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Abstract
In 1944 Hans Reichenbach developed a three-valued propositional logic (RQML) in
order to account for certain causal anomalies in quantum mechanics. In this logic,
the truth-value indeterminate is assigned to those statements describing physical phe-
nomena that cannot be understood in causal terms. However, Reichenbach did not
develop a deductive calculus for this logic. The aim of this paper is to develop such a
calculus by means of First Degree Entailment logic (FDE) and to prove it sound and
complete with respect to RQML semantics. In Section 1 we explain the main physical
and philosophical motivations of RQML. Next, in Sections 2 and 3, respectively, we
present RQML and FDE syntax and semantics and explain the relation between both
logics. Section 4 introducesQ calculus, an FDE-based tableaux calculus for RQML.
In Section 5 we prove that Q calculus is sound and complete with respect to RQML
three-valued semantics. Finally, in Section 6 we consider some of the main advantages
of Q calculus and we apply it to Reichenbach’s analysis of causal anomalies.

Keywords Causal anomaly · First degree entailment · Indeterminate · Reichenbach’s
quantum mechanics logic · Three-valued logic · Semantic tableaux

1 Introduction

In 1944 Reichenbach developed a three-valued logic in order to account for causal
anomalies that arise in the standard interpretation of quantummechanics.A “causal law
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of nature”, according to Reichenbach, is defined under two conditions (Reichenbach
[19], 117):

a) “it is required that the cause determine the effect univocally [...];
b) it is demanded that the effect spread continuously through space, following the

principle of action by contact.”

The type of causality that satisfies a) and b) is called “normal". Non-compliance with
b) constitutes a causal anomaly.

Reichenbach considers that the main problem of quantum mechanics can be
summed up in the following question: is there an exhaustive interpretation —that
is, one that gives value assignments to all physical quantities in all physical states
(Reichenbach [21])— of quantum mechanics that satisfies the requirements of “nor-
mal causality"? (Reichenbach [22]). Since an exhaustive interpretation provides a
value for every physical quantity in all physical states, it includes a complete descrip-
tion of interphenomena, that is, of unobservable entities that do not obey the usual
classical laws –such as the relative motion of an electron (see Turquette [26]).

However, since an exhaustive interpretation assigns certain values to interphenom-
ena, it leads to causal anomalies. For example, in the case of the double slit experiment
(the explanation of which can be found in Albert [1], Norsen [12] or Maudlin [9]),
it is possible to modify the distribution pattern of the particles that reach the screen
through the first slit by changing the state of the second slit (opening or closing it),
located at a distance from these particles. This is a clear example of action at a dis-
tance that implies the breach of normal causality in any exhaustive interpretation of
quantum mechanics. Therefore, given the definition of “exhaustive interpretation”,
and since interphenomena intervene in quantum mechanics –which present actions at
a distance–, it follows that there is no exhaustive interpretation of quantum mechanics
without causal anomalies (Reichenbach [20, 22]).

One way out of the bind is to admit only statements about phenomena and to
regard all statements about interphenomena as “nonsense”. This is the interpretation
that Reichenbach associates with Bohr and Heisenberg (Reichenbach [22]). Naturally,
the Bohr-Heisenberg interpretation lies in moving from an exhaustive interpretation
to a restrictive one in which only statements about phenomena are allowed. This
implies that the causal anomalies are dissolved, precisely because the pretence of
giving definite values to all physical quantities is abandoned (see Reichenbach [19]).
Nevertheless, the idea that all statements about interphenomena are “nonsense”, as
Reichenbach points out, means giving up knowledge about such entities because no
verification conditions are assigned to their corresponding statements (Reichenbach
[19]).

On the contrary, Reichenbach’s proposal consists of changing the laws of classical
logic by adding a third truth-value, the indeterminate (i) (Reichenbach [19]). Any
statement that expresses something about interphenomena must have value i . Thus, a
statement will make sense if, and only if (iff onwards), it is true, false or indeterminate.
Since i is a value analogous to the others, we substitute “nonsense” for “indeterminate”
or currently “neither verified nor falsified”, in such a way that statements about inter-
phenomena make sense again (Reichenbach [19]; Hardegree [5]). It is not necessary
to give up the statement “the particle travels through the first slit”: it is possible that
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it has a meaning, even though its truth value is not “true”, and thus the corresponding
causal anomaly is suppressed (see Reichenbach [19] and Section 6 of this paper for
further details).

Although the analysis of the physical and philosophical aspects in Reichenbach’s
proposal is not our main objective,1 it is necessary to present the issues developed
above as motivating Reichenbach’s logic, since the latter attempts to explain causal
anomalies without allowing meaningless statements. Reichenbach provides a seman-
tics for this logic, including new connectives and using the method of truth-tables.
However, he does not develop a strictly deductive calculus, nor, by extension, the
soundness and completeness theorems for it, something which has been implicitly or
explicitly criticised, for instance, by Hempel [6], Nagel [10], Feyerabend [4] or Nilson
[11]. For this reason, the aim of this paper is to implement the method of semantic-
tableaux for First Degree Entailment logic (FDE)2 to Reichenbach’s logic in order to
obtain the corresponding tableaux-based deductive calculus (Q) and to prove it sound
and complete. In Section 2, we present the formalism of quantum logic as expounded
by Reichenbach [19]. We establish the relationship between Reichenbach’s quantum
mechanics logic and FDE in Section 3. In Section 4, we elaborate the tableau rules
for RQML that we must add to the ones for FDE. This allows us to obtainQ calculus
and to achieve our main goal (Section 5): to develop a deductive calculus which is
sound and complete with respect to RQML semantics. Finally, in Section 6 we con-
sider some of the main advantages of Q calculus over natural deduction calculi3 for
Reichenbach’s analysis of causal anomalies.

2 Reichenbach’s Three-valued Quantum Logic

The following rule defines the concept of a well-formed-formula (WFF) in RQML4:

WFF ::= p | ¬A | ∼ A | A ∨ B

We include two negations as primitive monary connectives: ¬, the classical negation,
and ∼, the cyclical negation (Reichenbach [19]). The set {¬,∼,∨} is functionally
complete, as proved in Corolary 5.2 (Appendix A). We define A∧ B as ¬(¬A∨¬B).

Secondly, Reichenbach points out that a statement with truth value i is obviously
not true (it is neither false nor true). It follows that an inference from a true statement
to an indeterminate statement, which is, therefore, not true, involves moving from a
statement where the property of “being true” holds to one where it does not. Conse-
quently, inferences from true statements to indeterminate statements do not guarantee

1 See Hempel [6], Nagel [10] or Feyerabend [4] for some the most important criticisms.
2 For further references on FDE logic, see Section 3.
3 In Section 6 we consider two natural deduction systems for a logic equivalent to RQML.
4 Although Reichenbach takes every connective introduced in this section as primitive, we only take ¬, ∼
and ∨ as primitive, since they are sufficient to define the remaining connectives (see Appendix A, where
functional completeness of the set {¬, ∼,∧} is proved).
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Table 1 Truth-table for ¬, ∼
and A

A ¬A ∼ A A

1 0 i i

i i 0 1

0 1 1 1

truth preservation, and so cannot be valid. Only 1 is a designated value5 in RQML
(Reichenbach [19]).

We now present RQML semantics by means of truth-tables. First of all, we define
a new monary connective, the complete negation (A), as follows (Reichenbach [19]):
A =de f ∼ A ∨ ∼∼ A. The truth-table (Table 1) corresponds to the three negations.

On the other hand, for the order 0 < i < 1, v(A ∨ B) = max[v(A), v(B)] and
v(A ∧ B) = min[v(A), v(B)]. Also, among the possible implications in RQML,
Reichenbach uses the following three conditionals, all of which are defined in the fol-
lowing page: the standard conditional (⊃), the alternative implication6 (→) and the
quasi-implication (�) (Reichenbach [19]). Finally, we introduce the classical equiv-
alence (≡) and the alternative equivalence (∼=), also as defined symbols (Reichenbach
[19]). The semantics of these connectives is given in Table 2.

Although Reichenbach does not provide a definition for →, ⊃ and � (only for ∼=
and ≡) (Reichenbach [19]), we define them in the following way7:

A → B =de f ∼ ¬(A ∨ B)

A � B =de f (A ∧ B) ∨ ∼ A
A ∼= B =de f (A → B) ∧ (B → A) ∧ (¬A → ¬B) ∧ (¬B → ¬A)

A ⊃ B =de f (¬A ∨ B) ∨ (A ∼= B)

A ≡ B =de f (A ⊃ B) ∧ (B ⊃ A)

In the following sectionwe introduce FDE syntax and semantics. Its relation toRQML,
the logic explained in this section, will be clarified in Section 3.1.

3 First Degree Entailment

In classical propositional calculus, an interpretation is a function from formulas to
the truth values 1 and 0. But this involves that every formula is either true or false
–never neither, and never both. By contrast, FDE is a logic where interpretations are
formulated as relations rather than functions. Thus, a formula may relate to 1; it may
relate to 0; it may relate to both; or it may relate to neither. Therefore, the fact that
a propositional parameter is untrue does not mean that it is false; and the fact that a

5 Remember that a designated truth value is the one preserved in valid inferences.
6 As a special feature, we remark in Appendix B that deduction theorem (Theorem 6) only holds for this
conditional.
7 Note that ⊃ corresponds to Łukasiewicz three-valued conditional (Łukasiewicz, [7]; Łukasiewicz [8]).
RQML could then be regarded as an extension of Ł3 (however, see footnote 10 on some differences between
RQML and both Ł3 and K3).
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Table 2 Truth-table for ∧, ∨, →, �, ⊃, ∼= and ≡
A B A ∧ B A ∨ B A → B A � B A ⊃ B A ∼= B A ≡ B

1 1 1 1 1 1 1 1 1

1 i i 1 0 i i 0 i

1 0 0 1 0 0 0 0 0

i 1 i 1 1 i 1 0 i

i i i i 1 i 1 1 1

i 0 0 i 1 i i 0 i

0 1 0 1 1 i 1 0 0

0 i 0 i 1 i 1 0 i

0 0 0 0 1 i 1 1 1

propositional parameter is false does not mean that it is untrue (hereafter, we mainly
follow Priest [18]; for further developments of FDE, Belnap-Dunn semantics and its
extensions, see Routley & Routley [24], Rivieccio [23], Albuquerque, Přenosil &
Rivieccio [2], Omori & Wansing [14] and Přenosil [17]).

Hence, an FDE interpretation is a relation ρ between propositional parameters
and the values 1 and 0, that is, ρ ⊆ P × {1, 0}, where P is the set of propositional
parameters. For example, pρ1means that p relates to 1. Given an interpretation ρ, this
can be extended to a relation between all formulas and truth values by the following
recursive clauses (Priest [18]) –we take ¬ and ∨ as primitive connectives in FDE, and
define A ∧ B as ¬(¬A ∨ ¬B)8:

A ∨ Bρ1 iff Aρ1 or Bρ1
A ∨ Bρ0 iff Aρ0 and Bρ0
¬Aρ1 iff Aρ0
¬Aρ0 iff Aρ1

These clauses are the same as the classical truth conditions, stripped of the assumption
that truth and falsity are exclusive and exhaustive.

Let us now consider the tableaux for FDE. Each entry of a tableau has the form
A,+ or A,−, where A,+means that A is related to 1 (A is true) and A,−means that
it is not. So, ¬A,+ means that A is related to 0 (A is false) and ¬A,− that it is not.
Hence, if both A,− and ¬A,− occur on a branch, it means that A is indeterminate
(Priest [18]). To test the inference A1, ..., An 	FDE B, we start with an initial list of
the form

A1,+
...

An,+
B,−

8 While the language of FDE, as expounded by Priest, contains the connectives ∧, ∨ and ¬ as primitive
(Priest [18]), we define ∧ in terms of ¬ and ∨.
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A branch of a tableau closes if it contains nodes of the form A,+ and A,−. The
basic FDE rules given by Priest [18] are as follows –although ∧ is taken as a defined
connective here, we introduce the corresponding tableau rules for FDE (as Priest does)
for practical reasons:

Box 1 FDE BASIC RULES

¬¬A, +
A, +

¬¬A, −
A, −

A ∧ B, +
A, +
B, +

A ∨ B, −
A, −
B, −

A ∧ B,−

A,− B,−

A ∨ B,+

A,+ B,+

¬(A ∧ B), +
¬A ∨ ¬B, +

¬(A ∧ B), −
¬A ∨ ¬B, −

¬(A ∨ B), +
¬A ∧ ¬B, +

¬(A ∨ B), −
¬A ∧ ¬B, −

3.1 First Degree Entailment and Reichenbach’s Three-valued Logic

For any formula A and any interpretation ρ in FDE, there are four possibilities: A is
true and not false; A is false and not true; A is both true and false; A is neither true
nor false. It is then possible to think of FDE as a four-valued logic. However, consider
an FDE interpretation satisfying the following constraint:

Exclusion: For no A, Aρ1 and Aρ0

No formula is both true and false in this FDE-interpretation, while a propositional
parameter can still be neither true nor false. Our thesis is that the logic defined in
terms of truth preservation over all interpretations satisfying this constraint could be
RQML. However, RQML uses more primitive connectives than FDE, so we cannot
say that RQML semantics strictly corresponds to an FDE interpretation satisfying the
previous constraint. In fact, ∼ A is not definable in terms of ¬ and ∨, given that they
preserve value i . Hence, since RQML connectives must also be interpretable in terms
of FDE relational semantics, we introduce cyclical negation as a primitive symbol in
FDE and give its corresponding FDE interpretation:

∼ Aρ1 iff ¬Aρ1 iff Aρ0
∼ Aρ0 iff A�ρ1 and ¬A�ρ1 iff A�ρ1 and A�ρ0

Since both logics now share the same syntax it is possible to use FDE formalism to
give a calculus for RQML (remember that the definitions of the RQML conditionals
and equivalences, that is, →, �, ⊃, ≡ and ∼=, are in Section 2). Onwards, we will
write FDE* for FDE satisfying the exclusion constraint and including ¬, ∼ and ∨ as
primitive constants.
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Aswe have seen in Section 4, RQML is a three-valued logic in which, for any given
formula A, there are three possibilities: v(A) = 1 (A is true); v(A) = 0 (A is false);
v(A) = i (A is indeterminate). These are the same possibilities as in FDE*: Aρ1 (A
is true); Aρ0 (A is false); A�ρ1 and A�ρ0 (A is indeterminate). In fact, in RQML, as in
FDE*, there can be gaps, but not gluts.9

Now,we can use the FDE-tableaux formalism (A,+; A,−;¬A,+;¬A,−) tomake
a proper calculus for RQML.We must pay attention that the exclusion constraint adds
a closing rule: a branch of a tableau also closes if it contains nodes of the form A,+
and ¬A,+. Given the new connectives, in Section 4 we will introduce new closing
and tableau rules for RQML in addition to the rules already introduced for FDE in this
section (Box 1).

We first prove Theorem 1, which allows to connect FDE* relational semantics with
RQML truth-functional semantics, but previously we give the following definition:

Definition 1 We write �FDE* for validity and logical consequence according to FDE*
semantics and�RQML for validity and logical consequence according toRQMLseman-
tics, and define �FDE* and �RQML as follows:

a) � �FDE* A iff, if Bρ1 for all B ∈ �, then Aρ1
b) � �RQML A iff, if v(B) = 1 for all B ∈ �, then v(A) = 1

Theorem 1 10 � �FDE* A iff � �RQML A

Proof From left to right, suppose � �FDE* A. Hence, for an FDE* interpretation ρ,
if Bρ1 for every B ∈ �, then Aρ1. But since

Aρ1 in FDE* iff v(A) = 1 in RQML
A�ρ1 and A�ρ0 in FDE* iff v(A) = i in RQML
Aρ0 in FDE* iff v(A) = 0 in RQML

whenever v(B) = 1 for every B ∈ �, then v(A) = 1 in RQML, which means that
� �RQML A. Similarly, from right to left. ��
The above theorem depends on the introduction of ∼ (together with ¬ and ∨) as a
primitive connective in FDE* and the definition of A, ⊃, �, →, ≡ and ∼= in terms of
the primitive connectives –it is clear that if FDE* and RQML did not share the same
language, the relationship stipulated inTheorem1would not hold. The aforementioned
theorem will play an important role in provingQ sound and complete with respect to
RQML semantics in Section 5.

9 In other words, it can be the case that A is neither true nor false, but not both (Priest [18]).
10 A similar proof of this theorem can be found in Section 3 of (Estrada-Gonzales & Cano-Jorge, [3]), in
which Dunn’s semantics is applied to Reichenbach’s connectives to obtain a relational semantics which
excludes the subset {0, 1} of the set of truth values {0, 1} (this is equivalent to our Exclusion constraint).
Although both our proposal and that of the above paper use the same relational semantics, in order to define
FDE* we take only ¬, ∼ and ∨ as primitive connectives and define the remaining new connectives. By
contrast, Estrada-Gonzales & Cano-Jorge take Reichenbach’s new negations and conditionals as primitive
connectives, and regard Reichenbach’s logic as an expansion of the fragment {¬, ∨,∧} of Kleene’s K3
logic by means of five new connectives. Note, however, that our set {¬,∼, ∨} of primitive connectives
is functionally complete (see Appendix A), while that of the primitive connectives of K3 is not. This
suffices to state that K3 is not equivalent to RQML. The same applies to Ł3, containing ¬, ∧, ∨ and ⊃ as
primitive connectives, which do not form a functionally complete set. Moreover, ∼ is not definable with
the connectives of Ł3.
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Table 3 Truth-table for ¬ ∼ A A ∼ A ¬ ∼ A

1 i i

i 0 1

0 1 0

4 Q Calculus: an FDE*–based Calculus for RQML

In order to develop the table rules for Q calculus, in this section we proceed in the
following way. Firstly, according to RQML semantics, we elaborate the truth table
corresponding to every connective. Next, we consider the cases in which the corre-
sponding formula is true and the cases in which it is not: in both cases, this will allow
us to check the truth-values to which the propositional parameters that are included in
the formula relates. Finally, with this result, we develop the FDE* rules for the cases
in which the formula relates to 1 and those in which it does not. For instance, to get the
rule for ¬ ∼ A,+, we first construct the table (Table 3). We check that when ¬ ∼ A
is true, A is i . Hence, after applying the rule for¬ ∼ A,+, the nodes A,− and¬A,−
must be on the extended branch. Similarly for ¬ ∼ A,−. Note that in the latter case,
when ¬ ∼ A is not true, there are two possibilities: A is true or false. Therefore, we
must add two branches, one of them with A,+, and the other with ¬A,+, as shown
in Box 4 below.

We add the rules in Box 2 to 6 to the ones in Box 1 to develop Q calculus. First,
the closing rules for FDE* are the following:

Box 2 CLOSING RULES

A branch closes whenever one of these formulas or pairs of formulas appears
on it:

(1) A,+ and A,−
(2) A,+ and ¬A,+

(3) ∼ A,+
(4) ¬A,+

(1) is contradictory both in FDE with and without exclusion. Also, it immediately
follows from the exclusion constraint for FDE* that (2) entails a contradiction. On the
other hand, the reason why a branch closes if ∼ A,+ or ¬A,+ occurs on it (rules (3)
and (4), respectively) is the following: the truth-table for∼ A,+ and¬A,+ (Table 4)
show that they can never be true, so none of them relates to 1 in an FDE* interpretation.

Table 4 Truth-table for ∼ A and
¬A

A ¬A ∼ A A ∼ A ¬A

1 0 i i 0 i

i i 0 1 i 0

0 1 1 1 i 0
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Since the rules for ∧ in Box 1, the ones for A in Box 3 and all the rules in Box 5 and
Box 6 correspond to defined connectives (see Section 2), they all could be omitted.
However, we include them in Q for practical reasons.

Box 3 NON-CLASSICAL NEGATIONS ELIMINATION

∼ A, +

¬A, +

∼ A, −

¬A, −

A,+

A, −

A,−

A, +

Box 4 COMBINED NEGATIONS ELIMINATION

¬A, −

A, + A, −

¬ ∼ A, +

A, −
¬A, −

¬ ∼ A, −

A, + ¬A, +

Box 5 CONDITIONALS ELIMINATION

A ⊃ B, +

¬A, + B, + A, −
¬A, −
B, −

¬B, −
A → B,+

A, − B, +
A � B, +

A, +
B, +

A ⊃ B, −

A, +
B, −

¬A, −
¬B, +

A → B, −

A, +
B, −

A � B, −

A, − B, −
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Box 6 NEGATED CONDITIONALS ELIMINATION

¬(A ⊃ B), +

A, +
¬B, +

¬(A → B), +

A, +
B, −

¬(A � B), +

A, +
¬B, +

¬(A ⊃ B), −

A, − ¬B, −

¬(A → B), −

A, − B, +

¬(A � B), −

A, − ¬B, −

Onwards, we write 	Q for deduction by means of Q calculus.

4.1 Examples of Valid Inferences in RQML and Deductions inQ

Firstly,Modus ponens is a valid inference in RQML (whatever the conditional used) as
we can check in Table 2.We also prove that (1) A, A → B 	Q B (2) A, A � B 	Q B
and (3) A, A ⊃ B 	Q B:

A ⊃ B, +
A, +
B, −

¬A, +
⊗

B, +
⊗

A, −
¬A, −
B, −

¬B, −
⊗

A → B, +
A, +
B, −

A, −
⊗

B, +
⊗

A � B, +
A, +
B, −
A, +
B, +
⊗

As expected, tertium non datur does not generally hold in RQML, except for the form
A ∨ A11 (see Table 5). We now prove that 	Q A ∨ A:

11 The validity of this last formula allows us to define a pseudo tertium non datur (Reichenbach [19]).
The formula A ∨ A does not have the classical properties of excluded middle, since, by analogy, complete
negation also does not have the genuine properties of classical negation. It does not allow us, for instance,
to infer the truth value of A if we know the truth value of A.
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Table 5 Tertium non datur
A ¬A ∼ A A A ∨ ¬A A ∨ ∼ A A ∨ A

1 0 i i 1 1 1

i i 0 1 i i 1

0 1 1 1 1 1 1

A ∨ A,−
A,−
A,−
A,+
⊗

We have already checked that the tertium non datur is not valid in RQML because
there is a tertium, an intermediate value between 0 and 1. However, the formula
A ∨ ∼ A ∨ ∼∼ A is a valid formula in RQML (Table 6) and a theorem of our
calculus. So, we have something like a quartum non datur (see Reichenbach [19] for
further details), which is also a theorem of Q:

(A ∨ ∼ A) ∨ ∼∼ A,−
A ∨ ∼ A,−
∼∼ A,−

A,−
∼ A,−
¬A,−

¬ ∼ A,−

A,+
⊗

¬A,+
⊗

The law of non-contradiction (LNC) holds in RQML in three forms (Reichenbach
[19]), as shown in Table 7.

Table 6 Quartum non datur A ∼ A ∼∼ A A ∨ ∼ A ∨ ∼∼ A

1 i 0 1

i 0 1 1

0 1 i 1
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Table 7 Law of non-contradiction

A ¬A ∼ A A A ∧ ¬A A ∧ ∼ A A ∧ A (A ∧ ¬A) (A ∧ ∼ A) (A ∧ A)

1 0 i i 0 i i 1 1 1

i i 0 1 i 0 i 1 1 1

0 1 1 1 0 0 0 1 1 1

The three last formulas in Table 7 are theorems of Q calculus:

A ∧ ∼ A,−
A ∧ ∼ A,+

A,+
∼ A,+
¬A,+

⊗

A ∧ ¬A,−
A ∧ ¬A,+

A,+
¬A,+

⊗

A ∧ A,−
A ∧ A,+
A,+
A,+
A,−
⊗

However, ¬(A ∧ ¬A), the classical LNC, is neither valid in RQML nor a theorem
in Q.

The principle of explosion holds in RQML (Table 8). Therefore, A∧¬A �RQML B,
A ∧ ∼ A �RQML B and A ∧ A �RQML B are valid inferences (note that the premises
never take the value 1). The inferences above hold in Q, so A ∧ ¬A 	Q B, A ∧ ∼
A 	Q B and A ∧ A 	Q B:

A ∧ ¬A,+
B,−
A,+

¬A,+
⊗

A ∧ ∼ A,+
B,−
A,+

∼ A,+
¬A,+

⊗

A ∧ A,+
B,−
A,+
A,+
A,−
⊗

The distribution of ∧ over ∨ holds in RQML. In fact,

�RQML [A ∧ (B ∨ C)] ≡ [(A ∧ B) ∨ (A ∧ C)]

and
�RQML [A ∧ (B ∨ C)] ∼= [(A ∧ B) ∨ (A ∧ C)]
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Table 8 Principle of explosion
A ¬A ∼ A A A ∧ ¬A A ∧ ∼ A A ∧ A

1 0 i i 0 i i

1 0 i i 0 i i

1 0 i i 0 i i

i i 0 1 i 0 i

i i 0 1 i 0 i

i i 0 1 i 0 i

0 1 1 1 0 0 0

0 1 1 1 0 0 0

0 1 1 1 0 0 0

as one can check by observing the truth-tables for≡ and∼=: since v(A ≡ B) = v(A ∼=
B) = 1 iff v(A) = v(B), the formulas A ∧ (B ∨ C) and (A ∧ B) ∨ (A ∧ C) are
equivalent. Then, A ∧ (B ∨ C) 	Q (A ∧ B) ∨ (A ∧ C).

Finally, reductio ad absurdum holds in RQML only in the two following forms
(Table 9): �RQML (A → A) → A and �RQML (A ⊃ A) ⊃ A. We now prove that
	Q (A → A) → A and 	Q (A ⊃ A) ⊃ A:

(A → A) → A,−
A → A,+

A,−
A,+

A,−
⊗

A,+
A,−
⊗

Table 9 Reductio ad absurdum for → and ⊃
A A A ⊃ A A → A (A → A) → A (A ⊃ A) ⊃ A

1 i i 0 1 1

i 1 1 1 1 1

0 1 1 1 1 1
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(A ⊃ A) ⊃ A,−

A ⊃ A,+
A,−
A,+

¬A,+
⊗

A,+
A,−
⊗

A,−
¬A,−
A,−

¬A,−
⊗

¬(A ⊃ A),−
¬A,+

⊗

However, �Q (A � A) � A and �Q (A � A) � A (Table 10):

(A � A) � A,−

(A � A),−

A,− A,−
A,+

A,−
A,+

5 Soundness and Completeness ofQ Calculus

In this sectionwemainly use the proofmethod given by Priest for FDE tableaux (Priest
[18]) to show thatQ is sound and complete with respect to both FDE* semantics and
Reichenbach’s three-valued semantics.

Definition 2 If ρ is a relational interpretation and b is a branch of a tableau, we say ρ

is faithful to b iff for every node A,+ on b, Aρ1, and for every node A,− on b, A�ρ1.

Table 10 Reductio ad absurdum
for � A A A � A (A � A) � A

1 i i i

i 1 i i

0 1 i i
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Lemma 1 If ρ is faithful to a branch b of a tableau and a tableau rule is applied to b,
then ρ is faithful to at least one of the branches generated.

Proof The proof is by a case-by-case examination of the tableau rules. For example,
suppose ∼ A,+ is on the branch and we apply the corresponding rule: since ρ is
faithful to the branch b, ∼ Aρ1, then ¬Aρ1, so ρ is faithful to the extended branch.
Now suppose ∼ A,− is on the branch. Suppose we apply the corresponding rule:
since ρ is faithful to the branch, ∼ A�ρ1, then ¬A�ρ1, so ρ is faithful to the extended
branch. Now, assume A,+ is on b and we apply the corresponding rule. Since ρ is
faithful to the branch, Aρ1. Then, A�ρ1, so ρ is faithful to the extended branch. Next,
assume ¬ ∼ A,+ is on the branch. Since ρ is faithful to the branch, ¬ ∼ Aρ1.
Now suppose we apply the rule for ¬ ∼ A,+: then, A,− and ¬A,− will be on the
extended branch, so, since ρ is faithful to¬ ∼ A,+, both A�ρ1 and A�ρ0. Therefore, ρ
is faithful to the extended branch. Finally, assume A → B,+ is on the branch. Since
ρ is faithful to the branch, A → Bρ1. Assume we apply the rule for A → B,+: then,
either A�ρ1 or Bρ1. Hence, ρ is faithful to either the left branch or the right branch.
Similarly for the other tableaux rules. ��
Lemma 2 Every tableau in Q can be completed12 after a finite number of steps.

Proof First, note that every tableau rule, when applied to a formula, generates a finite
extension of the corresponding branch. Second,Q rules eventually allow us to decom-
pose any complex formula into atomic formulas or classical negations (¬) of atomic
formulas, with its corresponding + or −. Therefore, every tableau is completed after
a finite number of steps. ��
Theorem 2 (Soundness) For finite �, if � 	Q A then � �FDE* A.

Proof Suppose that � �FDE* A. Then there is a interpretation, ρ, such that Bρ1 for
every B ∈ � but A�ρ1. Now consider a completed tableau for the inference. It follows
from Lemma 1 that ρ is faithful to, at least, one branch, b, of the completed tableau.
Now if b were closed, it would contain one of the formulas or pair of formulas that
we can find in the closing rules (Box 2). But this is impossible since ρ is faithful
to the branch, according to Lemma 1 (otherwise, ρ would not be faithful to any
generated branch, contrary to the assumption). Hence, the tableau is open, i.e., � �Q
A. Therefore, if � 	Q A, then � �FDE* A. ��
Definition 3 Let b be an open branch of a tableau. The interpretation induced by b is
the interpretation, ρ, such that for every propositional parameter, A:

Aρ1 iff A,+ occurs on b
Aρ0 iff ¬A,+ occurs on b

12 A branch of a tableau is completed (regardless of whether it is open or closed) iff no further rules can
be applied to it. A table is completed iff all its branches are completed.
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Lemma 3 Let b be an open completed branch of a tableau. Let A be any formula and
ρ the interpretation induced by b. Then:

if A,+ occurs on b, then Aρ1
if A,− occurs on b, then A�ρ1
if ¬A,+ occurs on b, then Aρ0
if ¬A,− occurs on b, then A�ρ0

Proof The proof is by induction on the complexity of A. Suppose A is a propositional
parameter: if A,+ occurs on b, then Aρ1 by definition, and if A,− occurs on b, then
A,+ does not occur on b, since it is open. Hence, by definition, it is not the case that
Aρ1, so A�ρ1. The cases for 0 are similar. Suppose∼ A,+ occurs on the branch b. Then
¬A,+ occurs on b. By induction hypothesis, Aρ0. Hence, ∼ Aρ1, as required. Now
assume ∼ A,− occurs on the branch. Then ¬A,− is on b. By induction hypothesis,
¬A�ρ1, so ∼ A�ρ1, as required. For A: if A,+ occurs on b, then A,− occurs on b.
By induction hypothesis, A�ρ1. Therefore, Aρ1, as required. Now suppose ¬ ∼ A,+
occurs on b. Then, A,− and ¬A,− occur on b. By induction hypothesis, A�ρ1 and
A�ρ0. Hence, ¬ ∼ Aρ1. Now assume A → B,+ occurs on b. Then, A,− or B,+
occur in b. By induction hypothesis, A�ρ1 or Bρ1. Therefore, A → Bρ1, as required.
Similarly for the others rules. ��
Theorem 3 (Completeness) For finite �, if � �FDE* A then � 	Q A.

Proof Suppose that � �Q A. Consider a completed open tableau for the inference,
and choose an open branch. The interpretation that the branch induces makes all the
members of � true, and A false, by Lemma 3. Hence, � �FDE* A. Therefore, if
� �FDE* A, then � 	Q A. ��
Corollary 3.1 (Consistency)Q calculus is consistent, that is,�Q A∧¬A,�Q A∧ ∼ A
and �Q A ∧ A for any formula A.

Proof Suppose the opposite, i. e., that there exist some formula A such that either
	Q A∧¬A, or	Q A∧ ∼ A or	Q A∧A. Hence, byTheorem2, either�FDE* A∧¬A,
or �FDE* A ∧ ∼ A or �FDE* A ∧ A. But none of these can be the case, since if Aρ1,
then¬A�ρ1,∼ A�ρ1 and A�ρ1 in FDE*, so none of the three conjunctions above can be
valid (and therefore cannot be a theorem, by Theorem 2). Hence,Q is consistent.13 ��
Theorem 4 (Main Theorem) Q calculus is sound and complete with respect to
Reichenbach’s three-valued semantics, that is, for finite �, � �RQML A iff � 	Q A.

Proof It follows directly from Theorems 1, 2, and 3. ��
13 See Post [16], where the consistency of the propositional axiomatic system in Principia Mathematica
is proved by means of a similar method.
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6 Logico-philosophical Advantages ofQ Calculus

As explained in the introduction, one of the main goals of RQML is to pro-
vide an exhaustive interpretation14 of quantum mechanics which allows to avoid
causal anomalies that arise, for instance, in the double slit experiment. Having
shown that Q calculus is sound and complete with respect to RQML semantics,
we will now show how this calculus can be applied to Reichenbach’s solu-
tion to causal anomalies. Furthermore, we will compare Q with other calculi
developed for many-valued logics and present some main formal advantages of
Q.

First, we offer a brief outline of Reichenbach’s proposal to avoid the causal anomaly
that arises in the classical interpretation of the double slit experiment –a detailed
explanation of which can be found in (Estrada-González & Cano-Jorge [3]). For
a system of two slits, let B1 and B2 respectively state that a given particle passes
through slits 1 and 2, and let C represent the causal anomaly that arises in the classi-
cal interpretation of the double slit experiment. Now, let B1 ∼= ¬B2 express that the
particle passes through exactly one of the slits, and let (B1 ∨ B2) → C express
that, if the particle is known to have passed through one of the slits, the causal
anomaly obtains.15 As can be easily checked, C follows from the premises above
if only classical inputs are considered (in this case, if we assume that B1 ∼= ¬B2,
then B1 ∨ B2 is necessarily true even if no observation is made on the slits). Nev-
ertheless, in RQML it is possible that v(B1 ∼= ¬B2) = v((B1 ∨ B2) → C) = 1
with v(B1) = v(B2) = i and either v(C) = i or v(C) = 0, so B1 ∼= ¬B2,
(B1 ∨ B2) → C �RQML C .16

It can be checked that the above solution makes use of the meaning of i as “neither
verified nor falsifies”, and which is applied to both B1 and B2 in order to state that it
is not known whether or not the particle has passed through any of the slits. Through
Q calculus, however, the proof that the causal anomaly does not follow in RQML can
be deductively obtained by means of the following proof17 (from which the above
countermodels can be easily inferred):

14 In the sense already indicated in the introduction.
15 A classical interpretation of the double-slit experiment implies that, if something is observed on the
detection screen, then either B1 is true or B2 is true.
16 Roughly, this means that, even if something is observed on the detection screen, it does not follow that
either B1 or B2 is true, since both B1 and B2 could be indeterminate, as indicated in the counter-model
above. In this case, since neither B1 nor B2 can be asserted, neither can it be asserted that the state of slit
2 affects the passage of the particle through slit 1, simply because we cannot affirm that the particle has
passed through slit 1.
17 Steps (a), (b), (c) and (d) follow from the definition of ∼=. In steps (c) and (d) we would obtain ¬B1 →
¬¬B2, + and ¬¬B2 → ¬B1, +, although we have directly eliminated the double negations.
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B1 ∼= ¬B2,+
(B1 ∨ B2) → C,+

C,−
B1 → ¬B2,+ (a)

¬B2 → B1,+ (b)

¬B1 → B2,+ (c)

B2 → ¬B1,+ (d)

C,+
⊗

B1 ∨ B2,−
B1,−
B2,−

¬B2,+
¬B2,−

⊗
B1,+
⊗

B1,−
B1,+
⊗

¬B2,−
B2,+
⊗

¬B1,−
B2,− ¬B1,−

⊗

As expected, from the only open branch we can read off the two following counter-
models (by Theorem 1):

v(B1) = v(B2) = i
v(C) = i

v(B1) = v(B2) = i
v(C) = 0

We now turn to the formal advantages of this analysis of Reichenbach’s solution.
With regard to the development of deductive calculi for many-valued logics, although
no tableaux-based calculus has yet been developed for RQML, in (Omori & Wans-
ing [15]) two natural deduction systems are provided for a logic (called K34 by the
authors18) equivalent to RQML. The systems in question are provided in definitions
13 and 17 of the above-mentioned paper, and they are proved to be sound and com-
plete with respect to the three-valued semantics in Theorem 27. Nevertheless, it must
be noted that, contrary to tableaux-based calculus, natural deduction systems neither
allow to sintactically prove that

B1 ∼= ¬B2, (B1 ∨ B2) → C � C

nor to infer a countermodel, which would provide the situation in which the causal
anomaly does not obtain.By contrast,Q calculus allows both to prove that the inference

18 K34 is a variation of Kleene’s three-valued logic K3 which adds the negation∼4 (equivalent to Reichen-
bach’s ∼) as a primitive connective.
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from B1 ∼= ¬B2 and (B1 ∨ B2) → C to C is not valid19 and to read off from the
open branch of the tableau a counter-model corresponding to Reichenbach’s solution
to the causal anomaly that arises in the double slit experiment (as shown on the
proof above). Hence, Q calculus allows to obtain a proper counter-model (showing
the expected physical situation, in which no observation is made on the slits and the
causal anomaly does not obtain) which cannot be inferred from a natural deduction
calculus.

7 Conclusion

In this paper we have developed an FDE–based tableaux calculus (Q) for RQML and
proved it sound and complete with respect to Reichenbach’s three-valued semantics.
Theorem 1 (Section 3) relates FDE* and RQML making it possible to develop Q
calculus. Precisely, this theorem allows to move from FDE* relational semantics to
RQML truth-functional semantics, and vice versa –otherwise, it would not have been
possible to prove thatQ (an FDE–based calculus) is sound and complete with respect
to RQML semantics.

Theorems 2 and 3 (Section 5), together with Theorem 1 (Section 3), allow to prove
Theorem 4 (Section 5), the main objective of our paper. This theorem emphasises the
relationship between RQML, FDE* and Q calculus, and converts any consequence
relation � �RQML A in RQML into a deduction � 	Q A in Q, and vice versa.
This makes it unnecessary to refer to FDE* relational semantics. Q calculus and
Reichenbach’s semantics are, therefore, sufficient to provide a sound and complete
quantum logic system.

Appendix A

Definition 4 A set S of truth-functional connectives is functionally complete in an
n-valued logic L (for finite n) iff any truth-function f in L different from the ones
in S can be defined in terms of S (Theorem 5 provides a functional completeness
criterion).

Theorem 5 20 If A = {0, i, 1}, with order 0 < i < 1, the set containing the monadic
functions

f000, fii i , f111, f100, f010, f001

and the binary functions ∧ and ∨ is functionally complete.

Proof Any n-ary connective g defined over A = {1, i, 0} can be expressed by means
of the following normal form:

g(x1, ..., xn) =
∨

(a1,...,an)∈An

[g(a1, ..., an) ∧
∧

j∈A

La j (x j )]

19 It is possible to know precisely when a tableaux is completed (see footnote 12).
20 We are grateful to Prof. José Pedro Úbeda Rives for his personal communication of Theorem 5 –see
also Úbeda [27] for more information on this topic. Corollary 5.2 below easily follows from Theorem 5.
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(for ak ∈ A), where L1 = f100, Li = f010 and L0 = f001 ( f jkm –for j, k,m ∈
{0, i, 1}– represents the unary connective h such that h(1) = j , h(i) = k and h(0) =
m), and g(a1, ..., an) for any a1, ..., an is 0, i or 1, that can be obtained from f111, fii i
and f000 applied to any variable x1, ..., xn . ��
Remark 5.1 Another general criterion of functional completeness for many-valued
logics is provided by Słupecki in (Słupecki [25]). Also, see Theorem 3.4 in (Omori
& Sano [13]) for further developments on Słupecki’s criterion for functional com-
pleteness. Moreover, in (Omori & Wansing [15]), functional completeness of K34

(equivalent to RQML) is given in Theorem 39, and the functional completeness of
{∼,∨} is given in (Post [16]) –see footnote 21.

Corollary 5.2 The set {¬,∼,∨} of the primitive connectives in RQML is functionally
complete.

Proof The function ∨ is a primitive connective in RQML (see Section 2), while ∧ is
definable in terms of ¬ and ∨; also, the six monary functions in Theorem 5 can be
defined in terms of ¬,∼ and ∨:

f111 = A ∨ (∼ A ∨ ∼∼ A)

fii i = ∼ f111
f000 = ¬ f111
f100 = ¬ ∼∼ [∼ (∼ A ∨ ∼∼ A) ∨ ∼∼ (∼ A ∨ ∼∼ A)]
f010 = ¬ ∼ ¬(A ∨ ∼ A)

f001 = ¬(A ∨ ¬ ∼ A)

Since∨ is a primitive connective in RQML and, on the other hand, the truth-functions
∧, f000, fii i , f111, f100, f010 and f001 are definable in terms of our primitive con-
nectives, the set {¬,∼,∨} is functionally complete in RQML.21 Naturally, it follows
that the ten connectives taken as primitives by Reichenbach also form a functionally
complete set. ��

Appendix B

Theorem 6 (Deduction Theorem) If � 	Q A, where � = {B1, ... Bn}, then

	Q
∧

i≤n

Bi → A

Proof First, suppose � 	Q A. This corresponds to a closed tableau of type

21 Yet, since ¬ can be defined as ∼ [∼ (∼∼ A ∨ A)∨ ∼∼ (∼ A ∨ A)], the set {¬, ∼, ∨} is not
independent. However, we include¬ as a primitive connective, given as it is commonly taken as an element
of the formalism used in the calculus for FDE and FDE*. A proof that {∼,∨} is functionally complete was
given by Post [16]. Given that RQML and Post’s three-valued logic with ∼ and ∨ as primitive connectives
(hereafter P3) are both functionally complete three-valued logics and take 1 as the only designated value,
then � �RQML A iff � �P3 A (where � can be empty). This entails that RQML and P3 are equivalent.
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B1

...

Bi

A,−
...

⊗

Now consider a tableau starting with
∧

i≤n Bi → A,−. Given that � 	Q A, the
tableau

∧
i≤n Bi → A,−
∧

i≤n Bi ,+
A,−

...

⊗

closes too, since it will contain Bi ,+ for every Bi ∈ � and A,− (that is, the same
elements as the tableau for � 	Q A). Hence, if � 	Q A, where � = {B1, ... Bn},
then

	Q
∧

i≤n

Bi → A

as required. ��
Theorem 7 There exists deductions � 	Q A, where � = {B1, ... Bn}, such that

�Q
∧

i≤n

Bi � A

or
�Q

∧

i≤n

Bi ⊃ A

Proof By means of Q calculus one can check that

A ∨ A 	Q A, but �Q (A ∨ A) � A
A ⊃ ∼ A 	Q∼ A, but �Q (A ⊃ ∼ A) ⊃ ∼ A

Hence, Deduction Theorem only applies to →, and neither to � nor to ⊃. ��
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17. Přenosil, A. (2021). The lattice of super-Belnap logics. The Review of Symbolic Logic, 16(1), 114–163.
https://doi.org/10.1017/S1755020321000204

18. Priest, G. (2008). An Introduction to Non-Classical Logic. Cambridge University Press.
19. Reichenbach, H. (1944). Philosophic Foundations of Quantum Mechanics. University of California

Press.
20. Reichenbach, H. (1946). Reply to Ernest Nagel’s Criticism of My Views on QuantumMechanics. The

Journal of Philosophy, 43(9), 239–247.
21. Reichenbach, H. (1948). The principle of anomaly in quantum mechanics. Dialectica, 2(4), 337–350.
22. Reichenbach, H. (1953). Les fondements logiques de la mécanique des quanta. Annales de l’institut

Henri Poincaré, 13(2), 109–158.
23. Rivieccio, U. (2012). An infinity of super-Belnap logics. Journal of Applied Non Classical Logic,

22(4), 319–335. https://doi.org/10.1080/11663081.2012.737154
24. Routley, R., & Routley, V. (1972). The Semantics of First Degree Entailment. Noûs, 6(4), 335–359.

https://doi.org/10.2307/2214309
25. Słupecki, J. (1972). A criterion of fullness of many-valued systems of propositional logic. Studia

Logica, 30, 153–157.
26. Turquette, A. (1945). Philosophic Foundations of Quantum Mechanics by Hans Reichenbach. The

Philosophical Review, 54(5), 513–516.
27. Úbeda, J. P. (1989). Generalización de las formas normales. Quaderns de Filosofia i Ciència, 15(16),

73–78.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

245A Sound and Complete Tableaux Calculus for Reichenbach’s...

https://doi.org/10.1017/S1755020321000204
https://doi.org/10.1080/11663081.2012.737154
https://doi.org/10.2307/2214309

	A Sound and Complete Tableaux Calculus for Reichenbach's Quantum Mechanics Logic
	Abstract
	1 Introduction
	2 Reichenbach's Three-valued Quantum Logic
	3 First Degree Entailment
	3.1 First Degree Entailment and Reichenbach's Three-valued Logic

	4 mathcalQ Calculus: an FDE*–based Calculus for RQML
	4.1 Examples of Valid Inferences in RQML and Deductions in mathcalQ

	5 Soundness and Completeness of mathcalQ Calculus
	6 Logico-philosophical Advantages of mathcalQ Calculus
	7 Conclusion
	Appendix A
	Appendix B
	Acknowledgements
	References




