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Abstract
An algebraic characterisation is given of the Mares-Goldblatt semantics for quantified
extensions of relevant and modal logics. Some features of this more general seman-
tic framework are investigated, and the relations to some recent work in algebraic
semantics for quantified extensions of non-classical logics are considered.

Keywords Algebraic logic · Quantifiers · Relevant logic

1 Introduction

There is a curious phenomenon in the history of relevant logics (at least in the
Anderson-Belnap tradition [1]). Relevant logics were introduced with deep and, I
think, compelling philosophical motivations concerning the relations of entailment
and logical consequence, and the invalidity of intuitively implausible argument forms
such as explosion. However, it has, time and again, turned out that in order to study
these, rather nice, logics we must build new mathematical tools, as it has often turned
out that the existing tools were inadequate. Furthermore, when the new tools were
developed, they have usually been found to be substantially more general than the
pre-existing tools, and so of use for a range of logics outside of the scope of the
relevant logic enterprise.1

One example of this phenomenon is that standard Gentzen-style sequent systems
were found to be inadequate for systems like R, once we try to include all the vocabu-
lary.2 This led Belnap to develop the display calculus, presented in [2, §62], which, it
turns out, is applicable to a very wide range of systems, as discussed, for instance, in
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1 This phenomenon suggests to me a good reason why relevant logics should be of perennial interest. They
are both philosophically motivated and mathematically rich: what more could one possibly want?
2 Leading to the development of “lattice-R” or “LR” in [27].
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332 A. Tedder

[43]. Another example, especially salient here, is that Kripke semantics for modal and
intuitionistic logic (for details of which see [4], or any other modal logic textbook)
turned out to be inadequately expressive to accommodate relevant logics. This moti-
vated the development of alternate frame-based semantics, most famously the ternary
relation semantics due to Sylvan (né Routley) and Meyer [35]. This, in turn, lead to
the development by Dunn of gaggle theory [3, 10], which is an extremely powerful
semantic framework accommodating a very wide range of systems.3

On the point of frame-based semantics, a very general toolkit developed to accom-
modate first order relevant logics is the Mares-Goldblatt semantics for quantifiers.
Quantified extensions of relevant logics have presented (in)famous difficulties when it
comes to semantic presentations. TheKripkean approach, either in constant or variable
domain, commonly investigated in the context of modal logics, and initially conjec-
tured to work in the context of relevant logics [37], was eventually shown, by Fine
[16], to fail. In particular, quantified extensions of the stronger relevant logics, such
as R, E, and T, were shown to be incomplete with respect to the extensions of their
propositional frames by machinery to accommodate the Tarskian truth conditions for
the quantifiers. By Kripkean here, I mean that interpretation which takes a universal
quantified formula to be interpreted by the generalised intersection of the interpreta-
tions of its instances, and an existentially quantified one in terms of the generalised
union thereof. This approach, it turns out, does not work on a pretty deep level. In order
to avoid the incompleteness phenomenon, an alternate truth condition for quantifiers
was introduced by Fine [15], and another by Mares and Goldblatt [26]. Once again,
the curious phenomenon has shown itself, as this approach to quantifiers is, it seems,
really rather general, as further investigations [14, 18, 19, 41] have shown.

The Mares-Goldblatt semantics is, as mentioned, a frame-based semantics, but the
formal properties of the frames which do the work of supporting their alternate truth
condition seems to be more general. In particular, there is, to be found with just a bit of
scratching, a rather natural algebraic structure underlyingMares-Goldblatt frames and
models. The aim of this paper is to pull out this algebraic structure, investigate some of
its properties, and compare it to a recent algebraic approach (detailed in [7, Ch. 7]) to
interpreting quantified extensions of a range of logics. The upshot is a rather general
algebraic semantics which both underlies the original Mares-Goldblatt presentation,
and, as I’ll discuss in the final section, promises interesting connections with a range
of other approaches to studying quantified extensions of non-classical logics.

Before diving in, let me get some necessary preliminaries out of the way.

2 Preliminaries

2.1 Languages

Throughout we’ll deal with a range of different languages, which I’ll uniformly refer
to using L. Generally these will be abstract, consisting of a set of formulas, L, with
3 Aswas shownbyRestall [32], the generality of the display calculus and that of gaggle theory are intimately
related. As I’ll mention in the final section, this connection motivates some work extending that which I’ll
do in this paper.
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propositional connectives of varying (finite) arities, a denumerable set of individual
variablesVar = {xn}n∈ω, and a pair of quantifiers∀ and∃.4 I’ll dealwith one particular
language, when dealing with the relevant logic R and its quantified extensions. This
will include the propositional constant t, the unary connective ¬, and the binary
connectives ∧, ∨, and →. In order to omit writing some parentheses, I’ll assume that
→ is the most weakly binding connective. Furthermore, we take ↔ to be defined as
A ↔ B := (A → B) ∧ (B → A).

A language signature will be a pair 〈Con, Pred〉 where Con is a set of name
constants, and Pred a set of predicate letters of varying arities (the set of n-ary
predicate letters will be written Predn , so that Pred = ⋃

n∈ω

Predn). The set of terms

is T erm = Con ∪ Var . From a signature, a language L is defined the usual way.
I’ll use capital letters from the beginning of the Latin alphabet as metavariables over
formulas (perhaps with free variables occurring therein). A formula is closed when
no free variables occur in it.5

When writing axioms and rules which have side conditions specifying that a certain
variable cannot occur free in some subformula, I’ll write that subformula with the
variable in question as a superscript: for example, when specifying that in the axiom
∀x(A∨B) → A∨∀x B, the variable x cannot occur free in A, I’ll write ∀x(Ax ∨B) →
Ax ∨ ∀x B.

2.2 Logics

I’ll deal, here and there, with logics in two flavours. The first flavour is the more
familiar, where logics are FMLA systems, in Humberstone’s [22] terminology (or
“assertional systems” in Dunn and Hardegree’s [11]). Here logics are sets of formulas,
and I’ll often write something like �L A in place of A ∈ L to indicate that A is valid
with respect to L. One class of FMLA logics that will be of particular importance are
called, by Cintula [6], weakly implicative logics. A weakly implicative logic is one
including at least a binary connective → such that, where C(A/B) is a formula C in
which some occurrences of A are replaced by B:

(Refl) A → A ∈ L
(rMP) {A → B, A} ⊆ L ⇒ B ∈ L
(rTran) {A → B, B → C} ⊆ L ⇒ A → C ∈ L
(rCong) {A → B, B → A} ⊆ L ⇒ C → C(A/B) ∈ L

These constraints indicate that → expresses a partial order, from which we can obtain
a congruence with respect to the connectives of L (by taking, e.g., the Leibniz con-
gruence as discussed in [17]), and satisfies a rule form of modus ponens. These are
plausibly minimal conditions for → to count as a kind of logical implication, as

4 I avoid identity because it introduces many additional complexities, though Mares-Goldblatt style treat-
ments of identity have been studied by Ferenz [13] and Standefer [39].
5 This language is presented without function symbols, in order both to cut down on technical complexity
and to avoid tricky philosophical issues concerning the interpretation of identity in a relevance-friendly
way. The latter issue has recently come up for renewed discussion, notably in [13, 39], but I leave aside the
issue of choosing how to proceed in this general setting for future work.
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argued in [36], and Cintula and Noguera [7] show that this class of logic also exhibit
reasonably nice behaviour when extended to a quantificational setting. In particular,
given a weakly implicative logic L, let us take its basic quantified extension QL to be
characterised by the following axioms and rules:

(∀E) ∀x A → A[x/τ ] for any τ substitutable for x in A
(∃I) A[τ/x] → ∃x A for any τ substitutable for x in A

Ax → B(r∀I)
Ax → ∀x B

A → Bx
(r∃E) ∃x A → Bx

So much for FMLA logics. A FMLA-FMLA logic is a set of pairs of formulas,
or sequents. I’ll often write �L A � B in place of 〈A, B〉 ∈ L. As in the case of
weakly implicative FMLA logics, I’ll assume some basic properties for FMLA-FMLA
systems, so that � is adequate to be read as an order the symmetrisation of which gives
rise to a congruence on the algebra of formulas ofL, namely I’ll require that�L A� A,
and that the following rules preserve validity:

A � B B � C(rTran�) A � C
A � B B � A(rCong�) C � C(A/B)

Note that the use of “rules” here is in accordancewith Smiley’s [38] “rules of proof”
– so that the rules are required to preserve validity.6

Given a FMLA-FMLA logicL, we’ll defineQL in a way similar to that for a FMLA
logic, taking the following axioms and rules:

(∀E�) ∀x A � A[x/τ ] for any τ substitutable for x in A
(∃I�) A[τ/x] � ∃x A for any τ substitutable for x in A

Ax
� B(r∀I�) Ax

� ∀x B
A � Bx

(r∃E�) ∃x A � Bx

Whencontextmakes clearwhich versions of thesewemean, I’ll elide the occurrence
of the subscripted �.

I introduce these two notions of logic in order to facilitate (1) introducing theMares-
Goldblatt semantics for QR, which is treated as a FMLA system while (2) providing
for the most natural algebraic generalisation of the Mares-Goldblatt, which concerns
FMLA-FMLA systems.

3 Mares-Goldblatt Semantics for Quantified Extensions of R

Before going on to consider the algebraic structure of Mares-Goldblatt frames, let me
introduce the target logic R, and the frame semantics itself, along with some of its
salient properties.

6 So they are more similar to the rule of necessitation in normal modal logics than the rule of modus ponens
in, say, classical logic.
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An Algebraic View of the Mares-Goldblatt Semantics 335

3.1 Axioms for Quantified Extensions of R

The propositional relevant logic R can be axiomatised as follows (where in (∧E) and
(∨I), i ∈ {1, 2}):

(Id) A → A
(B) (A → B) → ((C → A) → (C → B))

(W) (A → (A → B)) → (A → B)

(C) (A → (B → C)) → (B → (A → C))

(∧E) A1 ∧ A2 → Ai

(∧I) (A → B) ∧ (A → C) → (A → B ∧ C)

(∨I) Ai → A1 ∨ A2
(∨E) (A → C) ∧ (B → C) → (A ∨ B → C)

(Dist) A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

(Cont) (A → ¬B) → (B → ¬A)

(DNE) ¬¬A → A
(t) A ↔ (t → A)

A → B A(rMP)
B

A B(rAdj)
A ∧ B

Note that these rules are rules of proof, in the sense of [22].7

QR is the basic quantified extension of R, as defined in the previous section8, and the
system RQ is the extension of QR with the additional axiom:

(EC) ∀x(Ax ∨ B) → Ax ∨ ∀x B
The axioms governing ∃ inQR are redundant, as we can take ∃x A := ¬∀x¬A. I keep
them separate above for the sake of generalisation. Some of the salient consequences
of QR are presented in [26, §6].

7 This fact makes things a bit complicated when comparing directly with treatments of consequences for
non-classical logics, such as in [7]. What is required for such a treatment to make sense is, like in the case
of normal modal logics, to consider the global consequence relation associated with the logic.
8 Note that because we can define additional connectives ◦ and ← in R, forming the residuated triple
{←, ◦, →}, closure under (r∀I) and (r∃E) ensures that we can prove the associated axiom forms:

(∀I) ∀x(Ax → B) → (Ax → ∀x B)

(∃E) ∀x(A → Bx ) → (∃x A → Bx )

but, as shown in [41], this may not be the case in systems where these connectives are not definable. In
addition, because of the addition of t to the language, we also get, as a special case of (r∀I), the derivability
of the universal generalisation (UG) rule, as follows:

A (t), (rMP)
t → A (r∀I)

t → ∀x A (t), (rMP)∀x A
So in the more general setting of weaker relevant logics, we will need to add these connectives to the
propositional logic L in order to get the ‘usual’ basic quantified extension QL thereof out of the basic
quantified extensions discussed here.
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336 A. Tedder

3.2 Mares-Goldblatt Frames

In giving the frame semantics, it makes sense to start with the definition of ternary
relation frames and complex algebras thereon, as both of these play an important role
in the definition of Mares-Goldblatt frame.

Definition 3.1 A Ternary Relation (TR) frame is a tuple F = 〈W , N , R, ∗〉 such that
∅ �= N ⊆ W , R ⊆ W × W × W , and ∗ : W −→ W , and furthermore, fixing the
definitions:

≤ = {〈a, b〉 ∈ W × W | ∃c ∈ N (Rcab)}
P(W )↑ = {X ⊆ W | ∀b ∈ W (∃a ∈ X(a ≤ b) ⇒ b ∈ X)}

the following constraints are satisfied:

(1) 〈W ,≤〉 is a partially ordered set
(2) N ∈ P(W )↑
(3) If a′ ≤ a, b′ ≤ b, c ≤ c′, and Rabc, then Ra′b′c′
(4) a ≤ b ⇒ b∗ ≤ a∗ and a∗∗ = a

Definition 3.2 Given a TR frame F , we define the following operations on P(W )↑,
alongside ∩ and ∪ defined as usual:

¬X = {a ∈ W | a∗ /∈ X}
X → Y = {a ∈ W | ∀c ∈ W (∃b ∈ X(Rabc) ⇒ c ∈ Y )}

A complex algebra of F is a tuple 〈Prop, N ,¬,∩,∪,→〉 generated by a Prop ⊆
P(W )↑. The full complex algebra of F is that where Prop = P(W )↑.

Note that in any complex algebra of a TR frame F , we have X ∪Y = ¬(¬X ∩¬Y ).

Definition 3.3 AMares-Goldblatt (MG) frame F=〈W ,N ,R, ∗, Prop, D, PropFun〉
satisfying the following constraints:

(1) F ′ = 〈W , N , R, ∗〉 is a ternary relation (TR) frame.
(2) Prop is the carrier set of a complex algebra of F ′.
(3) D �= ∅

(4) PropFun is a collection of functions of type Dω −→ Prop, such that:

(a) There is a ϕN ∈ PropFun such that for any f ∈ Dω, ϕN f = N .
(b) For {ϕ,ψ} ⊆ PropFun and ⊗ ∈ {∩,∪,→}, there is a ϕ ⊗ ψ ∈ PropFun

such that for any f ∈ Dω, (ϕ ⊗ ψ) f = ϕ f ⊗ ψ f .
(c) For ϕ ∈ PropFun and n ∈ ω, there is an ∀nϕ ∈ PropFun such that for any

f ∈ Dω:
(∀nϕ) f =

⋃ {
X ∈ Prop | X ⊆

⋂

f ′∼n f

ϕ f ′}
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An Algebraic View of the Mares-Goldblatt Semantics 337

(d) For ϕ ∈ PropFun and n ∈ ω, there is an ∃nϕ ∈ PropFun such that for any
f ∈ Dω:

(∃nϕ) f =
⋂ {

X ∈ Prop |
⋃

f ′∼n f

ϕ f ′ ⊆ X
}

Definition 3.4 A model on an MG frame F is a tuple 〈F, M〉 where M is a multitype
function, of types Con −→ D and Predn −→ (Dn −→ AN). Furthermore, given
f ∈ Dω, we form M f : T erm −→ D by fixing:

M f (τ ) =
{
M(τ ) if τ ∈ Con

f n if τ = xn ∈ Var

We obtain a valuation �·�M : L×Dω −→ Prop using the following recursive clauses
(sometimes writing “�A�

M
f ” for “(�A�

M ) f ”):

�P(τ1, . . . , τn)�
M
f = M(P)(M f (τ1), . . . , M f (τn)) �¬A�

M
f = ¬(�A�

M
f )

�A ∧ B�
M
f = �A�

M
f ∩ �B�

M
f �A → B�

M
f = �A�

M
f → �B�

M
f

�∀xn A�
M
f = (∀n�A�

M ) f �∃xn A�
M
f = (∃n�A�

M ) f

A formula A is satisfied on 〈F, M, f 〉, written 〈F, M, f 〉 � A, just in case N ⊆
�A�

M
f . A is satisfied by 〈F, M〉, written 〈M, F〉 � A, just in case 〈F, M, f 〉 � A

holds for every f ∈ Dω. A is valid on F , F � A, just in case 〈F, M〉 � A holds for
every M on F . Given a class F of MG frames, �F A holds iff F � A holds for every
F ∈ F.

A logic L is the logic of a class F of MG frames just in case �L A ⇐⇒ �F A.

Note that this definition provides for complex algebras which are matrices, where
the set of designated values is the cone of N : i.e., T = {X ∈ Prop | N ⊆ X}.9

Definition 3.5 A TR frame is an R frame just in case it satisfies the following con-
straints:

(cCont) Rabc ⇒ Rac∗b∗
(cB) Rabcd ⇒ Ra(bc)d

(cWI) Raaa
(cCI) Rabc ⇒ Rbac

where we fix the notation:10

Rabcd ⇐⇒ ∃x(Rabx & Rxcd)

Ra(bc)d ⇐⇒ ∃x(Rbcx & Raxd)

9 Matrix semantics are discussed in a number of places, for instance [17, Ch. 4].
10 Some of these complexities in defining R frames can be traded in for other complexities, up to the
reader’s preference, by adopting the collection frame approach recently introduced in [34].
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338 A. Tedder

Theorem 3.6 (Mares andGoldblatt, 2006)QR is the logic ofMG frameswhose under-
lying TR frame is an R frame.

The proof employs a more or less standard canonical model construction for the
completeness direction, some of the details of which we’ll recapitulate later. Related
results have been given for a range of quantified extensions of relevant logics [12, 41],
of modal relevant logics [14], and quantified modal logics [18, 19].

3.3 MG Frames for RQ

A simple maneuver allows us to obtain frames for RQ, building in a constraint on
PropFun which delivers exactly the validity of (EC).

Definition 3.7 Given a TR frame F and {X ,Y } ⊆ P(W )↑, we fix:

X \ Y = {a ∈ W | ∃b ≤ a(b ∈ X & b /∈ Y )}

Note that P(W )↑ is closed under \.
Definition 3.8 AnMG frame F is a RQ frame just in case (1) its underlying TR frame
is an R frame and (2) for any {X ,Y } ⊆ Prop, ϕ ∈ PropFun, and f ∈ Dω:

X \ Y ⊆
⋂

f ′∼n f

ϕ f ′ ⇒ X \ Y ⊆ (∀nϕ) f

Theorem 3.9 (Mares and Goldblatt, 2006) RQ is the logic of RQ frames.

We’ll discuss a bit further why this strategy works in Section 4.2.

4 MG Structures

With this specified, let us cut to the chase. The following definition seeks to specify
the essential properties of Mares-Goldblatt frames, when we consider these in terms
of the behaviour of their complex algebras. The duality between frames and algebras,
in the case between TR frames for R and De Morgan monoids (to be introduced in
the next section), is a special case of the broader representation theory studied in the
context of gaggles [3, 10], a point to which we return later.11

I’ll start with the abstract definition, and some of its properties, and then come back
to consider how this abstracts away from the frame situation, and how, in general,
completeness proofs go.

Definition 4.1 An MG structure is a five-tuple A = 〈AN,AC, D, PF, h〉 where:
(1) AN = 〈AN,≤N, {⊗N

i }i∈I 〉 is a partially ordered algebra (or a “po-algebra”).

11 Related results in the context of modal logic can be found in [5, Ch. 8].
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An Algebraic View of the Mares-Goldblatt Semantics 339

(2) AC = 〈AC,≤C, {⊗C
i }i∈I 〉 is a complete lattice.12

(3) D �= ∅

(4) PF ⊆ {ϕ | ϕ : Dω −→ AN} is such that:

(a) If⊗ is a 0-ary operation, then there is a ϕ⊗ ∈ PF such that for every f ∈ Dω,
ϕ⊗ f = ⊗.

(b) If ⊗ is an m-ary (m ≥ 1) operation and {ϕi }i≤m ⊆ PF , then there is a
⊗(ϕ1, . . . , ϕm) ∈ PF such that for every f ∈ Dω,

⊗(ϕ1, . . . , ϕm) f = ⊗N(ϕ1 f , . . . , ϕm f )

(c) For each ϕ ∈ PF and n ∈ ω, there are ∀nϕ, ∃nϕ ∈ PF .

(5) h : AN −→ AC is a map such that:

(a) a ≤N b ⇐⇒ ha ≤C hb
(b) For each m-ary operation ⊗:

h(⊗N(a1, . . . , am)) = ⊗C(ha1, . . . , ham)

(c) h((∀nϕ) f ) = ∨C {
a ∈ ran(h) | a ≤C

∧C

f ′∼n f
h(ϕ f ′)

}

(d) h((∃nϕ) f ) = ∧C {
a ∈ ran(h) | ∨C

f ′∼n f
h(ϕ f ′) ≤C a

}

An MG structure A belongs to a class of po-algebras A iff {AN,AC} ⊆ A.

We could shorten this statement by noting that condition (5)(a) requires that h be an
order-embedding ofAN intoAC, and that (5)(b) requires this to be a homomorphism.
That AC is a complete lattice, and h an order-embedding of AN into AC, can be
expressed by saying thatAC is a completion ofAN, mediated by h.13 So, in essence,
these two conditions indicate that AC be a completion of AN, mediated by a homo-
morphic order-embedding. Then the only distinctive properties are those concerning
the quantifiers, whose behaviour is specified in terms of the interaction between AN

andAC. To characterise this interaction, let’s note some key facts aboutMG structures.

Proposition 4.2 When A = 〈AN,AC, D, PF, h〉 is an MG structure, then for each
ϕ ∈ PF and n ∈ ω, then:

(1) {(∀nϕ) f , (∃nϕ) f } ⊆ AN

(2) (∀nϕ) f is the greatest lower bound of {ϕ f ′ | f ′ ∼n f }.
(3) (∃nϕ) f is the least upper bound of {ϕ f ′ | f ′ ∼n f }.
Proof Point (1) is guaranteed by the constraints on MG structures, according to which
each ϕ ∈ PF is a function of type Dω −→ AN. For point (2), first note that:

12 That is, for any set X ⊆ AC, we have a meet
∧C X and join

∨C X , defined w.r.t. ≤C, inhabitingAC.
Salient definitions and results are drawn from [8], but can be found in any treatment of lattice theory.
13 Further discussion of completions can be found in [21].
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340 A. Tedder

h((∀nϕ) f ) ≤C
∧C

f ′∼n f
h(ϕ f ′)

and so for each f ′ ∼n f , we have that

h((∀nϕ) f ) ≤C h(ϕ f ′)

and so by condition (5)(a), for each f ′ ∼n f :

(∀nϕ) f ≤N ϕ f ′.

Thus (∀nϕ) f is a lower bound of {ϕ f ′ | f ′ ∼n f }. To show that it is the greatest
such, suppose that a ≤N ϕ f ′ holds for each f ′ ∼n f . It follows, by (5)(a), that:

ha ≤C
∧C

f ′∼n f
h(ϕ f ′)

and thus:

ha ≤C h((∀nϕ) f )

and thus:

a ≤N (∀nϕ) f .

The proof of point (3) is similar to that for point (2). ��
I’ll express points (2) and (3) of the above by writing (∀nϕ) f = inf{ϕ f ′ | f ′ ∼n f }
and (∃nϕ) f = sup{ϕ f ′ | f ′ ∼n f }, leaving implicit that inf and sup concern the
order ≤N.

We can adapt the notion of safe structure from [7, Ch. 7], roughly an interpreted
algebraic structure which has enough points to interpret quantified formulas as meets
and joins of their instances, and note that the latter two points of the above result
indicate that the nugget of an MG structure is always safe.

Definition 4.3 A triple 〈A, D, PF〉, where A is a po-algebra, D �= ∅, and PF ⊆
{ϕ | ϕ : Dω −→ A} satisfies condition (5) of Definition 4.1, is a safe structure just in
case for any ϕ ∈ PF and f ∈ Dω:

{inf{ϕ f ′ | f ′ ∼n f }, sup{ϕ f ′ | f ′ ∼n f }} ⊆ A

Proposition 4.4 If A is the nugget of an MG structure 〈A,B, D, PF, h〉, then
〈A, D, PF〉 is a safe structure.

This suggests that the reasonMG structureswork is precisely because the additional
machinery enforces the nugget to be safe. In the case of algebras we may always just
enforce safety, but the advantage of building in this extra machinery seems to be that
it transfers nicely to structures of complex algebras of frames.

However, this isn’t the whole picture: while we can be sure that (∀nϕ) f and (∃nϕ) f
will be the inf and sup of {ϕ f ′ | f ′ ∼n f }, we have no such guarantee that h((∀nϕ) f )
and h((∃nϕ) f ) will be the meet and join, respectively, of {h(ϕ f ′) | f ′ ∼n f } (which
are guaranteed to exist just because AC is a complete lattice). That is, we might have
a situation like the following:
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An Algebraic View of the Mares-Goldblatt Semantics 341

h(ϕ f1) . . . h(ϕ fm) . . .

∨C

f ′∼n f
h(ϕ f ′)

h((∃nϕ) f )

∧C

f ′∼n f
h(ϕ f ′)

h((∀nϕ) f )

in which only the extremal elements and the various h(ϕ f )’s need occupy AN.14

A concrete example of this sort of situation is given in [26, §5]: the point there is that
the realmeet and join of instances may not exist inAN, in which case we have (∀nϕ) f
and (∃nϕ) f as approximations thereof. So, while AN will be a safe structure, as will
AC be, the order-embedding relating them need not (and often will not) preserve
existing meets and joins. That is, this completion often will not be regular, in the
terminology of [21]. If lattice operators are in the type of the algebras in question, we
will have that h preserves finite meets and joins, but in general, it may well be that the
following hold, even where

∧N X and
∨N X exist:

∧C hX �= h(
∧N X)

∨C hX �= h(
∨N X)

So what we have in an MG structure is a homomorphism from a safe structure
into a complete lattice, preserving particular meets and joins, namely those interpret-
ing quantified formulas. The reason this works is because the preservation of those
particular meets and joins is just what we need in order to obtain completeness results.

Before getting to that, let’s define models over MG structures. First, given a class
of algebras A, I’ll say that an MG structure A ∈ A iff both the nugget and seam of A
belong to A.15

Sincewe’re taking po-algebras as basic, it makes sense to consider logics as FMLA-
FMLA systems, where we can take the sequent separator symbol to be interpreted in

14 The diagram is not meant to indicate that the number of n variants of f need be enumerable.
15 So, for instance,Abeing amatrix requires that bothnugget and seamarematrices, andwhatever properties
the designated elements are required to satisfy w.r.t. the operations of the algberas will be satisfied in both
cases.
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terms of the partial order. In the case of FMLA logics, the natural requirement is that
the MG structure in question be a matrix, with a set T of designated elements. I’ll
present both options in the definition.

Definition 4.5 A model is a tuple 〈A, M〉 where M and M f are as in Definition 3.4.
Using this, we define �·�M : L × Dω −→ AN as follows:

�P(τ1, . . . , τn)�
M
f = M(P)(M f (τ1), . . . , M f (τn))

�⊗(A1, . . . , An)�
M
f = ⊗N(�A1�

M
f , . . . , �An�

M
f )

�∀xn A�
M
f = (∀n�A�

M ) f

�∃xn A�
M
f = (∃n�A�

M ) f

If A is a matrix, then 〈A, M, f 〉 � A holds just in case �A�
M
f ∈ TN. Furthermore,

〈A, M〉 � A just in case 〈A, M, f 〉 � A holds for each f ∈ Dω. Also, A � A holds
just in case 〈A, M〉 � A holds for each M on A.

If A is not a matrix, then 〈A, M, f 〉A � B holds iff �A�
M
f ≤N

�B�
M
f . The related

notions, satisfaction not relative to a variable assignment e.g., are defined as in the
matrix case.

Let’s consider a worked example which indicates how the features of MG structures
recapitulate those of frames.

4.1 Example: MG Structures Induced byMG Frames

Definition 4.6 A De Morgan monoid is an algebra 〈A, e,¬,∧,∨, ◦〉 where:
(1) 〈A,∧,∨〉 is a distributive lattice
(2) ¬ is an order-inverting involution with respect to the lattice order ≤
(3) ◦ is commutative, associative, and monotone w.r.t. the lattice order
(4) a ≤ a ◦ a
(5) e ◦ a = a
(6) a ◦ b ≤ c ⇐⇒ a ◦ ¬c ≤ ¬b

PropositionalR is the logic of DeMorganmonoids, first proved byDunn [9] relying
on the fact that → can be understood as a residual of ◦ (when fixed by the definition
a → b := ¬(a ◦ ¬b) – we could also have gone the other way, taking → as primitive
and defining a ◦ b := ¬(a → ¬b)). Furthermore, it is easy to verify:

Proposition 4.7 Any complex algebra of an R frame is a De Morgan monoid.

Using this fact, we can obtain a completeness proof for QR with respect to MG
structures which have De Morgan monoids as both nugget and seam – what I’ll call
“MG De Morgan monoids”, or “MGDM’s”. To work our way up, let us verify, also
by way of a sanity check, that we can construct an MG structure from an MG frame
in the natural way.
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Theorem 4.8 Each MG frame F = 〈W , N , R, ∗, Prop, D, PropFun〉 gives rise to
an MG structure AF = 〈AP ,AF , D, PF, ι〉 where:
(1) AP = 〈Prop, N ,¬,∩,∪,→〉
(2) AF = 〈P(W )↑, N ,¬,∩,∪,→〉
(3) D is as in F and PF = PropFun
(4) ι is the inclusion map: i.e., ι : X �→ X for X ∈ Prop.

Furthermore, any model M satisfying the conditions of Definition 3.4 will be a model
on AF satisfying just the same formulas there as on F .

Proof We must verify that AF is, indeed, and MG structure, and that any model M on
F will by such that 〈AF , M〉 � A ⇐⇒ 〈F, M〉 � A.

For the first bit, note that it is immediate that AP and AF are po-algebras of the
same type, that AF is a complete lattice, and that AP is a subalgebra of AF . Thus, ι
is, indeed, an order-embedding homomorphism. We just need to note, then, that:

ι((∀nϕ) f ) = (∀nϕ) f = ⋃ {
X ∈ Prop | X ⊆ ⋂

f ′∼ f

ϕ f ′} = ⋃ {
X ∈ Prop | ι(X) ⊆ ⋂

f ′∼ f

ι(ϕ f ′)
}

and that a similar fact holds for ∃nϕ. This guarantees that ι satisfies the required
properties, and that D, PF = PropFun do is immediate from the fact that F is an
MG frame.

For the latter part, given an M satisfying Definition 3.4, it suffices to note that
our complex algebras are matrices, with TAF = {X ∈ Prop | N ⊆ X}, and so
it follows that N ⊆ �A�

M
f ⇐⇒ �A�

M
f ∈ TAF

holds for any f ∈ Dω. Thus

〈F, M〉 � A ⇐⇒ 〈AF , M〉 � A, as desired, follows. ��
With this in mind, we may prove:

Theorem 4.9 QR is the logic of MG De Morgan monoids.

Proof The canonicalMG frame forQR induces anMGstructure satisfying all and only
theorems of QR, by Theorem 4.8. To obtain the completeness direction it remains to
verify that the canonicalMG structure built from anMG frame is aDeMorganmonoid,
but this follows from the fact that any complex algebra of an R frame is a De Morgan
monoid. Thus, any invalidity of QR will be falsified in at least this MG De Morgan
monoid.

This leaves the soundness direction, but for this it suffices to verify that the quantifier
axioms of QR are satisfied in any MGDeMorgan monoid, and that the rules preserve
satisfaction in such structures, as any DeMorgan monoid will satisfy the propositional
axioms (and that the rules will preserve satisfaction therein). In fact, this follows from
Proposition 4.2, as the additional axioms (∀E) and (∃I) and rules (r∀I) and (r∃E)will be
satisfied, and preserve satisfaction, whenever the quantifiers are interpreted as meets
and joins of the sets of instances, which is provided by the fact that these are interpreted
as meets and joins of {ϕ f ′ | f ′ ∼n f }. ��

Let’s consider in a bit more detail how to prove completeness using the canonical
model in a more concrete manner. In effect, what we are doing is starting from the
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Lindenbaum-Tarski algebra forQR, and using the canonicalmodel construction to find
a complete lattice (the complex algebra of the canonical frame) into which the former
algebra embeds in away satisfying the desired properties. Letme define “Lindenbaum-
Tarski algebra” for FMLA-FMLA logics, as a prelude tomore general discussion later.

Definition 4.10 Let L be a FMLA-FMLA logic. The Lindenbaum-Tarski algebra AL

of L is the tuple 〈LL,≤L, {⊗L
i }i∈I 〉 where, given the congruence

≡L= {〈A, B〉 ∈ L2 | {A � B, B � A} ⊆ L}

and fixing [A]L = {B ∈ L | A ≡L B}, we define:
(1) LL = {[A]L | A ∈ L}
(2) ≤L= {〈[A]L, [B]L〉 ∈ (LL)2 | A � B ∈ L}
(3) For each n-ary connective, ⊗L([A1]L, . . . , [An]L) = [⊗i (A1, . . . , An)]L

It is easy to see, followingRasiowa [30] andCintula andNoguera [7], that whenever
we consider AQL, required to include FMLA-FMLA versions of the basic quantifier
rules, that:

Proposition 4.11 Given any formula A, the set {[A[τ/xn]]QL | τ ∈ T erm} has an
infimum w.r.t. ≤L, namely [∀xn A]QL, and a supremum [∃xn A]QL.

Proof The axiom (∀E) guarantees that [∀xn A]QL is a lesser bound of the target set,
and (r∀I) guarantees that it is a greatest lower bound. A similar remark applies for
[∃xn A]QL. ��

Thus, AQR is a safe structure, and is, furthermore, a De Morgan monoid. In order
to use this fact to obtain completeness w.r.t. MG structures, we just need to find some
D and PF for which we have (1) a complete lattice B and (2) an embedding h ofAQR

into B which preserves the values of ∀xn A and ∃xn A. However, we have just such a
thing if we work with the full complex algebra of the canonical frame FQR, which
has been defined in [26].

So what is needed, when considering quantified logics in general, is that we can
find some complete lattice into which the Lindenbaum-Tarski algebra of our target
quantified logic can homomorphically embed (and some domain and class of propo-
sitional functions that suit our needs). In the case that we work with a logic which is
complete w.r.t. a class of (general) frames, and which is canonical in the usual sense
(see [5], e.g.), we can just take the full complex algebra of the canonical frame and
the identity map as specifying the desired completion.16

When one has a logic which is complete w.r.t. a class of frames for which the logic
is not canonical, this simple argument form may not work. In that case, we’d need
to show that each of the frames (or perhaps their filtrations, or some similarly simple

16 For example, this kind of constructionworks in themodal setting of [18, 19], whenwe consider canonical
systems – a general completeness result for quantified extensions of canonical logics is proved in [18]. The
only point to note is that if we are working with some classical modal logic, we construct complex algebras
somewhat differently, as there the frames are only discretely ordered (i.e., ordered by =). This allows us to
avoid certain complexities, but the overall construction strategy remains the same.
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objects) can be homomorphically embedded into complete lattices of the appropriate
sort, or at least that one per invalid formula/sequent can be so embedded. A general
setting where we can be sure that the appropriate embeddings are possible is in logics
which are complete w.r.t. classes of gaggles, as in such a setting we know that we
can obtain the desired representations and completeness proofs via canonical model
constructions - detailed information can be found in [3]. So we we can be sure that the
basic quantifier extension of a wide range of logics which are complete w.r.t. algebraic
semantics of this kind will have quantified extensions which are complete w.r.t. MG
structures over those algebras. Let’s return once again to the difference between QR
and RQ to see an example of when we can obtain a completeness result for something
beyond the basic quantified extension.

4.2 MG Structures for RQ

As in the frame case, we can add a simple principle to obtain a class of structures
for which RQ is the logic. We employed a definition of X \ Y in the frame case, but
note that we did not require Prop to be closed under this operation, but rather just
exploited the fact that P(W )↑ is so closed.17 We can translate this requirement into
the setting of MG structures by noting that in any complete De Morgan monoid, we
can define a \ b := ∧{c | a ≤ b ∨ c}, obtaining the result that:

a ≤ b ∨ c ⇐⇒ a \ b ≤ c

so long as
(�)

∧

i∈I
(b ∨ ci ) ≤ b ∨

∧

i∈I
ci

obtains, for then
∧{d | a ≤ b ∨ d} ≤ c implies b ∨ ∧{d | a ≤ b ∨ d} ≤ b ∨ c, and

so, by (�), a ≤ b ∨ c holds (the converse direction is immediate).
(�) certainly holds in the full complex algebra of any frame, as any such thing is

completely distributive, which is why we can help ourselves to \ in the frame case.
Then, by enforcing the familiar principle, stated for any {a, b} ∈ ran(h):

(��) a \ b ≤C
∧C

f ′∼n f
⇒ a \ b ≤C h((∀nϕ) f )

Then the fact that this results in (EC) being valid can be seen straightforwardly by
noting (eliding the superscripted C) that if ϕ f = ϕ f ′, for any f ′ ∼n f :

h((∀n(ϕ ∨ ψ)) f ) ≤
∧

f ′∼n f

h((ϕ ∨ ψ) f ′) = h(ϕ f ) ∨
∧

f ′∼n f

h(ψ f ′)

17 The operation \ is intuitionistic biimplication, as in [31] (note this operation plays an interesting, and
apparently related, role in [33]). Note that intuitionistic implication is also definable in P(W )↑, but need
not be in an arbitrary choice of Prop.
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from which it follows, by using \, that:

h((∀n(ϕ ∨ ψ)) f ) \ h(ϕ f ) ≤
∧

f ′∼n f

h(ψ f ′)

and thus
h((∀n(ϕ ∨ ψ)) f ) \ h(ϕ f ) ≤ h((∀nψ) f )

and from this we can infer h(∀n(ϕ ∨ ψ) f ) ≤ h(ϕ ∨ ∀nψ) f , so that we have, as
desired, that (∀n(ϕ ∨ ψ)) f ≤N (ϕ ∨ ∀nψ) f .

So we can obtain the further result, essentially an adaptation of that from [26]:

Theorem 4.12 RQ is the logic of MG De Morgan monoids satisfying (��).

A more boring way to proceed is to define the salient class of MG De Morgan
monoids as those satisfying (∀n(ϕ∨ψ)) f ≤N (ϕ∨∀nψ) f , but using (��) is somewhat
more enlightening. In general the procedure of just writing out the ‘semantic analogue’
of the desired axioms/rules one wishes to add has been taken in [41], when dealing
with weak relevant logics, and in [12, 14] the only semantic clauses specified for the
relevant modal Barcan formulas are such homophonic conditions.

5 Future Directions

Perhaps the most obvious way forward is to attempt to use this framework to inves-
tigate the relationship between Mares-Goldblatt models and alternative semantics for
quantified relevant logics, such as Fine’s semantics [15, 23] and Logan and Leach-
Krouse’s hyperdoctrine semantics for RQ [24, 25]. The latter is especially natural
as the hyperdoctrine semantics has a structure which is prime facie similar to that of
MG structures, involving maps between De Morgan Monoids in the interpretation of
quantifiers. Ideally, the resulting relations would support the kind of ‘duality-style’
results reported in [29, 40].

Another natural line to follow would involve generalising the work in [32] showing
the intimate relationship between the gaggle-theoretic representation of logics and
their display calculi formulations. In particular, it seems natural to attempt to relate
the present line of investigation to work by Tzimoulis [42] in providing display cal-
culus formulations of quantifiers (which, not quite incidentally, involves the category
theoretic machinery of adjoints, closely related to the abstract residuation machinery
of gaggle theory).

Another avenue is to use this construction in investigating extensions of quantified
relevant logics, and whether or not they are conservatively extended by Boolean nega-
tion. Such extensions hold in many propositional relevant logics, but the question is
more difficult in the quantified setting.

Finally, while the gaggle-theoretic focus has provided us a rather nice, general com-
pleteness proof, more general results would seem to be available. In particular, in [41] a
Mares-Goldblatt treatment was employed to provide complete general neighbourhood
semantics for quantified extensions of some logicswhich do not fit the gaggle-theoretic
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criterion (in particular, in including operations with no tonicity or distribution type).
It seems that in these cases we must be employing a kind of completion in some way
other than the kind delivered to us by gaggle-theoretic techniques, and it’s a natural
question to askwhat the properties of such completionsmust be. I’ll leave this question
for future investigation here, along with those above, and rest hoping that the results
here are indicative of the power and flexibility of the MG machinery, and how they
provide a nice bridge from algebraic to frame theoretic semantics for a wide range of
quantified logics.

Of course, my hope is that the curious phenomenon in relevant logic mentioned
at the beginning will continue here, and these avenues for future work provide some
reason to believe that this is the case.
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