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Abstract
Boolean-valued models for first-order languages generalize two-valued models, in
that the value range is allowed to be any complete Boolean algebra instead of just
the Boolean algebra 2. Boolean-valued models are interesting in multiple aspects:
philosophical, logical, and mathematical. The primary goal of this paper is to extend
a number of critical model-theoretic notions and to generalize a number of important
model-theoretic results based on these notions toBoolean-valuedmodels. For instance,
we will investigate (first-order) Boolean valuations, which are natural generalizations
of (first-order) theories, and prove that Boolean-valuedmodels are sound and complete
with respect to Boolean valuations. With the help of Boolean valuations, we will also
discuss the Löwenheim-Skolem theorems on Boolean-valued models.

Keywords Boolean-valued models Non-classical model theory
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1 Introduction

Traditionally, a model of a first order languageL has as its value range the complete
Boolean algebra 2 0 1 . Logical symbols in the language are interpreted as oper-
ations on the Boolean algebra: conjunction as binary meet, disjunction as binary join,
negation as Boolean complement, universal quantifier as infinite meet and existential
quantifier as infinite join. A natural way to generalize the traditional models, then, is to
instead of just using the complete Boolean algebra 2 as the value range, use arbitrary
complete Boolean algebra as value ranges.
Boolean-valued models are worth studying for a variety of reasons. From a philo-
sophical perspective, Boolean-valued models have interesting applications to the
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phenomenon of vagueness. The supervaluation models, which are used in the standard
approach to vagueness, can be shown to be a special type of Boolean-valued models
(Theorem 3.1). In fact, we can show that there is a duality between the class of super-
valuation models and a subclass of true identity Boolean-valued models (Theorem
3.3). Also, two important features of Boolean-valued models - that they are degree-
theoretic and that they induce classical logic - let them give rise to attractive theories
of different types of vagueness1. Moreover, since the logic of Boolean-valued models
is both classical and non-bivalent, they are particularly useful in illustrating certain
points in the philosophy of model theory. For example, it seems to serve as a strong
case against the claim that our classical rules of inferences pin down uniquely the
range of semantic values ([3]).
From a logical perspective, a number of important model-theoretic results on two-
valued models can be shown to be special cases of more generalized theorem on
Boolean-valued models. A (relatively) well-known example is that the Łos’ Theorem
on ultraproducts is a specific instance of a more general theorem on Boolean-valued
models that satisfy some special condition2. In this paper, we will also show that
the Löwenheim-Skolem theorems are specific cases of some more general theorems
on Boolean-valued models. Boolean-valued models are also useful for model con-
struction purposes. For example, the ultraproduct construction is a special case of
the combination of the direct product construction and the quotient construction on
Boolean-valued models (see [19] or [20]). Another example is Boolean ultrapowers,
which generalize the regular ultrapower construction to any complete Boolean algebra,
rather than only on power set algebra (see [12] or [8]).
Finally, from a mathematical perspective, Boolean-valued models are famous for their
usefulness in the context of set theory. Introduced by Dana Scott, Robert Solovay and
others, Boolean-valuedmodels for the language of set theory are used to give semantics
toPaulCohen’s syntactic forcing,which is amethod for obtaining independence results
(see [2] or Jech [10]). Recent works have shown that Boolean-valued models, via their
connectionwith forcing, can also be used to yield fruitful results on operator algebras3.
Despite their utility, Boolean-valued models, as a subject on their own, have not been
as well-studied as the two-valued models. On two-valued models there exists a full-
fledged, robust and fruitful theory - the entirety ofmodel theory, roughly speaking, that
is based on important basic notions like “diagram”, “submodel”, “elementary", etc.
Few of these notions, to the author’s knowledge, have been generalized to Boolean-
valuedmodels, and so are the casewith themanymodel-theoretic results based on these
notions. There are a number of natural questions on the model-theoretic properties of
Boolean-valued models that awaits answers: What is the diagram/elementary diagram

1 For an application to the general phenomenon of vagueness, see Mcgee and Mclaughlin [13]. For an
application to mereological indeterminacy, see [22]. For an application to indeterminacy in identity, see
[20].
2 In particular, the condition of being “witnessing", as defined in Definition 3.4. For a proof of the gener-
alized Łos’ Theorem, see Hamkins [7] or Viale [19]. For a proof of a more general version of this theorem,
see Wu [21]. For a form of Łos’ Theorem on Heyting-valued models, see Aratake [1].
3 Jech [11] and Takeuti [17] have shown that there’s a duality translating the commutative C algebras
to the family of B-names for complex numbers in V B . Viale [18] extends this duality to arbitrary Polish
spaces.
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of a Boolean-valued model? What does it mean for a Boolean-valued model to be a
submodel/elementary submodel of another? Do Löwenheim-Skolem Theorems hold
on all Boolean-valued models? etc. The primary goal of this paper is to answer these
questions.
When we only have two truth values, the diagram of a model is a set of sentences, and
therefore a theory. But when there are more than two truth values, the “diagram” of a
model, if we want it to be something close to what we have in the two-valued case,
cannot be just a theory. The natural suggestion is that the diagram is a set of ordered
pairs whose first component is a sentence and second component is a truth value. In
this paper, we will call a set of this form a “Boolean valuation". (First-order) Boolean
valuations are natural generalizations of (first-order) theories. The first major result of
this paper (Theorem4.7.1) is that (under our definition of consistency),Boolean-valued
models are sound and complete with respect to Boolean-valuations, which is a theorem
that generalizes the known result that Boolean-valued models are sound and complete
with respect to first-order theories (see, for example, [15]). Corollaries to this theorem
include the compactness theorem (Corollary 4.7.2) on Boolean valuations and the
(weaker version) of Downward-Löwenheim-Skolem theorem on Boolean valuations
(Corollary 4.7.3).
With the notion of “Boolean valuation", we are then able to define notions like
“diagram"(Definition 5.6), “elementary diagram"(Definition 5.8), etc., and prove the
equivalence theorems between diagrams and submodels (Theorem 5.4), elementary
diagrams and elementary submodels (Theorem 5.6), etc. The next major result is the
generalization of (the stronger version) Downward-Löwenheim-Skolem theorem to
witnessing Boolean-valued models (Theorem 5.7), and that it does not necessarily
hold on non-witnessing Boolean-valued models (Theorem 5.8).
For the discussion of the Upward-Löwenheim-Skolem theorems to be non-trivial, we
will have to look at a special type of Boolean-valued models, the ones that define
identity in the standard, or true way (Definition 3.2). We will investigate which kind
of Boolean valuations corresponds to the “true identity" models. The third major result
(Theorem6.7) is that true identityBoolean-valuedmodels are sound and completewith
respect to Boolean valuations that “respect identity" (Definition 6.4). From there, we
will show the Upward-Löwenheim-Skolem theorems on true identity Boolean-valued
models (Theorems 7.6, 7.7).
We organize this paper as follows: in Section 2, we introduce Boolean-valued models.
In Section 3 we discuss the connection between supervaluation models and Boolean-
valued models. In particular, we prove that supervaluation models are equivalent to
a special type of Boolean-valued models. In Section 4, we first review the proof
of the theorem that Boolean-valued models are sound and complete with respect to
first-order theorems, and then in 4.2, we introduce Boolean valuations, define their
consistency condition, and prove that Boolean-valued models are sound and complete
with respect to first-order Boolean valuations. In Section 5, with the help of Boolean
valuations, we extend basic model theoretic notions like “diagram", “submodel", “ele-
mentary embedding" to Boolean-valued models, prove the equivalence theorems, and
prove the (stronger version of)Downward-Löwenheim-Skolem theoremonwitnessing
Boolean-valued models. We will also study chains of models and generalize the Ele-
mentary Chain Theorem to the Boolean-valued case. In Section 6, we will investigate
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the true identity Boolean-value models and prove their soundness and completeness
theorems. Finally, in Section 7, we discuss the Upward-Löwenheim-Skolem theorems
on Boolean-valued models.

2 Boolean ValuedModels

We assume here that the reader already has some basic knowledge about Boolean
algebras and model theory. For a detailed introduction of Boolean algebras, see Givant
and Halmos [6].
In this paper, we will use the symbol “ " for lattice meet(infimum), “ " for lat-
tice join(supremum), and “ " for Boolean complement. A Boolean algebra B is
-complete (where is a cardinal) just in case for any subset D B such that
D , both the supremum of D, D, and the infimum of D, D, exist in B. A
Boolean algebra B is complete just in case for any , B is -complete.

Definition 2.1 Let L be an arbitrary first order language. For simplicity, we assume
that L has no function symbols, but only relation symbols and constants.4 Let B be
a complete Boolean algebra. A B-valued5 model A for the languageL consists of6 :

1. A universe A of elements;
2. The B-value of the identity symbol: a function A A2 B;
3. The B-values of the relation symbols: (let P be a n-ary relation) P A An B;
4. The B-values of the constant symbols: (let c be a constant) c A A.

And it needs to satisfy:

1. For the B-value of the identity symbol7: for any a1 a2 a3 A

a1 a1
A 1B (1)

a1 a2
A a2 a1

A (2)

a1 a2
A a2 a3

A a1 a3
A (3)

2. For the B-value of relation symbols: let P be an n-ary relation; for any
a1 an b1 bn An ,

P a1 an
A

1 i n

ai bi
A P b1 bn

A (4)

4 Our theory can be easily generalized to first order languages with function symbols, as functions can
always be treated as relations that satisfy special conditions.
5 Here and in the following, whenA is a B-valuedmodel, wewill call B the value range ofA. It is important
to note that B is the codomain, not the range, of the B-values of the relation/identity symbols. In particular,
it is possible that for some value p in B, there is no formula whose value in the model is p.
6 Our definition of Boolean-valued models is the standard one. You can find the same definition in many
other places, including, Bell [2], Button and Walsh [3], Hamkins and Seabold [8], etc.
7 Here and in the following, when the context is clear, we use ai a j

A to abbreviate A ai a j ,
and similarly for cases of the relation symbols.
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Given a B-valued model A forL , we define satisfaction in A as follows:

Definition 2.2 Let Var be the set of all variables. (We will use 1 2 to range over
variables.) An assignment onA is a function from Var to A. Given a assignment x on
A, we define the value of an open formula of L in A under assignment x as follows.

1. We first define the value of terms in A:

(a) Let i be a variable. Then i
A x x i xi 8.

(b) Let c be a constant. Then c A x c A.

2. We then define the value of atomic formulas in A:

(a) Let t1 t2 be terms (a term is either a variable or a constant). Then t1
t2 A x ai a j

A, where ai t1 A x and a j t2 A x .
(b) Let t1 tn be terms. Then P t1 tn A x P ai ak A, where

ai t1 A x , ..., ak tn A x .

3. We finally define the value of complex formulas in A:

(a) Let be a formula. Then A x A x .
(b) Let be formulas. Then A x A x A x .
(c) Let be formulas. Then A x A x A x .
(d) Let be a formula. Then i

A x
a A

A x i a , where x i a is

the assignment on A that takes i to a and agrees with x everywhere else.
(e) Let be a formula. Then i

A x
a A

A x i a , where x i a is

the assignment on A that takes i to a and agrees with x everywhere else.

Clearly, both i
A x and i

A x are well-defined as B is assumed to be
complete.
It is easy to see that traditional two-valued models for first order languages are just
special cases of Boolean valued models, when we require B to be the two-element
Boolean algebra 2 and that the interpretation of the identity symbol is the true identity
function on the universe9.
In the following, like in the case of atomic formulas, when the context is clear, we will
occasionally use x1 xn A, instead of 1 n

A x .

Theorem 2.1 Let A be a B-valued model forL . For any formula 1 n inL ,
any assignments x y on A,

x1 xn
A

1 i n

xi yi
A y1 yn

A

Proof By a straightforward induction on the complexity of 1 n .

8 Here and in the following, given an assignment x , we will use xi to abbreviate x i .
9 We assume that the reader has some basic knowledge of traditional two-valued models. For a detailed
introduction on model theory, see Chang and Keisler [4], or Hodges [9].
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3 Supervaluationism

In this section, we show that supervaluation models are special cases of Boolean-
valued models. In particular, we show that every supervaluation model is equivalent
to an elementary submodel of the direct product of the precisifications. Also, the class
of supervaluation models is equivalent to a subclass of true identity Boolean-valued
models: roughly, any supervaluationmodel has a canonical Boolean counterpartwhose
value range is the powerset algebra of the set of all precisifications.

Definition 3.1 A supervaluation model S for L is a pair A such that A is a
domain of elements and i i I is a collection of two-valued interpretation
functions (indexed by I ). In particular10,

1. Let c be a constant inL . For some a A, for any i I , i c a.
2. Let P be a n-ary relation inL . For any i I , i P Ri An .

For each i I , Ai is the two-valued model for L with domain A and interpretation
function i . Every Ai is called a precisification in S.
For any formula 1 n inL , and any assignment function x Var A,

S x

(super)true if for every i I Ai x

(super)false if for every i I Ai x

undefined if otherwise

Definition 3.2 A B-valued model A is a true identity model just in case A A
A B is the real identity function on A A, i.e. for any a b A, if a and b are not
the same element, then a b A 0B .

Definition 3.3 Given a supervaluation model S A i i I , we construct a
P I -valued modelMS forL as follows (where P I is the powerset of I endowed
with the powerset algebra):

1. The domain of MS is A.
2. MS

A2 P I is such that for any a b A, a b if a and b are
not the same element, and a b I if a and b are the same element.

3. Let c be a constant inL , c MS

i c , for any i I .

4. Let P be a n-ary relation in L . P MS
An P I is such that for any

a1 an A, P a1 an MS
i I Ai P a1 an .

10 We assume here that a constant is always interpreted as the same individual in all precisifications.
Although this is the default assumption in most standard formulations of supervaluationism (as in, for
example, [5] or [16]), we are aware of the need for loosing this assumption in certain situations. The results
we present below can be generated to more general definitions of supervaluation models, including ones
in which constants can have different referents in different precisifications, and even ones in which the
domains of different precisifications can be different. Due to the lack of space we will not present the details
here. Roughly, in cases where we have constants without a unvarying referent, we can simply regard a
constant as a unary predicate that satisfies the special condition that its extension is a singleton. And in
cases where we have precisifications with different domains, we can simply pretend that all precisifications
have the union of all the domains as their domain, and have an existential predicate whose extension in
each precisification is the actual domain of the precisification, and have the quantifiers be restricted to what
satisfies the existential predicate in each precisification.
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It is easy to check thatMS is a true identity Boolean-valued model.

Theorem 3.1 For any formula 1 n in L , and any assignment function x
Var A,

MS
x i I Ai x

Proof By induction on the complexity of . The atomic cases are covered by the defi-
nition ofMS. The cases for sentential connectives are straightforward. For existential
quantifier,

j
MS

x
a A

MS
x j a

a A

i I Ai x j a

i I Ai j x

The case for universal quantifier is similar.

As a result, the supervaluation modelS is essentially equivalent to its Boolean coun-
terpart MS. They have the same domain, and for any in L , the degree to which
is true inMS is the set of all precisifications in S in which is true. Therefore, is
(super)true inS iff MS

I , which is the top value in P I , and is (super)false

inS iff MS
, which is the bottom value in P I . Since all classical tautologies

have value 1 in every Boolean-valued model, all classical tautologies are (super)-true
in every supervaluation model.
We next show that S is an elementary submodel of the direct product of all the
precisifications.

Theorem 3.2 Let S A i i I be a supervaluation model. Let Ai i I
be its set of precisifications. Let

i I
Ai be their direct product (Definition 5.10). MS

is an elementary submodel (Definition 5.7) of
i I

Ai.

Proof Clearly P I and
i I

2 are isomorphic. The elementary embedding is the func-

tion f A
i I

Ai that takes any a A to a i I .

We just need to show that for any formula 1 n inL , any a1 an A,

a1 an
MS

a1 i I an i I i I
Ai

By theDirect Product Theorem (Theorem 5.10), a1 i I an i I i I
Ai

i

I Ai a1 an a1 an MS
, by Theorem 3.1.
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Definition 3.4 LetA be a B-valued model for the languageL . ThenA iswitnessing11

just in case for any formula u 1 n ofL , any a1 an A, there is an a A
such that

u u 1 n
A a1 an u 1 n

A a a1 an

Observation 3.2.1 Let S A i i I be a supervaluation model. MS may
not be a witnessing model, although

i I
Ai is always witnessing. The latter is because

direct products always inherit the property of being witnessing, which follows from
Theorem 5.10. It is easy to construct examples of the former. For example, we can let
a unary predicate P be such that it has a non-empty extension in every Ai in S, yet
there is no a A that is in the extension of P in in every Ai inS. Then i P i will
have value I inMS without a witness.

Corollary 3.2.1 (to Theorem 4.1) Let T be a theory and be a sentence in a first order
language L . T if and only if for any supervaluation model S, if every member
of T is (super)true inS, then is (super)true in S.

We have shown that every supervaluation model is equivalent to a true identity
Boolean-valued model. Our next goal is to establish a duality between the class of
supervaluation models and a subclass of true identity models.

Definition 3.5 Let B and C be two complete Boolean algebras and let A be a B-
valued model.A isC-embeddable just in case there is an embedding(monomorphism)
f B C such that for any formula 1 n , a1 an A

f A a1 an
a A

f A a a1 an

f A a1 an
a A

f A a a1 an

Theorem 3.3 Let A be a B-valued model. Then A is equivalent to a supervaluation
model just in case A is a true identity model and is P I -embeddable, for some
powerset algebra P I .

Proof LetS A i i I be a supervaluation model and letMS be theP I -
valued model as defined in Definition 3.3. Then MS is a true identity model and is
P I -embeddable by the identity function.
For the other direction, let A be a true identity B-valued model that is P I -
embeddable, for some powerset algebraP I , by an embedding f B P I . For
each i I , we construct a 2-valued model Ai with domain A as follows:

11 Witnessing Boolean-valued models are important because they are the ones on which the Łos’ Theorem
(Theorem 5.2) holds, while Łos’ Theorem does not hold on Boolean-valued models in general (See [21]
or [19]). For a topological characterization of the property of being witnessing, see [14]. Some people,
including Hamkins and Seabold [8], Jech [10] and Viale [14], call witnessing models “full" models instead.
We use the term “witnessing" here because the term “full" is sometimes used to refer to models that satisfy
a different condition (Definition 6.3). A hidden misunderstanding on this subject seems to be that the two
definitions coincide. But in fact they are not. We will show in Section 6 that full models, defined in terms
of antichains, are all witnessing models, yet the converse does not hold.
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1. Let c be a constant inL , c Ai c A A.
2. Let P be a n-ary relation in L . For any a1 an A, Ai P a1 an iff

i f P a1 an A .

LetS be the supervaluation model with precisifications Ai i I . LetMS be the
S-induced P I -valued model as defined in Definition 3.3. Then for any formula

1 n inL , any a1 an A,

a1 an
MS

f a1 an
A

The claim can be proven by induction on the complexity of . The atomic cases
are governed by the definition of S. The cases for connectives hold because f is an
embedding, and the cases for quantifiers hold because f witnesses that A is P I -
embeddable.
As a result, every value inP I that is possibly “used" inMS is in f B , and so the
“real" value range ofMS is just f B . Since f is a monomorphism, B and f B are
isomorphic to each other, and hence A and MS are isomorphic, and therefore A is
equivalent to a supervaluation model.

Corollary 3.3.1 Let B be an atomic complete Boolean algebra. Any B-valued true
identity model is equivalent to a supervaluation model.

Thedualityweestablished above shows thatBoolean-valuedmodels generalizes super-
valuation models in two aspects. First, Boolean-valued models allow identity clauses
to take intermediate truth values, whereas supervaluation models require true identity.
Second, Boolean-valued models allow the value range of a model to be any complete
Boolean algebra, whereas supervaluation models require powerset algebras (or those
embeddable in a powerset algebra in a complete way).

4 Boolean Valuations

Thanks to Rasiowa and Sikorski, Boolean-valued models are known to be sound and
complete with respect to first-order theories, in the following sense:12

Definition 4.1 Let T be a theory in a first order language L . Let A be a B-valued
model of L . A is a model of T iff for any T , A 1B .
Let be a sentence inL . is a Boolean-consequence of T , in symbols, T B iff
for any Boolean valued model A, if A is a model of T , then A is a model of .

Theorem 4.1 (Rasiowa, Sikorski) Let T be a theory and be a sentence inL . T B

if and only if T .

As corollaries:13

Corollary 4.1.1 1. Let be a tautology. In any Boolean valued model A, A 1.

12 For a proof of Theorem 4.1, see [15].
13 It is important to note that the results in Corollary 4.1.1 are essentially just variations of similar results
in [15] and hence are due to Rasiowa and Sikorski, not the author.
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2. Let T be a theory in L . T is consistent iff for any complete Boolean Algebra B,
T has a B-valued model.

3. For any complete Boolean Algebra B, T has a B-valued model iff every finite
subset of T has a B-valued model.

When there are only two truth values, the notion of “theory" is sufficient for describ-
ing the relationship between models and sentences. Given a two-valued model of a
languageL , the set of all sentences ofL that are true in the model forms a complete
theory inL . This theory decides the value of all sentences ofL in the model: if is
a member of the theory, then has value 1 in the model, and if is not a member of
the theory, then has value 0 in the model. This theory, in a certain sense, provides a
full description of the model given that our expressive power is limited to L .
The situation is different, however, when we allow more than two truth values. Given
a B-valued model of L where B is a proper extension of 2, the theory in L that
consists of all sentences ofL that are true in the model no longer decides the value of
all sentences ofL in the model. A simple example to illustrate this point is as follows:
Let A and A be two B-valued models of L , where B is the four element Boolean
algebra 0 p p 1 andL is the language P c where P is a unary predicate and
c is a constant. Let A a and A a . Let c A a and c A a . Let
P A a p and P A a p. Then it is easy to see that the set of sentences of
L that have value 1 in A is the same as the set of sentences ofL that have value 1 in
A . But obviously not all sentences of L have the same value in A and A .
This result is hardly surprising. Knowing which sentences have the top value only
allows us to know the values of those sentences that have extreme values. When we
only have two values, this amounts to knowing the value of every sentence. Butwhence
we have more than two values, knowing the values of those that have extreme values
is not enough: we still need to know the values of those that have intermediate values.
And the latter is simply not decided by the former.
Therefore, in a Boolean-valued setting, we need a notion stronger than the notion of
“theory", one that is sufficiently strong to fulfill the kind of jobs that the notion of
“theory" does in the setting of two-valued models: one that is able to, for example,
provide a full description of a model that decides the value of every sentence in the
model. A natural candidate, as we will introduce right now, is the notion of “Boolean-
valuations".

Definition 4.2 Let B be a complete Boolean algebra. LetL be a first order language.
A Boolean-valuation SB in L is a set of pairs of the form p such that is a
sentence of L and p is an element of B. We say that B is the value range of the
Boolean valuation SB , or that SB is a B-valuation.

Definition 4.3 Let SB be a B-valuation ofL . Let A be a B -valued model ofL . A is
a model of SB iff B is a complete subalgebra of B and for any sentence L , for
any p B, if p SB , then A p.

Intuitively, a Boolean-valuation assigns values of a Boolean algebra to certain sen-
tences of a language. When a pair p is in the Boolean-valuation SB , we can think
of the Boolean-valuation “says" that the sentence has value p. If a model A is a
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model of SB , then figuratively, what SB says about those sentences that are mentioned
in SB is what actually is the case inA. We can already see why the notion of Boolean-
valuations will be useful for our purpose: a full description of a Boolean-valued model
with respect to a particular language, intuitively, is simply an assignment of values
to all the sentences in the language. But the latter, from a set-theoretic perspective, is
just a collection of sentence-value pairs, which is simply a Boolean-valuation given
our definition.
Also, theories, in a natural sense, can be understood as special cases of Boolean-
valuations. Roughly, a theory T is a Boolean valuation T B 1 T . A
model A is a model of T just in case A is a model of T B . The notion of “Boolean-
valuation" is a natural generalization of the notionof “theory", in the context ofBoolean
valued models.
An important property of theories is consistency. Consistent theories, as we have
seen, precisely correspond to theories that have Boolean valued models. This is a nice
synergy between syntax and semantics. But what about Boolean-valuations? What
does it mean for a Boolean-valuation to be “consistent"? Are consistent Boolean-
valuations precisely those that have models? These are the questions that we will
answer for the rest of the section.

Definition 4.4 Let SB be a Boolean-valuation of L . Let h B 2 be a homomor-
phism. SB

h is the following set of sentences: for any L , any p B,

1. If p SB and h p 1, then SB
h .

2. If p SB and h p 0, then SB
h .

3. Nothing else is in SB
h .

Definition 4.5 A Boolean-valuation SB is consistent if and only if for any homomor-
phism h B 2, SB

h is a consistent theory.

Consistency of Boolean-valuations is thus defined in terms of consistency of theories.
Let T be a theory and let T B be the Boolean-valuation 1 T . It follows
straightforwardly from Definitions 4.4 and 4.5 that T is consistent just in case T B is
consistent in the sense of Definition 4.5, as every homomorphism takes 1B to 12.
The major result of this section is that consistent Boolean-valuations are precisely
those that have models. To reach that result, though, we will have to prove a series
of subsidiary theorems first, which are also interesting on their own. In the following,
whenever we mention a Boolean-valuation, we always assume that it is a Boolean-
valuation of the languageL . Also, occasionally, we will call a Boolean-valuation SB

a B-valuation.

Definition 4.6 A Boolean-valuation S B is a sub-valuation of SB if and only if S B

SB and the value range of S B is the same as that of SB .

Theorem 4.2 If a Boolean-valuation SB is consistent , then every sub-valuation of SB

is consistent.

Proof Let S B be a sub-valuation of SB . Then for every homomorphism h B 2,
S B
h SB

h . If S
B is inconsistent, then S B

h is inconsistent for some homomorphism h,
and then SB

h will be inconsistent.
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Proposition 4.1 Let SB be a Boolean-valuation and let h B 2 be a homomor-
phism. For anyfinite subset SB

h , for somefinite sub-valuation S B of SB , S B
h .

Theorem 4.3 A Boolean-valuation SB is consistent if and only if every finite sub-
valuation of SB is consistent.

Proof The direction from left to right follows directly from Theorem 4.2.
For the other direction, let SB be an inconsistent B-valuation. Then for some homo-
morphism h B 2, SB

h is inconsistent. Hence some finite subset T of SB
h is

inconsistent. By Proposition 4.1, for some finite sub-valuation T B of SB , T B
h T .

Hence T B
h is inconsistent. Hence T B is inconsistent.

Theorem 4.4 Let SB be a consistent B-valuation. For any sentence L , for some
r B, SB r is consistent.

Proof Let X h B 2 h is a homomorphism .
Let K is a finite sub-valuation of SB . Enumerate K by where
K . For each , is a finite sub-valuation of SB , and SB .

For any , h X , we form h according toDefinition 4.4. For any , h X ,

h SB
h . Also for any h X , h is a finite subset of SB

h .
Fix an . Let 1 p1 k pk for some k . For any h X , let
qh q1 qk , where for any 1 i k, qi pi if h pi 1, and qi pi if
h pi 0.
To continue with the proof we need to prove two claims.

Claim 4.4.1 For any , h X , h qh 1.

Proof of the Claim Let qh q1 qk as defined above. Then for any 1 i k,

h qi 1. Hence h qh 1.

Let J h j X h j
and J hk X hk

.

Let q
h j J

q
h j and q

hk J

qhk .

Claim 4.4.2 For some r B, r q and r q .

Proof of the Claim We only need to show that

q q 0

By infinite distribution, this is equivalent to

q q 0
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That is, for any , q q 0, i.e.

h j J

q
h j

hk J

qhk 0

Again by infinite distribution, this is equivalent to

h j J hk J

q
h j qhk 0

That is, for any h j J , any hk J , q
h j qhk 0.

Suppose not, then for some h j J , hk J , for some p 0 B, q
h j qhk p.

Since p 0, there is some h X such that h p 1. Hence h q
h j 1, h qhk 1.

But by definition of q
h j , then, for any pi such that some pair of the form i pi ,

if h j pi 1, then q
h j pi , and hence h pi 1. And similarly, if h j pi 0,

then q
h j pi , and hence h pi 1, h pi 0.

Hence for any pi such that some pair of the form i pi , h j pi h pi .

Hence by Definition 4.4, h j h . Similarly, hk h

But since h j J , h j
; and since hk J , hk

. Hence h ,

h .

But h SB
h , h SB

h . Hence SB
h . Hence SB

h is inconsistent. But this
is a contradiction as SB is assumed to be consistent.

Pick an r B that witnesses Claim 4.4.2. Finally, we will show that SB r is
consistent.
Suppose it is not consistent. Then for some h X , one of the two following situations
holds:

(a) h r 1 and SB
h is inconsistent.

(b) h r 0 and SB
h is inconsistent.

We will show that both (a) and (b) lead to contradiction.
Assume (a). Since SB

h is inconsistent, SB
h . Hence for some ,

h . Hence h J .

Hence r q q
hk J

qhk qh .

But by Claim 4.4.1, h qh 1. Hence h r 1, h r 0. Contradiction.

Assume (b). Since SB
h is inconsistent, SB

h . Hence for some ,

h . Hence h J .

Hence r q q
h j J

q
h j qh .
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But by Claim 4.4.1, h qh 1. Hence h r 1. Contradiction.

Definition 4.7 A Boolean-valuation SB is maximal if and only if for every sentence
, there is some p B such that p SB .

Theorem 4.5 Every consistent Boolean-valuation is contained in some maximal con-
sistent Boolean-valuation.

Proof Let SB be a consistent B-valuation. Let D = p is a sentence of L p
B . We use the Axiom of Choice to arrange all the pairs in D in a list:

0 p0 1 p1 p D

such that the list associates in a one-one fashion an ordinal with each pair.
We shall form an increasing chain of consistent B-valuations:

SB SB
0 SB

1 SB D

If SB
0 p0 is consistent, define SB

1 SB
0 p0 . Otherwise, define

SB
1 SB .

At the -th stage, if is a successor ordinal, define

SB SB
1 1 p 1 if SB

1 1 p 1 is consistent

SB SB
1 if otherwise

If is a limit ordinal, define SB SB . Let T B be the union of all the SB’s.

Claim 4.5.1 T B is a consistent B-valuation.

Proof of the Claim Suppose not. Then for some homomorphism h B 2, T B
h is

inconsistent. Then for some finite subset 1 2 k T B
h , 1 2 k

is inconsistent. By Proposition 4.1, for some finite sub-valuation B of T B , B
h

1 2 k . Hence B is inconsistent. But since B is finite, for some D ,
B SB . But then SB is inconsistent. Contradiction.

Claim 4.5.2 T B is maximal.

Proof of the Claim Let be a sentence of L . By Theorem 4.4, for some p B,
T B p is consistent. But then p will be added to T B at the stage when
it is enumerated.

Hence SB is contained in a maximal consistent B-valuation, namely T B .

When SB is a consistent B-valuation, it is easy to show that for any sentence , for
any p q B, if p and q are both in SB , then p q. This is because if
otherwise, then there is some homomorphism h B 2 such that h p h q , and
hence both and will be in SB

h , making SB inconsistent. Hence, in the following,
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when the context is clear, we will use the term S to denote the unique p such that
p SB .

With the help of Theorems 4.4 and 4.5 we are finally able to prove the completeness
theorem on Boolean-valuations.

Theorem 4.6 Let SB be a consistent Boolean-valuation ofL . Then SB has a B-valued
model that is witnessing.

Proof Let X h B 2 h is a homomorphism .
Let SB be a consistent Boolean-valuation in L . Let C be a set of new constants (not
appearing in L ) with the same cardinality of L . Let L =L C .
Arrange all formulas with one free variable in L into a list:

0 1 L

We now define an increasing sequence of B-valuations of L :

SB SB
0 SB

1 SB L

and a sequence d1 d , L , of constants from C , in the following way:
Let 1 be a successor ordinal, then define SB

1 as follows: first add to SB a pair
of the form p such that SB p is consistent. Theorem
4.4 guarantees the existence of such a pair. Then, we let d be the first constant in C
that has not appeared in SB p . The existence of a new constant is
guaranteed by the cardinality of C . Then, we add to SB the pair d p .
If is a limit ordinal, then let SB SB .

Claim 4.6.1 SB is consistent for any L .

Proof of the Claim We use transfinite induction. We first show that at the successor
stage, if SB is consistent, then SB

1 SB p d p is con-
sistent. Suppose not. Then for some h X , SB

1 h is inconsistent. There are two
situations:

(a) h p 1. Then SB
h d is inconsistent. Then SB

h

d . Since d does not appear on the left hand side,
SB

h . But then SB
h is incon-

sistent, contradicting our choice of p.
(b) h p 0. Then SB

h d is inconsistent. Then SB
h

d . Since d does not appear on the left hand side, SB
h

. But then SB
h is inconsistent,

contradicting our choice of p.

At the limit stage, if SB is inconsistent, then by Theorem 4.3, a finite sub-valuation of
SB is inconsistent, meaning that some SB is inconsistent, where , contradicting
the inductive hypothesis.
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Let T B
L SB . T B is consistent, for the same reason why SB is consistent

when is a limit ordinal. Since T B is a consistent, by Theorem 4.5 it is contained in
some maximal consistent B-valuation ofL . Let T B be such a B-valuation.
Let A C . We will construct a B-valued model A of L with universe A C :

1. Let c be a constant inL . Then c A d such that c d T c T .
(If there is more than one d A that satisfies this, then just pick a random one.)

2. Let P be an n-nary relation. For any c1 cn An , let P c1 cn A

P c1 cn T .
3. For the identity symbol, for any c c A, let c c A c c T .

Claim 4.6.2 A is a B-valued model.

Proof of the Claim For any d d d A,

(1) d d A 1.
Suppose not. Then for some h X , h d d A 0. Then d d T B

h ,
making T B

h inconsistent.
(2) d d A d d A

Suppose not. Then for some h X , h d d A h d d A . Then
(without loss of generality) d d T B

h and d d T B
h , making T B

h
inconsistent.

(3) d d A d d A d d A

Suppose not. Then for some h X , h d d A 0 but h d d A

d d A 1. Hence h d d A 1 and h d d A 1. Hence
d d d d T B

h but d d T B
h , making T B

h inconsistent.
(4) For any n-nary relation P , for any c1 cn c1 cn An ,

P c1 cn
A

1 i n

ci ci
A P c1 cn

A

For simplicity we only prove for the case when n 1. The proofs for the cases
when n 1 are very similar.
Suppose not. Then for some h X , h P c1

A 0 but h c1 c1
A

P c1 A 1. Hence h c1 c1
A 1 and h P c1 A 1. Hence

c1 c1 P c1 T B
h but P c1 T B

h , making T B
h inconsistent.

Finally we will show that A is a model of T B , i.e. for any sentence ofL , A

T .
We prove by induction on the complexity of .
Atomic cases:

(a) c c A d d T where c d T c T 1 and
c d T c T 1.
We just need to show that p q when p d d T and q c c T .
Suppose not. Then for some h X , h p h q . Hence (WLOG) d d
T B
h , c c T B

h . But c d c d T B
h . T B

h is inconsistent. Contradiction.
(b) For the atomic cases of relations, again, we just show it for unary relations. The

cases of other n-nary relations where n 1 are very similar.
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P c A P d T where c d T
i c i

T 1.
We just need to show that p q when p P d T and q P c T .
Suppose not. Then for some h X , h p h q . Hence (WLOG) P d T B

h ,
P c T B

h . But c d T B
h . T B

h is inconsistent. Contradiction.

Inductive cases:

(a) .

A A A T T

The last equation holds for the following reasons. Suppose not, and suppose
T p and T q p. Then for some h X , h p h q .WLOG

we can assume h p 1 and h q 0. Then h p 0. Then T B
h and

T B
h , making T B

h inconsistent. Contradiction.
(b) 1 2.

1 2
A

1
A

2
A

1
T

2
T

1 2
T

The last equation holds for the following reasons. Suppose not, and suppose
1

T
2

T p q 1 2
T . Then for some h X , h p 1

and h q 0, or h p 0 and h q 1. Suppose h p 1 and h q 0.
Then 1 2 T B

h , but 1 2 T B
h , making T B

h inconsistent. On the other
hand, suppose h p 0 and h q 1. Then 1 2 T B

h . Then both h 1
T

and h 2
T have to be 1, as otherwise 1 or 2 would be in T B

h , which
would make T B

h inconsistent. But then h 1
T

2
T h p has to be 1.

Contradiction.
(c) 1 2.

1 2
A

1
A

2
A

1
T

2
T

1 2
T

The last equation holds for the following reasons. Suppose not, and suppose
1

T
2

T p q 1 2
T . Then for some h X , h p 1

and h q 0, or h p 0 and h q 1. Suppose h p 1 and h q 0.
Then 1 2 T B

h , and hence both h 1
T and h 2

T have to be 0
as otherwise 1 or 2 would be in T B

h , which would make T B
h inconsistent. But

then h 1
T

2
T h p has to be 0. Contradiction. On the other hand,

suppose h p 0 and h q 1. Then h 1
T 0 h 2

T 0. Hence
1 2 T B

h , but 1 2 T B
h , making T B

h inconsistent.
(d) .

Let be any formula with only free. Then it is easy to show that for any
d A, A d d A, as d A is some d A such that d d A 1.
Hence,

A

d A

A d
d A

d A

d A

d T

We need to show that
d A

d T T .
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For the direction: We just need to show that for any d A, d T

T . Suppose not, and suppose for some d A, d T p and
T q and p q . Then p q 0. Then for some h X , h p q

1. Then h q 0, and hence T B
h . But d T B

h , making T B
h

inconsistent.
For the direction: by the setup of T B (hence of T B), at some stage of the
sequence (say, the th stage), both p and d p are added to
T B , for some p B. Hence for some d A, T d T .

Finally obviously A is witnessing.

Corollary 4.6.1 (Completeness) If SB is consistent, then it has a model.

Theorem 4.7 (Soundness) If SB has a model, then it is consistent.

Proof Let A be a B -valued model of SB . Suppose SB is inconsistent, then for some
homomorphism h B 2, SB

h is inconsistent. Then, some finite subset h SB
h is

inconsistent.
Let h 1 n . Let 1 n . Clearly is a contradiction. Hence by
Corollary 4.1.1, A 0.
Let 1 i n. Consider i . Since i h SB

h , there are two possibilities:

(1) for some pi B, i pi SB , and h pi 1;
(2) for some pi B, i pi SB , and h pi 0, i i .

Suppose (1). Then since A is a model of SB , i
A pi . h i

A h pi 1.
Suppose (2). Then sinceA is amodel of SB , i

A pi . i
A

i
A pi .

h i
A h pi h pi 0 1.

In either case, h i
A 1.

Hence h A h 1 n
A h 1

A h n
A 1 1 1.

Hence h A 0. Contradiction.

Corollary 4.7.1 A Boolean-valuation SB is consistent if and only if it has a model.

Corollary 4.7.2 (Compactness) A Boolean-valuation SB ofL has a B-valued model
if and only if every finite sub-valuation of SB has a B-valued model.

Corollary 4.7.3 (Downward-Löwenheim) If a Boolean-valuation SB of L has a B-
valued model, then it has a witnessing B-valued model of size L .

5 Relationship BetweenModels

Two-valued models can stand in different relationships with one another: for example,
a model can be isomorphic to another, a model can be a submodel of another, a model
can be an elementary submodel of another, etc. These concepts are the cornerstone
of the theory of two-valued models. The primary goal of this section is to generalize
these concepts to Boolean-valued models.
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5.1 Duplicate Resistant Models

Before we move on to generalize these concepts, there is one important complica-
tion that I have to resolve first, which will be relevant to our later purposes. Astute
readers might have already noticed that the identity symbol is interpreted somewhat
abnormally in the Boolean-valued models. The main abnormality, of course, is that a
Boolean-valued model might “think" that two objects in its domain are identical to an
intermediate degree between 0 and 1. We will talk more about identity in Boolean-
valuedmodels in Section 6. For current purposes,wewill simply focus on the following
minor yet interesting feature of Boolean-valued models: our definition of Boolean-
valued models (Definition 2.1) allows there to be “duplicates" in the models - that is,
two different objects a b in the domain such that the value of a b is 1 in the model.
The existence of duplicates in a model, in a natural sense, is both harmless and useless.
To illustrate this point, we first introduce a new notion.

Definition 5.1 A B-valued mode A of L is duplicate resistant just in case for any
a b A, if a b A 1, then a and b are the same element.

In other words, duplicate resistant models are those that disallow duplicates. The next
results show that any Boolean-valued model is practically equivalent to a duplicate
resistant model. But before that, we need an extra piece of definition.

Definition 5.2 LetA be a B-valuedmodel ofL . LetC be a complete Boolean algebra.
Let h B C be a homomorphism. Then the C-valued quotient model Ah of L is
defined as follows:

1. Universe:
Let a1 a2 A, define a1 h a2 iff h a1 a2 A 1C .
It is easy to show that h is an equivalence relation on A2, using Definition 2.1.
Given ai A, let ai h a j A ai h a j . Let the universe of Ah be
Ah ai h ai A .

2. Ah
Ah Ah C is the function such that for any a1 h a2 h Ah ,

a1 h a2 h
Ah

h a1 a2
A

3. Let P be an n-ary relation inL . P Ah
Ah n C is the function such that for

any a1 h an h Ah n ,

P a1 h an h
Ah

h P a1 an
A

It is easy to show that Ah
and P Ah

are well-defined.
4. Let c be a constant inL . c Ah

c A
h .

Lemma 5.0.1 Let A be a B-valued model of L . Let h B C be a complete
homomorphism. Let x x be assignments on A such that for any i V ar , x i h

x i . Then, for any formula of L ,

h A x h A x
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Proof By induction on the complexity of .

Theorem 5.1 Let A be a B-valued model of L . Let h B C be a complete
homomorphism. Let Ah be the C-valued quotient model as defined in Definition 5.2.
Given x Var Ah an arbitrary assignment on Ah , let y Var A be an
assignment on A such that for any i V ar , y i x i . Then, for any formula
inL ,

Ah
x h A y

Proof By induction on the complexity of , with the help of Lemma 5.0.1.

Theorem 5.2 (Generalized Łos’ Theorem) Let A be a witnessing B-valued model of
L . Let h B C be a homomorphism. Let Ah be the C-valued quotient model.
Given x Var Ah an arbitrary assignment on Ah , let y Var A be an
assignment on A such that for any i V ar , y i x i . Then, for any formula
inL ,

Ah
x h A y

Proof See [21] or [19].

Definition 5.3 Let A be a B-valued model of L . Let h B B be the identity
function on B. The duplicate resistant copy of A, Ad , is the B-valued quotient model
Ah of L .

Theorem 5.3 Let A be a B-valued model of L , and let Ad be its duplicate resistant
copy, as defined in Definition 5.3. Given x Var Ad an arbitrary assignment on
Ad , let y Var A be an assignment onA such that for any i V ar , y i x i .
Then, for any formula ,

Ad
x A y

Proof The proof is a straightforward application of Theorem 5.1, since the identity
function h B B is a complete homomorphism.

In otherwords, the value of any formula under some assignment x in the originalmodel
is the same as the value of the formula in the duplicate resistant copy, when we assign
instead of objects equivalence classes of objects to the variables. As a consequence,
all sentences have the same value in the duplicate resistant copy.
We have argued that the existence of duplicates is harmless and useless, from a techni-
cal point of view14. This is mostly true, except that the existence of duplicates creates
some technical difficulty when we intend to generalize concepts like isomorphism.
Consider a modelAwith a finite domain and consider adding toA a new object b such

14 The reason why I do not block the existence of duplicates in the definition of Boolean-valued models,
like in the case of two-valued models, is that the possibility of having duplicates might have interesting
applications to certain philosophical issues. Models are relative to languages. And sometimes the language
under concern might have limited expressive power in that it cannot distinguish between two potentially
different objects. If we understand “=" as meaning “indistinguishable", then, we would want to allow there
to be objects that are “duplicates" of each other, in the sense defined above.
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that b is added as a duplicate of an original object a. Call the latter model A . How
is A and A related? Intuitively, they should be practically the same. The addition of
b is null in the sense that it makes no contribution to the evaluation of formulas. We
would want our theory to indicate that the two models are isomorphic. Nevertheless, if
we generalize the concept of isomorphism in the most straightforward way, A and A
will not be isomorphic. This is because, in the two-valued framework, an isomorphism
between models has to be a bijection. But there is no bijection between A and A .
One natural solution to resolve all these difficulties is to first define the notions of
isomorphism, submodel, etc. on duplicate resistantmodels, in themost straightforward
way, and then define isomorphism, etc. on arbitrary Boolean-valued models using the
former. For example, we can define two Boolean-valued models as isomorphic just
in case their duplicate resistant copies are isomorphic. This is going to be the method
that we will adopt in the following subsections, as I believe that under this method we
have themost natural and simple definitions for concepts like isomorphism.Alternative
methods are available, of course: for example, we can give a definition of isomorphism
under which isomorphisms do not have to be bijections. In the end, which method we
adopt is more of a matter of taste than a matter of mathematical significance.

5.2 Isomorphism, Submodel, and Diagram

In this and the next two subsections, for reasons we have given in the previous subsec-
tion,wewill assume all Boolean-valuedmodels are duplicate resistant. Also,whenever
we do notmention explicitly,we assume allmodels aremodels of a first-order language
L .

Definition 5.4 (Isomorphism) Let A1 be a B1-valued model and A2 be a B2-valued
model. A1 and A2 are isomorphic iff there are functions h B1 B2 and f A1
A2 such that h is an isomorphism between Boolean algebras, and f is a bijection such
that: (let ti be a term)

1. For any a1 a2 A1, h t1 t2 A1 a1 a2 t1 t2 A2 f a1 f a2 .
2. Let P be an n-nary predicate. For any a1 an An

1, h P t1 tn A1 a1
an P t1 tn A2 f a1 f an .

3. Let c be a constant. c A2 f c A1 .

In the rest of this section, for better readability, we will often identify a complete
Boolean algebra with its isomorphic copies (and a Boolean value with its image under
the isomorphism). It is routine to check that all the definitions and proofs will still work
if we replace the value range of a Boolean-valued model with one of its isomorphic
copy and interpretations of the symbols accordingly.

Definition 5.5 (Submodel) LetA1 be a B1-valuedmodel andA2 be a B2-valuedmodel.
A1 is a submodel of A2 just in case: (let ti be a term)

1. A1 A2 and B1 is (isomorphic to) a complete subalgebra of B2.
2. For any a1 a2 A1, t1 t2 A1 a1 a2 t1 t2 A2 a1 a2 .15

15 Here and in the rest of this definition, we are ignoring the difference between a Boolean value and its
image under an isomorphism between Boolean algebras.
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3. Let P be an n-nary predicate. For any a1 an An
1, P t1 tn A1 a1

an P t1 tn A2 a1 an .
4. Let c be a constant. c A2 c A1 .

Definition 5.6 (Diagram) LetA be a B-valued model ofL . LetLA L ca a
A , where ca a A is a new set of constants, one for each a A. Expand A to a
model of LA (call it A ) such that for all a A, ca A a.
The diagram of A is the B-valuation SB which consists of and only of all the pairs
of the form A where is an atomic sentence or the negation of an atomic
sentence of LA and A is the value of in A .

Theorem 5.4 Let A1 be a B1-valued model and A2 be a B2-valued model. The fol-
lowings are equivalent:

(1) A1 is isomorphic to a submodel of A2.
(2) A2 can be expanded to a model of the diagram of A1.

Proof (1) (2). WLOG we assume A1 is isomorphic to A3, which is a B1-valued
submodel of A2 (so B1 is a complete subalgebra of B2), and the isomorphism is
witnessed by f A1 A3 A2. Expand A2 to a model of LA1 (call it A2) as
follows: for any a A1, let ca A2 f a . It is routine to check that A2 is a model
of the diagram of A1, in the sense of Definition 4.3.

(2) (1). WLOG we assume B1 is a complete subalgebra of B2. Let A2 be an
expansion of A2 to the diagram of A1. Construct f A1 A2 as follows: for any
a A1, f a ca A2 . Let A3 be the submodel of A2 whose domain is generated
by f A1 .
We can show that the domain of A3 is precisely f A1 . Let c be a constant inL . And
suppose c A1 a A1. Then c ca A1 1 and therefore c ca A2 1.
Since A2 is duplicate resistant, A2 is also duplicate resistant. Hence c A2 ca A2 .
Hence c A3 f a f A1 .
We can easily show that f A1 A3 is a bijection. Trivially it is surjective. Suppose
f a1 f a2 , then ca1

A2 ca2
A2 and therefore ca1 ca2

A2 1. Since A2
is a model of the diagram of A1, ca1 ca2

A1 1. Hence a1 a2 A1 1. Since
A1 is duplicate resistant, a1 a2. Hence f is injective.
Finally, it is routine to check that f together with the identity function on B1 witnesses
that A1 is isomorphic to A3.

5.3 Elementary Submodel and Downward Löwenheim-Skolem

Definition 5.7 (Elementary Submodel) Let A1 be a B1-valued model and A2 be a
B2-valued model. A1 is an elementary submodel of A2 just in case: A1 is a submodel
of A2, and for any formula 1 n of L , any a1 an A1,16

1 n
A1 a1 an 1 n

A2 a1 an

16 Here and in the next theorem we are ignoring the difference between a Boolean value and its image
under an isomorphism between Boolean algebras.
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Theorem 5.5 Let A1 be a witnessing B1-valued model and A2 be a B2-valued model.
A1is an elementary submodel A2 if and only if A1 is a submodel of A2, and for any
formula 1 n of L , any a1 an A1, for some a A1,

1 n
A2 a1 an 1 n

A2 a a1 an

Proof The left to right direction is proved by directly applying Definition 5.7 and the
fact that A1 is witnessing.The right to left direction is proved by induction on the
complexity of .

Definition 5.8 (Elementary Diagram) Let A be a B-valued model of L . Let LA

L ca a A , where ca a A is a new set of constants, one for each a A.
Expand A to a model of LA (call it A ) such that for all a A, ca A a.
The elementary diagram of A is the B-valuation SB which consists of and only of all
the pairs of the form A where is a sentence of LA and A is the value
of in A .

Theorem 5.6 Let A1 be a B1-valued model and A2 be a B2-valued model. The fol-
lowing statements are equivalent:

(1) A1 is isomorphic to an elementary submodel of A2.
(2) A2 can be expanded to a model of the elementary diagram of A1.

Proof The same proof as that of Theorem 5.4 with minor adjustments.

When A1 is isomorphic to an elementary submodel of A2, we say that A1 is elemen-
tarily embedded in A2.
In Section 4 we proved a weaker version of the generalized Downward-Löwenheim-
Skolem Theorem (Corollary 4.7.3). With the notion of elementary submodels we can
now prove a stronger version of this theorem.

Theorem 5.7 (Strong-Downward-Löwenheim-Skolem) Let A be an witnessing B-
valued model of size L . Then A has an elementary submodel of size L .

Proof Let be an arbitrary sentence ofL that is of the form . SinceA is witness-
ing, there is some a A such that A A a . Pick such a witness for each
sentence of the form . Let X A be the set of all picked witnesses. Construct an
increasing sequence:

X X0 X1 X2 X L

Let be a successor ordinal. Let 1 n be a formula with 1 n free,
and let a1 an X 1. Since A is witnessing, there is some a A such that

A a1 an A a a1 an . We pick a witness for each formula of the
form 1 n and a1 an X 1. Let X be X 1 plus all the picked
witnesses.
If is a limit ordinal, let X X .
Let A L X . It is easy to check that each X has size L . Hence A L .
Form a model A with universe A :
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1. For any a b A , a b A a b A.
2. Let P be an n-ary relation. For any a1 an A , P a1 an A

P a1 an A.
3. Let c be a constant. Let c A be some a A such that i c A a i i

c A. Such an a exists by the setup of A .

It is easy to see that A is a submodel of A. We show that A is also an elemen-
tary submodel of A. Let 1 n be a formula with 1 n free, and let
a1 an A . Since a1 an A i L Xi , for some i L , a1 an
Xi . Hence for some a Xi 1 A , A a1 an A a a1 an . By
Theorem 5.5, A is an elementary submodel.

The stronger Downward-Löwenheim-Skolem Theorem is a natural generalization
of the homonymous theorem on two-valued models, as every two-valued model
is witnessing. Interestingly, the requirement that A is witnessing in the stronger
Downward-Löwenheim-SkolemTheoremcannot be dropped, as the theoremno longer
holds when A is not necessarily witnessing. This result, I think, is another example
of the fact that certain features of two-valued models can only be generalized to wit-
nessing Boolean-valued models, but not to all Boolean-valued models.

Theorem 5.8 There exists a uncountable Boolean-valued model of a countable lan-
guage that does not have a countable elementary submodel.

Proof Let B be a complete Boolean algebra such that from some D B, D 1
and for any C D such that C 1, C D p. Let D p 1 .
Let A 1. Let A a 1 . Let P be a unary predicate. (Predicates of
other arities can work as well) Let A be such that for any 1, P a A p .
The obviously P A

1
p D p. And no countable submodel

of A is such that the value of P in it is p.

5.4 Elementary Equivalence and Elementary Chain

Definition 5.9 (Elementary Equivalence) Let A1 be a B1-valued model and A2 be a
B2-valued model. A1 and A2 are elementarily equivalent iff there is an isomorphism
h B1 B2 and for any sentence inL , A1 h A2 .

Theorem 5.9 Let I be an index set. For each i I , let Ai be a witnessing Bi -valued
model. Also, for any i j I , let Ai and Aj be elementarily equivalent. Then there
exists a model A such that for any i I , Ai is elementarily embedded in A.

Proof WLOG we assume all the Ai’s have the same value range B. For each Ai,
let SB

i be the elementary diagram of Ai. We assume that if i j , then ca a
Ai ca a A j . Let i I S

B
i be the union of all the elementary diagrams.

Claim 5.9.1
i I

SB
i is a consistent B-valuation.
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Proof of the Claim By Theorem 4.3, we only need to show that every finite sub-
valuation of i I S

B
i is consistent. Let B

1 c1 p1 n cn pn be
a finite sub-valuation of i I S

B
i . WLOG we assume that for any 1 k n,

k ck pk SB
k , and ck is the only constant from ca a Ak that appears in

k .
Assume for reductio that B is inconsistent. Then for some homomorphism h B
2, B

h is inconsistent.
Suppose B

h 1 c1 cn such that k k if h pk 1 and k k if
h pk 0. Then 1 c1 2 c2 n cn .
Since 1 c1 p1 SB

1 , c1 SB
1 h . Hence SB

1 h 2 c2 n cn .
And by assumption c2 cn do not appear in SB

1 h , hence SB
1 h i 2 i

i n i .
By assumption, i 2 i i n i are sentences of L . Hence for each 2
k n, for some qk B, i k i qk SB

1 . Also since S
B
1 is consistent (as it has

a B-valued model, namely A1), qk is unique.
But all the Ai’s are elementarily equivalent. Hence for any i I , for any 2 k n,

i k i qk SB
i . And as a result, for any i I , i 2 i

i n i q2 qn SB
i .

Now since SB
1 h i 2 i i n i , and since SB

1 is consistent, h q2
qn 1. Hence for some 2 k n, h qk 1.

Hence i k i SB
k h . But k ck , by assumption, is also in SB

k h . Hence SB
k h

is inconsistent. But SB
k is the elementary diagram ofAk, and therefore it has a B-valued

model and should be consistent. Contradiction.

We showed that i I S
B
i is consistent. By Theorem 4.6, it has a B-valued model A .

Let A be the reduct of A to L . By Theorem 5.6, for any i I , Ai is elementarily
embedded in A.

Definition 5.10 Let I be an index set. For each i I , letAi be a Bi -valuedmodel. Then
the direct product model, i I Ai, of the Ai’s, is defined as the following i I Bi -
valued17 model:

1. The universe is i I Ai , where for each i , Ai is the universe of Ai.
2. Let ai i I bi i I i I Ai, ai i I bi i I i I Ai ai bi Ai i I .
3. Let a1i i I a2i i I ani i I i I Ai, P a1i i I a2i i I ani i I

i I Ai P a1i a2i a3i
Ai i I .

4. For any constant c inL , c i I Ai c Ai i I .

Theorem 5.10 (Direct Product Theorem) Let I be an index set. For each i I , let Ai

be a Bi -valuedmodel. Let i I Ai be their direct product model. Given an assignment
x Var i I Ai on i I Ai, for each i I , let yi V ar Ai be the assignment
on Ai such that for any n V ar , yi n proji x n , where proji i I Ai

Ai is the i th projection function. Then, for any formula inL ,

i I
Ai

x Ai yi i I

17
i I Bi is the product algebra of the Bi ’s. It is easy to see that i I Bi is a complete Boolean algebra

when every Bi is a complete Boolean algebra.
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Proof By induction on the complexity of .

Theorem 5.11 Let A be a B-valued model. Let I be an arbitrary index set. Then A is
elementarily embedded in i I A.

Proof Let B p i I i I B p B . It is easy to check that B is isomorphic
to B and B is a complete subalgebra of i I B.
Let A be the B -valued submodel of i I A generated by A a i I a
A . It is easy to show that the domain of A is precisely A , since for any con-
stant c c i I A c A

i I A . Also, for any formula 1 n , any
a1 i I an i I , A a1 i I an i I

A a1 an i I B , so the
value range of A is indeed B .
We can then show that A is an elementary submodel of i I A by induction on the
complexity of . The only non-trivial case is the inductive step on existential formulas,
which holds by Theorem 5.10.
Let f A A be such that for any a A, f a a i I . It is easy to show that f
witnesses that A and A are isomorphic.

Lemma 5.11.1 Let I be an index set. For any i I , let Ai be a Bi -valued model that
is witnessing. Then i I Ai is a witnessing model.

Proof For simplicity we ignore the parameters. Let i be a formula. Then
i i I Ai i

Ai i I , by Theorem 5.10. Since for any i I , Ai is wit-
nessing, for some ai Ai , i

Ai Ai ai . Pick such an ai for each Ai. Then
i

Ai i I
Ai ai i I i I Ai ai i I .

Theorem 5.12 Let A be a witnessing B-valued model. Let I be an arbitrary index set.
Let h i I B B be a homomorphism such that for any p B, h p i I p.
Then A and i I A

h are elementarily equivalent.

Proof LetA be a witnessingmodel and let h i I B B be a homomorphism such
that for any p B, h p i I p. Let be a sentence ofL . Let A p B.

By Lemma 5.11.1, i I A is a witnessing model. Hence it is in the scope of

Theorem 5.2. Hence i I A
h

h i I A h A
i I h p i I p.

Definition 5.11 (Chain of Models) Let be an ordinal. For each , let A be a
B-valued model. A chain of models is an increasing sequence of models A0 A1

A , where A0 is a submodel of A1, A1 is a submodel of A2, etc.

Definition 5.12 (Union of the Chain) Given a chain of models A0 A
, the union of the chain is the B-valued model A A such that:

1. The universe of A is A A .
2. Let a1 a2 an A. Then for some , a1 an A .

(a) Let 1 i j n. ai a j
A ai a j

A .
(b) Let P be an n-ary relation. P a1 an A P a1 an A .
(c) Let c be a constant. c A c A .
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Proposition 5.1 The union of a chain is a B-valued model. Also, for every , A
is a submodel of A .

Theorem 5.13 (Generalized Elementary Chain Theorem) Let A be an
elementary chain of models. Then for any , A is an elementary submodel of

A .

Proof Let A A . We need to show that for any , for any formula
1 n , any a1 an A ,

A a1 an
A a1 an

The atomic cases are already covered by Proposition 5.1. The inductive cases on
sentential connectives are straightforward. Let 1 n 1 n .
Let A a1 an a A

A a a1 an p1 B. Let A a1
an a A

A a a1 an p2 B.
Since A A , A A. By inductive hypothesis we have p2 p1. Hence we
only need to show that p1 p2.
Suppose p1 p2. Then for some a A, A a a1 an p2. Let

A a a1 an be p3.
Since a A A , for some , a A . Either or . We will
show that both possibilities lead to contradiction.
Suppose . Then a a1 an A . By inductive hypothesis, A a a1
an A a a1 an p3. But then p3 p2 A a1 an . Contra-
diction.
Suppose . Then a a1 an A . By inductive hypothesis, A a a1
an A a a1 an p3. But since a1 an A , and A is an elementary
submodel of A by the construction of the chain,

A a1 an
A a1 an p2

But then p3 p2. Contradiction.
Hence p1 p2. And therefore p1 p2.

6 True Identity Models

The identity symbol in Boolean-valued models is interpreted in a non-standard way.
When B is a complete Boolean algebra that properly extends 2, our definition of
Boolean-valued models allows that in some B-valued model A, for some a b A,
a b A p B, where p is neither 1B or 0B . This is an interesting feature
of Boolean-valued models, which I believe will give rise to attractive philosophical
applications. But that is a topic of another paper. In this section, nevertheless, we will
the Boolean-valued models in which the identity symbol is interpreted in a standard
way. Recall that in Section 3 we’ve defined the truth identity models:
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Definition 6.1 A B-valued model A is a true identity model just in case A A
A B is the real identity function on A A, i.e. for any a b A, if a and b are not
the same element, then a b A 0B .

Proposition 6.1 Let L be a first order language whose only non-logical symbols
are constants. Let A be a B-valued true identity model of L . Then for any formula

1 n L , any a1 an A, A a1 an 0B 1B .

Theorem 6.1 Let A be a B-valued true identity model. Let h B C be a homo-
morphism. Then the quotient model Ah is a C-valued true identity model. Moreover,
A and Ah have the same domain.

Proof A Ah because for any a1 a2 A, a1 h a2 iff h a1 a2 A 1 iff
a1 a2, as A is a true identity model. Also, if a1 h a2 h , then a1 a2, and then
a1 h a2 h

Ah
h a1 a2 A h 0B 0C .

We next define another special kind of Boolean-valued models - the full models.

Definition 6.2 (Antichain) Let B be aBoolean algebra.A subset D B is anantichain
just in case for any p D, p 0 and for any p q D, p q 0.

Definition 6.3 (Full Model) Let A be a B-valued model. A is a full model just in case
for any antichain D B, and ad d D A, there is an a A such that for any
d D, d a ad A.

We can show that all full models are witnessing.

Theorem 6.2 Let A be a full B-valued model. Then A is witnessing.

Proof For simplicity we ignore the parameters. Let be a formula with only
free. Let A p B. We will show that for some a A, A a p. If
p 0, then the statement is trivial. So we assume p 0.
Let D d B 0 for some ad A d ad A . Let Q be the set of all
antichains made up of elements in D. By Zorn’s lemma, Q has a maximal element.
Call it C .
We can show that D is dense below p. Let 0 p p. Since p a A a A,
for some a A, p a A 0. But p a A D and p a A p .
Hence p C : suppose not, then p C 0. Since D is dense below p, for
some d D, d p C C . Then C d is an antichain in D that
properly extends C . Contradiction.
For every d C , let ad be some element in A such that d ad A.
Since A is full, there is some a A such that for all d C , d a ad A.
Since d ad A as well, d a ad A ad A a A. Hence p

A C a A. And trivially a A A. Hence a A

A.

But the next results show that the converse is false: witnessing models are not neces-
sarily full.
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Theorem 6.3 LetA be a B-valued true identity model. If B is a proper Boolean exten-
sion of 2, and if A 1, then A is not a full model.

Proof Since B is a proper extension of 2, there is some p B such that 0 p 1.
Then p p is an antichain. Let a1 a2 be any two different elements in A. Then for
any a A, either p a a1 A, or p a a2 A, as A is a true identity model.

Theorem 6.4 LetL be an arbitrary first order language. Let B be a complete Boolean
algebra that properly extends 2. Then there is a witnessing B-valued true identity
model A of L , whose domain has more than one element.

Proof Pick p B such that 0 p 1. For any n-ary relation P in L , for any
a1 an A, let P a1 an A p. Also let A be the identity function on
A A. It is easy to show that A is witnessing.

Corollary 6.4.1 LetL be an arbitraryfirst order language.Let B be a completeBoolean
algebra that properly extends 2. Then there is awitnessing B-valued true identitymodel
of L that is not full.

In Section 4 we have reviewed a collection of results involving theories of first order
languages and Boolean-valued models. In the following we will state a few theorems
about theories and Boolean-valued true identity models. We will state the results
without proofs as they are all very straightforward.

Theorem 6.5 Let T be a theory in L . T is consistent if and only if for any complete
Boolean Algebra B, T has a B-valued true idenity model A.

Theorem 6.6 Let B be any complete Boolean algebra. A theory T has a B-valued true
identity model just in case every finite subset of T has a B-valued true identity model.

Recall that in Section 4, we have argued that the notion of Boolean-valuations is a
natural generalization of the notion of theories. For the rest of this section we consider
questions involving Boolean-valuations and true identity models. For example, what
kind of Boolean-valuations correspond to true identity models? Does compactness
holds on these Boolean-valuations?
To answer these questions we first need some familiar notions. For any n , let En

be the first-order sentence that says there are at least n things,18 and let E n be the
first-order sentence that says there are exactly n things.19

Definition 6.4 A B-valuation SB of L respects identity iff SB can be extended to a
consistent B-valuation S B such that

1. For any constants c d L , either c d 1 S B or c d 0 S B .
2. It is either the case that for some n , E n 1 S B , or the case that for every

n , En 1 S B .

18 The sentence 1 n 1 i j n i j when n 1, and the sentence when n 1.
19 That is, the sentence En Mn , where Mn 1 n u u 1 u n , for any n .
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We now show that Boolean-valuations that respect identity are precisely those that
have true identity models. To this end we need a series of lemmas.

Lemma 6.6.1 If a B-valuation SB has a true identity B-valued model, then it respects
identity.

Proof Suppose SB has a true identity B-valuedmodelA. Then the elementary diagram
SB
A has either c d 1 S B or c d 0 for any c d L . Also, if A n for

some n , then E n 1 SB
A; if A is infinite, then for every n , En 1 SB

A.

Lemma 6.6.2 Let A2 be a B-valued model. Let A1 be a B-valued submodel of A2

such that for any a A2,

ai A1

a ai
A2 1

Then A1 is an elementary submodel of A2.

Proof We can show that for any L , A1 A2 by induction on the com-
plexity of . The only case worth mentioning is the quantifier case. For simplicity we
omit the parameters.

A2

a A2

a A2

a A2 ai A1

a A2 a ai
A2

ai A1

ai
A2

ai A1

ai
A1 A1

Lemma 6.6.3 Let SB be a consistent B-valuation be such that (1) either c d 1
SB or c d 0 SB , for any constants c d L , and (2) for some n ,
E n 1 SB . Then SB has a true identity B-valued model.

Proof Let E n 1 SB . Let C c1 cm be a set of constants in L such that
for any ci c j C , ci c j 0 SB , and for any d L , for some ci C ,
ci d 1 SB . Since E n 1 SB , m n. If m n, relabel the constants
in C as c1 cn . If m n, first add new constants cm 1 cn to the language. Let
S B SB ci c j 0 1 i j n . Since for any homomorphism h B 2,
E n S B

h (defined as in Definition 4.4), S B is consistent.
Let M be a B-valued model of S B . Let M be its duplicate resistant copy. For any
1 i n, let ci mi M . Let N be the B-valued submodel of M generated by
N mi 1 i n . It is straightforward to check that the domain ofN is N . Also
obviously N is a true identity model.
Since M E n and M ci c j for any 1 i j m, M
c1 cn . Hence for any m M , 1 i n m mi 1. By Lemma 6.6.2,

N is an elementary submodel ofM. HenceN is a true identity B-valued model of SB .

123

X. Wu322



Lemma 6.6.4 Let SB be a consistent B-valuation be such that (1) either c d 1
SB or c d 0 SB , for any constants c d L , and (2) for every n ,
En 1 SB . Then SB has a true identity B-valued model.

Proof Let C be the set of constants in L . Let D be a new set of constants with
cardinality L . Let L L D. Enumerate all formulas with one free variable in
L :

0 1 L

We now construct an increasing sequence of consistant B-valuations of L :

SB S0 S1 S L

together with an increasing sequence of constants in L :

C D0 D1 D L

Successor stage. Suppose S and D are defined. Let D ci i I . We first find
p B, pi i I B such that S S p ci pi i I is
consistent. The existence of these values is guaranteed by Theorem 4.5.
Let d D be a new constant that hasn’t appeared in S . Let S S ci
d 0 ci D . Since for every n , En 1 S , every finite subset of S is
consistent. Hence S is consistent.
Now let X be the set of all homomorphisms h from B to 2 and let K

is a finite subset of S .
Similar to what we do in the proof of Theorem 4.4:

1. For any h X , any 1 p1 k pk K , let qh q1 qk ,
where for any 1 i k, qi pi if h pi 1, and qi pi if h pi 0.

2. Let J h X h d and J h X h d .
3. Let q h J qh and q h J qh .

Claim 6.6.1

K

q
i I

pi p 0

Proof of the Claim It suffices to show that for any K , for any h J ,

qh

i I

pi p 0

Suppose not. Then for some h X , h p 1, h qh 1 and h pi 0 for every
i I . Hence S h , and for every ci D , ci S h .
Since h qh 1, by the reasoning as in the proof of Claim 4.4.2, h h . Hence

h d . Hence S h d .
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Hence S h and some finite subset of ci d ci D together entail d .
Since d does not appear in S h , for some finite set c1 cm D ,

S h c1 cm

But since S h and for every ci D , ci S h , S h is inconsis-
tent, contradicting that S is consistent.

By Claim 4.4.2, K q K q 0.
Let r K q i I pi p . Hence K q r 0.
Let S 1 S d r . By the same reasoning as in the proof of Theorem 4.4,
the above observation shows that S 1 is consistent. Moreover,

i I

pi r
i I

pi
i I

pi p

i I

pi p p

as pi p for any i I in order for S to be consistent.
Hence ci D ci S 1 d S 1 S 1 . In other words, we guar-
antee that in S 1 there are instances of that “collectively witness" (the value of)

.
Finally Let D 1 D d .
For the limit stage, we take the union: i.e. we let S S . Since every S is
consistent, S is consistent by Theorem 4.3.
Let T L S . Again by Theorem 4.3, T is consistent. Extend T to a maximal

consistent B-valuation T B (Theorem 4.5).
We construct a B-valued model M as follows:

1. The universe M C D.
2. For any constant c L , let c M c.
3. For any n-nary relation P , any d1 dn M , P d1 dn M P d1

dn T B
.

4. For any c d M , c d A c d T B
.

Claim 6.6.2 M is a model of T B .

Proof of the Claim By an argument similar to that in the proof of Theorem 4.6. The
only difference worth mentioning is the inductive case of quantified formulas. Let

T B
p. At some stage in the construction, p is added, together with

some instance-value pairs. By the set up of the stages,

T B

d D

d T B

By inductive hypothesis, for each d D , d M d T B
. Hence M

T B
.
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Now letL L L D . LetM be the reduct ofM toL . HenceM is a

model of SB . LetN be the submodel ofM generated by N L D . Clearly
the domain of N is N .
AlsoN is a true identity model, since for any d L D , at the stage when it is
added, for any constant c L that already exists in the previous stages, c d 0
is also added.
Finally, let d M N , i.e. d D L D . Then at some stage S in the

construction, the pair d 1 is added. Hence c D c d S 1. Hence

c N c d M 1. By Lemma 6.6.2, then, N is an elementary submodel of M.
Hence N is a true identity B-valued model of SB .

Theorem 6.7 A B-valuation SB respects identity if and only if it has a true identity
B-valued model.

Proof By Lemmas 6.6.1, 6.6.3 and 6.6.4.

Theorem 6.8 A B-valuation SB respects identity if and only if every finite sub-
valuation of SB respects identity.

Proof The left to right direction is obvious.
For the right to left direction, let SB be such that every finite subset of SB respects
identity. By Theorem 6.7, every finite subset of of SB has a true identity model.
We first show that for any c d L , either SB c d 1 or SB c d 0 is such
that every finite subset of it has a true identity model. Suppose neither. Then for some
finite subsets 1 2 SB , both 1 c d 1 and 2 c d 0 have no true
identity model. Hence 1 2 has no true identity model. Contradiction.
Hence we can extend SB to a consistent B-valuation S such that for every c d L ,
either c d 1 or c d 0 S .

Claim 6.8.1 It is either the case that (a) for some n , every finite subset of S
is consistent with E n 1 , or the case that (b) for every n , every finite subset
of S is consistent with En 1 .

Proof of the Claim Suppose neither case holds. Then for every n , some finite
subset n of S is inconsistent with E n 1 , and for somem , some finite subset

of S is inconsistent with Em 1 .
Let 1 m 1 . Then is inconsistent with E 1 1 , ..., E m
1 1 Em 1 . Then for some h B 2, h is inconsistent with E 1 E m
1 Em , which means that h is inconsistent, contradicting that S is consistent.

If (a), then let S B S E n 1 . If (b), then let S B S Em 1 m
. Hence SB respects identity.

Corollary 6.8.1 A B-valuation SB has a true identity B-valued model if and only if
every finite sub-valuation of SB has a true identity B-valued model.

123

Boolean Valued Models, Boolean Valuations, ... 325



7 Löwenheim-Skolem Theorems

In previous sections we have proved two versions of the downward Löwenheim-
Skolem Theorem:

Theorem 7.1 If a Boolean-valuation SB of L has a B-valued model, then it has a
witnessing B-valued model of size L .

Theorem 7.2 Let A be an witnessing B-valued model of size L . Then A has an
elementary submodel of size L .

A natural question is: what about the upward Löwenheim-Skolem Theorem? Can it
also be generalized to a Boolean-valued setting? In this section we investigate this
question.
The case of the upward Löwenheim-Skolem is much more complicated than its
downward counterpart. Recall that in Section 5 we observed that our definition of
Boolean-valued models allow there to be “null" duplicates in a model. And with the
existence of null duplicates it is boringly easy to add more objects to a domain of a
model without changing which sentences are true in the model:

Theorem 7.3 Let T be a consistent theory of L . Then for any complete Boolean
algebra B, if T has a B-valued model of size , it has B-valued models of arbitrary
sizes larger than .

Proof Just pick some random element of the domain and add as many duplicates of
the element to the domain as we want.

Note that the above theorem is much stronger than the normal upward Löwenheim-
Skolem in the two-valued cases. It says that any consistent theory can have models
that are arbitrarily large, including, for example, a theory that says there are only two
objects. This is a counter-intuitive result. Surely if a sentence saying that there are
only two objects is true in a model, then we would want there to be only two objects
in the domain of the model.
One might think that the culprit of this counter-intuitive result is the existence of
duplicates. What if we require the models to be duplicate resistant (Definition 5.1)?
Will it still be the case that a theory that demands finite bivalent models can have
arbitrarily large Boolean-valued models? The answer, interestingly, is positive, as the
following results show.
We first observe that one sentence that does have control over the size of a duplicate
resistant Boolean-valued model is the sentence saying that there is at most one thing.

Theorem 7.4 Let A be a duplicate resistant model. If A 1 2 1 2 , then
A 1.

Proof 1 2 1 2
A

a A b A a b A. Fix some a A. Consider

b A a b A. We will show that b A a b A
c d A c d A. The

direction holds trivially. The direction holds as for any c d A, a c A a
d A c d A. Hence a A b A a b A

a A c d A c d A

c d A c d A 1. Hence for any c d A, c d A 1. Since A is duplicate
resistant, c and d are the same element.
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Nevertheless, that there is at most one thing is also the only sentence that has control
over the size of a duplicate resistant Boolean-valued model:

Definition 7.1 Let D B be an antichain.Then D is amaximal antichain iff D 1.

Lemma 7.4.1 Let M be a B-valued duplicate resistant model. Let B be a complete
Boolean algebra such that B is a complete subalgebra of B . Let D B be a maximal
antichain s.t. for any a b M , and d D, d a b M 0. Then M is
elementarily embedded in a duplicate resistant B -valued model of size M D .

Proof Let N f f D M . We construct a B -valued model with domain N
as follows:

1. For any f1 f2 N , let f1 f2 N
d D d f1 d f2 d M .

2. For any n-ary relation symbol P , any f1 fn N , P f1 fn N

d D d P f1 d fn d M .
3. For any constant c, c N gm , wherem is the referent of c inM, and gm d m

for any d D.

Claim 7.4.1 N is a duplicate resistant B -valued model.

Proof of the Claim Let f1 f2 f3 N . For any d D, d f1 d f2 d M

f2 d f3 d M d f1 d f3 d M. Hence f1 f2 N f2 f3 N

f1 f3 N. The clause on relation symbols is similar. The other clauses on identity
are straightforward. Hence N is a B -valued model.
If f1 f2 N , then for some d D, f1 d f2 d . By the assumption on D, then,
d f1 d f2 d M 0. But d f1 d f2 d M f1 f2 N 0. Hence
f1 f2 N 1. Hence N is a duplicate resistant model.

Now we show thatM is elementarily embedded inN. The embedding i M N is
such that for any m M , i m gm , where gm d m for any d D.
Atomic formulas. It is easy to check that gm1 gm2

N
d D d m1 m2

M

m1 m2
M, as D is maximal. The case for relations is similar.

The inductive case for connectives is routine. For the quantifier case, first we observe
that for any f N ,

m M

f gm
N 1

This is because for any d D, it is easy to check that d f g f d
N. Since D is

an maximal antichain, d D f g f d
N 1.

Hence (parameters are omitted for simplicity) N
m M gm N, by an

argument similar to that of Lemma 6.6.2. By inductive hypothesis, then, N

M.

Theorem 7.5 Let T be a theory that is consistent with 1 2 1 2 . Then T
has arbitrarily large duplicate resistant Boolean-valued models. In particular, if B is
infinite, then T has an infinite duplicate resistant B-valued model of size , where
is the maximum size of maximal antichains in B.
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Proof T has a classical bivalent model M. Let B be a complete Boolean algebra that
property extends 2. Clearly 2 is a complete subalgebra of B. We first observe that
since M is classical, for any maximal antichain D B, a b M , any d D,
d a b M d 1 d 0.
For any cardinal M , there is a complete Boolean algebra B that has a maximal
antichain D of size . Hence, by Lemma 7.4.1 and the above observation, T has a
duplicate resistant B-valued model of size M . Also, if B is infinite, then B has an
infinite maximal antichain.

The above result shows that duplicate resistant models also cannot truthfully describe
the size of its domain. Let E n be the sentence that says there are exactly n things,
where n 1. As long as B properly extends 2, then there will be a B-valued duplicate
resistant model of E n whose domain is larger than n. Indeed, the above result shows
that there can be arbitrarily large duplicate resistant B-valued models of E n.
Note that if we fix a complete Boolean algebra B, it is not always the case that any
T that is consistent with 1 2 1 2 has arbitrarily large duplicate resistant
B-valued models. For example, let B 0 p p 1 be the Boolean algebra with
four elements. Let A be a B-valued model of E 2. Then it is easy to check that for
some a b A, a b 0.20 Suppose A is duplicate resistant and c a b A.
Then either a c p and b c p, or a c p and b c p.
Also, for any c d A, if a c a d , then c d 1.21 Hence A has at
most four elements.
We observe that duplicate resistant models in general do not truthfully describe the
size of their domains. This is essentially because the identity symbol is still interpreted
in a non-standard way. Hence, in the context of Boolean-value models, in order to get
larger models that are really larger, we need to focus on true identity models, as these
are the models in which identity is standard. Once we introduce this requirement,
then, we can generalize the upward Löwenheim-Skolem theorem in the way that is
most non-trivial. First it is easy to see that true identity models are the only ones that
truthfully describe the size of their domains.

Observation 7.5.1 Let A E n, where n . Then A n iff A is a true identity
model.

With the help of results from Section 6, we can generalize the upward Löwenheim-
Skolem Theorems to true identity models:

Theorem 7.6 If a B-valuation SB has an infinite B-valued true identity model A, then
it has infinite B-valued true identity models of any power A .

Proof Let c be a list of new constant. Consider the B-valuation S B

SB c c 0 . Every finite subset of S B has a true identity
B-valued model (namely A). By Corollary 6.8.1, S B has a B-valued true identity
model, whose size has to be at least .

20 Since E 2 1, a b A a b 0. Suppose a b p and a b p. Consider
q a a . If q 0, we are done. If q p, then a b 0. Similarly if q p, then
a b 0. If q 1, then a b p and hence b b 0. These are the only options.

21 WLOG suppose a c a d p. Then p c d . But b c b d p. Hence
p c d . Hence c d 1.
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Theorem 7.7 If a B-valuation SB has arbitrarily large finite B-valued true identity
models, then it has an infinite B-valued true identity model.

Proof The same proof as that of Theorem 7.6.

Corollary 7.7.1 Every infinite true identity model has arbitrarily large elementary
extensions.

As a special case of Theorems 7.6 and 7.7, we also have:

Theorem 7.8 If a theory T has arbitrarily large finite B-valued true identity models,
then it has an infinite B-valued true identity model.

Theorem 7.9 If a theory T has an infinite B-valued true identity model A, then it has
infinite B-valued true identity models of any power A .
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