and≈: φ1, φ2, · · · ≤ ψ iff ((φ1∧φ2∧ . . . )∨ψ) ≈ ψ , φ 	 ψ iff (φ∧ψ)∨ψ ≈ ψ ,
etc.

Finally, a second corollary of Theorem 5.3 is that there is no difference between
v’s having a weak selection w1, w2, . . . , and its having an immediate selection
[w1.w2. · · · ]:
Corollary 5.5 w1, w2, · · · ≤1 v iff [w1.w2. · · · ] � v⊕.
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This corollary illustrates the extreme “flatness” of the structure of selection accord-
ing to the Angellic theory of content: every selection from v is at most a single level
down.

So, a single framework, employing a single conception of ground, can capture
a “raised” conception of content encapsulated in GG when it is constrained by
(≤-maximality), and can also capture themuch “flatter” conception of content encap-
sulated in AC when it is constrained by (c+u), (involution), (associativity), and
(distribution).

It is worth dwelling on a few notable features of the results. First, of course, we
have a general framework appealing to a single underlying conception of ground and
yielding different logics of ground. So, the existence of these natural, but incompatible
logics of ground provides no reason to doubt the cogency or univocality of a generic
notion of ground, rather than indicating theoretical disputes over the individuation of
content.

The cost is that the underlying conception of ground is, it seems, somewhat less
natural and familiar than the alternative conceptions appropriate toGGandAC, respec-
tively. deRosset and Fine’s definition of strict ground in terms of selection (Definition
1.1), is highly natural, specifying the notion inductively by giving a very natural basis
case and closing under various fairly familiar chaining operations. By contrast, the
alternative definition (Definition 2.1) directly defines the relatively unfamiliar notion
of weak ground. Despite the unfamiliarity of the idea, the notion is central to the
logic of ground. Fine [8, pp. 52-3] contends that weak ground is more fundamental
than strict ground, despite its relative unfamiliarity. New support for this contention is
provided by the fact that articulating a conception of ground that covers both “raised”
and “flatter” logics requires taking weak ground to be more fundamental.

It must be admitted, however, that the notion of weak ground specified in Definition
2.1 is less intuitive than both the specification of strict ground in [6] and the specifi-
cation of weak ground in the “flatter” treatments [3, 11]. This feature is familiar from
other efforts in mathematics to generalize an idea to cover a wider range of cases.
It is standard to find that generalization requires appealing to the less familiar and
intuitive of two ways of specifying the notion to be generalized. The present study
demonstrates that the logic of ground fits this general pattern.

There are a large number of competing views concerning the conditions under
which sentences are equivalent. A familiar intensionalist view, for instance, holds
that cointensional sentences express the same fact [13]. A slightly more liberal view,
booleanism, identifies boolean equivalents, but allows inequivalences among other
cointensional claims [2]. Booleanism allows some hyperintensionality, but it allows
less than the Angellic view captured by A-models. A Dorric view, on which only the
equivalence of A and ¬¬A is required [7], allows still more hyperintensionality. We
have already seen that GG requires distinctions among contents disallowed by each of
these views. Finally, there is a russellian view on which no logically complex sentence
is equivalent to any other logically complex sentence, unless there is a content- and
structure-preserving mapping from the atomic sentences of one to the constituents of
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the other.16 Obviously, many other views could be formulated.17 We have shown that
a single semantic framework, with a single conception of ground, can be adapted to
yield the two denizens of this zoo for which a formal treatment of grounding claims
has been suggested. It is not clear that it can be adapted to yield the others, nor is it
clear what logic of ground these others might yield. But our results so far indicate
reason for optimism on this score.18
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