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Abstract
This paper presents a logic of preference and functional dependence (LPFD) and its
hybrid extension (HLPFD), both ofwhose sound and strongly complete axiomatization
are provided. The decidability of LPFD is also proved. The application of LPFD and
HLPFD to modelling cooperative games in strategic form is explored. The resulted
framework provides a unified view on Nash equilibrium, Pareto optimality and the
core. The philosophical relevance of these game-theoretical notions to discussions of
collective agency is made explicit. Some key connections with other logics are also
revealed, for example, the coalition logic, the logic of functional dependence and the
logic of ceteris paribus preference.

Keywords Coalitional power Ceteris paribus preference Functional dependence
Pareto optimality Collective agency.

1 Introduction

On each of the three concepts, dependence, preference and coalitional power, there
have been logical works. To name but a few, for dependence, the dependence logic
[18] has been studied in various ways (cf.[9]) and a simple logic of functional depen-
dence is recently proposed in [3]; for coalitional power, the coalition logic [14] and
the alternating-time temporal logic (ATL) [1, 10] are representative; for preference,
good surveys can be found in [11] and [12, Chapter 1.1]. Despite not being explicitly
emphasized, the concept of dependence permeates the analyses of the other two con-
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cepts, for example, in [6, 14]. However, as far as we know, there is hardly any logic
explicitly modeling all of these three concepts, especially making dependence the hub
to which the other two concepts join. In this paper, we provide such a logic, which
characterizes the interaction between the three concepts. Moreover, we show that by
making the role of dependence explicit, our logical analysis leads to a unified view of
several key concepts in game theory, namely Nash equilibrium, Pareto optimality and
the core. We also explore a philosophical implication about collective agency of our
logical analysis. We take the stability of a group to be an essential aspect of collective
agency. Instead of focusing on intentionality as in the philosophical literature [16], we
elaborate on our understanding in a game theoretical context.

Our main work in this paper centers on introducing preference into the logic of
functional dependence [3] by adding preference relations in the original semantic
model and anewmodal operator in the original language for the intersectionof different
kinds of relations, including equivalence relations, preorders and strict preorders. By
taking a game theoretic interpretation of the semantic setting, the new operator enables
us to express not only Nash equilibrium but also Pareto optimality.

While Nash equilibrium is taken to be a benchmark for modern logics of games
and many logics have been demonstrated to be able to express it (see [6, section 7.1]
and the reference in it), Pareto optimality as an equally important notion in game
theory 1 seems to receive less attention in logical literature than Nash equilibrium. As
shown in this paper, to express Pareto optimality, the new modal operator is critical.
In fact, given the operator, we can express a relativized version of Nash equilibrium
and Pareto optimality, that is, “given the current strategies of some players, the current
strategy profile of the other players would be a Nash equilibrium/Pareto optimality."
Moreover, by taking dependence relation into consideration, our logic shows that Nash
equilibrium can be defined by Pareto optimality.

As Pareto optimality is rarely studied by logicians, compared to the non-cooperative
game theory, the cooperative game theory [15] seems not very salient to logicians
either. 2 We will demonstrate that our logic of preference and functional dependence
(LPFD) can also be adapted to model a qualitative version of cooperative games in
strategic form [15, Section 11].Wewill also show that a hybrid extension of LPFD can
express the core, an essential solution concept in the cooperative games analogous to
Nash equilibrium in the non-cooperative games. The core characterizes a coalition’s
stability as a state where none of its subcoalitions has any incentive to deviate even if
they can. The three concepts, dependence, preference and coalitional power, crystallize
in the core. Through the lens framed by the three concepts, a unified view of the core,
Nash equilibrium and Pareto optimality is revealed by our logics.

In addition to the logics and their application to a unified analysis of key game
theoretical concepts, our contributions include several technical results about the logics
themselves.We provide a sound and strongly complete axiomatization respectively for
LPFD and its hybrid extension HLPFD. Moreover, we also prove that the satisfiability

1 For example, in the prisoners’ dilemma, the Nash equilibrium is not Pareto optimal.
2 The review on modal logic for games and information [19, Chapter 20] is exclusively about non-
cooperative game theory; the book [5] touches on few issues on cooperative game theory either. The
only exception we know is the work in [21], where two different logics are proposed to reason about
cooperative games.
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problem of LPFD is decidable. While the proof for the completeness result of HLPFD
is standard, the proof for the completeness of LPFD is much harder and requires new
techniques. Our proof modifies the classical unraveling method [7, Chapter 4.5] and
combines it with a special way of selecting the tree branches.

The Structure of the Paper is summarized as follows. The background on the logic of
functional dependence (LFD) are presented in Section 2. In Section 3, we introduce
the logic of preference and functional dependence and show how it can naturally
express Nash equilibrium and Pareto optimality. Section 4 contains sound and strongly
complete axiomatization of LPFD and its hybrid extension and the decidability of
LPFD’s satisfiability problem. For those who are not interested in the proof details,
Section 4.3 andSection 4.4 canbe safely skipped. InSection 5,we turn to ourmodelling
of cooperative games in strategic form in LPFD and analyze the core. In Section 5.3,
we showhow the core can be relevant to philosophical discussions of collective agency.
Before conclusion, we compare our work with the logical works in [6, 14, 21].

Notations The following notations will be used throughout this paper. Let A B be
two sets. We will use BA to denote the set of mappings from A to B. Specially,
for each n , let An denote the set of all sequences on A with length n, i.e.,
An x0 xn 1 x0 xn 1 A . Let A denote the set of all finite
subsets of A. For each sequence x xi i I , we write ran x for the set
xi i I . For every language and classC ofmathematical structures, let Log C
denote the set of all valid formulas in w.r.t C .

2 LFD Interpreted in Games

In this section, we introduce LFD and take a game-theoretical view on it.
LFD starts with a relational vocabulary V Pred ar , where V is a countable set

of variables, Pred is a countable set of predicate symbols and ar Pred is
an arity map, associating to each predicate P Pred a natural number ar P . In
what follows, unless otherwise specified, in a vocabulary V Pred ar , V 0 and
P Pred ar P n 0 for each n .
To viewLFD from a game-theoretical perspective, we take the variables to represent

players in games and the dependence models of LFD become models for different
players’ actions or strategies in static games in strategic form.

Definition 1 (Dependence models) A model is a pair M O I , where O is a
non-empty set of actions and I is a mapping that assigns to each predicate P Pred
a subset of Oar P . A dependence modelM is a pairM M A , where M O I
is a model and A OV is a set of strategy profiles.

For each X V , we define a binary relation X on A such that for all a a A,
a X a if and only if a X a X, i.e., the action of x in a is the same as her action
in a for each x X.

Note that we use O to denote all available actions rather than outcomes as usually
done in game theoretical literature.When A OV , some strategy profiles are missing,
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which gives rise to restrictions on how players can act together. Suppose a strategy
profile s is not in A. Then the players cannot act according to s simultaneously.3

Next, we turn to the syntax and semantics of LFD. To capture functional depen-
dence, LFD uses two operators and D in its language.

Definition 2 The language of LFD is given by

Px DX y X

where P Pred, x Var P , X V and y V.

X is meant to express that whenever the players in X take their current actions,
is the case; DX y says that whenever the players in X take their current actions, y also
takes its current action.

Definition 3 Truth of a formula in a dependence model M M A at a
strategy profile a A is defined as follows:

M a Px iff a x I P
M a DX y iff a y a for all a A with a X a
M a iff M a
M a iff M a and M a
M a X iff M a for all a A with a X a

Note that X is an equivalence relation on A and a a holds for all a a A.
So is a universal operator and we define and .

3 Logic of Preference and Functional Dependence

In this section, we extend LFD to LPFD.

3.1 Syntax and Semantic for LPFD

Definition 4 (Syntax) The language of LPFD is given by:

Px DX y X Y Z

where P Pred, x Var P , y V and X Y Z V .

only differs from the language of LFD in the new operator X Y Z , which
is an operator for ceteris paribus group preference. In the language , the formula

X is defined as X , capturing “centeris paribus". Y and Z in X Y Z
are used to capture group preferences. We define X Y Z X Y Z and
DXY y Y DX y for each X Y Z V and .

Next we turn to the semantics of LPFD.

3 Such restrictions serve as basis for representing dependence but do not necessarily imply depen-
dence between the players. For example, for O a1 a2 b1 b2 and V x y , if we take A
a1b1 a1b2 a2b1 a2b2 , the restriction of each player’s range of actions is not due to what the other
player does.
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Definition 5 (PD-models). A preference dependencemodel (PD-model) is a pair
M in which M M A is a dependence model and V A A is a
mapping assigning to each x V a pre-order x on A. Let Mod denote the class of
all PD-models.

For each x V, we define the binary relation x a b x b a x . For all
a b A, we write a X b (a X b) if a x b (a x b) for each x X . Moreover,
we write s X t if s X t and t X s.

Definition 6 Truth of PD-formulas of the form Px DX y or is defined as
in Definition 3. For formulas of the form X Y Z , we say X Y Z is true at a
in , notation: a X Y Z , if

a for all a A satisfying a X a , a Y a and a Z a .

A formula is valid if a for all PD-model M A and a A.
Let LPFD denote the set of all valid formulas, i.e., LPFD Log Mod .

Note that x and x are standard modal operators defined on x

and x respectively. Thus X Y Z is in fact a standard modal operator defined on
the intersection of the relations X , Y and Z . It concerns the preferences of the
players in Y and Z conditional on the actions of the players in X .

There is a close connection between LPFD and the work in [6] on ceteris paribus
preference. We will discuss this connection in Section 6.2. Next, we show how some
key game theoretical notions can be expressed in LPFD.

3.2 Pareto Optimality and Nash Equilibrium in LPFD

Having laid out the basics of LPFD, we turn to questions concerning expressing and
reasoning about Pareto optimality and Nash equilibrium in LPFD. One important
assumption we will adopt is that the group of players V is finite. In LPFD, there is
no such restriction on V. However, it is worth noting that in the language of LPFD,
all subscripts in the two operators need to be finite. So to express something like

X X in LPFD where X V X , which is frequently referred to in game
theory, we have to ensure that X and X are both finite.

We start with recalling what Nash equilibrium and weak/strong Pareto optimality
mean.

Definition 7 Let be a PD-model and X V.

– s is a Nash equilibrium for X if for all x X there is no t x s such that
s x t;

– s is strongly Pareto optimal for X if there is no t X s such that (a) for all
x X, s x t and (b) there is one x X such that s x t;

– s is weakly Pareto optimal for X if there is no t X s such that for all x X,
s x t .

Note that such a way of defining the notions of Nash equilibrium, weak and strong
Pareto optimality in a PD-model applies to all subgroups of V rather than only the
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Table 1

go out stay home

go out stay home go out stay home

go out (4,4,4) (1,0,1) go out (1,1,0) (1,2,2)

stay home (0,1,1) (2,2,1) stay home (2,1,2) (2,2,2)

whole group of players V. According to which subgroup the definition applies, it
requires the actions of players outside the subgroup to be fixed, after which the normal
definition then applies. For example, in the case of Nash equilibrium for X , the above
definition actually says that after fixing the actions of players in X , the current action
profile of X satisfies the conditions of Nash equilibrium.

Example 1 Table 1 shows three students’ preferences on staying home or going out.
The row is for student a; the column is for student b; the left and right division is for
student c.

We can check that going out together and all staying home are both Nash equilib-
rium; going out together is also Pareto optimal. Moreover, (stay home, stay home, go
out) is a Nash equilibrium for student a and b given student c goes out, although it
is not a Nash equilibrium for the whole group. (stay home, stay home, stay home) is
Pareto optimal for student a and b given student c stays home, but not for student a, b
and c together.

It is relatively easy to get how Nash equilibrium and weak Pareto optimality can
be expressed in LPFD, as the following fact shows.

Fact 1 Let M A be a PD-model and s A. Then

– s is a Nash equilibrium for X V given that the players in X have acted
according to s, if and only if, s x X x x ;

– s is weakly Pareto optimal for X V given that the players in X have acted
according to s, if and only if, s X X .

In the case of weak Pareto optimality, because the truth condition of the operator
X X depends on what formulas are satisfied on all elements in the set t A

s X t s X t , if it is an empty set and thus can be vacuously satisfied on all
elements in it, then s is weakly Pareto optimal for X .

To express strong Pareto optimality in LPFD, we need to express the following
model theoretical fact, namely, the set t A s X t s X t and t X s

x X t A s X t s X x t s x t is empty.
Since s X X x x iff t A s X t s X x t s x t ,

we can define strong Pareto optimality as follows.

Fact 2 In a PD-model , s is strongly Pareto optimal for X V given that the players
in X have acted according to s iff s x X X X x x .
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To facilitate our discussion, we define weak and strong Pareto optimality and Nash
equilibrium in LPFD as

wPa X X X (1)

sPa X
x X

X X x x (2)

Na X
x X

x x (3)

An easy but important observation is that Nash equilibrium can be defined via Pareto
optimality.

Theorem 1 Na X x X sPa x x X wPa x .

4 Calculus of LPFD and its Hybrid Extension

In this section, a relational semantics of LPFD shall be introduced. We show the
relation between this semantics and the standard semantics given in Section 3.1. The
new semantics provides us with amodal view, which facilitates our calculus CLPFD and
the proof of its soundness and strongly completeness.We show that LPFD is decidable
while it lacks the finite model property. Moreover, we extend it with nominals and
give also a sound and complete calculus CHLPFD. In Section 5.3, this hybrid extension
will be useful in expressing a key game theoretic concept.

4.1 Relational Semantics

In this part, we introduce the relational semantics for LPFD and show the relation
between this semantics and the standard one.

Definition 8 A relational PD-frame (RPD-frame) is a pair F W , where W
is a non-empty set, V W W and V W W are maps such that

x is an equivalence relation and x is a pre-order for all x V. For all x V and
X Y Z V , let x u x u x and

R X Y Z x X x y Y y z Z z

A relational PD-model (RPD-model) is a pair M F V where F W
is an RPD-frame and V is a valuation associating to each formula of the form Px a
subset V Px of W. The valuation V is required to satisfy the following condition for
all u W, P Pred and x Var P :

if ran x u, then V Px if and only if u V Px . (Val)

Let RMod denote the class of all RPD-models. Truth of a formula in M
W V at W is defined as follows:
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M Px iff V Px
M DX y iff y for all X

M iff M
M iff M and M
M X Y Z iff M for all R X Y Z

Validity is defined as usual. Let RLPFD Log RMod .

We now show that under the assumption V is infinite, the relational semantics is
equivalent to the standard one in the sense that RLPFD LPFD.

Definition 9 Let O I A be a PD-model. Then we define the RPD-model
rel A V induced by as follows:

– V Px a A a x I P for all P Pred and x Var P .
– x x , x x for each x V.

Proposition 1 Let Mod and rel the RPD-model induced by . Then for
each a A and formula ,

a if and only if rel a .

Proof By induction on the complexity of .

While it is straightforward to induce an RPD-model from a PD-model, some care
needs to be taken to induce a suitable PD-model from a RPD-model.

Definition 10 Let M W V be an RPD-model. Then

– M is a differential model, if x V x I dW W .
– M is a pre-differential model, if for all u W, V u implies V u.

Let RModd and RModpd denote the class of all differential RPD-models and pre-
differential RPD-models, respectively.

Definition 11 Let M W V be a differential model. Then we define the
PD-model dp M O I A induced by M as follows:

– O x x x V W and x W x .
– A W , where x x x for each x V.
– x x for each x V.
– I is the interpretation mapping each n-ary predicate P to the set

I P x W x Vn and V Px

I P is well-defined for each predicate P since x y and x whenever x
y . To see that x is a pre-order for each x V, it suffices to show that W

is isomorphic to A . Since M is a differential model, for all W ,
implies y for some y V. Thus implies and so the function

W A is an isomorphism. Hence x is a pre-order for all x V. It is clearly
that x x for all x V.
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Proposition 2 LetM be a differential RPD-model and dp M the PD-model induced
by M. Then for each inM and formula ,

M if and only if dp M .

Proof By induction on the complexity of .

Theorem 2 RLPFD LPFD.

Proof Suppose LPFD. Then is satisfied by some PD-model. By Proposition 1,
is satisfied by some RPD-model, which entails RLPFD and so RLPFD LPFD.

Suppose RLPFD. Then there is an RPD-model M W V and W
such that M . Since V is infinite, there is x V which does not occur in .
Then let M W V be an RPD-model where

y
y , if y x

W , otherwise.

Now we can readily check that M is a differential model with M . By
Proposition 2, we have dp M . Hence RLPFD LPFD.

Relation Between the Two Semantics with Finite Variables

The assumption V 0 is crucial in the proof of Theorem 2. The readers can check
that the transformations rel and dp provide a correspondence between classes of
models Mod and RModd in the sense that for all M RModd and Mod,

dp rel and rel dp M M.

A simple example is given in the left part of Fig. 1, where dotted lines stand for
relations and arrows for preferences. Under the assumption that V is infinite, we can
see from the proof of Theorem 2 that every satisfiable formula is satisfied by some
differential RPD-model. However, Theorem 2 does not hold when V is finite.

Suppose now that V is finite. Let M0 be the RPD-model shown in the right
part of Figure 1. Then the readers can verify that M0 a3 V
V V . On the other hand, for any PD-model M A and

Fig. 1 Translation between PD-models and RPD-models
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a b A, a V b implies a b. Thus V is valid and so
V V V cannot be satisfied by any PD-model for the

vocabulary V Pred ar . Thus RLPFD LPFD.
To obtain a clearer viewof the relation between the two semantics, the classRModpd

of RPD-models plays an important role. The readers can readily check that the fol-
lowing facts hold:

Fact 3 Let F W be an RPD-frame and M F V an RPD-model. Then

M RModpd if and only if F V V V .

Fact 4 Let M W V be a pre-differential RPD-model and we define the
RPD-model M V W V as follows:

– W W where u V u ;
– x u x u , x u x u ;
– V Px V Px for all P Pred and x Var P .

Then M V RModd . Moreover, for all and W,

M if and only if M V

By Fact 3 and Fact 4, we obtain immediately that

Log RModd Log RModpd RLPFD V V V

Note that Log RModd Log Mod LPFD, we have

Theorem 3 If V is finite, then RLPFD V V V LPFD.

4.2 Hilbert-style Calculus CLPFD

In this part, we present a calculus CLPFD of LPFD and show that CLPFD is sound, by
which some key axioms are semantically explained. In what follows, we write C for
CLPFD if there is no danger of confusion.

(Tau) Axioms and rules for classical propositional logic;
(Nec) from infer X Y Z ;
(K) X Y Z X Y Z X Y Z ;

(Ord) Axioms for preference relations:
(a) X Y ;
(b) X Y Z X Y Z X X Y Y Z Y Z Z Y Z ;
(c) X Y Z X Y Z , provided X X , Y Y and Z Z .
(d) X Y Z X Y Z Z ;
(e) X Y Z X Y Z X Y y Y X Y Z y .

(Dep) Axioms and rules for dependence:
(a) DX X ;
(b) X , provided Px ran x X DY z Y X ;
(c) DX S DST DXT ;
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(d) DX S S Y Z X Y Z .

The definition of derivations in C are as usual. If there is a derivation from to in
C, then we write C .

Theorem 4 (Soundness) For each , C implies LPFD.

Proof We take (Ord,b) and (Ord,e) as two examples, showing their validity and giving
some intuitions. Other axioms and rules can be easily checked to be valid. Let M
W V be an RPD-model and W a point.
For (Ord,b), it characterizes some kind of generalized transitivity. SupposeM

X Y Z X Y Z . Then there are pointsu W such thatu R X Y Z ,
R X Y Z u and M . Let T Z Y Z Z Y Z . It

is obvious that X X and Y Y hold. It suffices to show that T .
Suppose x Z Y . Then x u, u x and u x . By the transitivity of x , we
see x and x , i.e., x . Similarly, we see x whenever x Y Z
or x Z Z . Hence M Ord b .

For (Ord,e), it characterizes to some degree the definition of . Suppose M
X Y Z . Then there is a point u R X Y Z such that M u . If

u Y , then clearlyM u X Y , which entailsM X Y Z
X Y . Suppose u Y . Then there is y Y such that u y and so

y u. Recall that u R X Y Z , we obtain u R X Y Z y and so
M X Y Z y . Hence M Ord e .

4.3 Strong Completeness of CLPFD

For the proof of completeness, a special kind of unraveling method is used. The main
reason we take such a method is that the ‘canonical model’ need not be an RPD-
model, and modification is needed. To construct an RPD-model satisfying some given
consistent set of formulas, we first pick out those so-called saturated formulas, which
are sufficient to determine the preference relations in the model. Then we take ‘paths’
as the domain of the desired model instead of using just maximal consistent sets,
which helps us deal with the intersections of relations. The relations in this model
are closures of some ‘one-step’ relations, which help solve the problems that arise
from dependence formulas. With such a model, we prove the Truth Lemma and so the
Completeness Theorem.

To define amodel for some satisfiable set of formulas , we first define the canonical
quasi-frame and investigate some properties of it:

Definition 12 (Canonical Quasi PD-Frame) Let be a set of -formulas. We say
that is consistent if C . We say that is a maximal consistent set (MCS) if
is consistent and every proper extension of is not consistent. The canonical quasi
PD-frame Fq Wq Rq is defined as follows:

– Wq is the set of all MCSs;
– for all X Y Z V , we define the binary relation Rq X Y Z on Wq by:

Rq X Y Z u if and only if X Y Z u
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Proposition 3 For all 1 2 3 Wq and X Y Z V :

(1) Rq X Y is reflexive;
(2) If 1Rq X Y Z 2, then 1Rq X Y Z 2 for all X X, Y Y Z and

Z Z;
(3) For all Z V , if Z Z Y , 1Rq X Y Z 2 and 2Rq X Y Z 3,

then 1Rq X Y Z Z 3;
(4) If DX S 1 and 1Rq X Y Z 2, then 1Rq S Y Z 2 and DX S 2.

Proof (1) follows form axiom (Ord,a), (2) follows from Axiom (Ord,c,d), (3) follows
from axiom (Ord,b) and (4) follows from axiom (Dep,b,d) immediately.

Definition 13 Let be a MCS and X Y Z . We say that X Y Z is a
saturated formula in if y Y X Y Z y and Y Z . Let S
denote the set of all saturated formulas in .

Lemma 1 Let Wq be a MCS, X Y Z and S Y Z. Then there is
T V such that X T Y Z T S .

Proof The proof proceeds by induction on the size n of Y Z .When n 0, one obtains
Z Y Z . By axiom (Ord,c), X Z . Note that , is the
desired set. Suppose n 0 and Y Z y0 yn 1 . If X Y Z yi for
any i n, then T Y Z satisfies the requirement. Suppose X Y Z yi
for some i n. Then we see Y Z yi n and by induction hypothesis, there
is T V such that X T Y Z T S . Since Y Z Y Z yi ,
T satisfies the requirement.

Lemma 2 Let Wq and X Y Z S . Then there is a MCS
Rq X Y Z such that and Rq X Y .

Proof We write for X Y Z and for X Y in this proof. It is sufficient to
show that 0 is consistent. Otherwise, there
are formulas 1 n 1 m such that

C 1 n 1 m

Let 1 m and 1 n . Clearly, . By axiom (Nec)
and (K), we have C 1 m). Thus C , which
entails C . Note that , we have .
Since and y Y X Y Z y is an
instant of axiom (Ord,e), we obtain y Y X Y Z y , which contradicts that
X Y Z S .

With the help of Lemma 1 and Lemma 2, we are now able to define the paths in
Wq , which constitute the domain of our desired model.

Definition 14 A path in Wq is a sequence 0 0 n 1 n 1 n in
which the following conditions hold for all i n:

– i Xi Yi Zi i S i is a saturated formula in i Wq;
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– i i 1 Wq, i 1Rq Xi Yi i and i Rq Xi Yi Zi i 1.

We denote 0 by start , n by last and the set of all paths by Path.

In what follows, let be some fixed consistent set. Without loss of generality,
suppose is a MCS. We now construct a model for .

Definition 15 ( -Canonical PD-model)The -canonical PD-modelMc Fc V c ,
in which Fc Wc c c , is defined as follows:

– Wc Path start , and we write Wc for Wc in what follows;
– for all y V and Wc, y iff one of the following holds:

X Y Z and y Y Z;
X Y Z and y Y ;

.

Let c
y be the transitive closure of y.

– for all s V and Wc, s if and only if X Y Z and
DXs last . Let s be the reflexive-symmetric closure of s .
Let c

s be the transitive closure of s .
– for all Px , V c Px Wc Px last .

For all X Y Z V , the binary relations Rc X Y Z , c
X ,

c
Y and c

Z are
defined in the natural way. By Axiom (Dep,a), DX X always holds. Thus for each

Wc and X Y Z , we have Rc X Y Z .

To characterize the structure of Wc, we define T Wc Wc as follows:

T if and only if is of the form X Y Z

It is clear that Wc T is a tree. Then for all Wc, there is a shortest T -sequence
0 n such that 0, n and for all i n, i T i 1 or i 1T i . We

denote the shortest sequence by T .

Fact 5 Let Wc, T 0 n and y s V. Then

(1) c
s iff i s i 1 for all i n.

(2) c
y iff i y i 1 for all i n.

Proof Since s y T T 1 , c
s is the transitive closure of s and c

y the
transitive closure of y , the proof can be done by induction on n easily.

In what follows, we show that the relations Rc X Y Z are consistent with the
relations Rq X Y Z .

Lemma 3 Let Wc, X Y Z V, X , Y and Z . Then

(1) last Rq X Y Z last .
(2) if DX S last , then S .

Proof Suppose X , Y and Z . Then we have three cases:
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– . Then Z . By Proposition 3(1), Rq X Y is reflexive and
last Rq X Y Z last .

– X Y Z . Then Z , Y Y and DX X last .
Clearly, last Rq X Y Z last . by Proposition 3(4), DX X last .
Recall that one has last Rq X Y last , by Proposition 3(2,4), we see
last Rq X Y Z last .

– X Y Z . Then Z Z , Y Y Z and DX X
last . Note that last Rq X Y Z last , by Proposition 3(2,4), we see
last Rq X Y Z last .

Hence last Rq X Y Z last and (1) holds.
For (2), suppose DX S last . Then we have also three cases:

– . Note that S is reflexive, S .
– X . Then is of the form X Y Z and DX X last . By
axiom (Dep,c), DX S last . Thus S .

– X . Then is of the form X Y Z and DX X last . By
(1), DX S last . By axiom (Dep,c), DX S last . Thus S .

Hence S and (2) holds.

Lemma 4 Let Wc, X Y Z V and Rc X Y Z . Then

(1) last Rq X Y Z last .
(2) DX S last implies Rc S Y Z .

Proof Suppose Rc X Y Z . Then c
X , c

Y Z and c
Z . Let

T 0 n . By Fact 5, for all i n, i X i 1 and i Y Z i 1.
Moreover, for each z Z , there is iz n such that iz z iz 1. Then by Lemma 3(1),
last i Rq X Y Z last i 1 for all i n and for all z Z , last iz Rq X Y
Z z last iz 1 . Then by Proposition 3(2,3), we see last Rq X Y Z last
and (1) holds. Suppose DX S last . Note that c

X i for all i n, by (1),
DX S last i for all i n. Then by Lemma 3(2), i S i 1 for all i n, which
entails c

S .

The final step is to show that Mc is a PD-model in which is satisfiable.

Lemma 5 Mc is a PD-model.

Proof It suffices to show that V c satisfies (Val). Let Wc be points such that
c
X . By Lemma 4, last Rq X last . Assume Px last , then

by axiom (Dep,b), X Px last , which entails Px last . Similarly, we can
verify that Px last implies Px last . Thus V c satisfies (Val) and soMc is
a PD-model.

Lemma 6 (Truth Lemma) For each formula and path Wc,Mc

if and only if last .

Proof The proof proceeds by induction on the complexity of . The case when is
of the form Px is trivial. The Boolean cases are also trivial. Let be of the form
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DXs. Suppose DXs last . Let Wc such that c
X . By Lemma 4,

last Rq X last . Then by Proposition 3(2,4), c
s . Thus Mc

DXs. Suppose DXs last . Let X last . Then s

and so s . Clearly, T . By Fact 5, c
s . Note that c

X ,
we see Mc DXs. Let X Y Z . Suppose Mc . Then there is

Rc X Y Z such that Mc . By induction hypothesis, last .
By Lemma 4, last Rq X Y Z last . Then last . Suppose last .
Without loss of generality, assume that S last . Then by Lemma 2, there is
a such that is a path with last . By induction hypothesis,
Mc . Note that Rc X Y Z , we have Mc .

Theorem 5 For each , if is consistent, then is satisfiable.

4.4 Properties of LPFD

In this part, we prove that LPFD lacks the finite model property. The decidability of
LPFD shall also be shown.

Theorem 6 LPFD lacks the finitemodel property, that is, there exists a formula
which is only satisfiable in infinite RPD-models.

Proof Let z z z . Note that for each PD-
frame F W and z V, z is irreflexive and transitive. Thus for each finite
PD-frame G, we have G z z z . Clearly, is
satisfiable in , where z is the usual relation on .

In what follows, let be some fixed formula, V the set of variables occur in and
Pred the set of predicates occur in . Without loss of generality, we assume that the
modal depth of is not 0. Then we define Vo V Pred ar V as the vocabulary
restricted to . Let be the fragment of based on Vo, in which every formula is
of modal degree no more than . It can be easily verified that up to modal equivalence,

contains only finitely many formulas.

Definition 16 A set of -formulas is said to be a -maximal consistent set if
C and C for all such that . Let MCS denote the set of

all -maximal consistent sets. For all X Y Z V and MCS , we write
R p X Y Z if

X X Y Y Z Y Z Y Z Z X Y Z

One may find that the definition of Rp X Y Z is modified from the Lemmon fil-
tration. Given that X Y Z and Rp X Y Z , we see implies
X Y and so X Y Z . Then we have the following proposition:

Proposition 4 For all 1 2 3 MCS and X Y Z V ,

(1) R p X Y is reflexive;
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(2) If 1R
p X Y Z 2, then 1R

p X Y Z 2 for all X X, Y Y Z and
Z Z;

(3) If DX S 1 and 1R
p X Y Z 2, then 1R

p S Y Z 2 and DX S 2
(4) For all Z V , if Z Z Y , 1R

p X Y Z 2 and 2R
p X Y Z 3,

then 1R
p X Y Z Z 3.

Proof (1) and (2) are trivial. For (3), 1R
p S Y Z 2 follows from axiom (Dep,d).

Recall that the modal depth of is not 0, we see X DX S 1 and so DX S 2.
For (4), suppose X0 Y0 Z0 3. Then X X0 Y Y0 Z Y0 Z0 Y
Z Z0 2. Recall that Z Z Y , it follows that

X X0 Y Y0 Z Z Y0 Z0 Y Z Z Z0 1

Thus 1R
p X Y Z Z 3 and (4) holds.

Definition 17 ( -Pre-model) An -pre-model is a set F of -MCSs such that for
all X Y Z V and F, the following statement holds:

(†) If X Y Z is a saturated formula in , then there is F such that
R p X Y Z , and Rp X Y .

We say is satisfied in F if there is some F such that .

Lemma 7 For each satisfiable , is satisfied in some pre-model.

Proof Let M W V be an RPD-model and W such that M .
Then we define FM M and M . It suffices to
show that FM satisfies (†). Suppose X Y Z is a saturated formula in . Then
M X Y Z and there is u R X Y Z such thatM u . Note that
X Y Z is a saturated formula, we have R X Y u . Then it is not hard to
verify that Rp X Y Z u and u R

p X Y . Recall that u , we see
that (†) holds for FM.

Definition 18 (Induced Model) Let F be a pre-model. An F-path is a tuple
0 0 n 1 n 1 n where the following conditions hold for all i n:

– i Xi Yi Zi i is a saturated formula in i F;
– i i 1 F, i 1R

p Xi Yi i and i R
p Xi Yi Zi i 1.

The RPD-model MF W F F F V F induced by F is defined by:

– W F is the set of all paths in F begins with .
– for all y V and W F, y iff one of the following holds:

X Y Z and y Y Z;
X Y Z and y Y .

Let F
y be the reflexive-transitive closure of y.

– for all s V and W F, s if and only if X Y Z
and DXs last . Let F

s the reflexive-symmetric-transitive closure of s .
– for all Px , V F Px W F Px last .
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One may notice now that the construction of the desired model is almost the same
as the one we used in the proof of Completeness Theorem. And similar to the proof
of Completeness Theorem, with the help of Fact 4 and the definition of pre-models,
we can verify that the following lemma holds:

Lemma 8 (Truth Lemma) For each formula and path W F,

MF if and only if last

As a consequence, for each , is satisfiable if and only if is satisfied in
some -pre-model. Recall that up to modal equivalence, contains finitely many
formulas, MCS is finite for each , we obtain the following theorem:

Theorem 7 The satisfiability problem of LPFD is decidable.

4.5 The Hybrid Extension of LPFD

In this subsection, we extend LPFD with nominals. We will use this hybrid extension
to express an important solution concept for cooperative games – the core – in Section
5.

By a vocabulary with nominals we mean a tuple V Pred Nom ar where
V Pred ar is a vocabulary and Nom ik k a set of nominals.
The language Nom with nominals is given by:

Nom Px DX y i X Y Z

where P Pred, x Var P , i Nom, y V and X Y Z V . The language

Nom only differs from the language of LPFD in those nominals. For all i Nom and

Nom, we write @i for the formula i .
A hybrid PD-model with nominals (HPD-model) is a tuple O I A

such that O I Pred A is a PD-model and I Nom is a partial function
from Nom to A. For each nominal i Nom, a i if and only if a I i .
Similarly, a hybrid RPD-model (HRPD-model) is a tuple M W V such
thatM W V Pred is an RPD-model and V Nom is a partial function from
Nom to W . For each nominal i ,M i if and only if V i .

For all class C of models mentioned in Section 4.1, we write C h for the corre-
sponding class of models with nominals. For example, Modh denotes the class of all
HPD-models. Note that V is infinite, the equivalence betweenModh and RModh can
be established as in Section 4.1.

As usual, we call LPFD with nominals ‘hybrid LPFD’, abbreviated to HLPFD. Let
Nom be a fixed set of nominals. We present here the calculus CNom for HLPFD and
show its soundness and completeness with respect to RModh . The axioms and rules
of CHLPFD are as follows:

(Tau) Axioms and rules for classical propositional logic;
(Nec) from infer X Y Z ;
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(K) X Y Z X Y Z X Y Z ;
(Dep) X , provided Px ran x X ;
(Nom) @i i , provided i Nom;
(Name) from i infer , provided that i , i.e., i does not occur in ;
(Paste) from@i X Y Z j @ j infer@i X Y Z , provided i j and j ;

(DD) Axioms and rules for D interaction:
(1) DXs s X ;
(2) i DXs X s i .

(Ord) Axioms for the preference orders:
(1) X Y ;
(2) ;
(3) X Y Z X Y Z X X Y Y Z Y Z Z Y Z ;
(4) @i j @i j @ j i , provided i j

Nom;
(5) X Y Z i X Y Z i X X Y Y Z Z i , provided i Nom.

Comparing CNom with C, in addition to the standard axioms and rules for nominals,
axioms (Ord,4,5) and (DD,2) are new, which characterize RPD-models in a more
refined way. Note also that some old axioms in C are presented in CNom in a different
way. For example, axiom (DD,1) in CNom are bottom-up versions of axioms (Dep,d)
in C.

With the above mentioned changes in CNom due to the addition of nominals, the
completeness of CNom can be proved by directly using the canonical model, which is
a standard method and relatively routine. So we relegate the details of the following
theorem’s proof in the appendix.

Theorem 8 CNom is sound and strongly complete w.r.t RModh and Modh.

As for the decidability of HLPFD, we cannot prove it by directly following the
strategy used in the proof of LPFD’s decidability. We will not attack this problem in
this paper but rather leave it for future work.

Remark 1 When V is finite, the readers can easily verify that the formula d i
V i characterizes the class of differential HRPD-frames. As in Section 4.1,
we see that CNom is sound and strongly complete w.r.t RModh and CNom d is the
desired calculus for Modh .

5 Cooperative Games and the Core in HLPFD

Should there be any difference between a collective action and an agglomeration of
actions? This is a key issue in the philosophical analysis of collective agency [16].
In this section, we provide a game theoretical perspective on this issue by modeling
cooperative games in strategic form [15, Section 11] and characterizing one of its
solution concepts, the core, in HLPFD.
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5.1 LPFD for Coalitional Power in Cooperative Games

Different from non-cooperative games, in cooperative games in strategic form [15,
Section 11], players can not only act individually but also choose to join a coalition
and act as a part of the coalition. In such games, the players in a coalition can do
something together in agreement rather than separately. So collective actions and
power are different from an agglomeration of individual actions and its effectiveness.
In this part, we propose a framework based on LPFD to represent cooperative games
and make the difference explicit. For simplicity, we restrict ourselves to the cases
where the set of the players is finite.

To explicitly model coalitions as a different part of each player’s choices from
strategies, we distinguish between the terms “strategy”(or equivalently “action”) and
“choice”.

Definition 19 (Players’ Choices and Choices Merging)

– Players’ Choices: The set of the players’ choices is defined as follows:

O f I I V

where is the set of all possible strategies of all players.
– ChoicesMerging:For f f O withdom f dom f , f f f f .

For example, given three players V 1 2 3 and the players’ possible strategies in
, f 1 3 O denotes a possible choice of the players 1 and

3 as a coalition; f 2 O denotes a possible choice of the player 2. Then
f f 1 2 3 .
In a PD-model, there is no requirement on A OV . This is not the case any longer

when the players’ choices concern forming coalitions. We impose three conditions
on a realizable choice profile. First of all, a player cannot choose to form a coalition
she is not in. Second, a player cannot choose to form a coalition without the others
in the coalition making the same choice. Third, once a coalition forms, it acts as a
whole, which means that its members act according to a unique strategy sequence.
This strategy sequence can be seen as a collective plan which is made effective by
common consent.

To make the definition of realizable choice profiles precise, we make use of the
following notations.

Notation 20 – V is the set of all partitions of V. 4

– Given a OV ,

ai denotes the i th element of a, which is a function;
arng ai O i V ;
adom dom ai V i V ;

Definition 21 (Realizable Choice and Strategy Profiles)

4 A partition of V is a set of non-empty subsets of V whose union is V and which do not intersect each other.
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– A choice profile a ON is realizable if and only if it satisfies the following three
conditions:

1. i dom ai ;
2. adom V
3. dom ai dom a j implies that ai a j for all i j V.

– Let denote the set of all realizable choice profiles.
Let amerge f arng f for a . Given A , the set of all realizable strategy
profiles of a partition V in A is

A amerge a A and adom

When there is no danger of ambiguity, we will leave out the subscript A.

Having defined O and , we define a class of PD-models we will work with.

Definition 22 (Coalition-
preference-dependence (CPD) models) A coalition-preference-dependence model
is a PD-model O I A in which O is defined in Definition 19 and A and i

satisfy the following conditions:

1. A ;
2. adom a A V ;
3. if V is finer than V ,5 then A A ;
4. if amerge amerge, then a i a for all i V;
5. i is total for all i V.

The first condition says that A should contain realizable choice profiles. The second
condition says that the players can formcoalitions according to all possible partitions of
N . The third condition requires bigger coalitions to have no less strategies than smaller
coalitions. The fourth condition requires that the players’ preference relations depend
directly on strategy profiles. The players’ choices of coalitions can only influence
the players’ preferences by affecting their strategies. The last condition requires the
players’ preference relations to be total, which is a standard assumption in game theory.

The following example illustrates our notations and the CPD-models.

Example 2 Let V 1 2 3 and . A is given in Table 2.
According to our notation,

– amerge amerge a3merge a5merge a7merge 1 2 3 ;
– 1 2 3 1 2 3 and 1 2 3 1 ,

2 3 1 2 3 .

As the readers can verify, all the requirements of a CPD-model concerning A are
satisfied here. For example, 1 2 3 1 2 3 N . To make
sure i satisfy the requirements, a i a i a3 i a5 i a7 needs to be the case.

5 That is, for all X there is X such that X X .
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Table 2 A in Example 2

1 2 3

a 1 2 3

a 1 2 1 2 3

a 1 2 1 2 3

a3 1 2 3 2 3

a4 1 2 3 2 3

a5 1 3 2 1 3

a6 1 3 2 1 3

a7 1 2 3 1 2 3 1 2 3

a8 1 2 3 1 2 3 1 2 3

a9 1 2 3 1 2 3 1 2 3

a10 1 2 3 1 2 3 1 2 3

a11 1 2 3 1 2 3 1 2 3

As can be easily spotted in the above example, coalitions are explicitly incorporated
into the players’ choices in the CPD-models. Once a coalition forms, the players in it
act as a whole. Moreover, a coalition could possibly do more than its constituent parts.

The coalition partition formed in a game directly affects each player’s strategy.
Hence it has a substantial influence on the final outcome of the game. Can the language
of LPFD express what partition is formed in a realizable choice profile? The following
proposition gives a partially positive answer.

Proposition 5 Let M A be a CPD-model with a DX X for
all a A satisfying adom X X . Then for all a A and non-empty subset
X V, the following two are equivalent:

1. X adom;
2. a i X Di X j X DX j .

Proof From 1 to 2.
Assume X adom. Suppose a A and a i a for some i X . Then X adom.

Since A , ai a j and ai a j for all i j X . Note that a i a for some i X ,
we see a j ai ai a j for all j X , i.e. a X a . Thus a Di X . By the
arbitrariness of i X , we see a i X Di X .

When X V, we see that j X DX j is and a j X DX j . Suppose
X V. Take an arbitrary j X . Then we have the following cases:

– adom X X . Let X X . Note that A adom A , there must
be b A such that bdom and amerge bmerge. Then it must be the case that
dom b j X dom a j and so a j b.

– adom X X . Since a DX X , there must be b A such that
a X b and a X b. If adom bdom, then dom a j X dom b j and so
a j b. Suppose adom bdom. Then ak are all the same for k X and bh are
all the same for h X . Since a X b, we see a j b j .
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Hence a DX j . By the arbitrariness of j , we see a j X DX j .
From 2 to 1.
Assume that X adom and a i X Di X j X DX j . Let x X .

– X dom ax . Then there is j dom ax X such that a j ai for all i
dom ax . So for all a X a, a j ai ai for all i X . Then we have

a DX j where j X . Contradiction!
– Otherwise, there is j X dom ax . Since a Dx X , we see a

Ddom ax j . By the direction we have proved above, a Ddom ax j , which
is a contradiction.

The assumption of the above proposition that a DX X for all a A
satisfying adom X X requires that no coalition can completely decides what
its complementary coalition chooses to do. If X can completely control what X
chooses, then the division of X and X is senseless, because a DXV follows
from a DX X . As the readers can verify, the CPD-model in Example 2 does
not satisfy the assumption at a a4 a6 .

To avoid vacuous coalitions division, we will work with the CPD-models with the
above assumption.

Definition 23 (Real CPD-models) A real CPD-model (RCPD-model) is a CPD-
model that satisfies the assumption that a DX X for all a A satisfying
adom X X .

In an RCPD-model, i X Di X j X DX j expresses that X is in the coalition
partition. We will use the abbreviation

pX
i X

Di X
j X

DX j

for convenience in the next section.

5.2 The Core in HLPFD

Having set up the LPFD framework for representing cooperative games in strategic
and coalitional form, in this part, we show that the core, an important solutions concept
in the cooperative game theory, can be expressed in HLPFD.Moreover, by considering
functional dependence explicitly, we generalize the core and show how it is related to
Nash equilibrium and Pareto optimality.

Just as Nash equilibrium in non-cooperative games captures stability of a strategy
profile, the concept of the core, as a basic solution concept in cooperative games, also
captures stability of a strategy profile in cooperative games. The difference is that the
core takes the stability of a coalition into consideration. There are other notions for
characterizing stability in cooperative games, for example, stable set, bargaining set
and so on. We focus on the core.
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The concept of the core is formulated in CPD-models as follows. 6

Definition 24 (Core in CPD-Model) Given a CPD-model , a choice profile a A
is in the core of if and only if

1. adom V ; and
2. there is no X and a A such that

(a) X adom; and
(b) for all a X a and all i X, a i a .

Let Co denote the core of .

If the set of the players V arrives at a choice profile a, which is in the core, then no
X V has any incentive to deviate from the coalition V, because forming the coalition
X cannot guarantee all players in X end up with a better outcome. Coalitional power
plays a key role in the basic idea of the core, because whether X has any incentive to
deviate depends on whether X as a coalition can force a choice profile that all of its
members prefer to the current choice profile.

Note that according to the definition of the core, if X V, there is no other choice
profile with the coalition partition V which is strictly preferred by every player in
V. Namely, a is weakly Pareto optimal among the choice profiles with the coalition
partition V . In fact, the following proposition holds.

Proposition 6 Given a CPD-model , if a choice profile a A is in the core of
then a is weakly Pareto optimal.

Proof Since satisfies the condition that A A V for all V , by the
fourth condition of Definition 22, the weak Pareto optimality of a within the choice
profiles having V as their coalition partition can be generalized trivially to all choice
profiles.

The following example illustrates the concept of core and how it differs from Nash
equilibrium and Pareto optimality.

Example 3 Let V 1 2 and . A and the preference relations are given
in Table 3. The preference relations are given in the form of a pair of ordinal utilities
where the first element is for player 1 and the second for player 2.

Readers familiar with game theory can recognize that without the last four rows the
table represents the prisoners’ dilemma. a3 is a Nash equilibrium but a is not as in the
original prisoners’ dilemma. Now our coalitional version allows player 1 and player 2
to form a coalition by whatever means, for example, a binding agreement or switching
to the mode of team reasoning simultaneously. So there are four extra profiles in which
both players explicitly choose to join the coalition. Among these four extra profiles,
although all of them are trivially Nash equilibria, a4 is the only element in the core.

Note that in the example 1 2 as a coalition does not expand what each of the
players can choose, namely 1 2 1 2 . But the coalition still makes
some difference. Each member of the coalition anchors their actions to the coalition,
which may bring extra stability.

6 The definition of the core can vary in different settings. Our definition is based on [8, Definition 2.2],
which is a relatively general version.
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Table 3 A in Example 3 1 2 Ordinal Utility

a 1 2 (9,9)

a 1 2 (0,10)

a 1 2 (10,0)

a3 1 2 (1,1)

a4 1 2 1 2 (9,9)

a5 1 2 1 2 (0,10)

a6 1 2 1 2 (10,0)

a7 1 2 1 2 (1,1)

Next, we show that the core can be expressed in HLPFD with respect to the class
of RCPD-models (Definition 23) with nominals.

Proposition 7 Given a RCPD-model with nominalsNom, the current choice profile
a with name n, i.e., a I n A, is in the core of , if and only if

a n pV
X V

pX X
x X

x n

In the above HLPFD formula, pV specifies the first condition of the core. The second
condition is specified by the big conjunction, which says that for any subgroup X of V,
no matter what X as a coalition chooses to do, it cannot guarantee that everyone in X
ends up with a better outcome. In other words, given the choice of X , there is always
a possibility where someone in X would not become better than he does currently as
a member of the coalition V in the choice profile n.

To generalize the concept of the core, we can have its relativized version as in the
case of Nash equilibrium and Pareto optimality.

CoreXn n pX
C X

X pC X C
c C

X c n

which expresses that given the choices of the players in X fixed, all members of
X choose to join X as a group, act according to a collective strategy profile and no
subgroup of X has any incentive to cooperate and deviate. Note that when taking
X V, we get the original definition of the core as expressed in Proposition 7. The
relativized version of the core enables us to express some interesting relationships
between coalitions. For example,

CoreXn Core Xn

which says that in the current choice profile n, both X and X form coalitions and
are in their relativized cores.
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More generally, we can define the following concept:

Core n
X

CoreXn

where is a partition of N . It characterizes the stability of a collection of coalitions
at a choice profile n. The core is a special case of it where V . Moreover, Nash
equilibrium NaV is also a special case of it where 1 2 n .

Theorem 9 Given a RCPD-model with nominals n Nom, and a A with
adom 1 2 n ,

a Core n n Na V

As a corollary to this proposition, we see that unlike the core, Core n does not nec-
essarily imply the weak Pareto optimality of n for V. But the following generalization
of Proposition 6 holds.

Theorem 10 Given a RCPD-model with nominals n Nom and a A,

a Core n
X

wPa X

Therefore, in the sense of the above two theorems, our generalization of the core
can be seen as a notion that unifies the core, Nash equilibrium and Pareto optimality.
Moreover, it is worthwhile to emphasize that Core n is more than a simple combina-
tion of each coalition’s stability, because each coalition’s stability is actually depends
on other coalitions’ stability. The overall stability reflected in Core n lies in the inter-
dependence of each coalition’s stability.

5.3 Collective Action and Stability

We shall end this section by elaborating on how our way of modeling cooperative
games makes clear the difference between a collective action and an agglomeration
of actions.

RCPD-models enable us to distinguish the following three levels of group actions.
First, coalitional effectiveness, that is, what an agglomeration of a group of players’
actions can force. We can use X in our logic to express that a group of agent X can
force to be the case if they act according to their current choices. Second, collective
effectiveness, expressed by pX X . Different from coalitional effectiveness, col-
lective effectiveness requires that each player in X explicitly chooses to join coalition
X and act as its member. Third, the core effectiveness, CoreXn X . Compared with
collective effectiveness, it requires not only that each player of X acts as a member
of coalition X but also that the collective action should be sustainable or stable given
what the players in X choose to do.

We contend that collective agency would emerge at no lower level than the core
effectiveness.
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6 RelatedWorks and Conclusion

Before conclusion, we compare our work with three closely related works, the coli-
tional logic [14], the modal coalitional game logic (MCGL) in [21]7 and the logic of
ceteris paribus preference (LCP) in [6]. Moreover, we explicate the relation between
our representation of cooperative games in strategic forms (namely the CPD-models)
and its formulation in [15, Definition 2.1.1].

6.1 Comparison with the Coalition Logic

The coalitional effectiveness that the coalition logic aims to reason about is formally
characterized by an effectivity function EG . Based on this effectivity function, the
main operator of the coalition logic C is defined, expressing that the set of agents
C can force to be the case at their current state.

The effective function, when adapted in a dependence modelM M A , can be
defined as EM 0 V A satisfying

S EM X iff a A a A if a X a then a S

Here, S EM X means that the coalition X can force the game to be in S. We can
express S EM X in LFD as X assuming that S , because

M X iff EM X

The operator C in the coalition logic essentially has the same semantic meaning
despite being interpreted in the neighborhood semantics.

We will not go into a detailed comparison between LFD and the coalition logic,
but only point out a substantial difference between X and C with regard to the
characteristic axiom of the coalition logic, superadditivity:

C1 1 C2 2 C1 C2 1 2 where C1 C2

Superadditivity fails for X , because in a dependence model it is possible that there
is a a A such that, for C1 C2 , there is no a A satisfying both a C1 a
and a C2 a .

As the readers who are familiar with the coalition logic can verify, except for
superadditivity, its other axioms are all valid for X in LFD.

6.2 Comparison with LCP andMCGL

Both LCP and MCGL use modal operators for characterizing preorders. Given a
preorder in its semantic model, LCP only includes onemodal operator for and one
for . MCGL concerns a multi-agent setting where for each agent there is a preorder.

7 There are two logics in [21]. MCGL is the second one. The first one is more customized and limited than
the second one. For example, it only considers finite games where both players and states need to be finite.
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Besides modal operators for individual agents, MCGL includes group operators, one
for the intersections of a set of preorders and one for the intersection of a set of
strict preorders. It also includes modal operators for the inverse of the preorders and
a difference operator. Nevertheless, it does not have any operator for the intersection
of strict and non-strict preorders. Our logic has such operators and we show that they
are critical for expressing strong Pareto optimality.

Next, with each of these two other logics, the comparison will focus on different
aspects.
Comparison with [21] on different formulations of the core It is shown in [21] that
MCGL can express not only the core in coalitional games but also the stable set and
the bargaining set. However, the setting they adopt for representing coalitional games
is not general enough to model the coalitional games formalized by the CPD-models.
The limitation is due to their way of defining the cooperative effective function or the
characteristic function as they call it. In a CPD-model , their characteristic function
can be understood as f 2N A , a function assigning a set of choice
profiles to each coalition. Their formulation of the core only requires that the current
choice profiles are strictly preferred to all the choice profiles in f X for all X V.
But in our formulation of the core in Definition 24, what matters is the following set
for each X V

E X a X A a A and X adom

where a X a A a X a . E 2N A is a function assigning to
each coalition a set of sets of choices profiles. Our formulation of the core requires
a comparison between the current choice profile and each of the set in E X . Note
that the compartmentalization of what a coalition X can force is essential for our
formulation of the core, because what a coalition X can enforce depends on what X
would do. This subtlety is not captured by the characteristic function in [21].

Comparison with [6] on different ways of characterizing dependence We have seen
that in LPFD variables are taken to partition the space of possible assignments accord-
ing to their possible values. The dependence relation is the relation between different
partitions. In LCP, what partitions the space of possible states are all possible sets
of formulas of its base language. If we think of a formula as a binary variable with
its values 0 or 1, then the operators , x and x in LCP correspond to our
operators , x and x respectively. It has also been shown in [6]
how these operators can be used to express the notion of Nash equilibrium.

The above comparison raises an interesting question: if we only allow binary vari-
ables, what is the difference between using variables (as in LFD) and formulas (as in
LCP) to capture the functional dependence between variables? Furthermore, do we
really lose anything in LFD if we only allow binary variables? A systematic study of
these two questions would require future work.

6.3 Relation Between CPDModels and Cooperative Games in Strategic Form

CPD models are used to represent cooperative games in strategic form as formulated
in the following definition.
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Definition 25 ([15, Definition 11.1.1]) A cooperative game in strategic form is
N S S N ui i N where

1. N is a finite nonempty set of players;
2. for each coalition S N, S is a nonempty set of strategies of S;
3. if S T N, S T , then S T S T ;
4. for every i N , ui N is i’s payoff function.

There is an obvious difference between the representation in CPD models and the
above definition. While the definition uses a function to assign to each coalition its
available strategies, CPDmodels start with each player’s possible choices of coalitions
and actions. Nevertheless this difference is not essential.

On the one hand, We can get a CPD model from a given cooperative game in
strategic form. Taking any element c in S as the constant function from S to c ,
the set A in the corresponding CPD model is defined as

A a V S c S i S ai c

where a is a sequence of constant functions of length N . O can be derived from
A and I as the interpretation of predicates can be given arbitrarily. The preference
relation can be derived from the payoff function ui . On the other hand, given a CPD
model, it is easy to get a cooperative game in strategic form, although the payoff
function ui cannot be defined uniquely given i’s preference relation. We just need
to define S as ai i S adom and a A . For instance, in Example 2,

1 2 1 2 1 2 and 3 3 3 .
It is worth noting that in Example 2 1 2 3 is not in 1 2 3 but
1 2 is in 1 2 and 3 is in 3 . This means that condition 3 in

Definition 25 does not hold. The reason is that 1 2 3 is not included
in the set of available choice profiles in this example of CPD models. This reveals a
characteristic feature of CPD models which it inherits from the dependence models
for LFD. That is, A in the model does not need to be the set of all realizable choice
profiles. This is different from the standard assumption in game theory, namely the
completeness of the space of strategies profiles.

If 1 2 3 were in A of Example 2, condition 3 inDefinition 22would
force it to be in 1 2 3 . In this sense, our condition 3 plays the role of condition
3 in Definition 25 when the standard assumption does not hold. So, for the analysis in
Section 5, it makes no difference whether we require condition 3 of Definition 25 to
be the case. In particular, Proposition 6 tells us that the relation between the core and
the weak Pareto optimality does not rely on condition 3 in Definition 25. Instead, the
proof shows that condition 3 in Definition 22 plays a crucial role. Example 2 shows
that to ensure condition 3 in Definition 22 it is not necessary to assume condition 3 of
Definition 25.

An analogous result to Proposition 6 can be found in [15, Lemma 12.1.2]. However,
the analogy is not very precise. After all, the definition of the core in [15] relies on each
player’s payoff function, which is different from our qualitative way of representing
each player’s preference. We believe that a further comparison between the qualitative
definition of the core as adopted in this paper and the quantitative definition of the
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core in [15, Section 12.1] would be meaningful. But this would require us to introduce
more definitions, which go beyond the scope of this paper.

6.4 Conclusion andMore FutureWork

We have proposed two logics by extending LFD and studying their axiomatizations
and other properties. We have also demonstrated how our logics can help reason about
the notions of dependence, preference and coalitional power in a game theoretical
setting and provide a unified view on three key concepts in game theory, i.e., Nash
equilibrium, Pareto optimality and the core. On the basis of the two logics, we bring
insights to the general discussion on collective agency.

More work on collective agency from a cooperative-game-theoretical perspective
needs to be done as we have instigated. The core effectiveness we have shown in
subsection 5.3 highlights the stability of both the coalition and its collective action.
Supposewe further abstractly understand the core effectiveness as a specific pattern for
relations between the members within a coalition. In that case, our account interprets
collective agency as a relatively stable state of relations, which is in line with the call
for a relationalist account (cf. [2, 13, 17, 20]).

The connection betweenLFD and the coalition logicwe have revealed indicates that
it may be fruitful to explore the relationship between LPFD and ATL [10]. Some work
has been done on exploring the temporal dimension of dependence [4]. Further work
in these directions couldmake a logical analysis of extensive gamesmore full-fledged.

Appendix

Strong Completeness of CNom

The strategic of our proof is to show that every CNom-consistent set of formulas is
satisfiable. Let be a fixed consistent set. We first show the follow lemma:

Lemma 9 Let be a CNom-consistent set and Nom Nom jn n . Then
can be extended to a maximal CNom -consistent set of formulas satisfying the

following conditions:

(Named) Nom ;
(Pasted) For all @i X Y Z , there is a nominal j Nom such that

@i X Y Z j @ j .

The proof of Lemma 9 is standard. Since Nom is countable, we can assume that
itself is a named and pasted CNom -MCS without loss of generality.

For each i Nom such that @i , we define i @i . The
readers can check that i is a MCS for each i Nom.

Definition 26 The canonical model M W V is defined by:

– W i @i ;
– for each V, i j if and only if @i j ;
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– for each V, i j if and only if @i j ;
– V Px i @i Px and V i i .

Lemma 10 M W V is an HRPD-model.

Proof Since is named,W . Let V. By axiom (Ord,1,2,3), is a pre-order
and is an equivalence relation. Note that V i W for each i Nom dom V .
To show that M is an HRPD-model, it suffices to show that V satisfies (Val). Let
P Pred and x Var P . Suppose i ran x j and i V Px . Then Px i .
By (Dep), X Px i , which entails Px j .

Lemma 11 Let M W V , i Nom and i W . Then

(1) If X Y Z j i , then i R X Y Z j ;
(2) If@i X Y Z , then there is j Nomwith j and i R X Y Z j .
(3) DXs i if and only ifM i DXs.
(4) For all Nom, i if and only if M i .

Proof For (1), suppose X Y Z j i . By axiom (Ord,5), we see x j
y j z j i for all x X , y Y and z Z , which entails by

axiom (Ord,4) that i X j , i Y j and i Z j . Thus i R X Y Z j .
For (2), suppose @i X Y Z . Since is pasted, there is j Nom such that

@i X Y Z j @ j . Thus j and i R X Y Z j .
For (3), suppose DXs i and i X j . We show that s j i .

Assume s j i . Then by axiom (DD,1), we see X j i , which
contradicts to i X j . Thus M i DXs. Suppose DXs i . Then i
DXs i . By axiom (DD,2), we see @i X s i . Since is pasted,

there is j Nom such that @i X j @ j s i . Thus i X j and
i s j . Note that s is symmetric, j s i . Thus M i DXs.
For (4), the proof proceeds by induction on the complexity of . The case when

DXs follows from (3). The case Px or Nom is trivial. The Boolean
cases are also trivial. Let X Y Z . Assume X Y Z i . Then
X Y Z i and so @i X Y Z . By (2), j for some
j R X Y Z i . Then j and by induction hypothesis, M j ,

which entails M i X Y Z . Assume that M i X Y Z . Then
there is j R X Y Z i such that M j . By induction hypothesis,

j and so j j . Note that X Y Z j i , we see X Y Z i ,
which entails X Y Z i .

Theorem. CNom is sound and strongly complete.

Proof Soundness is not hard to verify. ByLemma 11,M . By the arbitrariness
of , we obtain the strong completeness.
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