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Abstract
This paper establishes a sound and complete semantics for the impure logic of
ground. Fine (Review of Symbolic Logic, 5(1), 1–25, 2012a) sets out a system for
the pure logic of ground, one in which the formulas between which ground-theoretic
claims hold have no internal logical complexity; and it provides a sound and com-
plete semantics for the system. Fine (2012b) [§§6-8] sets out a system for an impure
logic of ground, one that extends the rules of the original pure system with rules for
the truth-functional connectives, the first-order quantifiers, and -abstraction. How-
ever, no semantics has yet been provided for this system. The present paper partly
fills this lacuna by providing a sound and complete semantics for a system GG con-
taining the truth-functional operators that is closely related to the truth-functional
part of the system of Fine (2012b).

Keywords Impure logic of ground Truthmaker semantics Logic of ground
Ground

1 Introduction

This paper establishes a sound and complete semantics for the impure logic of
ground. Fine [6] sets out a system for the pure logic of ground, one in which
the formulas between which ground-theoretic claims hold have no internal logi-
cal complexity; and it provides a sound and complete semantics for the system.
Fine [7][§§6-8] sets out a system for an impure logic of ground, one that extends the
rules of the original pure system with rules for the truth-functional connectives, the
first-order quantifiers, and -abstraction. However, it does not provide a semantics
for this system. The present paper partly fills this lacuna by providing a sound and
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complete semantics for a system GG containing the truth-functional operators that is
closely related to the truth-functional part of the system of [7].1

The present section provides an informal introduction to the leading ideas behind
the paper. In the rest of the paper, we describe the target system GG and the proposed
semantics and provide a proof that the system is sound and complete for the proposed
semantics. Sections 2 and 3 provide the formal specifications of the system GG and
its semantics, and establish soundness and consistency for the system. The ensuing
proof of completeness is Henkin-style. In Section 4, we define the canonical model
for a given set of grounding claims , and discuss its principal features. Sections 5–
7 establish the adequacy of the construction. Section 8 proves completeness, and
Section 9 concludes with a sketch of directions for further work.

The reader may find it helpful to have the above two papers at hand, but let
us remind her of some key features of the earlier systems. A distinction is drawn
betweenweak and strict ground. Intuitively, we might think of a strict ground as being
on a lower explanatory level than what it grounds, while a weak ground can also be
at the same explanatory level. Thus A will always be a weak ground for itself though
never a strict ground. We also introduce the notion of a partial, as opposed to a full,
ground. A weak partial ground is a part of a weak full ground, while a strict par-
tial ground is a weak partial ground which cannot be reversed. Thus , together,
will be a strict full ground for , while or on their own will be strict partial
grounds for though not, in general, strict full grounds; and if it is granted that,
for distinct bodies , and , being of the same mass as and the same mass as
weakly fully grounds being of the same mass as , then being of the same mass

as will be a weak partial ground for being of the same mass as without being
either a strict partial ground or a weak full ground. We are thereby led to a fourfold
classification of ground - strict full, weak full, strict partial, and weak partial - for
which we use the respective symbols , , , and and the systems we consider
will treat each of these four types of ground as syntactic primitives.

In the impure system, there are two principal sets of rules concerning the inter-
action between ground and the truth-functional connectives. There are, first of all,
the introduction rules, which specify the grounds for a truth-functionally complex
statement of a given form in terms of simpler statements. Thus the fact that
strictly grounds serves as an introduction rule for conjunction. There are, in the
second place, the elimination rules, which tell us how an arbitrary ground for a truth-
functionally complex statement of a given form must be related to the grounds for
simpler statements. Thus in the case of conjunction, the elimination rule will tell us
that when a set of statements strictly grounds , it must be possible to split
into two (perhaps overlapping) parts, one of which weakly grounds and the other
of which weakly grounds .

The development of a semantics for the logic of ground faces two main tasks:
it must provide an account of the content of the statements that go to make up a

1The main differences between the two systems are that we now only allow finitely many formulas to
occur to the left of the ground-theoretic operator and that we have added the IRREVERSIBILITY Rule,
which should have been part of the original system.
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grounding claim; and it must provide an account of the ground-theoretic connection
that should hold among the contents of those statements when the claim is true. The
two tasks go hand in hand, since the account of content should be precisely what is
needed to provide the resources by which a suitable account of the ground-theoretic
connections might be given.

In dealing with these two tasks, we have found it convenient to adopt a form of
truthmaker semantics.2 The main idea behind such a semantics is that truthmaking
should be exact, i.e., a truthmaker should bear as a whole upon the statement that it
makes true. Since ground is also exact, which is to say that the grounds should bear
as a whole upon what is grounded, it is perhaps no surprise that a semantics for the
logic of ground should also be exact. The exactitude of ground will be mirrored in
the exactitude of the truth-makers.3

Another feature of truthmaker semantics – at least within the setting of classical
logic – is that it is bilateral. The full content, or meaning, of a statement is not simply
given by its truth-makers but also by its falsity-makers. Thus we may take the truth-
condition (sometimes called the positive content) of a statement to be given by the
set of its truth-makers, the falsity-condition (or negative content) to be given by the
set of its falsity-makers, and its content (or full content) to be given by the ordered
pair consisting of its truth-condition, or positive content, and its falsity-condition, or
negative content.

Our semantics for the impure logic of ground will take over these features; it
will be both exact and bilateral. However, the standard “flat” form of truthmaker
semantics, described in [9], will not serve our purpose, since it does not provide
us with a sufficiently fine-grained conception of content. The problem is that our
impure logic of ground is highly hyper-intensional; it distinguishes in a very radical
way between logically equivalent statements. Thus: even though is logically
equivalent to , will be a weak ground for but not generally for ;
even though is logically equivalent to , is a weak ground for
but not generally for ; and, even though is logically equivalent to ,
will be a weak ground for but not for .

Now the standard truthmaker semantics is indeed hyper-intensional; it will dis-
tinguish, for example, between the truthmakers for and for , since the
fusion of a truth-maker for and for will be a truth-maker for and hence
for , yet not in general for . However, it is not hyper-intensional enough.
For under the standard semantics, the truth- and falsity-makers of and ,
and of and , and of and will be the same. We therefore require a
more fine-grained conception of content and a more refined conception of truth- and
falsity-making by which it might be defined.

To this end, it will be helpful to see how this more refined conception of truth-
making of our semantics might have evolved, through successive differentiation,
from the original, less refined, notion of truthmaking of the standard semantics. (This
reflects the actual development of our semantics). Consider first the relationship

2A survey of this style of semantics can be found in [9].
3This connection between ground and truthmaking is further discussed in [11].
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between and . Under the standard semantics, the truthmakers for
are the fusions of the form and the truthmakers for are the fusions of the
form , for a truthmaker for and a truthmaker for , and, since
is assumed to be the same as , the truthmakers for and for will
be the same. It turns out that the falsitymakers for and for are also the
same; and so the standard semantics will be incapable of distinguishing, as it should,
between the contents of and .

We may overcome this problem by adopting a more fine-grained conception
of fusion, which we now call combination and which is not subject to the usual
“leveling” constraints, such as associativity, commutativity and idempotence. The
combination . of and , for example, need not be taken to be the same as the
combination . of and . We also allow, in the spirit of generality, for combina-
tion to apply to any finite number of elements (or to an infinite number of elements
in some further applications we will consider). In the special case in which combi-
nation applies to zero items, we will get a null item, which corresponds to the fusion
of zero states in the standard semantics; and, in the special case of the unit combi-
nation of a single item , combination will take us up a level to a “raised” version

of the item, which, in contrast to the unit fusion, is never the same as the item
itself. The semantics for conjunction is now explained in terms of combination rather
than fusion and, since the combination . of and need not be the same as the
combination . of and , the previous difficulty is avoided.

Similar problems beset the relationship between and . Under the
standard semantics, the truthmakers for are the truthmakers for and for
(and possibly also for ) and so will be the same as the truthmakers for .
It turns out that the falsity-makers for and for are also the same; and
so the standard semantics will be incapable of distinguishing, as it should, between
the contents of and .

We overcome this problem by supposing that, in addition to the operation of com-
bination, there is an operation of choice which applies to any finite number (or, more
generally, to any number) of items and which is, again, not subject to leveling. The
choice between and , for example, need not be the same as the choice

between and . Choices are in general different from combinations but, in
the special case of a single element , we shall find no need to distinguish between
the unit choice of and the unit combination . The semantics for disjunction is
now explained in terms of choice and, since the choice between and need
not be the same as the choice between and , we will be in a position to
distinguish between the contents of and .

This change to the standard semantics brings a more sweeping change in its wake.
Before, we could identify the truth-condition of a statement with the set of its truth-
makers and the falsity-condition of the statement with the set of its falsity-makers
and we were able, moreover, to provide a recursive specification of the truth-and
falsity-makers of a conjunction or disjunction in terms of the truth- and falsity-makers
of their immediate components (and their fusions). We could therefore take as our
semantic primitives the notions of a state being a truth-maker for a given statement
and of a state being a falsity-maker for a given statement. This is no longer possi-
ble, for the difference between and , for example, will lie not in the
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truth-makers for their components, which are the same, but in the order in which
they are given. Thus the semantics must proceed by providing a recursive specifica-
tion of the truth- and falsity-conditions, rather than the truth- and falsity-makers, and
combination and choice must be regarded (at least for now) as operations on truth-
and falsity-conditions without there necessarily being any explanation of the oper-
ations solely in terms of the truth- and falsity-makers by which the conditions are
constituted.

Negation introduces a further complication. Under the standard semantics, the
truth-condition for is the falsity-condition for and the falsity-condition for
is the truth-condition for . This means that and will have the same truth-
condition and the same falsity-condition; and so the semantics will be incapable of
distinguishing, as it should, between the contents of and .

Let us grant that the falsity-condition for is indeed the truth-condition for .
(Indeed, we might even take the falsity-condition for to be, by definition, the truth-
condition for .) Is it then so clear that the falsity-condition for will be the
truth-condition for ? For the falsity-condition for , we have already assumed, is
the truth-condition for . But the direct truth-condition for is only an indirect
truth-condition for ; it makes true through first making true. And we
may mark this difference by making the direct truth-condition for to be, not ,
but the unit combination (cf. [13, 10-12]). Thus in providing a semantics for ,
there is not simply a reversal of the truth- and falsity-conditions but a raised reversal,
in which the truth-condition for is converted into a raised falsity-condition
for . We can then distinguish between and since, when is the truth-
condition for , it is rather than that will be the truth-condition for and, in
general, when is the content of then will be the content of .

We are not yet done. We have so far assumed that the truth-condition for is
the combination of the truth-conditions for and respectively and that the truth-
condition for is the choice between the truth-conditions for and ; and
similarly for the other cases. But this leads to unwanted results. For suppose that

is the content of and the content of . Then the content of is
. , so the content of is . , and so the content

of is . ; and the respective contents of and
are and , so the content of is . , and so
the content of is . .

Now is a strict full ground for and so we will want an
appropriate ground-theoretic connection to hold between the content .

of and the content . of . But in the
semantics, we will want the grounding connection between the contents of some
grounds and a grounded statement to depend only upon the positive content of the
grounded statement (we might call this ‘positive bias’, since only the positive content
of the grounded statement is taken into account).

Such a view might plausibly be taken to be built into our conception of posi-
tive content, which concerns the ways in which a proposition might be true, but not
the ways in which it might be false, i.e. its negative content. (It will also receive
some support from the idea, developed below, of contents as bi-lateral menus.) But
this means, in the particular case above, that it is only the positive content .
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of that it is relevant to grounding . So the same
ground-theoretic connection should hold between the content .
of and the content . of and, conse-
quently, should also be a strict ground for . But our system
leaves open whether this is so.

We solve this problem by supposing that combination and choice are opera-
tions, not on conditions, but on contents. Thus the truth-condition for will
be the combination of the respective contents (not truth-conditions) of and ,
the truth-condition for will be the choice of the respective contents of
and , the falsity-condition for will be the unit combination of the content of
, and similarly for the other cases. There is thus an interplay between conditions

and contents, with contents formed through the pairing of conditions and conditions
formed through the combination and choice of contents. The previous problem will
not then arise since and will end up having different
truth-conditions.

From an intuitive point of view, we should think of contents as bilateral or two-
sided; what matters to them is when they are true and when they are false. We should,
by contrast, think of conditions as unilateral or one-sided; all that matters to them is
when they obtain. A content will then be constituted by a truth-condition, being true
when the condition obtains, and by a falsity-condition, being false when this condi-
tion obtains. It remains to explain why, from an intuitive point of view, we should
take conjunctive conditions to be combinations of contents rather than conditions.
In other words, given two propositions and , why should we take the
truth-condition for their conjunction to be the combination of the two proposi-
tions themselves rather than the combination of their truth-conditions and ? (A
similar problem also arises for disjunction). The reason is that we adopt a represen-
tational conception of the truth-conditions. It matters to the identity of a conjunctive
truth-condition, or combination, not only what the component truth-conditions
and are but also how they get “carried” into the combination via the respective
propositions and .

The proposed semantics reveals then an interesting feature of the truthmaker
approach. Truthmaker semantics is generally contrasted with more structural
approaches to propositional identity. For instance, a structural approach might draw a
distinction between and , whereas standard truthmaker semantics does not.
As we have seen, our target logic GG requires distinctions of this sort. The soundness
and completeness of that logic under the present approach therefore reveals that there
are natural modifications of standard truthmaker semantics that accommodate these
more finely-grained distinctions, thereby achieving a kind of semantic commonality
between the more coarse-grained approaches to ground based on standard truthmaker
semantics [2, 7][§1.10] and the more fine-grained approaches [7] [§§1.7-1.9] treated
under the present modification.

We turn to the second task, of providing an account of ground-theoretic con-
nection. We here appeal to the abstract theory of menus gestured at in §4 of [10].
A menu provides a vehicle for selection. Thus from the two-item menu listing
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eggs-and-bacon and porridge, one can select either eggs-and-bacon or porridge and,
from the one-item menu listing eggs-and-bacon, one can select the two component
items, eggs and bacon, and consequently, from the original two-item menu, one can
select either eggs and bacon or porridge.

The theory of menus provides a general abstract account of selection. Within such
a theory, we take the domain of items to be closed under combination and choice.
Thus, given any finite number of items 1 2 of the domain, the choice 1

2 and the combination 1. 2. of those items will also be items of the
domain. Menus are either combinations or choices and so may themselves figure as
items on a menu. So, in the example above, the breakfast menu will be of the form

1. 2 3 , where 1 is eggs, 2 is bacon and 3 is porridge. This menu may
then be part of another, meta-menu , which provides a choice between the
breakfast menu and a lunch menu .

There are two main principles governing the immediate selection of items from a
menu. In the case of a choice 1 2 , each of 1 2 is an immediate
selection; and in the case of a combination 1. 2. , 1 2 (together) is an
immediate selection. A simple account of selection (later to be modified) can then
be obtained through the repeated chaining of immediate selection: , for
example, will be an immediate selection from . and an immediate selection
from ; and so will be a selection from . . So, in the example
above eggs, bacon will be a selection from the meta-menu .

It is important to bear in mind that we have done nothing to rule out non-trivial
identities between combinations or choices. Some of these identities may be struc-
tural in origin. Thus we might think of a menu not as a list but as a set of items. We
would then want . , for example, to be identical to . and for to be
identical to . But other identities may have a more substantive basis. When
one orders eggs and bacon at a restaurant, one is served particular eggs and par-
ticular rashers of bacon (and, indeed, might be disappointed to be served the types
rather than the tokens). Consider now the combination 1. 2. 1. 2 of some partic-
ular eggs 1 2 and some particular rashers of bacon 1 2 and consider some other
combination 3. 4. 3. 4 of particular eggs and rashers. The particular items from
which the combinations are formed are different. But one might still want to treat the
combinations themselves as, in effect, identical. After all, it is presumably a matter
of indifference, if one opts for the combination 1. 2. 1. 2 , whether one is served
1 2 1 2 rather than 3 4 3 4. This means that even though , for example,
is an immediate selection from . and each of and is an immediate selec-
tion from , . and may, through their identity with other forms of
combination and choice, enjoy other immediate selections as well.

The application of the theory of menus to the current semantics will rest upon
taking truth- and falsity-conditions to be menus and taking ground to be selection.
Roughly speaking, disjunction will tell us to make a choice of truth-conditions, while
conjunction will require us to make a combination of truth-conditions. However, the
viability of this application will depend upon making two significant modifications
to the simple account of selection presented above.
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We must, in the first place, allow two-sided menus, which we might represent as
ordered pairs of items and ; and we might, in a more general context, allow
vector menus of arbitrary length.4

We might, intuitively, think of a two-sided menu as a ‘positive’ menu of items to
be included, on the one side, and a ‘negative’ menu of items to be excluded, on the
other side (as in a kosher chicken platter, which includes the combination of items
making up the chicken platter while excluding dairy products). Within the intended
semantical application, conditions will correspond to one-sided menus and contents
to two-sided menus, with truth-conditions on the one side and falsity-conditions on
the other side.

However, allowing two-sided menus calls for a slight complication in our account
of selection. For immediate selection is most naturally defined as a relation between
two-sided menus (which correspond to contents, or pairs of conditions) and a one
sided menu (which corresponds to a condition). So, for example, in making a selec-
tion from a kosher chicken platter, all that counts is what may be selected from the
chicken platter. But we would like selection to be a relation between two-sided menus
so that it can be repeatedly chained. We do this by appeal to the following principle
(corresponding to ‘Basis’ in Definition 2.1 below):

Positive Bias Some two-sided menus (or contents) will be an immediate selec-
tion from a given two-sided menu (or content) just in case they are an immediate
selection from its positive side (or truth-condition).

We can still say that a two-sided menu (or content) is a selection from a one-
sided menu (or condition), but this must now be taken to mean that is a
selection from for some item . Suppose, for example, that and are
conditions. Then the pairs and are contents, while the choice

is another condition. The content will then be an immediate selection
from the content and, for this reason, an immediate selection
from the condition .

The other modification is more radical. For we want to introduce a notion of weak
selection, corresponding to weak ground, in addition to the previous notion of strict
selection, which corresponded to strict ground. Weak selection, however exactly it is
understood, is plausibly taken to be subject to the following principle (corresponding
to ASCENT in Definition 2.1):

Subsumption Any case of strict selection is a case of weak selection.

Weak selection is also plausibly taken to be subject to a principle of Cut (correspond-
ing to Lower and Upper Cut in Definition 2.1). Say that the set of (two-sided) menus

is a strict (or weak) selection from the set of menus 1 2 if can

4One possible application of vector menus is to many valued logics where, for each truth-value ,
there should be a -maker. Another possible application is to voting. Suppose people vote on the
options 1 2 . Then the menu in this case is the -dimensional vector 1 2 1

2 1 2 and an immediate selection is of the form 1 2 . Of
course, the options 1 2 may themselves take the form of further menus, as when 1 2
are representatives who must themselves choose among different options.
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be split up into subsets 1 2 such that 1 is a strict (weak) selection from 1,
2 is a strict (weak) selection from 2, . Thus the menus must, collectively, be

a distributive selection from . The principle then states:

Cut if is a weak selection from and a strict selection from then is a
strict selection from , and if is a strict selection from and a weak selection
from then is a strict selection from .

Thus items that are strictly selected from a given item can be replaced by weak selec-
tions and items from which a strict selection is made can be replaced by an item from
which they are weakly selected – in each case preserving strict selection.

These principles do not, of course, provide us with a definition, or even an implicit
definition, of weak selection in terms of strict selection. Indeed, they are compatible
with weak and strict selection being the same thing. However, there is a further plau-
sible assumption we may make, which does allow us to define the one in terms of the
other. This is the following maximality principle:

Any items that constitute a strict selection from will constitute a weak selec-
tion from (where the corresponding ground-theoretic principle is that if
strictly grounds then weakly grounds )

Now we know that is a strict selection from ; and so this assumption tells us that
is the maximal such item in the sense that any other items that constitute a strict

selection from will constitute a weak selection from it. One cannot do better than
, so to speak, in making a strict selection from . The converse of this assumption:

any menus that constitute a weak selection from will constitute a strict
selection from

follows from the other assumptions. For is a strict selection from and so, given
that is a weak selection from , it is, by Cut, a strict selection from .

On the basis of these assumptions, we are therefore justified in adopting the
following definition of weak selection in terms of strict selection:

(W/S) is a weak selection from iff is a strict selection from (or, to put it
ground-theoretically, weakly grounds iff strictly grounds ).5

There is another assumption that may plausibly be taken to relate weak and strict
selection. Say that is a weak partial selection from if it is one of the items in a
weak selection from and that is a strict partial selection from if is a weak
partial selection from but is not a weak partial selection from ; and say that the
weak selection from is irreversible if is not a weak partial selection from any
item of . The assumption then states:

5We should note that this definition of weak ground will imply the purely ground-theoretic definition of
weak ground proposed in [7, 52], viz. that weakly grounds iff strictly grounds whenever
strictly grounds . For the left-to-right direction of the definition follows from Cut. Suppose now that the
right-hand side of the definition holds. Since strictly grounds , strictly grounds and so, by
(W/S) weakly grounds . As [4, 16],[5, 727-8] observe, the purely ground-theoretic definition is not
compatible with the “flat” semantics that [6] provides for the pure logic of ground.
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Irreversibility Any irreversible weak selection is a strict selection (where the cor-
responding ground-theoretic principle is that any irreversible weak ground is a
strict ground).

We might take the converse:

Any strict selection from an item is an irreversible weak selection

as an additional assumption (as in definition 2.1). Alternatively, it might be derived
from some further assumptions. For suppose the menus are a strict selection from
. By the above principle of Subsumption, is a weak selection from v. Now sup-

pose, for reductio, that is a weak partial selection from some item in G. By Cut,
is a strict selection, on its own or with other items, from . But this, given:

Non-Circularity No item is part of a strict selection of itself

is a contradiction.
We are therefore justified in adopting the following definition of strict selection in

terms of weak selection:

(S/W) The strict selections are the irreversible weak selections (or, put ground-
theoretically, strictly grounds iff irreversibly weakly grounds ).

Thus, given these various assumptions, weak and strict selection – and also weak and
strict ground – will be inter-definable.

There are two other assumptions we will need to make, connecting weak and strict
selection to combination and choice:

Maximality

Any items which constitute a strict selection from 0. 1. will constitute
a weak selection from 0 1 ;
Any items which constitute a strict selection from 0 1 will
constitute a weak selection from some subset of 0 1 .

These assumptions generalize the previous maximality principle for and state, in
the case of the combination 0. 1. , that 0 1 constitute a maximal strict
ground, so that any selection must be “at” or “below” 0 1 , and, in the case of
the choice 0 1 , that the subsets of 0 1 constitute a maximal strict
“cover”, so that any selection must be “at” or “below” some of 0 1 .

In the above account of the semantics, we have listed various assumptions which
we would like to hold. These, in addition to Maximality, are:

Positive Bias The immediate selections from a given two sided menu are the
immediate selections from its first component;

Subsumption Any strict selection is a weak selection;
Cut any weak selection from a strict selection and any strict selection from a weak

selection of a given item is a strict selection from that item;
Irreversibility The strict and the irreversible weak selections coincide.

However, we have provided no assurance that these assumptions do, or even can,
hold.
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It is actually rather easy to provide a model in which they hold. For we might
take combinations to be formulas of the form 1 2 and choices to be
formulas of the form 1 2 (for 0 and with 1 1 and
with a weak selection from when it is a strict selection from ). It is then
relatively straightforward to show that the various conditions on selection that we
have laid down will be satisfied.

Unfortunately, such a model is not enough for the purposes of establishing com-
pleteness, for we need to show that, for any consistent set of ground-theoretic claims,
there should be a model in which they are true. It is consistent, for example, to sup-
pose that , and are ground-theoretically equivalent or that there
is an infinite descending chain of grounds, with 2 a strict ground of 1, 3 a strict
ground of 2, and so on ad infinitum. But neither set of claims can be satisfied in the
“canonical” model above. We therefore need to allow for a more flexible conception
of propositional identity; and, indeed, a large part of the difficulty in the completeness
proof results from our having to show how underlying identities in the combinations
and choices are capable of accounting for the required ground-theoretic truths.

Some related semantical approaches are to be found in Krämer [12, 13] and Cor-
reia [3]. A detailed comparison of our own semantics with these other approaches is
beyond the scope of the present paper. But we should note that there are some sig-
nificant differences relating to (i) the underlying conception of propositional content,
(ii) the semantical treatment of the truth-functional connectives, (iii) the account of
strict ground and its relation to weak ground, and (iv) the resulting logic of ground.
We should note,in particular, that although these other approaches validate our “min-
imal” system GG, they validate much more and therefore lack the flexibility of our
own semantics.

2 Semantics

We set out the proposed semantics in terms of selection systems, define the notion
of a model, the content of a truth-functional formula in a model, and the truth of a
grounding claim in a model.

A selection system is a triple F , where and are each operations
on finite sequences (including the empty sequence) of ordered pairs of members of
, taking each such sequence into a member of , with . We use

lower case letters ‘ ’-‘ ’ (sometimes with numerical superscripts) for members of
, lower case letters ‘ ’-‘ ’ (sometimes with numerical superscripts) for pairs of

members of , and upper case letters ‘ ’-‘ ’ (sometimes with numerical subscripts
or superscripts) for sets of pairs of members of . Thus, if , then

. For a pair , we write for ’s first element, and for its second
element. Intuitively, is a set of conditions, and pairs of such conditions are contents.
Abusing notation, we indicate unions of sets of contents by comma-separated lists,
and we often omit brackets for singletons of contents in these lists. So, for instance,

is used for .
Write 0 1 for 0 1 and 0. 1. for 0 1 .
0 1 is the choice of 0 1 , and 0. 1. the combination of
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0 1 . Distinct sequences of contents can be taken by either the combination or
choice operations to the same condition; a single sequence can be taken by the two
operations, respectively, to either the same condition or to different conditions; and
the choice of one sequence can be the very same as the combination of a different one.
So, choices and combinations need not be uniquely decomposable into (sequences
of) contents. We use ‘ F’ to indicate the relation of immediate selection between
sets (not sequences) of contents and choices and combinations, where F

0

1 for each , and F . . (and that is all). We drop the suffix
‘F’ on ‘ F’ when it is evident from context (and will likewise drop suffixes on the
other notions of selection defined below when no confusion will result). Since the
choice of a single content is just the same as the combination of , we denote it
by , which is neutral between the ‘ ’ notation for choice and the ‘.’ notation for
combination.

Given a selection system F , the relation of strict selection F

between a set of contents and a content is defined inductively in terms of imme-
diate selection. In this definition, the weak selection relation F abbreviates

F :

Definition 2.1

1. Basis: if F , then F ;
2. Ascent: if F and , then F ;
3. Lower Cut: if 0

F
0, 1

F
1, F , and 0 1

F

, then 0 1
F ; and

4. Upper Cut: if 0
F

0, 1
F

1, , F and 0 1
F

, then 0 1
F .

Relations of partial selection are defined in terms of F:

F iff there is an such that F ; and
F iff F but F .

Let a covering of be a family of sets 0 1 such that 0 1 .

Definition 2.2 A frame is a selection system F meeting two constraints:

1. Irreversibility: F iff F and F ; and
2. Maximality:

(a) F
0. 1. only if there is a covering 0 1 of such

that F , for each ; and
(b) F

0 1 only if there is a non-empty subset 0 1

of 0 1 and a covering 0 1 of such that F for
each .

Suppose we are given a propositional language L , whose connectives are con-
junction, disjunction, and negation. We will identify L with the set of its sentences.
Let and be fresh symbols. (That is, they are pairwise distinct from one
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another and from every sentence of L .) The grounding claims of L then consist of
the following:

for any L and any sentences of L . We will continue to use the lower-
case Greek letters and (sometimes with superscripts) for sentences of L
and upper-case Greek letters and (sometimes with superscripts) for sets
of such sentences. The Greek letters and (sometimes with subscripts) are used
for grounding claims of L , and upper-case letters , and (sometimes with
subscripts or superscripts) for sets of grounding claims of L . An interpretation for
a language L into a frame F is a function mapping each atomic
sentence in L to a content . We extend interpretations to molecular sentences by
means of the following recursive clauses:

1. ;

2. . ; and

3. . .

We extend the notion of an interpretation to sets of sentences of L in the standard

way: .

Definition 2.3 A model M for a language L is a tuple , where F

is a frame, and is an interpretation for L into F.
If M is a model and F is the frame , we write M for
F, and, similarly, for the other relations of ground.

Definition 2.4 Let M be a model . Truth in a model for grounding
claims is defined by the following clauses:

1. M iff M ;
2. M iff M ;
3. M iff M ; and
4. M iff M .

iff, for every model M, if M for each , then M , for some
. So, sets of grounding claims are treated conjunctively on the left-hand side

and disjunctively on the right-hand side of . M iff M , for some .

3 The SystemGG

We specify the system GG and establish soundness and consistency. The system com-
prises the following rules and axioms, which inductively define a derivabiliy relation
among finite sets of grounding claims:
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Structural rules:

THINNING If , then

SNIP If and , then

(In the statement of the structural rules, and are finite sets of grounding claims.
Since relates sets, contraction and permutation rules are not needed.)

The Pure Logic of Ground:

IDENTITY

SUBSUMPTION

TRANSITIVITY

IRREVERSIBILITY

REFLEXIVITY

NON-CIRCULARITY

CUT 0 1 0 1

REVERSE SUBSUMPTION 0 1 0 1 0 1

The pure logic differs from Fine’s [6] system by the replacement of TRANSITIV-
ITY with IRREVERSIBILITY. The latter rule could not be formulated in the
system of derivation used in [6], which did not allow derivation of multiple con-
clusions. TRANSITIVITY can be derived from the pure logic above using
IRREVERSIBILITY, SUBSUMPTION , the other TRANSITIVITY rules, and
SNIP.

Let 0 1 be finite sets of grounding claims. Then 0 1 is defined
to hold iff 0 1 for each set 1 such that . It is easily shown
that a model M verifies every such set 0 1 ... iff, for some , M verifies every
grounding claim in .

Introduction Rules:
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Elimination Rules:

0 0 1 1

0 0 1 1

In the statement of the elimination rules for and , 0 0 , 1 1

are taken to be all of the ordered pairs for which . For any
sets and of grounding claims, let iff there are and such
that .

Theorem 3.1 (Soundness) If , then .

Proof Suppose , and let M be a model such that M ,
for each . There are finite subsets and of and , respectively, such
that . We show that M (and hence M ) by induction on the
derivation of . The results in each of the basis cases are easy consequences
of D2.1, D2.2, D2.3, and D2.4. We consider the cases of TRANSITIVITY and
-ELIMINATION by way of illustration.

(Transitivity)( ): Suppose M and M . By the definition

of M, M , and so M . Suppose (for reductio) that M . Then

M M . But, sinceM , M . .

( Elimination): SupposeM , so that M .

. . By D2.2(MAXIMALITY), there is a covering of such that

M and M . So, M and M .
Let 0 0 be exactly the pairs of binary coverings of . Then

for some (0 ). As observed when introducing the

notation, it is then easily verified thatM 0 , for every set 0

of grounding claims such that for each .

The result in each of the cases of the structural rules is a trivial consequence of IH,
using D2.3 and D2.4.

It turns out not to be altogether straightforward to show that GG is consistent. This
could be shown by constructing a ‘free’ model along the lines of D4.2. But we can
also make use of a simpler, less indirect, construction, which will have the additional
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benefit of presenting the rules in a way that highlights the affinities between GG and
more familiar natural deduction systems.6

We adopt the following introduction rules for the connectives (where ‘( )’ indi-
cates that either premise may be used):

These rules correspond, of course, to the Introduction Rules of GG, though they
have now been stated as direct rules of inference without the use of .

A derivation of the formula from the set of formulas is a sequence of
formulas 1 2 , where and , for each 1 2 , is
either a member of or follows from preceding formulas in the sequence by one
of the above rules. We should note that each of the formulas in a derivation
1 2 will have a justification (not necessarily unique), which consists of

a status as assumed or derived and a specification, in case it is derived, of the rule
by which it is derived. Given a derivation 1 2 , say that figures as a
premise if, for some , is an instance of one of the above rules or if, for
some and , is an instance of one of the above rules. A deriva-
tion 1 2 ... is said to be relevant when each non-terminal formula for

figures as a premise in the derivation. The derivation 1 2 of
from is said to be strict when it is relevant and when each formula of has a non-
terminal occurrence in the derivation and it said to be weak when it is relevant and
when each formula of has a terminal or non-terminal occurrence in the derivation.
So, for instance, is a non-relevant derivation of from , while
is a strict derivation of from and also a weak derivation of from

.

Note that a strict derivation may be annotated with justifications for each step
in such a way that members of are derived and so do not figure as assumptions.
For consider the following derivation of from

.We may here take the third formula to be derived from the pre-
vious formulas and . However, we still have a strict derivation of from

since is used as a premise in deriving . Note also that
is a strict derivation of from . Indeed, if 1 2

is a strict (weak) derivation of from and 1 2 a strict (weak)
derivation of from then 1 2 ... 1 1 2 is a strict (weak)
derivation of from ; and so Amalgamation can be seen to be built into the
definition of derivation.

We say that the formula is (strictly, weakly) derivable from the set of formulas
if there exists a (strict, weak) derivation of from ; and we say that is strictly

6See [15, 16], and [14] for treatments that draw strong connections between natural deduction systems and
the impure logic of ground.
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(weakly) partially derivable from if is strictly (weakly) derivable from a set of
formulas that includes .

It will be convenient to use a somewhat stronger notion of partial derivability.
Suppose 1 2 is an arbitrary sequence of formulas. We say is
of direct use in deriving (in the sequence ) if and either is an
instance of a one-premise rule or, for some , is an instance of a two-
premise rule; and we say is of (indirect) use in deriving (in ) if
and there is a sub-sequence 1 in which each non-terminal
term is of direct use in deriving its successor 1 . We may also say that is
of use in deriving if is of use in deriving in some sequence in

1 2 .
For later purposes, we note some basic facts about derivations.

Lemma 3.2

1. If is of use in deriving then is strictly partially derivable from ;
2. If is strictly partially derivable from then is less complex (contains fewer

occurrence of connectives) than .

Proof An easy induction in each case.

The converse of (i) also holds though not when made relative to a given sequence.
In the sequence , for example, is not of use in deriving

even though is strictly partially derivable from .

Lemma 3.3 In any relevant derivation 1 2 , each for is of
use in deriving .

Proof Take a for and set 1 . Suppose is not of use in deriving
in . Since is relevant, 1 figures as a premise and so is of direct use in deriving

2 for some 2 1. But 2 cannot be identical to or of use in deriving in
D; and so, for some 3 2, 2 is of use in deriving 3 . We produce in this way an
infinite sequence 1 2 of members of which, by the previous lemma, are
of increasing complexity. But there are only finitely many formulas in . .

Lemma 3.4 Suppose 1 2 is a derivation of from . Let

1 2 be the subsequence of formulas that are of use in deriving
in . Then is a weak (relevant) derivation of from 1 2 .

Proof is a derivation of from and hence from 1 2 , since
the justification of any formula of 1 2 that is identical to or of use
in deriving in will either be in terms of the formula being a member of
or by reference to previous formulas that are of use in deriving and hence the
justification will carry over to . Moreover, is relevant. For any formula

is of use in deriving and hence figures as a premise.
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Lemma 3.5 Suppose that 1 2 is a relevant derivation. Then each for
is distinct from .

Proof By L3.3, each for is of use in deriving and so, by L3.2, is distinct
from .

We now introduce a notion of L-truth for grounding claims:

1 2 is L-true if is strictly derivable from 1 2 ;
1 2 is L-true if is weakly derivable from 1 2 ;

is L-true if is strictly partially derivable from ;
is L-true if is weakly partially derivable from .

In effect, we interpret ‘ground’ to mean ground in virtue of logical form.
Finally, given two sets of grounding claims and , we say that the sequent

is valid if either a member of is not L-true or a member of is L-true. This is a very
weak “material” interpretation of validity. The sequent , for example,
will always be valid since is not L-true.

We can establish by induction:

Theorem 3.6 Each derivable sequent of GG is valid.

Proof We show that the axioms of GG are valid and that the rules of inference
of GG preserve validity. THINNING,SNIP, and IDENTITY follow by truth-functional
considerations alone. SUBSUMPTION, REFLEXIVITY, and IRREVERSIBILITY follow
straightforwardly from the definitions of (full) derivability and partial derivabil-
ity. The introduction rules fall out from our having adopted the corresponding
introduction rules.

(Reverse Subsumption): Suppose 1 2 is a weak derivation of
from 1 2 and that is strictly partially derivable from each
for 1 2 . By lemma 1(ii), is distinct from each . But then

1 2 is a strict derivation of from .
(Transitivity) : Suppose that 1 2 is a weak derivation of

from with and that 1 2 is a weak derivation of
from with . If or if then it trivially follows that is
L-true. So suppose and . Then 1 2 is a strict derivation
of from with and 1 2 is a strict derivation of
from with . But then 1 2 1 2 is a strict
derivation of from . So, is strictly, hence weakly, partially
derivable from . The case is proved similarly.

(Non-Circularity): Suppose 1 2 is a strict derivation of from .
It then follows from lemma 3.5 that .

(Cut): Suppose 1 2 is a weak derivation of from and
1 2 a weak derivation of from . We show
1 2 1 1 2 is a weak derivation of from
. Clearly, is a derivation of from , since the occurrences of

among 1 2 can be justified by appeal to the previous derivation
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1 2 1. is also a relevant derivation. The only problem case for rel-
evance is one in which figures as a premise in 1 2 to an inference
whose conclusion is . But we know that for some and so we can
establish relevance by appeal to instead of . Finally, each member of
occurs in since each member of other than occurs in 1 2 1,
while and each member of occurs in 1 2 .

Elimination Rules: We deal with -ELIMINATION by way of illustration. Suppose
that 1 2 1 is a strict derivation of from . Then,
for some , and . Choose and to be maximal. This
means that one of or is , since otherwise would not figure as a premise.
By lemma 3.3, each , 1 2 , is of use in deriving 1
in . We may then show by an easy induction that each is identical to or
to or of use in deriving or . Look now at the sub-sequence

1 2 of formulas which can be used in deriving and at the
subsequence 1 2 1 of formulas which can be used in deriving .
Let 1 be the subset of members of that are identical to or are of use in
deriving and 2 the subset of members of that are identical to or are
of use in deriving . Then 1 2 and it follows from lemma 3.4 that

1 2 is a weak derivation of from 1, and 1 2 1

a weak derivation of from 2.

Corollary 3.7

1. iff is strictly derivable from ;
2. iff is weakly derivable from ;
3. iff is strictly partially derivable from ;
4. iff is weakly partially derivable from .

Proof The right to left directions may be established by induction on the length of
the relevant derivations. Suppose now that . By T3.6, is L-true
and so is strictly derivable from . The left to right directions for the other cases
are established similarly.

We also get:

Corollary 3.8 GG is consistent

Proof is not L-true and so the sequent is not valid.

Indeed, we may use the theorem to establish a stronger consistency result. Say
that a grounding claim 1 2 is simple if 0 and each of
1 2 is an atom; and say that a set of grounding claims is simple if

each of its members is simple. The set of strict full grounding claims is said to be
closed if it is closed under CUT (for strict full ground) and AMALGAMATION; and a
closed set of strict full grounding claims is said to be acyclic if it does not contain a
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grounding claim of the form with . Finally, given a set of atoms, let
be the set of simple grounding claims that can be formed from the members of .
We may now show that, for closed, acyclic , we can consistently suppose, not

only that every member of holds, but that the members of are exactly the
grounding claims that hold:

Corollary 3.9 Suppose that is a closed acyclic set of simple grounding claims
formed from the atoms in . Then the sequent is not derivable in GG.

Proof It suffices to establish the result for finite S.7

Given , say if, for some , and . Since is acyclic,
we can assign a depth to each atom of , where 0 if for no is

and otherwise 1. With each atom of , we
associate a fresh atom not in . We now define a function from the atoms of
to formulas:

1. when 0, ;
2. when 0,

11 12 1 1 1 2

where 11 12 1 1 1 2 constitute the for which
.

To guarantee the uniqueness of in (2), we suppose that the atoms of occur in
a fixed order and that conjunctions and disjunctions are associated from left to right.

Let , and extend to sets of grounding claims in the obvi-
ous way. The function maps grounding claims in to -truths and non-members
to non- -truths, allowing us to bring T3.6 to bear. That is, for any grounding claim

:
iff is L-true.

Thus each grounding claim in is L-true and each grounding claim in
is not L-true. So the sequent is not valid and hence, by the theorem,
is not derivable in GG. Since GG is closed under uniform substitutions,
.

It follows, in particular, that the closure of the set 2 1 3 2 is con-
sistent. Indeed, we can consistently suppose that these are the only simple grounding
claims to hold. It is turtles all the way down!

We might define a sequent to be super-valid if every uniform substitution
instance of it is valid. So, for example, is valid though not super-valid,
since the substitution instance is not valid. By the theorem, the logic
of super-validity is at least GG, since GG is closed under uniform substitution. In
fact, it properly extends GG since is super-valid and
yet not derivable in GG. It would be interesting to determine the logic of super-
validity. Indeed, there is a whole range of questions here, since we might add further

7See L8.2 below.
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principles, such as , to GG and then attempt to determine
the logic for the resulting notion of super-validity. There is also a connection here
with the previously mentioned semantics of Correia [3]; for we might take him to
be adopting a substitutional conception of validity under something akin to a free
interpretation of the truth-functional formulas.

4 The Canonical Model: Definition and Elucidation

We define and motivate the canonical model that will be used to establish com-
pleteness. We first extend the language by adding certain sentences used for the
construction; we then define the notion of a “free” condition or content over the
resulting set of sentences; and we finally specify the representative conditions in
terms of which the canonical model is defined. We close the section by discussing
some features of the construction.

In what follows, we will refer to an indexed set using standard notation, writing
for . We will almost always omit the limit ordinal , and we will

often write , omitting the subscripted restriction ‘ ’ entirely. We indicate co-
indexed sets by using the same subscripts. Where there are two subscripts, the first
may sometimes depend on the second, and these abbreviations may be embedded.
Some examples:

Abbreviation Expansion
0 1

0 0 1 1

00 10 01 11 0 1

00 10 0 01 11 1

Suppose is a set of grounding claims of L that is prime (
). Intuitively, if is prime, then whenever “takes” the disjunction of a set

of grounding claims to be true, there is also some specific member of that it
already “takes” to be true. The primeness of implies that it is consistent ( )
and that it is closed under derivability (if , then ). will remain fixed
for the discussion in this section and throughout Sections 5–7. In what follows, we
will sometimes justify claims about ’s members by appeal to the closure of to
indicate the fact that is closed under derivability. So, for instance, we may say that,
if , then by “the closure of .”

Before describing the construction in detail, it may be useful to give a rough and
intuitive outline that makes our proof strategy clearer. We are given a prime, and
so consistent, set of grounding claims . Since our proof of completeness will be
Henkin-style, we will ultimately be constructing a model that verifies exactly those
grounding claims of L that are members of . For this purpose, may need to be
supplemented in a number of ways. First, note that a partial weak grounding claim of
the form , intuitively, says that there is some set of contents, which, together
with the content of , fully weakly grounds the content of . may contain partial
weak grounding claims without containing any full weak grounding claim
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of the form that witnesses this existential generalization. So, whenever
, we will add a fresh sentence to our language for the purpose

of adding a full weak grounding claim to . We will call these new
sentences witnessing constants.

Second, it would have been convenient if, whenever had contained a full
grounding claim , had also contained a corresponding grounding claim

. For then we could have constructed a model M in which (i.e., the

truth condition for ) is identified with . Then, using the definition of

selection in a model, we would have had M , and so also M . Unfor-
tunately, the rules of GG do not guarantee that there is any such conjunction .
Our original language does not generally contain multi-grade conjunctions, and, even
where the language does contain the relevant conjunction, simply adding the rele-
vant grounding claim will not generally yield a conservative extension of . Instead,
we will expand the language L to enable us to add the next best thing: a conjunc-
tion whose conjuncts include both the members of and some zero-grounded
elements 1 2, described below. For this purpose, we must of course expand the
language to allow multigrade conjunctions. Then we add to , and use a
construction similar to the one described above to get a model with the selections:

0 1 1 2 M (where ); M 1 and M 2. We can

then use ASCENT and UNDER CUT to get the desired selection 0 1 M .
We cannot add only the grounding claim to . IRREVERSIBILITY

requires us also to add either some other weak grounding claim witnessing
or . Adding would be foolish. Since might itself have log-
ical structure, MAXIMALITY may then require that we add some weak grounding
claims linking, say, and some conjunct of , requiring us, in turn, to add strict
partial grounding claims linking each in to that conjunct. Thus we may, again,
fail to conservatively extend . Instead, we satisfy IRREVERSIBILITY by adding a

grounding claim that ensures that M in the model we construct. That way,
IRREVERSIBILITY gets satisfied without having to add any strict partial grounding
claim of L . For this purpose, we add to our language a “shadow” of ,
and we throw the grounding claim into .

We now have . So, ensuring that we have a conservative exten-
sion will require us to distinguish and whenever . Otherwise, our
additions may yield , and so the resulting set of grounding
claims will fail to be consistent, much less conservative, when . So, the
zero-grounded elements we use as conjuncts of must be both zero-grounded and
unique for a given sentence of our original language L . The zero-grounding part
is easy: we add to our original language a new sentence , whose truth condition
is the combination of the empty sequence. Intuitively, is the conjunction of zero
sentences. To uniquely mark for each L , we also add to our language a
“shadow” . Now, one of the conjuncts 1 of can be , which will
be both zero-grounded and unique to .

But this addition requires another new conjunct 2. To illustrate, we may have
. After adding , we will have .
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Thus, MAXIMALITY requires . So, we need a way to ensure that we
have our marker as a partial weak ground of . For this purpose, we add
to our language another new sentence , which behaves like the disjunction of the
markers for all in our original language L . is zero-grounded, and
so is suitable as our additional conjunct 2. Since , the construction
we are describing requires that we add . Thus, we have

as desired.
We have solved the original problem occasioned by the absence from of a

grounding claim that would allow us to construct a selection corre-
sponding to a given grounding claim . But, in doing so, we have created a
problem of exactly the same sort. For we have added , which in turn
requires that we also add , and, of course, there is not already
a grounding claim ( ) in our
augmented set of grounding claims. But we already know how to solve this problem:
we iterate the procedure. This, again, creates a further problem of exactly the same
sort. If we iterate out to the limit, then all such problems are solved.

As it turns out, the result of our efforts is a set , which conservatively extends
. We call the canonical model basis for . Like , will be prime and so con-

sistent. We will then use to define a selection space (as described above) and an
interpretation function whose selections correspond (under the interpretation) to the
grounding claims in . We will show that that selection space is a frame, meeting
the Irreversibility and Maximality constraints. That frame, together with the inter-
pretation of , is the canonical model for , which verifies exactly the grounding
claims of L that are members of . As the informal reflections above illustrate, the
construction is far from trivial.

We start by extending the language L to L to include all of the new sentences
we need:

Definition 4.1 The proto-language PL is the smallest set of sentences such that:

1. If is an atomic sentence of L , then is an atomic sentence of PL ;
2. If L (whether atomic or molecular), then is an atomic sentence of PL ;
3. and are each fresh atomic sentences of PL ;
4. if PL , then is a sentence of PL ;
5. if PL , then PL ; and
6. if 1 and 0

1 are each sentences of PL , then
0 1 and 0 1 are each sentences of PL .

The atomic sentences of the language L are the atomic sentences and “shadows”
of PL , and L itself is the closure of the atomic sentences of L under

negation, multigrade conjunction, and multigrade disjunction, as specified in clauses
(5) and (6) above.
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Remark We add the witnessing atomic sentences for each sentence of L (not
L ). By contrast, we add atomic sentences , which in each case is a “shadow”
of , for each sentence (atomic or molecular) of L .

Remark Notice that clause (6) applies to finite sequences of sentences of length 2
to yield conjunctions and disjunctions of any finite -arity 2. The symbols ‘ ’, ‘ ’,
‘ ’, and ‘ ’ mentioned in clause D4.1(6) to specify -ary conjunctions and disjunc-
tions are the very same symbols used in the specification of the original language L .
So, for sentences 0 and 1 of L , the conjunction 0 1 of our original language
L is the very same string as the binary conjunction L specified in D4.1(6) when
0 is just the pair 0 1. Similarly, disjunctions of L are identical with corre-

sponding binary disjunctions of L . We do not allow conjunctions with fewer than
2 conjuncts, and, similarly, for disjunctions.

We use the language to specify the elements of our selection space. We start with
a space that is “free” of interesting identifications among conditions or contents.

Definition 4.2 The Free Selection Space: Assume that , ., , and the atomic
sentences of L are pair-wise distinct ur-elements. We define the notions of a free
condition and a free content inductively:

1. If is an atomic sentence of L , then and are free conditions.
2. If and are free conditions, then the ordered pair is a free content.
3. If is a sequence of free contents of length ( 1 ), then

and . are each free conditions (written and . . ,
respectively, where convenient).

4. If is a free content, then is a free condition (written ).

For any free content , and .

Remark Wemay think of ., , and as operations which take finite sequences and
of free contents of appropriate length into the free conditions . , and

, respectively. The operations . and can each be applied to the null sequence,
so that . and are each free conditions.

Now we link the sentences of L to elements of the free selection space.

Definition 4.3 We define a function from L into the set of free contents
recursively as follows:

1. For atomic, ;

2. . ;

3. . . ; and

4. . . .
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We now define a relation among sentences of L . This relation indicates the
new full weak grounding claims linking conjunctions like and the corresponding
sentence that we will be adding to to yield . As indicated informally above,
the process is iterative, so the relation is defined inductively.

Definition 4.4 Fix an enumeration of the sentences of L . We take the natural
order on the sentences of L to be the corresponding ordering. If L , then we
take to be the natural enumeration of , i.e., the restriction of the natural order
on L to . If is the natural enumeration of and , set

0 1 .

We inductively define the relation on sentences of L by:

(S): , if ;
(W): , if ;
(Max): for L ;

, if L ; and
(Induction): if , then and .

Remark The definition of says nothing in general about arbitrary atomic sen-
tences, negations, conjunctions, or disjunctions. So, many sentences of L appear
on neither the RHS nor the LHS of any instance of .

Remark Recall that is the conjunction that we will use to enable the transparent
derivation of from . Note that iff
and .

As indicated informally above, whenever , we will identify the truth-
condition for (which is the result of “raising” the truth-condition for )
with the truth-condition for . We now define the equivalence relation
among free conditions and contents corresponding to this identification.

Definition 4.5 We inductively define a relation as the smallest equivalence
relation meeting the following conditions:

( ): . ;
( ): If , then ;
(Pairing): if and , then ;
(Comp): 1. if , then 0 1 0 1 ;

2. if , then 0. 1. 0. 1. ;
3. if , then .

Remark An immediate import of D4.5 is that

, whenever .
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Definition 4.6 The Canonical Model M is the ordered tuple
whose elements are defined as follows. Pick a “representative” function on free
conditions , such that and if . Then:

1. is the range of .
2. The choice of any length sequence of of members of

( 1 )is (written as when
convenient).

3. The combination of any length sequence of of mem-
bers of ( 1 ) is . . (written as . . when
convenient).

4. (written as ), for any member of .

Let for all free contents . Then is the function from
L into such that .

Remark Clearly, since and are defined on all finite sequences of members of
and for all , M is a selection system. The

burden of the following three sections is to show thatM is, in fact, a model, thereby
meriting the label “canonical model”, and that a grounding claim of the original
language L is true inM iff .

Remark is stipulated to be an equivalence relation on free conditions. It then eas-
ily follows that it will also be an equivalence relation on free contents. The clauses
(PAIRING) and (COMP) in D4.5 will ensure that is a congruence under pairing,
choice, and combination.

( ): This clause will guarantee that is equivalent to the combination of
nothing (the “zero-combination”). So, M M .

( ): This clause is the key to the construction. First, it guarantees that
implies M . A picture illustrates the structure:

The solid arrows indicate relations of strict selection. The dotted arrow indicates
a relation of weak selection between and , and is warranted by the definition of

M as M .

Specific comment is merited on the consequences of the individual clauses in the
definition D4.4 of . The top two levels of each of the pictures below have the
general form indicated in the picture above.
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( )( ): Since for each L we have:

Here, the fact that solid arrows from and meet at indicates that
they are jointly a strict selection from . As the picture indicates,

M M . In effect, as we have said, behaves like the
disjunction of all , for L .

( )(W): This clause guarantees that M whenever :

Here, the dotted arrows from and meet at and continue to , indicating
that and are jointly a weak selection from . This weak selection is guaranteed
by the fact that M M . together with the definition of

M as M . This ensures that any partial grounding claim
has a corresponding partial weak selection in M .
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( )(Max): As in the previous case, this clause guarantees that M .

The picture above shows that M whenever . IRREVERSIBIL-

ITY demands that that either is also a strict selection from , or that is a
partial weak selection from one of . This clause satisfies IRREVERSIBILITY

in this case by guaranteeing the latter alternative. The former alternative needs to
be avoided. In particular, we need to avoid the strict selection M , since
attempting to meet IRREVERSIBILITY by adding this strict selection might require
further additions corresponding to grounding claims that are not in . Suppose, to
illustrate, that , but neither nor are in . If we
had (foolishly) attempted to satisfy IRREVERSIBILITY by adding the strict selec-
tion M , then MAXIMALITY would require us to add either

M or M as well.

( )(S): This clause guarantees that M whenever . We have

thereby obtained the selection M M whenever .

As desired, behaves like the conjunction of the sentences in , except that
it has two “zero-grounded” conjuncts and . Recall that the inclusion
of the “shadow” of as a disjunct in guarantees that
when .

( )(Induction): Another function of ( ) is to guarantee that

M M M

whenever . The first partial weak selection M is secured immediately,
as illustrated by the first picture above.

The other weak selections require us to go up a level. By (Induction), when-
ever , we also have . So, .
Similarly, by (Induction), and so
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. These two facts secure the partial weak selection relations indicated.
Again, pictures summarize the construction:

The partial weak selections

M M M

are represented in the bottom rows of the two pictures.
A special case of this circle of partial weak selections is that

M M M .

Thus, the weak selection M is reversible: M . This
enables M to simultaneously satisfy (IRREVERSIBILITY) and (MAXIMALITY), as
described informally above.

5 Witnessing, , , and Theorems inL

Recall that is a prime (and hence consistent) set of grounding claims. We use syn-
tactic methods to extend . The ultimate goal is to get a well-behaved extension
which is prime (in L ) and whose grounding claims exactly correspond to the selec-
tions of M . This extension is described and its adequacy proved in the next two
sections. In the present section, we expand to include:

full weak grounding claims corresponding to the partial grounding
claims ;
the grounding claim ;
claims of the form , for L ; and
theorems of L , i.e., grounding claims of L derivable from the null set:

1 2 3 1 2 3 , , and the
like.

Adding grounding claims corresponding to instances of will be deferred until
the next section.
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It is convenient for demonstrating primeness and conservativity to define syntactic
objects that, in effect, represent normal forms for derivations in GG of grounding
claims from together with grounding claims for witnessing constants, , and ;
see D5.3 and D5.6 below. These syntactic objects are called -derivations.

Definition 5.1 The class of S-derivations is given by the following axioms and CUT

rule:

(S): If , then is an axiom;
(W): if , then is an axiom;
(Max): is an axiom, for L ;
( ): is an axiom;
( ): If L , then is an axiom;
(ID): is an axiom;
(Determination): The following are axioms:

0 1

0 1

(Cut):

If is the conclusion of an -derivation, then it is said to be derivable or
an -connection. We will often simply write to indicate that is
an -connection. are the minor premises of the application of (CUT),

is its major premise, are its cut formulae, and contains its side
formulae. The major premise of an -derivation that terminates in an application
of (CUT) is the major premise of that terminal application, and, similarly, for ’s
minor premises, cut formulae, and side formulae. An -derivation is an axiom iff it
consists of a single application of an axiom rule.

We will use calligraphic capital letters and (sometimes with subscripts
or accents) for -derivations. We will often represent the form of an -derivation of

that is a subderivation of another -derivation in tabular form, using

So, for instance, if is an axiom , then we may represent in
tabular form by

D5.2–D5.9 define some notions and establish some facts concerning the appli-
cation of (CUT) in -derivations. With the exception of L5.7, these definitions and
results do not depend on the particular choice of axioms for -derivations. Although
(CUT) cannot be eliminated from -derivations, the results show that its application
can be severely restricted.

Definition 5.2 The depth Depth( ) of an -derivation is defined inductively:
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1. If is an axiom, Depth 1;

2. if has the form

then Depth 1.

Definition 5.3 An -derivation is in semi-normal form iff every major premise of
every application of (CUT) in is an axiom.

Lemma 5.4 (Semi-Normal Form Lemma) If is an -derivation of , then
there is an -derivation of in semi-normal form.

Proof We prove the result by induction on the depth of -derivations. It is obvious
that every application of (CUT) with more than one minor premise can be split into a
series of applications of (CUT) with exactly one minor premise. So, we may assume
(wlog) that the terminal instance of (CUT) in has exactly one minor premise.

Axioms: Trivially, if is an axiom, then it is in semi-normal form.
(Cut): Suppose terminates in an application of (CUT). We prove the result by a

subsidiary induction on the depth of the -derivation of the major premise of .

Axioms: Suppose is an axiom. By the outermost IH, the -derivation of ’s
minor premise is in semi-normal form. So, is already in semi-normal form.

(Cut): Let be the -derivation of the major premise in . Suppose
is the minor premise of , so that is the cut formula of . By the outermost
IH, we may assume that is semi-normal. (Note that semi-normal derivations
will not generally have only one minor premise.) There are three cases: (A)
occurs only as a side formula in ; (B) occurs only on the left-hand side of
some minor premises of ; or (C) occurs both as a side formula in and on
the left-hand-side of some minor premises of .

(A): has the form

where and are each semi-normal. Then

is semi-normal.
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(B): has the form

where are exactly the minor premises of with on the
left-hand side, and are exactly the other minor premises of . By
the outer IH, we may assume (wlog) that are each semi-normal,
and is semi-normal. For each , consider the -derivation

=

Notice that Depth Depth , and Depth Depth . So, by the
inner IH, there is a semi-normal -derivation of . So,

is semi-normal.
(C): has the form

where are exactly the minor premises of with on the
left-hand side, and are exactly the other minor premises of . As
in case (B), we may assume (wlog) that and are each semi-normal,
and, for each , there is a semi-normal -derivation of . So,

is semi-normal.

Definition 5.5 The principal connection of an -derivation consisting of a single
axiom is . The principal connection of an application of (CUT) is
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its major premise. The principal connection of an -derivation is the principal con-
nection of its terminal application of an inference rule. An -connection is
based on iff it is an instance of ( ) (i.e. the connection corresponds directly to some
member of ), or an instance of (ID) or (DETERMINATION), where L .

Definition 5.6 An -derivation is in normal form iff it is in semi-normal form and
every application of (CUT) in with a major premise based on has no immediate
-subderivation whose principal connection is also based on .

Intuitively, -derivations in normal form are semi-normal -derivations which
never use axioms based on consecutively.

Lemma 5.7 (Normal Form Lemma) If there is an -derivation of , then there
is an -derivation of in normal form.

Proof We prove the result by induction on the depth of -derivations . By
L5.4, we may assume (wlog) that is semi-normal.

Axioms: Suppose is an axiom. Then, trivially, is normal.
(Cut): Suppose terminates in (CUT). Since is semi-normal, its major premise

is an axiom. By IH, all proper -subderivations of are normal. So, if the major
premise of is not based on , then is normal. Suppose, instead, that the major
premise of is based on . Then it has the form

( )

where:

is based on ;
are exactly the minor premises of which are axioms based on ;

are exactly the minor premises of derived by a terminal application
of (CUT) whose principal connection is based on ; and

are the remaining minor premises of .

Also, by the closure of and REFLEXIVITY, , for each
. Since are each based on , , for each

. So, by the closure of and CUT (for , not ),

.

For each , has the form
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where and . By IH,
we may assume (wlog) that is in normal form, for each . So, for each , the
principal connection of is not based on . So, we have the following members
of : , , and (by the
closure of and REFLEXIVITY) for each ). So, by
the closure of and CUT (for ),

.

So, the -derivation

is in normal form. Since , for each , this
is an -derivation in normal form of . If

, this yields the result. Otherwise, let be the normal
-derivation

Then an -derivation similar to the one above, except with used to derive the
additional minor premise of the terminal application of (CUT), is normal
and yields the result.

We now define a way of “telescoping” an -derivation , so that, intuitively its
applications of (CUT) with more than one minor premise are split up into a series of
applications of (CUT), with each having only a single minor premise. Working with
“telescoped” -derivations simplifies some of the proofs in the remainder of this section.

Definition 5.8 If is an -derivation, the result of telescoping is defined
inductively:

1. If is an axiom or has the form

then ;

2. If has the form

and is the result of tele-

scoping
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then

Definition 5.9 The head connection of an -derivation (Head ) is defined
inductively:

1. If is an axiom of the form , then Head ; and
2. If terminates in an application of (CUT) and is the subderivation of ’s

major premise, then Head Head .

Remark Some obvious facts:

1. and have the same conclusion;
2. if is an -derivation of , then Head has the form .
3. if is in semi-normal form, then Head the principal connection of ;
4. If is semi-normal, and terminates in an application of (CUT) whose minor

premise is , then Head has the form .
5. If is normal, terminates in an application of (CUT), and Head is based

on , then the immediate sub-derivation of ’s minor premise is not such that
Head is also based on .

For convenience, we will often use the result of “telescoping” normal and semi-
normal -derivations in our proofs. In particular, we will do inductive proofs on the
results of “telescoping” normal -derivations , so that, in the induction step,
we need consider only applications of (CUT) with a single minor premise.

In the remainder of this section, we show that the set of grounding claims corre-
sponding to -connections is prime, witnessed, and conservative over . We read off
grounding claims from -connections in the obvious way:

Definition 5.10 A grounding claim of L is -constructible ( -con) iff:

1. and is an -connection;
2. and is -constructible, for some ;
3. , is -constructible, and is not -constructible; or
4. , is -constructible, and is -constructible.

Different sentences of L will need to be given different treatment. We have
already distinguished witnessing constants and sentences of the original languageL .
We now define another subclass, the class of nullities. Intuitively, nullities are either
the zero-grounded sentences we introduced into L or sentences that can be relaced
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in -con grounding claims by those zero-grounded elements. In effect, we will show
(see L5.16) that nullities can simply be deleted from the LHS’s of -connections.

Definition 5.11 A sentence of L is a nullity iff , for some . The
set L is the union of the set of sentences of L with L . The set L 0 is
the union of L and the set of nullities.

Notice that L is not a language, since, for instance, L but L .
Similarly, L 0 is not a language.

It is clear by inspection of the definitions D5.11 of nullities and D5.1 of
-derivations that:

Lemma 5.12

1. If is a nullity, and , then is nullity.
2. If L 0 and , then L 0.

For the purposes of showing that nullities may be removed from the LHS’s of
-connections, it is useful to demonstrate strict constraints on the conditions under

which they may occur on the RHS’s.

Lemma 5.13

1. If , then ;
2. If , then ;
3. If , then or or .
4. If , then , for some L .
5. is a nullity iff , for some L .

Proof (1.)-(3.) are easily established by a routine induction on -derivations. (4.)
follows from (1.)-(3.) by a simple induction on -derivations. (5.) follows from (4.)
and D5.1.

The following two lemmas constrain the form of -connections containing wit-
nessing constants. In effect, they show that, once witnessing constants occur in an
-connection, that they cannot be cut out. Thus, a witnessing constant is an ine-

limable “trace” of an application of (W) in a derivation of an -connection to a
sentence of L . The first is verified by a straightforward induction on -derivations
of :

Lemma 5.14 (Persistence Lemma I) If , then .

Lemma 5.15 (Persistence Lemma II) If is an -derivation of , and the
head connection of has the form , then .

Proof We prove the result by induction on . Suppose is an -derivation of
with head connection . If is an axiom, then , so
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. Suppose, then, that terminates in an application of (CUT), with a major
premise of the form . By IH, . So, is either the cut formula or a
side formula in . If is a side formula of , then . Suppose, then, that

is the cut formula of . Then the minor premise of has the form .
By L5.14, .

Now we can show that nullities can simply be deleted from the LHS of any -
connection to a sentence L . This will help us to show conservativity.

Lemma 5.16 Suppose ; L (not L ); and is a nullity.
Then .

Proof We prove the result by induction on -derivations. By L5.7 we may assume
(wlog) that the -derivation of is in normal form. We prove the result by
induction on .

(S): D5.1.
(W): L and is not a nullity. .
(Max): L . .
(ID): is prime + REFLEXIVITY.
( ): L . .
( ): L . .
(Determination): is prime + Introduction Rules + SUBS .
(Cut): Suppose terminates in an application of (CUT) of the form

where . Since L , Head Head is either based on or
is an instance of (W). By L5.15(Persistence Lemma II), if Head is an instance
of (W), then . Since is neither a nullity nor a sentence of L ,

, for any . So, Head must be based on . So, since is normal,
Head is not based on . But, also, Head has the form , where L
or . Suppose (for reductio) that L . Since Head is not based on
and L , Head cannot be an instance of (S), (ID), or (DETERMINATION).
Since L , Head cannot be an instance of (MAX), (W), ( ), or ( ). So,
Head must be an instance of (W). By L5.15(Persistence Lemma II), if Head
is an instance of (W), then . For the same reasons as above, then,
Head is not an instance of (W). . So, has the form . By
L5.12(1.), . So, , where . By IH, .

If we are to establish the conservativity over of the -con grounding claims, we
also need to show that the rules involving witnessing constants don’t introduce new
grounding claims for the original language. We do this by mapping -con grounding
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claims involving witnessing constants into grounding claims of our original language
L , and showing that those grounding claims already belong to .

Definition 5.17 The L -reduction L of a sentence of L is the result of
replacing each occurence in of any atom with .

We can now show that grounding claims involving witnessing constants get
mapped to members of .

Lemma 5.18 If , and L , then L L .

Proof Suppose is an -derivation of and L . By L5.4(Semi-
Normal Form Lemma), we may assume that is semi-normal. We prove the result
by induction on .

(S): is prime + SUBSUMPTION( ).
(W): The result is trivial if and . Otherwise and

.
(Max): L and .
(ID): L and .

: L . .
( ): L . .
(Determination): is prime + SUBSUMPTION( )( ).
(Cut): If is a side formula of , then IH implies the result. Suppose, then, that

is not a side formula of , and so the minor premise of has the form .
Since L , Head is an instance of neither ( ) nor ( ). So,
there are two cases: (A) Head is an instance of (S); or (B) Head has the
form , where L .

(A): Either L or . In the former case, IH implies L L

L , and the result follows by the closure of . If , then, by
L5.12(1.) is a nullity. So, L . .

(B): By IH, L L L , and the result follows by the closure of .

We can now establish conservativity. We do this separately for weak and strict
grounding claims.

Lemma 5.19 For L :

1. is -constructible iff ;
2. is -constructible iff ;

Proof

1. L5.16.

:
5.1 5.1 5.10

is -con.
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2. By L5.18, L L . Since L , L and L .

:
5.1 5.10

is -con.

Lemma 5.20 Suppose L .

1. is -constructible iff .
2. is -constructible iff .

Proof

(1.) : Suppose .
is prime 5.19

is -con.
Suppose (for reductio) that is -con.

is -con
5.19

S is prime S is consistent
.

(1.) : Suppose L and is -con.

is -con
5.10

is -con
5.19

is prime
.

Also,
5.19

is -con
5.10

is not -con .
(2.): D5.10, L5.19, (1.), and the clsoure of .

Lemma 5.21 (Conservativity) For any grounding claim of L , is -
constructible iff .

Proof L5.19 and L5.20.

Let Complexity be the standard syntactic complexity function for L , so
that, e.g., Complexity is less than Complexity , Complexity , and
Complexity . The next lemma says that, for sentences that are neither nulli-
ties nor in L , -connections correspond to increasing syntactic complexity.
This result is useful for establishing that such connections are irreversible.

Lemma 5.22 If L 0, , and , then either L 0 1

and 2 , for some 1 2, or Complexity Complexity .

Proof We prove the result by induction on -derivations. Suppose is an -
derivation of , L 0, and . If is an axiom, it is an
instance of (DETERMINATION). It is easy to check in that case that Complexity
Complexity . Suppose that terminates in an instance of (CUT). By L5.4 (Semi-
Normal Form Lemma), we may assume (wlog) that is in semi-normal form. There
are only two cases: (A) Head is an instance of (ID), or (B) Head is an
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instance of (DETERMINATION). If is a side formula in , then the result follows
by the application of IH to the major premise. Suppose, instead, that occurs on the
LHS of the minor premise of .

(A): The minor premise of has the form . So, the result follows by the
application of IH to the minor premise.

(B): All of the cases are proved similarly. We do the case in which is a conjunc-
tion for illustration. Suppose 1 2 . The minor premise of has
the form . If L 0, then and 1 2 .
Otherwise, IH applies to . Together with D5.1(DETERMINATION) and
(CUT), this implies the result.

We establish irreversibility, and hence the claim that -constructibility conforms
to the introduction rules of GG.

Lemma 5.23

1. ;
2. and and ;
3. and and ;
4. and and ;
5. and and .

Proof The cases are all proved very similarly. We will show the first conjunct of (2),
that , for illustration. There are two cases: (A) L or (B)

L .

(A): Suppose L . Then L . Nor, by L5.13(5.), is
a nullity. So, L 0. Since L 0, the result follows

by L5.12(2). Suppose, instead, that L . Then
5.18 is prime

.
(B): Suppose (for reductio) that . By L5.22, since

Complexity Complexity , either is a nullity, or there is a
L 0 such that 1 and 2 , for some 1 2. By L5.13,
no conjunction is a nullity, and so, by L5.12(1.) and D5.1(DETERMINATION), is
not a nullity. So, L 0. By L5.12(2), . .

Say that is an -connection when there is a covering of such
that .

Lemma 5.24 (Amalgamation)

1. if 1 , then 1 .
2. If and , then .
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Proof By D5.1 the following is an -derivation if and are:

1

2 1

1 2

This establishes (1.) by an obvious induction. (2.) follows from (1.) and the definition
of a covering.

L5.25–L5.27 show that the -con grounding claims conform to the elimination
rules of GG, and hence meet the demands imposed by MAXIMALITY. We start with
the case of the newly introduced complex sentences, and deal with the more difficult
case of complex sentences in L later.

Lemma 5.25 Suppose L , is an -connection, and .

1. 1 2 1 2 ;
2. 1 2 ;
3. ;
4. 1 2 1 2 ;
5. 1 2 , for some .

Proof Suppose L and . All of the cases are proved similarly. We do
(1.) for illustration. (1.) follows straighforwardly from L5.23 and

(★) 1 2 1 2.

We prove (★) by induction on -derivations of . The cases of the axioms
are straightforward. Suppose the -derivation of 1 2 terminates
in an application of (CUT). By L5.4 (Semi-Normal Form Lemma), we may assume
(wlog) that is in semi-normal form. ’s major premise has the form

1 2 and ’s minor premise has the form , where .
By IH, either 1 2 or 1 2 1 2 . If

1 2 , then the result follows immediately by IH applied to the minor
premise. Suppose 1 2 1 2 . ’s head connection
is an axiom 1 2 . By D5.1, there are only two cases: (A)

1 2 , or (B) .

(A): By D5.3 and D5.8, 1 2 . So, IH applies to the minor premise:
either (I) 1 2 or (II) 1 2 1 2 .

(I): The result follows trivially.
(II) 1 2 1 2 . By L5.24(AMALGAMATON),

since 1 2 1 2 , 1 2

1 2 .

(B): Recall that 1 2 1 2 . Since is semi-normal,
. By L5.23, 1 1 . So,
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(✢) 1 2 1 2 .

So, for some , we have , and 1 2 . By
(✢) and an application of CUT, 1 2 1 2 .

Recall that we showed above (L5.14(Persistence Lemma I) and L5.15(Persistence
Lemma II)) that was an ineliminable “trace” of an application of (W) in a deriva-
tion of an -connection to a sentence of L . We now use this to show that whenever
we get an -connection by successive applications of CUT starting with an
-connection based on , the LHS contains a “trace” of every sentence

of L in . Thus, as we show in the next lemma, can be partitioned into nullities,
sentences of L cut in by (reversible) applications of (W), witnessing constants cut
in by (reversible) applications of (W), and members of . This helps us establish (in
conjunction with the normal form lemma) that the -derivation of any irreversible
-connection with a sentence of L on the RHS has to have “gone through” some

irreversible -connection based on . So, we can use the fact that itself conforms
to the elimination rules of GG (and so the demands of MAXIMALITY) to show that
the set of -con grounding claims does, too.

Lemma 5.26 (Persistence Lemma III) If is an -derivation of in normal
form, and the head connection of is based on , then

.
Proof Suppose is an -derivation of in normal form, and the head connec-
tion of is based on . Suppose is an axiom. Then . Suppose,
instead, that terminates in an application of (CUT). Then has the form

where and . Suppose and . By IH,
. Suppose . Then . Suppose, instead, that

. If , then by L5.14(Persistence Lemma I), . So,
we may assume that L . Since is in normal form, the Head is not
based on , So, Head is an axiom, not based on , whose RHS is L .
By D5.1, Head has the form . By L5.15 (Persistence Lemma II),

.

Now we can show that the -con grounding claims conform to the elimination
rules of GG, and thus the demands of MAXIMALITY.

Lemma 5.27 (Constructibility Lemma)

1. if 1 2 is -constructible, then there is a covering of such
that are each -constructible.
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2. if 1 2 is -constructible, then there are and a
covering of such that are each -constructible.

3. if is -constructible, then is -constructible.
4. if 1 2 is -constructible, then then there is a covering of

such that are each -constructible.
5. if 1 2 is -constructible, then there are and a

covering of such that are each -constructible.

Proof All of the cases are proved similarly. We do (1.) for illustration. Suppose
1 2 and is -constructible. Then there is an -derivation of

. By L5.7 (Normal Form Lemma), we may assume (wlog) that is in normal
form. There are two cases: (A) L or (B) L .

(A): Since is not atomic, L . So is a binary conjunction 1 2 . There
are two sub-cases: (I) The head connection 1 2 of is based on ,
or (II) The head connection 1 2 of has the form

1 2

1 2 , for some such that .

(I): Take any . By L5.26(Persistence Lemma III), either , ,
or . So, by D5.10, since 1 2 for any and any ,
either or ( L and 1 2 is -con). Let
so that and L . By D5.1, since , . So, by
D5.10, is -con. So, by L5.21(Conservativity), . By the
closure of , there is a covering 1 2 of such that 1 1 and

2 2 . If let 1 1 and 2 2 . Otherwise,
let 1 1 and 2 2. 1 2 is a covering of . We prove by induction
on the depth of that there is a covering 1 2 of such that 1 1 and

2 2 are each -constructible. Suppose is an axiom. Then , and
by D5.1(S), we have -derivations 1 1 and 2 2. If ,
by D5.1(CUT), since , for 1 2 . Suppose instead that
terminates in an application of CUT. Then has the form

1 2

1 2

By IH, has a covering 1 2 such that 1 1 and 2 2 are each
-con, and so there are -derivations 1 2 of 1 1 and 2 2, respec-

tively. There are three cases: (a) 1 and 2, (b) 1 and 2,
or (c) 1 and 2. The arguments in each case are very similar, so we
do (a) for illustration. In this case, 1 1 , and 1 2.

2 2 is an -connection, and the following is an -derivation:

1

1 1

1 1
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(II): By L5.15 (Persistence Lemma II),
1 2

. So, by D5.10,
1 2 1 2

is not -con. By D5.1(MAX), 1 2 1 2

1 2
. .

(B): By L5.25, either or 1 2 . Suppose (for reductio) that
. Then, by D5.10, is -con. But, by D5.1(ID), . .

Definition 5.28 Let the relation between sets of grounding claims of L be
defined by the axioms and rules for GG specified in Section 3, with the following
changes:

1. Add axioms

( ):
( ): If L , then

2. Replace the axiom for -INTRODUCTION with a generalization suitable for finite
multigrade conjunctions of L :

0 1

and, similarly, replace the introduction rules for and with general-
izations suitable for finite multi-grade conjunctions and disjunctions;

3. Replace the axiom for -ELIMINATION with a generalization suitable for finite
multigrade conjunctions of L :

0 1 0 0 0 0 1 1 1 0 0 1 1 1

and, similarly, replace the elimination rules for and with generaliza-
tions suitable for finite multi-grade conjunctions and disjunctions

Let iff there are and such that . A set of grounding
claims is prime in L iff .

Now we can show that the set of -constructible grounding claims is prime.

Lemma 5.29 (Primeness) If is a prime set of grounding claims of L , 1 2

and 1 is -constructible, then 2 is -constructible.

Proof Suppose 1 2. Then there are 1 1 and 2 2 such that 1

2. We prove the result by induction on the definition of 1 2. The basis cases
are all easy consequences of D5.10, D5.1, L5.13, L5.23, and L5.27(Constructibility
Lemma). We do the cases of TRANSITIVITY( / ), ( ), NON-CIRCULARITY, -
INTRODUCTION and -ELIMINATION for illustration.

(Transitivity)( ): Suppose and are both -con. By D5.10,
there are -connections of the form and . By D5.1(CUT)

is an -connection. So, by D5.10 is -con.
( ): is -con by D5.1 and D5.10. By L5.13(3.),

, for any . So, is -con by D5.10.
(Non-Circularity): is not -con by D5.1(ID) and D5.10, since .
( -Introduction): L5.23 + D5.1(DETERMINATION) + D5.10.
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( -Elimination): Suppose 1 2 is -con. By L5.27 (Constructibil-
ity Lemma), there is a covering 1 2 of such that each member of

1 1 2 2 is -con. Suppose 1 2

is an instance of -ELIMINATION. Then has the form 0 1 where

1 2 , are exactly the ordered tuples such that 1 1 and,
for each , 1

1
2

2 . Since 1 2 is a covering of
, 1 2

1 2 , for some . So, 1
1, 2

2, are each
-con, for some . So, is -con, for some .

The induction step involves two cases: THINNING and SNIP. Both cases are very
easy. We do SNIP for illustration.

(Snip): Suppose every grounding claim is -con, and
. By IH, there is a grounding claim such that is -con.

Either or If , then every member of is -con, and
IH applies to to entail that there is a such that is -con.
Otherwise, and is -con. So, in each case, there is a -con grounding
claim that is a member of .

Theorem 5.30 (Extension Theorem) If is a prime set of grounding claims of L ,
then the set of -constructible grounding claims is witnessed and prime in L ,
and for grounding claims of L , .

Proof is prime in L by L5.29. is witnessed by D5.10. By L5.21, for
grounding claims of L , .

6 The Canonical Model Basis

Suppose is a prime (and so consistent) set of grounding claims in L . Let the lan-
guage L be the language defined in D4.1. By T5.30, the set of -constructible
claims is witnessed, prime in L , and conservative over , i.e., for any grounding
claim of L , . However, leaves us with our initial difficulty
for constructing our canonical model: it may contain strict grounding claims
but no corresponding weak grounding claim . Recall that the relation
indicates exactly the new full weak grounding claims that we need to add. We are
now going to throw those into and show that the result has the desired properties.
That is, we now extend to include grounding claims arising from our definition
of . The result is the canonical model basis for . In this section, we show that
the canonical model basis is prime, witnessed, and conservative over . In the next
section, we show that the canonical model basis contains exactly those grounding
claims which are true in the canonical model.

First, we extend the definition of -connections to include connections required
by . We define a broader set of -derivations and the corresponding relation
for a relation containing , by adding to the definition D5.1 additional axioms for
instances of :
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Definition 6.1

( ): If , then:

are each axioms.

Remark Intuitively, extends by simply throwing in connections corresponding
to instances of and closing under CUT. The new connections and

are added to ensure that all of the full weak grounding claims are
reversible, so that IRREVERSIBILITY can be satisfied without adding further strict
grounding claims. Trivially, if , then .

Remark In proofs, we will indicate justifications for particular claims about that
appeal to clause (S) of D4.4 using the notation , and, similarly, for the other
clauses. Likewise, we will indicate justifications for particular claims about (in
the sense of D6.1), using , and the like. In cases which appeal to D6.1( ), we
will indicate more specific justification using , and, similarly, for other
clauses of the definition D4.4 of . So, for instance, we will say that if ,
then by . Finally, we will indicate justification by stacking
when convenient, as in

S
.

The next lemma establishes some useful properties of .

Lemma 6.2

1. If , then has the form 1 2 .
2. If , then L .
3. If , then .
4. If and is an instance of neither (S) nor , then has the form

.
5. If and L , then is an instance of either (S) or (W)
6. If and , then .

Proof (1)–(5) are proved by routine inductions on . We also prove (6) by induction
on . All of the basis cases are proved similarly. We prove the basis case for
illustration.

(W): Suppose , , and . Suppose also .
Now, does not have any of the following forms:

.

So, for some , , and and . But then
, and so by D4.1 . So, .
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(Induction)(1): Suppose , and . Suppose
. As in the case (W) above, does not have any of the forms

required for to come by any of the basis cases for . Suppose (for
reductio) that, for some , , , and , so that

and . (Intuitively, we are supposing that
comes by the other induction step.) By D4.1, since , . Since

, by IH, . . But, by (3), . . So,
for some , , , and . Then /. So,
by D4.1, . So, .

(Induction)(2): Suppose , and . Suppose
. As in the case (W) above, does not have any of the forms

required for to come by any of the basis cases for . As in the previous
induction case, cannot come by there being a and such that ,
where , , and . So, for some , ,

and . Then , and so, by D4.1, .
So, .

We now define the set of grounding claims corresponding to in the obvious
way. We also define the notion of a super-normal -derivation, for the purposes of
managing notational complexity. Applications of CUT in this sort of -derivation
contain no side-formulae that we need to track as parameters in proofs.

Definition 6.3 Define is -constructible ( -con) in a manner similar to D5.10,
except using the relation defined in D6.1, instead of . So, for instance, is

-con iff . Define the notions ofmajor premise,minor premise, cut formulae,
side formulae, principal connection, semi-normal form, normal form, and in the
obvious ways. Say that is in super-normal form (or is super-normal) iff it is the
result of adding minor premises of the form to an -derivation in normal form
to yield an -derivation in which no application of CUT has any side formulae.

Remark Super-normal -derivations just fill out normal -derivations with identity
axioms. To illustrate, if

1 2

1 2 is in normal form, then

1 1 2 2 1 2

1 2 is super-normal.

We can prove a normal form theorem in a way similar to L5.7:

Lemma 6.4 if , then there is an -derivation of in normal form.

We will establish conservativity of the canonical model basis over by defining
a function that maps the LHS and RHS of an instance of (and the “shadow”
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of the LHS) to the same formula. This function assimilates instances of required
by D6.1( ) to instances of (ID). Thus, “undoes” the new connections of ground
required by D6.1( ). The lemma immediately after the definition of shows,
intuitively, that nothing is thereby lost. Define the function L L as
follows:

Definition 6.5

1. If L , then ;
2. If is atomic and not of the form , where for some , then

;
3. ;
4. if , then and ;
5. if L and , for any , then

; and
6. If L , then .

Let .

Remark is well-defined by L6.2. First, is a functional relation, by L6.2(6.).
Second, in the basis cases of the definition D4.4 of , the formulae on the RHS
of are all either members of L , the atomic sentence , or double-negations of
witnessing constants . So, the result of applying in each of these cases is defined
by clauses (1)-(3) above. Thus, the result of applying to the LHS of basis cases
for is well-defined. Third, in the inductive clause of the definition D4.4 of , the
RHS is always a double-negation of either some lower-level LHS of an instance of
, or a “shadow” of some such LHS. In this case, the application of to

(or ) is handled by a “previous” application of clause (4) above to (or ),
together with clause (3).

Lemma 6.6 If , then

Proof We prove the result by induction on the definition D6.1 of . The case of (ID)
is trivial. The cases of (S), (W), (MAX), ( ), and ( ), are proved similarly, using
L6.2 and D6.1. We will prove the result in the case of ( ) for illustration.

( ): . is atomic, so . D5.1 implies the result.
(Determination): We prove the case in which 1 2 . The other cases

are proved similarly. Suppose 1 2 and 1 2 . There are
three cases: (A) L , (B) , for some , or (C) neither.

(A): Trivial, by D5.1, since and .
(C): By D6.5 1 2 1 2 . So, the result is

trivial, by D5.1.
(B): We prove the result by a subsidiary induction on :

(S): Suppose , where . Then .
So, , and it’s easy to see by L6.2(1.) that , since neither
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nor is a conjunction. Moreover, by the closure of ,
. So, . Since , the result follows by D5.1(CUT).

(W): Suppose , where . Then ,
and .

DETER.
.

(Max): Suppose , where L . Then
and .

(MAX) DETER.
.

( ): Suppose . Then .
and . and . So, by

(Amalgamation), .
Induction Step: Suppose that and . Then

. , and . Thus,
and . D5.1(DETERMINATION) implies the

result. A similar argument yields the result if .

: Suppose is an instance of ( ). There are three cases: for some ,
and either (A) and , (B) and , or (C)
and , In each of these cases, since ,

. The result follows by D5.1,(ID).
(Cut): IH and D5.1,(CUT).

Recall from (D5.11) that L is the union of the set of sentences of L with the
set of witnessing constants L .

Lemma 6.7 Suppose L . Then

1. if then ; and
2. if then .

Proof D6.5 and L6.6.

Lemma 6.8 (Conservativity) If is a grounding claim of L and is -con, then
.

Proof Suppose is a grounding claim of L and is -con.

1. Suppose . Then . L6.7 and D5.10 imply the result.
2. Suppose . L6.7 and D5.10 imply the result.
3. Suppose . By (2.) above, . By the closure of

(IRREVERSIBILITY), either or . Suppose (for reduc-
tio) that . Since is witnessed, . So, ,
and so . By D6.3, is -con. .

4. Suppose . (1.) above, (3.) above, and the closure of (REVERSE

SUBSUMPTION) imply the result.
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The following two lemmas are immediate by the definition of -con.

Lemma 6.9 (Consistency) is not -con

Lemma 6.10 (Witnessing) if is -con, then is -con.

It is straightforward to show that grounding claims corresponding to introduction
rules in GG are -con.

Lemma 6.11 The following are -con:

1. ;
2. 0 1 ;
3. ;
4. ; and
5. 0 1 .

Proof All of the cases are proved similarly. We do (1.) for illustration. By
DETERMINATION , . Suppose (for reductio) that

, for some . (Cases of other conjuncts are proved similarly.)
By L6.6, . By D6.5, there are seven cases bearing on
the value of :

(A): . Then, by L5.23(2.), it is not the case
that . .

(B): and . Then . Either or
is a nullity. If , then . So, . By the consistency of ,
it is not the case that . . Suppose, then, that is a nullity, so that
by L5.13(5.) . By L5.12, since , is a nullity. But is not
nullity. .

(C): and . Then . Also,
, and . Since

(W)
, we have

and so, by D5.1(CUT) . But is prime, and so consistent. .
(D): and L . Then . So,

, and . It is easy to see that D5.1 and the closure and consistency of
imply .

(E): and L . Then
and . By L5.13(1.), it is not the case that . .

(F): such that and ,
so that and . Then, by D6.5, , and

. By L5.23, it is not the case that
. .

(G): L . Then , so
this case reduces to case (A).
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Showing that -con grounding claims conform to the elimination rules of GG,
and so the demands of MAXIMALITY, is much less straightforward. Demonstrating
this fact is the burden of L6.12–L6.17.

It is clear by inspection of D4.4 of and then D6.1 that there is no instance of
( )( ) with on the RHS. Moreover, whenever occurs on the RHS of such
an instance, it also occurs on the LHS. Thus, the following results can be proved
by an easy induction on -derivations. They are useful because they show that -
connections to and are always reversible and so never correspond to full,
strict grounding claims.

Lemma 6.12 (Persistence)

1. If , then .
2. If , then .
3. If is a semi-normal -derivation of , and the principal connection of

has the form , then .

Remark (Amalgamation) By D6.1 the following is an instance of CUT.

So, if , then .

It is convenient to define a distributive notion of -derivability:

Definition 6.13 iff there is a covering of such that .

It is easy to see that this distributive extension of is transitive and closed under
unions (i.e., ).

Say that the -connection is reversible iff .

Remark Clearly, if , is reversible, and is reversible,
then is reversible. Equivalently, if is irreversible, , and

is reversible, then is irreversible.

Remark Every instance of ( )( ) is reversible.

We can now show that -connections to our new conjunctions, including
meet the demands of MAXIMALITY.

Lemma 6.14

1. If , then either is reversible, or .
2. If , then either is reversible, or .
3. If , then either is reversible, or .
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Proof Each of (1.)–(3.) is proved similarly. We do (1.) for illustration. Let ,
and assume . We prove the result by induction on -derivations. By L6.4, we
may assume that the derivation of is in super-normal form. By D6.1, if
is an axiom, it is an instance of ( )(DETERMINATION), ( )( ), or ( )(ID). So, (S),
(W), (MAX), ( ), and ( ) are not relevant.

(ID): Trivial.
( ): Every instance of is reversible.
(Determination): Suppose is an axiom of the form .

The result is immediate by ( )(ID).
(Cut): Suppose terminates in an application of CUT. The principal connection

of is an instance of either (A) (ID), (B) ( ), or (C) (DETERMINATION).

(A): The minor premises of have the form . By IH, either
is -con, or for each . The result follows

by (Amalgamation).
(B): L6.12(Persistence) implies that . Since , is

reversible.
(C): Trivial.

The following lemma says that the only way to get an irreversible -connection to
some in our original language L is to “go through” some strict grounding claim
in our original set . This allows us to show that the canonical model basis meets the
demand imposed by MAXIMALITY for sentences of L by appealing to the fact that
our original set is prime, and so already conforms to the elimination rules of GG.

Lemma 6.15 (Interpolation) If and L , then either is reversible,
or

and

Proof We prove the result by induction on . By L6.4, we may assume (wlog)
that the -derivation of is in super-normal form.

(S): Suppose and . Either (A) or (B)
not.

(A):
(W)

. So, is reversible.

(B): By the closure of , .

DETER.
.

So,

DETER.

.

(W): Trivially, by ( )(MAX), is reversible.
(Max): L . .
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(ID): Trivially, is reversible.
( ): By L6.2(5.), there are only two relevant instances of : (S) , where

; or (W) , where and .

(S): .
(W): By ( )( ), , so the -connection

is reversible.

(Determination): Suppose 1 2 and 1 2. By the closure of ( -
INTRODUCTION), . As in the case (S)(B) above, this implies that

. The more general cases for , , and are proved similarly.
(Cut): Suppose terminates in an application of CUT. The principal connec-

tion of is an instance of either (S), (ID), (W), ( )(S), ( )(W), or
(DETERMINATION). Since is super-normal, . So, the arguments in the
basis cases for ( )(S) and (DETERMINATION) imply that .
That leaves the cases (W), (W), (ID) and (S):

(W): Suppose the principal connection of is . By L6.12(2.)
(Persistence), . By ( )(MAX), , so is reversible.

(( ))(W): The principal connection of has the form . Since
is super-normal, the minor premises have the form . By

L6.14(2.), there are two cases: (A) is reversible, for some , or
(B) for all .

(A): For some and some , . Since, by ( )( ),

. So, is reversible.
(B): By the closure of ( -INTRODUCTION), . So, by (S),

, and thus

(★) .

Also, by (AMALGAMATION)

(✢) .

Since

DETER.

(✢) and (AMALGAMATION) imply:

(★★)

Putting this all together, we have:

★★ DETER. ★

.

(ID): Suppose the principal connection of is . Then the minor premises
of have the form . Assume that is irreversible, and so,

467



L. deRosset, K. Fine

for each is irreversible. By IH, for each , there is a such that
and . By ( ),( )(S),

(★) .

Suppose (for reductio) that is reversible, for some . By (★) and
( )(CUT), is reversible. . So, is irreversible for all . By
L6.14(1.),

(✢) .

Since , for each , the closure of ,(SUBSUMPTION,CUT,REVERSE

SUBSUMPTION) implies that . Let . Then,

(★★) .

by ( ) . Putting all of this together:

✢ DETER. ★★

.

(S): The principal connection of has the form , where
. We are going to divide the formulae (and, correlatively, the minor

premises of ) according to whether is -con or not. On this division,
has the form , and the minor premises have

the form , where:

;
strict: for each , there is no such that ; and
merely weak: for each , , for some .

By D6.3 and L6.8(Conservativity), for each , is -con, and so
. By L5.21(Conservativity), . If

is reversible, then we are done. So, assume that it is irreversible. Suppose (for
reductio) that, for some , is reversible. Then is
reversible. . So, IH applies to the minor premises : for each , there
is a such that and . By the closure of ,

. Let , so that . Also, by ( )( ),
.

Since, for each , is irreversible, and by ( )( ), is
reversible, is irreversible. So, L6.14(1.) applies: we have, for each
,

.

Since , this implies, for each

(★)

So, for each , we have the connections:

★
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.

By (AMALGAMATION):

(✢)

Since
DETER.

,

(★★)

Putting all of this together, we have:

(✢) (★★) DETER.

We now use L6.15(Interpolation) to demonstrate that MAXIMALITY is satisfied
for sentences in L .

Lemma 6.16 Suppose L , and is irreversible. Then,

1. When 1 2 , 1 2 ;
2. When , ;
3. When 1 2 , either 1, 2, or 1 2 ;
4. When 1 2 , 1 2 ; and
5. When 1 2 , either 1, 2, or 1 2 .

Proof

(1): By L6.15(Interpolation), and , for some . By
the primeness of ( -ELIMINATION), there is a covering 1 2 of such that

1 1 and 2 2 . By ( )(S),

(★) 1 2 1 2 .

Also, is reversible, by ( )( ). Since is irreversible,
is irreversible. So, L6.14(1.) implies

(★★) .

By ( )( ), , so

(✢) .

Putting all of this together, we have

✢ ★

1 2 .

(2)-(5): Arguments similar to that for (1) yield the results, applying different elim-
ination rules to . The argument for (2) uses ( -elimination) where the
argument for (1) uses ( -elimination), and, similarly, for the other cases.
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It is now straightforward to extend L6.16 beyond the special case in which the
RHS is in L :

Lemma 6.17 Suppose is irreversible.

1. When 1 2 , 1 2 ;
2. When 1 2 , there is a non-empty subset of such that

;
3. When , ;
4. When 1 2 , 1 2 ; and
5. When 1 2 , there is a subset of such that .

Proof Easy inductions on -derivations yield (4.) and (5.).

1. We prove the result by induction on -derivations. Instances of (MAX), ( ),
and ( ) do not have conjunctions on the RHS.

(S): L6.16.
(W): By ( )(MAX), . .
(ID): .
( ): Suppose , and is an instance of ( )( ). Every instance of

( )( ) is reversible. .
(Determination): ( )(ID).
(Cut): Suppose terminates in an instance of CUT. By L6.4 we may assume

(wlog) that is in normal form. The principal connection of cannot be an
instance of ( ), ( ), or (MAX). If the principal connection is an instance
of (S) or (W), then L , and so L6.16 implies the result. If it is an instance
of (ID), then IH and (Amalgamation) imply the result. If it is an instance of
(DETERMINATION), then ( )(ID) and (Amalgamation) imply the result. If it
is an instance of ( ) then, by L6.2(4.), the major premise of has either the
form (where L ) or the form

(where for some ). In the former case, L6.16 implies the result.
In the latter case, by L6.12(1.) (Persistence), . , so

is reversible. .

2. We prove the result by induction on -derivations. All of the cases are similar to
the corresponding cases for (1.) above, except the case in which is an instance
of ( ), and the case in which terminates in (CUT) and has as its principal
connection an instance of ( ).

( ): The only relevant case is one in which the axiom has the form
and L . As above, L6.16 implies the result.

(Cut): As in (1.) above, we assume our -derivation is in normal form. We
need only check the case in which the principal connection of is an instance
of ( ). Again, there is only one relevant case: the principal connection has
the form , where L . As above, L6.16 delivers the result.
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3. As in (1.) and (2.) above, the key cases are those involving instances of ( ).

( ): Suppose is an instance of ( )( ). Every instance of ( )( ) is
reversible. .

(Cut): We assume our -derivation is in super-normal form, so the appli-
cation of (CUT) has no side formulae. We need only check the case in
which the principal connection of is an instance of ( ). There are five
cases concerning the form of the principal connection of , corresponding
to the five clauses in the definition D4.4 of in which the RHS may be a
double-negation: (S), (W), (MAX), and each of the two (Induction) cases.

(S): The principal connection has the form and L . L6.16.
(W): The principal connection has the form , where

. L , so L6.16 yields the result.
(Max): The principal connection has the form , where

L . Since is in super-normal form, the minor premises of have the
form and . Since is irreversible
and the principal connection is reversible, for each

is irreversible. So, the result follows by L6.14(3.) and
(Amalgamation).

(Induction)(1): The principal connection has the form 2 1

1, where 1 2, and so (by (Induction)) 2 1

1. Since is in super-normal form, the minor premises of have the
form 2 1 and . Also, 1 2 1

2 1 , so the principal connection is reversible. Since
is irreversible, none of the minor premises are reversible.. By (1) above
and (Amalgamation), 2 1 . Also, since 1 2,

2 1
1. So, 2 1 1.

(Induction)(2): The principal connection has the form 1 1

1 , where 1 2, for some 2. An argument similar to that in
case (D) shows that 2 1 1 .

The following lemma shows, as we have repeatedly claimed, that behaves as if
it is the disjunction of for all L . It is useful for proving the adequacy
of the construction of the canonical model in the next section.

Lemma 6.18 If , then either is reversible, or
0 1 , for some L .

Proof We prove the result by induction on -derivations of . Suppose
is an -derivation of and is irreversible. By L6.4 we may assume
(wlog) that is in super-normal form. If is an axiom, it is an instance of ( ),
( ), or (ID).

( ): Trivial.
( ): Every instance of ( )( ) is reversible. .
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(ID): . .
(Cut): The principal connection of is an instance of ( ), ( ), or (ID).

( ): The principal connection has the form , for some
L . Since is super-normal, all of the minor premises have the form

, and . (Amalagamation) implies the result.
( ): The only relevant instance has the form ,

for some L . Since is super-normal, the minor premises have
the form and . For each ,

. So, the principal connec-

tion of is reversible, and thus the minor premises are each irreversible.. So,
L6.17 applies:

(★) .

So,

★ DETER.
.

(ID): The minor premises have the form . IH yields the result.

Let the canonical model basis for be is -con .

Theorem 6.19 is prime in L and has the following features:

Conservativity For grounding claims of L , iff .
Witnessing If , then .
Irreversibility

1. iff and ; and
2. if , then either or .

Maximality

1. iff ;
2. 0 1 iff there is a covering of such that

for each ;
3. 0 1 iff there is a covering of and a subset

of such that for each ;
4. 0 1 iff there is a covering of such that

for each ; and
5. 0 1 iff there is a covering of and a subset

of such that for each .

Proof

(Conservativity): L6.8 and L5.21 imply . follows from by ( )(S), D6.3,
and the fact that is prime, since .

(Witnessing): L6.10.
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(Irreversibility): Immediate by D6.3.
(Maximality): L6.17 and D6.3 imply . L6.11, and D6.3 imply .
(Primeness): The primeness of in L is proved straightforwardly in a man-

ner similar to the proof of L5.29, using D6.1, D6.3, Irreversibility of , and
Maximality of .

7 The Canonical Model Justified

We are given a prime set of grounding claims of the languageL . In this section, we
show that M satisfies the definition D2.3 of a model and that the grounding claims
of L verified by M are exactly the members of (justifying the label “canonical
model for ”).

We extend to its canonical model basis as defined in the previous section.
is a set of grounding claims of the language L , which extends L . is witnessed
and prime (in L ), by T6.19.

Remark Recall that is an equivalence relation on conditions and contents. Intu-
itively, we identify conditions and contents when they are -related. Lemmas
7.1-7.10 concern the structure of and the relationship between and .

Recall that the function selects, for any given condition or content, some rep-
resentative of the equivalence class of given by ; see D4.6. The following facts
are immediate consequences of D4.5, D4.6, and D4.3:

Lemma 7.1

1. and ;
2. and ;
3. iff , and iff ;
4. For . , 0 1 0 1 0 1 ;
5. ;
6. For . , 0 1 0 1 iff 0 1

0 1 ;
7. iff ;
8. ;
9. . . ; and

10. . . .

The next few lemmas constrain decomposition of combinations and choices. L7.2
says that combinations are uniquely decomposable (up to ); and L7.4 says that
choices of three or more contents are uniquely decomposable (up to ). Neither
choices of two contents nor singletons are uniquely decomposable, since,
by D4.5( ), whenever , . L7.5 constrains decomposition in
this crucial case.
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Lemma 7.2 If 1. 2. , then 1. 2. , for some
.

Proof We show by induction on that, if 1. 2. or 1. 2. , then
1 2 1. 2. , and . The effect of this proof procedure

is to make the case of symmetry (which is implicit in our requirement that be
an equivalence relation) a trivial consequence of IH. (We often employ this simple
technique implicitly in proving results concerning below.)

(Pairing): Not relevant.
(Comp): Trivial.
( ): . . and . . . .
( ): . . has neither the form nor the form .
(Transitivity): Suppose . . . IH implies the result. Similarly, IH

implies the result if . .

A simple induction on establishes the following lemma. Note that : no
sentence is a free content, only literals are free conditions, and no literal is a free
choice or combination.

Lemma 7.3

1. If , then either or ( and . ).
2. If . , then either . or .
3. If , then .

A simple induction on also establishes the following lemma. Note that 1

2 3 has at least three constituents, and so does not have the form .

Lemma 7.4

1. If 1 2 3 , then 1 2 , and , for some
.

2. If or , then either or , for some .

Lemma 7.5

1. if then either

(a) and ; or
(b) , and , for some .

2. If or , then , and , for
some .

3. if , then .
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Proof We prove all three results simultaneously by induction on . Each of the cases
in D4.5 is either irrelevant or trivial, except for transitivity. For the case of transitivity,
by L7.4(2.), there are 8 cases: for some

1. ;
2. ;
3. ;
4. ;
5. ;
6. ;
7. ; or
8. ;

By considerations of symmetry, there are essentially only four cases, typified by (1),
(2), (4), and (8).

(1.): By IH(1.), and either (A) or (B) , , and
.

(A): By IH (1.) applied to , , and either

or ( , , and ), for some . In the
former case, the result (1.)(a.) is satisfied. In the latter case, the result (1.)(b.) is
satisfied.

(B): By IH (1.) again, , and either or ( , ,

and ) for some . In the former case, ,

, and . So, the result (1.)(b.) is satisfied. In the latter
case, the result (1.)(b.) is also satisfied.

(2.): By IH(1.), and either (A) or (B) , , and
, for some .

(A): By IH(2.), ; also by IH(2), , and
, for some , so the result (2.) is satisfied;

(B): By IH(2.), , so the result (2.) is satisfed.

(4.): By IH, , , and , for some . So, the result
(2.) is satisfied.

(8.): By IH(3.), . So, the result (3.) is satisfied.

The next series of lemmas culminate in L7.10, which says that our interpretation
function (and also ) is one-one.

Lemma 7.6 If is atomic and , then .

Proof Suppose is atomic and . By D4.3, . By L7.3, either
or . . By D4.3, . Since, for all ,
. . , is atomic and .
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Lemma 7.7 If , then has the form , where .

Proof Suppose . We first show that has the form . It is useful to prove

(★) If , then has either the form or the form 1 2

by induction on the complexity of :

atomic: By L7.6, . .
1 21 21 2 : Then 1. 2. . By L7.2,
1. 2. . .

We can now use (★) to prove the result by induction on the complexity of . Suppose
(for reductio) that has the form 1 2 .

atomic: 1. 2. . By L7.3, 1. 2. . .

: 1. 2. . By L7.2, 1. 2. . .
1 21 21 2 : 1 2 1. 2. . By L7.2,
1 2 1. 2. . .
1 21 21 2 : 1 2 . By L7.5, 1.

By (★), is either a negation or a conjunction. .

So for some . Then . By L7.5(3.),
.

Lemma 7.8 If 1 2 , then has the form 1 2 , for

.

Proof Suppose 1 2 . We first prove by induction on the complexity
of that has the form 1 2 .

atomic: By L7.6, 1 2 . .
: By L7.7, 1 2 has the form . .

1 21 21 2 : 1 2 1. 2. . By L7.2,
1 2 1. 2. . .

By D4.3 and L7.2, .

Lemma 7.9 If 1 2 , then has the form 1 2 , where

.

Proof Suppose 1 2 . We first prove by induction on the complexity of
that has the form 1 2 .

atomic: By L7.6, 1 2 . .
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: By L7.7, 1 2 has the form . .
1 21 21 2 : By L7.8, 1 2 has the form 1 2 . .

So, 1 2 1 2 . Then 1. 2.
1 2 1. 2. . By L7.2, . By L7.7,

.

Lemma 7.10

1. If , then .
2. If , then .

Proof Suppose . We prove (1) by induction on the complexity of .

atomic: L7.6.
: By L7.7, has the form and . IH implies that .

1 21 21 2 : By L7.8, has the form 1 2 and . By
IH, .

1 21 21 2 : As in the previous case, L7.9 and IH imply .

(2) is an immediate consequence of (1) and D4.3 since, if then
.

Definition 7.11 (Immediate Selection) We define a relation between sets of
contents of and conditions of in the obvious way:

1. 0 for each ,
2. . ,
3. and
4.

We allow the special case in which . In this case, .

Because choices 0 1 and singleton choices/combinations may
not be uniquely decomposable, there can be surprising immediate selections. For
instance, there can be cases in which , but . But there are sharp
limits on such surprises. Lemmas 7.12–7.21 below specify those limits. Lemmas
7.12–7.16 specify the limitations on immediate selection when the right-hand relatum
is the truth-condition of some sentence of L . Lemmas 7.18–7.21 specify
those limitations in the other cases.

Lemma 7.12 If 0. 1. , then .

Proof Suppose that 0. 1. . There are two cases: (I) 0. 1.
0. 1. and , for some ; or (II) 0. 1.
0 1 and , for some . By L7.2,

case (II) does not occur. In case (I), 0. 1. 0. 1. 0. 1. .
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By L7.2, , so (by L7.1), . Since ,
. So, .

The following lemma is proved in a way similar to L7.12, using L7.4 in place of
L7.2:

Lemma 7.13 If 0 1 2 , then , for some .

Lemma 7.14 If 1 2 , then and .

Proof If , for some 1 2, then we may set and by
D6.3. So, it is enough to show that, if 1 2 , then either 1 2

or and 1 . By D7.11 there are three cases: (A) 1 2

0. 1. and for some ; (B) 1 2 and
, for some ; or (C) 1 2 1 2 and ,

for some and some . By L7.2, case (A) does not occur.

(B): By L7.5, there is a such that 1 . So, 1.
(C): By L7.4, 1 2 has the form 1 2 . By L7.5 there are two cases:

(I) 1 1 and 2 2 or (II) 1 1 , 2 , and , for some .

(I): Either 1 1 1 or 2 2 2.
(II): Since 1 , by L7.10, 1 . If 1, then 1 1 1.

If 2, then 2 2 and 1, for some . By D6.1 ,
1 .

The following lemma is proved similarly to L7.14.

Lemma 7.15 If , then and .

Lemma 7.16 If , then and .

Proof Suppose . We prove the result by induction on the complexity of .

atomic: By L7.3, and . By ( )( ), . Also, trivially,
is irreversible. So, by D6.3, .
atomic: By L7.7, . , for any

. So, . .
: . By L7.15, and . By T6.19,

.
1 21 21 2 : L7.12 and T6.19 imply the result.
1 21 21 2 : L7.12 and T6.19 imply the result.

1 21 21 2 : L7.14 and T6.19imply the result.
1 21 21 2 : L7.14 and T6.19 imply the result.

Definition 7.17 is formularic iff , for some L . is formularic
iff and are each formularic.
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The following lemma is proved by an easy induction on :

Lemma 7.18

1. If and is formularic, then is formularic.
2. If and is formularic, then is formularic.

Lemma 7.19

1. If is formularic, then for some L .

2. If is formularic, then for some L .

3. If . . . is formularic, then then for some L .

Proof Suppose . . . and is formularic.
Then , for some L . We prove the result by induction on the complexity
of .

atomic: Then . By L7.3, or . . .
atomic: By L7.3, . .

: Then . By L7.5, either or , for some .
1 21 21 2 : L7.2.
1 21 21 2 : L7.2.

1 21 21 2 : By L7.4 and L7.5, , for some .
1 21 21 2 : By L7.4 and L7.5, , for some .

Remark An immediate consequence of the defintion D4.2 is that, if is not for-
mularic, then or has one of the forms: 0 1 or

0. 1. .

Lemma 7.20 (Unique Decomposition)

1. If is not formularic and , then, for some , and ;
2. If 0 1 is not formularic and 0 1 , then, for some ,

0 1 and ;
3. If 0. 1. is not formularic and 0. 1. , then, for some ,

0. 1. and ; and
4. If , then .

Proof All of the cases are proved similarly. We do (2.) for illustration. Suppose 0

1 is not formularic and 0 1 . We prove the result by induction
on :

(Pairing): 0 1 does not have the form , for free conditions .
(Comp): Trivial.
( ): Neither nor . have the form 0 1 .

( ): Both and are formularic.
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(Transitivity): IH immediately implies the result.

An immediate consequence of L7.20 is that the free conditions exhaustively
partition into: (i): , (ii) the formularic conditions for sentences of L ,
and (iii) uniquely decomposable (up to ), non-formularic choices and combina-
tions. Thus, L7.16 and the following lemma together provide helpful necessary and
sufficient conditions for the immediate selection relation to obtain.

Lemma 7.21 For :

1. If and is not formularic, then ;
2. If 0 1 and 0 1 is not formularic, then ,

for some ; and
3. If 0. 1. and 0. 1. is not formularic, then

Proof Each of the claims is proved similarly, using L7.20. We do (1.) for illustration.
Suppose and is not formularic. Then there are three cases: (A)

and , for some ; (B) 0 1 and
, for some and some ; or (C) 0. 1. and
, for some . By L7.20, cases (B) and (C) do not occur, and
, for some . So, .

We are now ready to show that there is an exact corespondence between selection
inM and the members of the canonical model basis . D7.22–T7.30 establish this
result.

We define the class of M -derivations of selections using the following
axiom and rules, which correspond to the clauses of the definition D2.1 of selection.
As before, a selection is of the form iff it is of the form , for
some :

Definition 7.22

1. Basis: is an axiom whenever ;

2. Ascent: for any .

3. Lower Cut:

4. Upper Cut:

The notions of the major premise and minor premises of applications of UPPER CUT

and LOWER CUT are defined in the obvious way. We will often write to
indicate that there is an M -derivation of , and to indicate that there
is an M -derivation of , for some free condition .

Remark (Amalgamation): Since , M (i.e. ) is an
axiom for all and , it follows that
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is an instance of UPPER CUT and

is an instance of LOWER CUT. So, if , then ; and if ,
then .

Definition 7.23 An M -derivation is in semi-normal form (or is semi-normal) iff
every major premise of every application of UPPER CUT or LOWER CUT is an
axiom.

An argument broadly similar to the proof of L5.4(Semi-Normal Form Lemma)
yields a similar result forM -derivations:

Lemma 7.24 (Semi-Normal Form Lemma) If there is anM -derivation of ,
then there is a semi-normalM -derivation of .

Lemma 7.25 If and , then .

Proof Suppose and . There are six syntactic forms may
have.

atomic: By L7.6, .
atomic: By L7.3(3.) and D4.3, .

: . By L7.4(2.), either (A) , for some , or (B)
, for some and .

(A): By L7.5(3.), . Inspection of D4.3 shows that must have the form

, where . To illustrate, suppose (for reductio) that is a dis-
junction 1 2 . Then 1 2 . . Similar
arguments show that cannot be a literal, a conjunction, the negation of a dis-
junction, nor the negation of a conjunction. So, , for some , and

so . So, . By L7.10, and so .
(B): By L7.5(2.), . As in the previous case, the fact that has the

form , implies that there are two cases: (I) 1, 2, and
1 2 , for some 1 2; or (II): 1, 2, and

1 2 , for some 1 2.

(I): By L7.10, 1 . By T6.19, since , , and
so 2 1 2 .

(II): By L7.10, 1 . By T6.19, since , 1

, and so 1 2 .
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1 21 21 2 : As above, L7.2, L7.10, and T6.19 imply the result.
1 21 21 2 : As above, L7.2, L7.10, and T6.19 imply the result.

1 21 21 2 : There are two cases: (A) has more than two members, so
that has the form 1 2 3 or (B.) has the form 1 2 .

(A): As above, L7.4(1.), D4.3, L7.10, and T6.19 imply the result.
(B): 1 2 and 1 2 . So, by L7.4(2.) and L7.5(1.),(2.),

there are two cases: (I) has the form 1 2 , where ; or (II)
has the form , where there are 1 2 such that 1 1, 2 2, and
1 2.

(I): The argument in case (A) above yields the result.
(II): By L7.10, 1 1, 2 2, and so 2 1. By , 2

1 . By T6.19, since 1 2 , either 1, 2, or
both 1 1 and 2 2 (where 1 2) is a member of . In
each case, the closure of implies that 1 . As above, since

has the form , D4.3 constrains the form of : must be of the form
, where . Since 1, L7.10 implies that 1. So,

1 .

1 21 21 2 : As above, L7.4, L7.5, L7.10, and T6.19 imply the result.

Lemma 7.26

1. If , then there is a L such that and .
2. If , then there is a L such that and .
3. If , then there is a L such that and .

Proof (2.) and (3.) follow from (1.) and T6.19. We prove (1.) by induction on M -
derivations of . By L7.24, we may assume that is semi-normal.

(Basis): Suppose . L7.16.
(Ascent): Suppose has the form:

where .

By L7.19, , for some L . So, IH applies to : and
, for some . Also, , so L7.16 implies that

. The result follows by T6.19.
(Lower Cut): Suppose has the form
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By IH, for some , and ; and (since )
and , for each . The result follows by T6.19.

(Upper Cut): Suppose has the form

Since is an axiom, . There are two cases:
(A) , for some , or (B) not.

(A): . By L7.16, since ,
and , for some . Also, IH, applies to to
imply that and , for each . By T6.19,

.Since , the result follows by L7.25.
(B): Since , by L7.19 and L7.20(Unique Decomposition),

. So, IH applies to the minor premises: for each
and . The result follows by T6.19.

Lemma 7.27 If (not merely ), then (1.) , and (2.)
.

Proof

1. Suppose . Then, by D4.4, . By D4.5 and D4.3,

. So, . The result follows by D7.22.

2. By D4.3, D4.5, D4.6 and D7.22, is an axiom. Also,
by D7.22, . So, the result follows by (1.) and D7.22.

Lemma 7.28 If , then there is anM -derivation of .

Proof By induction on . It is useful to first prove

(★) If , then ; ; and .

Suppose . Then, by D4.5 . So, . So, is
an axiom. Since , by D4.4(Induction). So,

. D4.3 and D7.22 then imply that there is anM -derivation (using (UPPER CUT))
of . A similar argument establishes that .

(ID): Immediate by D7.22, since .
( ): By D4.5 and D4.3, . The result follows by D7.22.
(Determination): All of the cases are proved similarly. We do the case of con-

junction for illustration. . By D4.3,
. . . So, . The result is immediate by D7.22.
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( ): (★) implies the result.
(W): Suppose . By D4.4, . By (★),

. By the argument for the case (DETERMINATION) above,
. So, by D7.22(UPPER CUT), . has the form .

(Max): An argument similar to that for the case (W) above yields the result.
( ): By D4.4, . By (★), .

By the argument for the case (DETERMINATION) above,
. So, by D7.22(LOWER CUT), . By the

argument for the case above, . So, by D7.22, .
(S): Suppose . By the closure of , . By L7.27

. has the form .
(Cut): IH and D7.22 immediately imply the result.

Lemma 7.29

1. If , then there is anM -derivation of .
2. If , then there is anM -derivation of .

Proof (2.) follows from D6.3 and L7.28. Suppose . We prove (1.) by
induction on the complexity of .

is a literal: A simple induction on D6.1 shows that every -connection of the
form is reversible. So, . Similar arguments show that

, , for any L , and , for any
L . So, there are five cases: (A) , for some L , (B) ,

(C) ; (D) L (and not merely L ); or (E) , for some L .

(A): By L6.12 . By T6.19(Irreversibility), . .
(B): A simple induction on D6.1 shows that, if , then either

or . By T6.19(Irreversibility), . So, . By D4.5 and D4.3,
, so is an axiom.

(C): By L6.18, , for some L . So, by L7.28, there is
a covering of such that, for each , . Also by L7.28,

. By D7.22,
and ; so . Putting this all together,
we have

.

It’s easy to see that D7.22 implies that , for each . The result follows
by (Amalgamation).

(D): By L6.14(1.) and L6.15(Interpolation), there is a and a covering
1 2 of such that , 1 , 2 , and

. By L7.28, , 1 , 2 ,

and . By D4.3, . So, D7.22
implies the result.

(E): By L6.12(Persistence), . By T6.19(Irreversibility), . .
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is molecular, and not a literal: has one of the following forms:
1 2 1 2 1 2 or 1 2 .

Each of the cases is proved similarly. We consider the case of 1 2 for
illustration. By T6.19(Maximality), has a covering such that .
So, by L7.28, . By D4.3, 1 2 . The result
follows by D7.22.

Theorem 7.30 (Conservativity)

1. iff ;
2. iff ;
3. iff ; and
4. iff , and there is no such that .

Proof By L7.10, iff . So, (1.) and (2.) are immediate consequences of
L7.29 and L7.26. (4.) follows from (3.) and D6.3. By T6.19(Witnessing), if

, then , for some . By (1.) above, there is an M -derivation of
. For the converse, suppose that . By L7.26, there is a such

that and . Since , for some , L7.10 implies that
. The result follows by T6.19.

The remainder of this section (L7.31–T7.36) establishes that M meets the con-
straints of MAXIMALITY and IRREVERSIBILITY, and so qualifies as a model. When
we were dealing on the proof-theoretic side with the canonical model basis, MAX-
IMALITY was harder and IRREVERSIBILITY easier. Now that we are dealing on
the semantic side with the canonical model, the situation is reversed. We start by
demonstrating thatM satisfies MAXIMALITY.

Lemma 7.31 (Maximality) Suppose .

1. If 0. , then there is a covering of such that .
2. If 0 , then there is a subset of and a covering

of such that .

Proof The proofs of (1.) and (2.) are similar. We do (1.) for illustration. Suppose
that . , for some . If 0 , for some , then

, i.e. . The trivial covering of yields the result. Suppose, then,
that 0 . There are two cases: (A) 0. is formularic, or (B) not.

(A): By L7.19 for each , , for some L . So, 0.
0 1 . By L7.26, and 0 1 , for some .

By T6.19(Maximality), there is a covering of such that .
By L7.29, there are M -derivations of . Since , is a
covering of .

(B): We prove the result by induction on M -derivations . By L7.24, we may
assume (wlog) that is semi-normal.
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(Basis): Suppose that 0. is an axiom, so that
0. . By L7.21, . Each instance of is an axiom.

(Ascent): Suppose has the form

where 0. .

By L7.20, . .
(Lower Cut): Suppose has the form

0.
0.

Since 0. is an axiom, 0. . By L7.21,
. So, by re-indexing.

(Upper Cut): Suppose has the form

0.
0.

Since 0. is an axiom, 0. . By
L7.21, 0. . So, IH applies to each of the M -derivations

: for each there is a covering of such that there are M -
derivations of . By re-ordering, for each , we haveM -derivations
of . By D7.22, there are M -derivations of each of the selections

.

To establish that M satisfies IRREVERSIBILITY it is useful to show that weak
selections from contents that do not correspond to any element of L must take a
particularly strong form.

Lemma 7.32

1. If , for any L , and , then either , or , or
and .

2. If , for any L , and , then either or ,
for some .

Proof (2.) follows immediately from (1.) (setting G in (1.) to ). Suppose ,
for any L . We prove (1.) by induction on M -derivations . By L7.24, we
may assume (wlog) that is semi-normal.

(Basis): Suppose . By L7.19, is not formularic. So, by L7.21,
.
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(Ascent): Suppose there is an M -derivation of and . As
above, . So, IH yields the result.

(Lower Cut): Suppose that there are M -derivations of each of and
that is an axiom. As above, . So, IH applies to each of
the selections . It is easy to see that the result follows by D7.22.

(Upper Cut): Suppose that there are M -derivations of each of and
that is an axiom. As above, . So, IH applies
to each of the selections . It is easy to see that the result follows by
D7.22.

Now we show that the application of choice and combination to some contents
yields a condition that is “raised” up a level. This is the key to demonstrating that
M satisfies IRREVERSIBILITY.

Lemma 7.33

1. .
2. . . . .
3.

Proof Each of (1.)-(3.) is proved similarly. We do (1.) for illustration. There are two
cases: either (A) is formularic, or (B) it is not.

(A): By L7.19, 0 , where .
So, . Suppose (for reductio) . Then

0 ; so

.

By T7.30, . But, by D6.3, . .
(B): We prove the result by induction on free conditions , defined in D4.2.

Suppose (for reductio) that . If is formularic, then
the argument in (A) yields the result, so we may assume (wlog) that is not
formularic. So, L7.20 implies that and , for
some .

Basis: is a literal of L . All such literals are formularic. .
Inductive Step: Let . . IH is that, for all ,

. Since , . So,
. By IH, . .

Lemma 7.34 (Irreversibility )

1. .
2. If , then there is no and no such that .

Proof (2.) follows from (1.) by D7.22. In regard to (1.), either (A) is formularic, or
(B) it is not.
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(A): Suppose (for reductio) that . Then, by L7.26, there are such
that and . By D6.3, .

(B): By D4.2 either (I) or (II) is a choice, combination, or
singleton.

(I): An easy induction on M -derivations shows that, for all , .
(II): We prove the result by induction on free contents. The basis cases are han-

dled by the arguments for (A) and (B)(I). All of the remaining cases are proved
similarly. We do the case in which 0 1 . IH is that, for
each , there is no M -derivation of . Suppose . By 7.31
(Maximality), there is a subset of and a covering of such that

. Suppose (for reductio) , for some , so that .
Then, by L7.26, since for any L , for any L .
Also, by L7.33, so . So, L7.32 applies to the M -derivation
of : , for some . So, by D7.22, . But, by
IH, there is noM -derivation of . .

Lemma 7.35 (Irreversibility ) If and for any and any
, then .

Proof Suppose there is an M -derivation of , but no M -derivation of
for any and any . There are two cases: either (A) , for

some L , or (B) not.

(A): . By L7.26, and , for some . By
T7.30, for all , . So, by D6.3, , and so

. By T7.30 again, there is anM -derivation of .
(B): By L7.32, either or there is an M -derivation of . Since every

instance of is an axiom, .

The restriction of to atomic sentences is an interpretation. By L7.1, the extension
of that interpretation to molecular sentences is just . Clearly, there is an M -
derivation of iff M . So, the following theorem is immediate by
L7.31(Maximality), L7.34(Irreversibility ), and L7.35(Irreversibility ):

Theorem 7.36 M is a model.

8 Completeness

Definition 8.1 We have assumed that the sentences of the language L are well-
ordered. It follows that the grounding claims for L are well-ordered, and so can be
indexed to an ordinal , so that they form a set of of the form 0 1
( ). Suppose also that and are finite sets of grounding claims such that

. For each , define by recursion:

1. 0 ;
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2. 1
if
otherwise.

3. for limit .

Let .

Recall that was defined so that , for some and
. A simple induction on the definition of shows that, if , then

and are both finite, yielding the following lemma.

Lemma 8.2 (Syntactic Compactness) If then there are finite and
such that , , and .

L8.2 and an induction on the cardinality of finite sets of grounding claims
straightforwardly yields

Lemma 8.3

1. If and , then .
2. If and , then .

Standard reasoning from L8.2, L8.3, and L5.21 (Main Witnessing Lemma) then
shows

Lemma 8.4 If and are sets of grounding claims of L such that , then
there is a prime, witnessed extension of such that .

Lemma 8.5 If and are sets of grounding claims of L such that , then
there is a model M such that M andM .

Proof Suppose . By L8.4, there is a prime, witnessed extension of such
that . By T6.19, the canonical model basis for is such that, for all
grounding claims of the language L of , iff . By T7.36,M is a
model. By T7.30, M . Since , M . By T7.30,
M . Since , . So,M .

Theorem 8.6 (Completeness) If , then .

Proof Suppose . By the definition of , there is no model M such that
M andM . By L8.5, .

9 Further Work

We make some brief suggestions as to how further work on the ideas presented in
this paper might proceed.
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9.1 Going Infinitary

Our system is finitary: in each of the full grounding claims and ,
the set of formulas must be finite; and just in case there are finite sets

and such that . It will prove desirable for certain purposes
to relax the first of these requirements and allow in principle for a statement to have
infinitely many grounds; and once this is done, it will be natural to relax the second
of these requirements and to allow the grounding claims to the left and right of to
be infinite.

This means that the rules of THINNING, SNIP, CUT and REVERSE SUBSUMP-
TION will need to be revised. It also means that, in the semantics, we must allow
for the infinitary application of combination and choice. Proofs of soundness and
completeness can then, with suitable modifications, go through much as before.

9.2 Quantification

Our system is sentential; the formulas flanking a grounding claim are those of sen-
tential logic - formed from sentential atoms by means of the usual truth-functional
connectives. The question therefore arises as to how to extend the system with quan-
tifiers so that the formulas flanking a grounding claim can be those of an arbitrary
first order language.

In order to be able to account for the grounds for a universal statement, we pre-
suppose given a domain D of individuals(as in [7]). Suppose then that a1 a2 are
the distinct individuals of D; and let 1 2 be the set of corresponding
names for those individuals. An interpretation over D should then assign to every
-place predicate a function F taking each -tuple of individuals from D into a

content; and the content of the atomic sentence 1 2 should then be taken
to be F ak1 ak2 akn .

When it comes to the quantifiers, we might think of a universal statement
as the conjunction 1 2 of its instances and of an existential statement

as the disjunction 1 2 of its instances. Since there is an obvi-
ous extension of the introduction and elimination rules for binary conjunction and
disjunction to conjunctions and disjunctions of arbitrary length, we may read off the
introduction and elimination rules for universal and existential quantification from
the extended rules for conjunction and disjunction. We are thereby lead to adopt
the following pair of positive introduction and elimination rules for the universal
quantifier:

I 1 2
E 1 2 .

In the statement of E, 1 2 abbreviates

1
1 1

1
2 2

2
1 1

2
2 2
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where 1 2 are exactly the sequences (of appropriate length) for which

1 2 [7, 64]. There would be corresponding rules for the existential
quantifier. There is a corresponding semantic treatment. For, as we have seen, the
semantics for binary conjunction and disjunction may be extended to conjunctions
and disjunctions of arbitrary length; and we may then let the semantics for these con-
junctions and disjunctions of arbitrary length be our guide in providing a semantics
for the quantifiers. However, there is a hitch. For the semantics for 1 2
or for takes account of the order of the conjuncts or of the disjuncts.
Thus the truth-condition for 1 2 , for example, will be the combina-
tion of the contents of 1 2 in that order. Since the combination may
vary with the order, this makes it unclear what the content of the universal statement
should be taken to be.

This is, in fact, a general difficulty for any semantics which is based on the
semantic equivalence of to 1 2 and which is sensitive to the
order of the conjuncts in a conjunction. There are a number of ways within our own
framework of dealing with this difficulty. Perhaps the most conservative option is to
suppose given a well-ordering a1 a2 of the individuals of D and a correspond-
ing well-ordering 1 2 of the individual names. We can then stipulate that, for
semantical purposes, is to be taken to be equivalent to 1 2 in
that very order, so that its truth-condition is to be the combination of the contents of

1 2 in that very order; and similarly for . This is, of course, to
introduce an arbitrary element into the semantics, since any other well-ordering of
the individuals would have done just as well. But we may think of the combination
(or choice) of the specific sequence of contents of 1 2 as representing
the combination (or choice) of the corresponding set of contents, without our thereby
having to extend the existing apparatus of combination and choice to include their
application to sets rather than sequences.

Quantifiers with variable domains raise additional complications, since there is
then the need for totality facts (as in [7, 59 et seq.]). We believe that the development
of the semantics in this direction requires the introduction of dependent combinations
and choices, but this is not something that we shall pursue here.

9.3 Propositional identities

In [7, 67], it was suggested that one might want to add certain ground-theoretic equiv-
alences to the logic of ground. In the case of conjunction, one might want to insist
upon commutativity in the form:

.

and similarly in the case of disjunction. However, the ground-theoretic equivalence
of and would not guarantee the ground-theoretic equivalence, for exam-
ple, of and ; and so, just as we previously suggested in the case of
the quantifiers that one might wish to insist upon the ground-theoretic equivalence of
any two alphabetic variants, so we might, in the present case, wish to insist upon the
ground-theoretic equivalence of and whenever could be obtained from by
replacing a subformula with (and similarly in the case of disjunction).
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A corresponding semantic treatment could be obtained by subjecting combination
and choice to the corresponding conditions. However, certain propositional equiva-
lences are incompatible with the existing rules. The equivalence of with , for
example, is incompatible with being a strict ground for and, likewise, the
equivalence of with is incompatible with being a strict ground for ;
and associativity for either disjunction or conjunction also runs into difficulties. For:

(using -ELIMINATION

.
A similar argument shows that associativity for conjunction implies that .
Letting and , we get an inconsistency.

Under a “flat” approach to the semantics, by contrast, these various equivalences
will hold. It turns out that our approach can be modified and extended in such a way
as to accommodate one such “flat” approach, the theory of content and an associated
logic of ground given by Angell’s theory of analytic containment.8

Angell’s theory includes all of the equivalences noted above, as well as DeMor-
gan equivalences. So, a suitable modification of the approach here, with frames given
by choice and combination operations and interpretations assigning contents to for-
mulae, yields the logic of GG if choice and combination are constrained as in the
semantics of Section 2, and the logic of the Angellic system if choice and combi-
nation are constrained differently. Thus, each logic can be characterized as a special
case of a single, general approach. It remains unclear whether other interesting views
of propositional identity can be characterized in a similar way.

9.4 Lambda Abstraction

The system of [7] contains some obvious rules for lambda abstraction. In extending
the semantics to the closed lambda abstract , the obvious strategy is to take
its semantic value to be a function which assigns, to each individual of the domain,

the content . The contents of and are “raised;” and we
thereby guarantee that is the immediate strict ground for and
the immediate strict ground for . However, this has the undesirable conse-
quence that and will always have the same content and hence be
intersubstitutable in any ground-theoretic context.

One way round this difficulty is to suppose that there are different ways in which
a content can be raised. Thus the semantics for negation involves one form of raising,
under which the content of a statement is converted into a falsity condition for its
negation, while the semantics for lambda abstraction will involve another form of

8Angell [1]. See [2, 7], and [8] for semantic characterizations of Angell’s system and the corresponding
logic of ground. The specification of the modifications of the present approach to capture GG (under one
set of constraints on choice and combination) and Angell’s system (under another set of constraints) and
the associated proofs are omitted here for reasons of length.
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raising, under which the content of a statement or of its negation, is converted into a
truth or falsity condition for the corresponding complex predication. From this point
of view, our previous identification of with a singleton combination or choice was
a harmless simplification which should be dropped once different forms of raising
are in play.9
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