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Abstract
In classical modal semantics, a binary accessibility relation connects worlds. In this
paper, we present a uniform and systematic treatment of modal semantics with a
continuous accessibility relation alongside the continuous accessibility modal log-
ics that they model. We develop several such logics for a variety of philosophical
applications. Our main conclusions are as follows. Modal logics with a continu-
ous accessibility relation are sound and complete in their natural classes of models.
The class of Kripke frames where a continuous accessibility relation has a mag-
nitude characterizing its degree of accessibility is not modally definable, and this
has unappreciated significance to completeness proofs for such logics, revealing a
methodological advantage of using classical multimodal semantics over fuzzy modal
semantics. There is a pseudometric space modal logic that is complete in the class
of pseudometric spaces, a natural semantic setting for quantitative modal reasoning
about similarity. There is a metric space modal logic that is complete in the class
of metric spaces, a natural semantic setting for quantitative modal reasoning about
neighborhoods and counterfactual stability. There is a real line continuous temporal
logic that is canonical for real lines, a natural semantic setting for quantitative modal
reasoning about time.
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1 Introduction

In classical modal semantics, a binary accessibility relation connects worlds. In this
paper, we present a uniform and systematic treatment of modal semantics with a
continuous accessibility relation alongside the continuous accessibility modal logics
that they model. A continuous accessibility relation can be understood as accessibility
as a matter of degree. In this way, necessity and possibility (and other modalities) can
in turn be interpreted as a matter of degree.

We develop several such logics for a variety of philosophical applications. Work
relevant to this subject up to this point has focused primarily on computational appli-
cations related to time (see [1–3], and [4]) and distance (see [5, 6], and [7]), though
there have been attempts to apply metric-based approaches to reasoning about simi-
larity (see [8] and [9]). Others have considered continuous modality by interpreting
the truth of modal sentences via a continuum of truth values, modeling, for exam-
ple, how true it is that something is possible (see the probabilistic semantics of [10]
or a modal fragment of continuous logic given in [11]). Below, we interpret truth
classically, but assume that the modalities themselves have a degree structure, mod-
eling, for example, how possible something is. Our logics include a basic continuous
accessibility modal logic along with simple extensions, interactive extensions such
as a pseudometric space modal logic and a metric space modal logic, and continuous
temporal logics.

The main conclusions of this paper are as follows.

• Modal logics with a continuous accessibility relation are sound and complete
in their natural classes of models. Philosophers should therefore feel free to use
modal semantics that include a continuous accessibility relation, or any modal
notion that can be modeled thereby.

• The class of Kripke frames where a continuous accessibility relation is well-
founded (has a magnitude characterizing its degree of accessibility) is not
modally definable. This result, along with its unappreciated significance to com-
pleteness proofs, is revealed by using classical semantics instead of fuzzy seman-
tics to model continuous accessibility modal logics, illustrating a methodological
advantage of the former over the latter.

• Pseudometric spaces provide a natural semantic setting for quantitative modal
reasoning about similarity. There is a pseudometric space modal logic that is
complete in the class of pseudometric spaces, interpreted as multimodal Kripke
frames. Moreover, such frames satisfy the modal logic S5 in the ∞-indexed
modal operator.

• Metric spaces provide a natural semantic setting for quantitative modal reasoning
about neighborhoods and counterfactual stability. There is a metric space modal
logic that is complete in the class of metric spaces, interpreted as multimodal
Kripke frames. Moreover, any dense-in-itself metric space, interpreted as a mul-
timodal Kripke frame, simultaneously satisfies the modal logic S4 in the interior
operator and the modal logic S5 in the ∞-indexed modal operator.

• The real line provides a natural semantic setting for quantitative modal reasoning
about time. There is a real line continuous temporal logic that is canonical for
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real lines. Constructing this logic requires stipulating frame properties beyond
well-foundedness in order to have syntactic access to the magnitude of the
accessibility relations.

1.1 Motivation

The binary accessibility relation in classical modal semantics leads to discrete
modalities. However, when reasoning about similarity, space, time, or probabilities,
thinking about modalities as a matter of degree can be more fruitful. Here are three
examples where a continuous accessibility relation can model modal reasoning better
than a binary accessibility relation.

First, counterfactual conditionals are normally analyzed in terms of material con-
ditionals in nearby possible worlds. Nearness is a measure of the relevant similarity
of a possible world with respect to the actual world, and is usually implemented as
a brute (partial or total) ordering of the worlds. Whether a world is nearby can then
be interpreted as a cut-off in nearness. However, intuitively, the relevant similarity of
two worlds is not all-or-nothing, but rather a matter of degree. This can be captured
by a continuous accessibility relation: the more relevantly similar the world, the more
accessible the world is. How true a counterfactual conditional is can then be read off
how necessary the material conditional is. Analyses that depend on real-numbered
measures as opposed to a mere partial or total ordering of worlds can thus proceed in
a straightforward way.

Second, probability functions can be modeled by a continuous accessibility
relation as a continuum-indexed possibility operator. For a subjective probability
example, credence can be taken as a judgement of probability that some proposition
is true. This can also be captured by a continuous accessibility relation: the higher the
subjective probability of the proposition, the more accessible the world where that
proposition is true. For an objective probability example, a non-deterministic system
in some initial state evolves into one of many final states with some probability. This
again can be captured by a continuous accessibility relation: the higher the objective
probability of evolving into a given state, the more accessible the world where that
state obtains. Structural features of the probabilities can then be applied as constraints
on the accessibility relation.

Finally, temporal logic can also benefit from a continuous accessibility relation.
Normally, temporal logic has two binary accessibility relations, one each for the
future and past operators. But in contexts informed by a scientific treatment of time,
it is natural to understand time as a real numbered dimension. In that case, the dis-
tance into the future or past can be captured by a continuous accessibility relation for
each direction.

1.2 Strategy

A direct and prima facie natural approach to developing a continuous accessibility
modal logic is to take classical modal logic semantics and replace the binary acces-
sibility relation with a continuous accessibility relation, that is, a continuum-valued
binary partial function (as in [12] and [13]). Call this the fuzzy semantics approach.

223Continuous Accessibility Modal Logics



We do not, at least initially, take this approach. Instead, we replace the binary acces-
sibility relation with continuum-many binary accessibility relations, which we index
with the non-negative real numbers and ∞. We then impose constraints on these rela-
tions to capture the intended accessibility structure. (A similar technique was used in
[3] and [7].) Call this the classical multimodal semantics approach.

We take the classical multimodal semantics approach for three related reasons.
First, it allows us to model the logics in a transparent way using Kripke frames. We
begin with the class of all Kripke frames, and the constraints provided by each of our
logics correspond to different subclasses of frames. Second, this approach allows us
to apply results from classical modal logic to our proofs, significantly simplifying
them. Finally, it reveals details about the underlying structure of the logic that are
hidden by the fuzzy semantics approach. Nevertheless, we prove in Section 3.4 that,
in the cases of interest (i.e., when accessibility is a magnitude represented by a real
number), these two approaches yield equivalent results.

We make free use of choice functions. Moreover, when we discuss maps between
proper classes, we use the terms “function”, “injection”, “surjection”, and “bijec-
tion”, leaving out the prefix “class-” for convenience.

2 [0,∞]-Indexed Multimodal Logic

The first step in our treatment of modal logic with a continuous accessibility relation
is to develop a multimodal logic with continuum-many modal operators. In clas-
sical modal semantics, the number of independent modal operators corresponds to
the number of accessibility relations in which a given ordered pair of worlds can
stand. For example, an epistemic modal logic might have one knowledge operator
for each epistemic agent. A typical multimodal logic has a finite or countably infinite
number of such operators, and thus finitely or countably infinitely many accessibil-
ity relations. Below, we present a modal logic with continuum-many independent
modal operators, and thus continuum-many accessibility relations. To facilitate their
interpretation as distance-like, we index these operators with the non-negative real
numbers, along with ∞ defined as an upper bound.

2.1 The Basic [0,∞]-IndexedMultimodal Logic

Consider ([0, ∞) ⊆ R,+, ≤) as a linearly ordered monoid. Extend it to
([0, ∞], +, ≤) such that for every x ∈ [0, ∞), ∞ > x, and for any x ∈ [0, ∞],
x + ∞ = ∞ and ∞ + x = ∞. The language of basic [0, ∞]-indexed multi-
modal logic, denoted L[0,∞], is the smallest normal multimodal language containing
{�x,♦x : x ∈ [0, ∞]} as its set of modal operator symbols.

We follow the conventions of the basic modal logic given in [14]. Our language
includes a set of basic proposition symbols, P. The set of well-formed formulas,
denoted W[0,∞], is generated recursively as the smallest set such that the following
hold.

• P ⊆ W[0,∞].
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• If ϕ ∈ W[0,∞], then ¬ϕ ∈ W[0,∞].
• If ϕ, ψ ∈ W[0,∞], then ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ ∈ W[0,∞].
• If ϕ ∈ W[0,∞] and x ∈ [0, ∞], then �xϕ,♦xϕ ∈ W[0,∞].

The basic [0, ∞]-indexed multimodal logic, denoted K[0,∞], is the smallest nor-
mal multimodal logic in modal operators {�x,♦x : x ∈ [0, ∞]}. That is, K[0,∞] is
the smallest proof system with rules of inference:

(a) Modus ponens: If ϕ and ϕ→ψ are both provable, then ψ is provable.
(b) Necessitation: If ϕ is provable, then for every x ∈ [0, ∞], �xϕ is provable.

and axiom schemata:

(c) All tautologies from propositional logic, closed under universal substitution.
(We will use 
 to denote some choice of propositional tautology.)

(d) Modal distribution: For every ϕ, ψ ∈ W[0,∞] and x ∈ [0, ∞],
�x(ϕ→ψ)→(�xϕ→�xψ).

(e) Duality: For every ϕ ∈ W[0,∞] and x ∈ [0, ∞],
♦xϕ ↔ ¬�x¬ϕ.

The normal form of ϕ ∈ W[0,∞], written nf(ϕ), is some choice of formula ψ such
that none of ∨, →, ↔, or �x (for any x ∈ [0, ∞]) appear in ψ , ϕ and ψ are provably
equivalent in K[0,∞], and ψ is of minimal length. By classical results such a function
exists. Consistency and maximal consistency are defined in the standard way on sets
of formulas.

2.2 The [0,∞]-IndexedMultimodal Semantics

A frame F is a pair (M, {Rx : x ∈ [0, ∞]}) where M is a nonempty set, and for every
x ∈ [0, ∞], Rx ⊆ M2. A model is then a pair (F , V ) where F is a frame and
V : M × P → {0, 1}. In other words, these models are just the standard multimodal
possible worlds models over modal operators {�x,♦x : x ∈ [0, ∞]}.

Every element w ∈ M is called a world, each Rx is called the x-accessibility
relation, and V is called the valuation map. When (w,u) ∈ Rx , we say that Rx(w, u)

holds.
Satisfaction is defined in the natural way. That is, a model M satisfies ϕ ∈ W[0,∞]

at w ∈ M , written M, w � ϕ, when the following hold.

• If nf(ϕ) ∈ P, then V (w, nf(ϕ)) = 1.
• If nf(ϕ) = ¬ψ for some ψ ∈ W[0,∞], then M, w � ψ .
• If nf(ϕ) = ψ ∧ θ for some ψ, θ ∈ W[0,∞], then M, w � ψ and M, w � θ .
• If nf(ϕ) = ♦xψ for some ψ ∈ W[0,∞] and x ∈ [0, ∞], then there is some u ∈ M

such that Rx(w, u) holds and M, u � ψ .

If ϕ ∈ W[0,∞] is satisfied at every world in every model, we say that ϕ is valid and
write � ϕ.
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Frame satisfaction is defined as follows. Frame F = (M, {Rx : x ∈ [0, ∞]}) sat-
isfies formula ϕ if and only if every valuation V on that frame provides a model
M = (F , V ) such that M, w � ϕ for all w ∈ M .

For a set of formulas T ⊆ W[0,∞], when M, w � ϕ for every ϕ ∈ T , we say
M, w � T . The maximal such set for a given model M and world w is the theory of
M at w, that is, Th(M, w) := {

ϕ ∈ W[0,∞] : M, w � ϕ
}
.

We say that a set of formulas T ⊆ W[0,∞] is satisfiable if there is some model
M = (M, {Rx : x ∈ [0, ∞]},V ) and world w such that M, w � T . T is finitely
satisfiable if it is satisfiable on a model such that |M| is finite.

Since K[0,∞] is a normal multimodal logic and each modal formula of W[0,∞] is
finite in length, it is easy to see that the finite model property holds.

Proposition 1 (Finite model property) For any ϕ ∈ W[0,∞], ϕ is satisfiable if and
only if it is finitely satisfiable.

Proof (sketch) The reverse direction follows by definition. For the forward direc-
tion, extend the standard finite model property argument, as given in [14], to the
multimodal setting. The key reason this argument extends is that any given formula
contains only finitely many modal operators.

Note that this finite model property is not an effective finite model property, since
the set of all possible relations, and hence all models, on a given finite domain is
uncountable. Nevertheless, a naming system on the set of formulas may be sufficient
for an effective construction.

2.3 Completeness and Canonicity

Recall the following well-known result.

Theorem 1 (Canonical Model Theorem, Theorem 4.22, [15]) Any normal modal
logic is strongly complete with respect to its canonical model.

This theorem is extended to the multimodal setting via Exercise 4.2.4 in [15].
From this we derive completeness as a simple corollary.

Corollary 1 (Completeness of K[0,∞] in possible world models) The logic K[0,∞] is
sound and strongly complete in the class of models given above.

It follows from completeness that a set of formulas is consistent if and only if it is
satisfiable.

The continuous accessibility modal logics of this paper are all extensions of
K[0,∞]. To prove their completeness, we recall another well-known result.

Theorem 2 (Sahlqvist Completeness Theorem, Theorem 4.42, [15]) Every Sahlqvist
formula is canonical for the first-order property it defines. Hence, given a set of
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Sahlqvist axioms �, the logic K� is strongly complete with respect to the first order
class of frames defined by �.

Every axiom we introduce is a Sahlqvist formula. The bulk of the axioms are,
moreover, modal in just one of the indices, so the Sahlqvist Completeness Theo-
rem applies transparently. Others, including some of the more interesting ones, are
properly multimodal or interactive, involving more than one index. So to prove
the completeness of the continuous accessibility modal logics, we will prove the
canonicity of these axioms.

To this end, we consider a lemma that is a special case of the multimodal version
of the Sahlqvist Completeness Theorem. We present the lemma in terms of K[0,∞]
(though it applies to any normal multimodal logic), and we include its simple proof
for understanding.

Lemma 1 (Canonicity for generalized transitivity) Fix x1, ..., xn ∈ [0, ∞]. Let
ψ be the formula schema: for all ϕ ∈ W[0,∞], ♦x1♦x2 . . .♦xn−1ϕ→♦xnϕ. Let
a frame (M, {Rx : x ∈ [0, ∞]}) have property � if and only if: for all worlds
w1, w2, . . . , wn ∈ M , if each of Rx1(w1, w2), Rx2(w2, w3), . . ., and Rxn−1(wn−1, wn)

hold, then Rxn(w1, wn) holds.
Then ψ is canonical for �.

Proof Since K[0,∞] is a normal multimodal logic, it suffices to show that a frame sat-
isfies ψ if and only if it has property �. The reverse direction is straightforward. For
the forward direction, fix a frame (M, {Rx : x ∈ [0, ∞]}). Suppose, by contraposi-
tion, that the frame does not have �. Then there are worlds w1, w2, . . . , wn ∈ M such
that all of Rx1(w1, w2), Rx2(w2, w3), . . . , Rxn−1(wn−1, wn) hold, but Rxn(w1, wn)

does not. Fix some such w1, w2, . . . , wn, and fix an arbitrary proposition p ∈ P.
Define V such that V (wn, p) = 1 and V ≡ 0 everywhere else. Then V provides
model M such that M, wn � p and M, w � p for all w �= wn ∈ M . By construc-
tion, M, w1 � ♦x1♦x2 . . .♦xn−1p but M, w1 � ♦xnp. Therefore, the frame does not
satisfy ψ .

3 Continuous Accessibility Modal Logic

In this section, we present the basic continuous accessibility modal logic.
Consider K[0,∞]. Since each [0, ∞]-indexed accessibility relation is independent

of all the others, for any nonempty set of worlds and arbitrary combination of [0, ∞]-
indexed accessibility relations on those worlds, there is some frame satisfying K[0,∞]
that includes precisely those worlds and relations. For example, one world might
be both 1-accessible and 3-accessible to another, but not 2-accessible to it. To cap-
ture continuous accessibility, that is, accessibility as a magnitude with the structure
of the real numbers, we need to impose specific constraints on acceptable accessi-
bility combinations that correspond to conditions on the class of all frames. Once
the appropriate constraints are applied, we can interpret each accessibility relation
as a distinct degree of accessibility. (In our convention, the lower the index on the
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accessibility relation, the higher the degree of accessibility, so the index is better
understood as a degree of remoteness.)

Two such constraints are appropriate to impose. The first is upward closure. The
idea here is that if something is very possible (true in a world accessible to a high
degree), then it is a fortiori somewhat possible (true in a world accessible to a low
degree). Upward closure guarantees that a world accessible to another at some degree
of remoteness is accessible at every higher degree of remoteness. After imposing
this condition, the [0, ∞]-indexed accessibility relations of K[0,∞] can be interpreted
in the remaining frames as a single continuous accessibility relation indexed by
remoteness, with the structure of the real numbers.

The second constraint is well-foundedness. If accessibility is a magnitude, then it
makes sense to quantify how accessible one world is to another, that is, to assign some
real number as the degree of accessibility of that world. Upward closure alone doesn’t
guarantee this, since the world might be accessible up to, but not including, some
magnitude. For example, a world might be x-accessible to another for every x > 1
without being 1-accessible, in which case no real number characterizes how acces-
sible the world is. Well-foundedness guarantees that a world accessible to another at
some degree of remoteness is accessible to it at some minimum degree of remote-
ness. After imposing this further condition, the remaining frames reflect continuous
accessibility as a magnitude, represented by a unique, real-numbered value.

As we prove below, upward closure is straightforward to apply (there is a modal
axiom schema that is canonical for it) and gives much of the relevant structure. On
the other hand, well-foundedness is not modally definable and requires a first-order
constraint on the class of frames.

3.1 The Basic Continuous Accessibility Modal Logic

Define the basic continuous accessibility modal logic, denoted C, as the smallest
extension of K[0,∞] that contains the axiom schema:

(f) Upward closure: For every ϕ ∈ W[0,∞] and x < y ∈ [0, ∞],
♦xϕ→♦yϕ.

Any frame that satisfies C is called a continuous accessibility frame. It’s easy to
see such frames exist. For example, define the trivial frame as the frame with a single
world maximally accessible to itself:

w

[0, ∞]

The trivial frame is a continuous accessibility frame.
We want to make sure that continuous accessibility frames have the intended struc-

ture, specifically that for every y > x ∈ [0, ∞], each world x-accessible to another
is also y-accessible to it. Fortunately, by Lemma 1, upward closure is canonical for
the following property.
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Definition 1 A frame (M, {Rx : x ∈ [0, ∞]}) has upwardly closed accessibility if
and only if: for every w, u ∈ M and every x ∈ [0, ∞], if Rx(w, u) holds, then for
every y > x ∈ [0, ∞], Ry(w, u) holds.

We thereby gain a completeness result.

Corollary 2 (Completeness of C in continuous accessibility frames) The logic C is
sound and strongly complete in the class of continuous accessibility frames.

Proof Follows directly from Theorem 1 and the canonicity of upward closure.

3.2 Well-Foundedness and Adequately-Founded Accessibility

Recall that, in addition to upward closure, being well-founded is what allows acces-
sibility to be interpreted as a magnitude.

Definition 2 A frame (M, {Rx : x ∈ [0, ∞]}) is well-founded if and only if: for
every w, u ∈ M , if Rx(w, u) holds for some x ∈ [0, ∞], then there is a minimum
such x.

There is a family of properties had by well-founded continuous accessibility
frames and lacked by continuous accessibility frames that are not well-founded. The
most inclusive such property is adequately-founded accessibility.

Definition 3 A frame (M, {Rx : x ∈ [0, ∞]}) has adequately-founded accessibil-
ity if and only if: for every w, u ∈ M and every x ∈ [0, ∞], if Ry(w, u) does not
hold for any y < x and Ry(w, u) holds for every y > x, then Rx(w, u) holds.

While the class of frames with adequately-founded accessibility is first-order
definable (by the above definition), it is not modally definable in our language,
nor indeed is the class of frames with any property that distinguishes well-founded
continuous accessibility frames from continuous accessibility frames that are not
well-founded.

Proposition 2 For any property had by well-founded continuous accessibility frames
and lacked by continuous accessibility frames that are not well-founded, the class of
frames with that property is not modally definable.

Proof If any such property is modally definable, then there is some modal formula
in W[0,∞] that is satisfied by all well-founded continuous accessibility frames and
by no continuous accessibility frames that are not well-founded. We show that the
consequent is false by providing a counterexample. It is sufficient to give an example
of two frames such that: (a) one frame is a continuous accessibility frame that is not
well-founded, (b) the other frame is a well-founded continuous accessibility frame,
and (c) every valuation on the first frame provides a model that is bisimilar to some
model over the second frame.
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Consider the following two frames. The first, the committed frame, is composed
of a world (w) that has accessibility to another (u) for each degree of remoteness
above 0: ({w, u},{{(w, u)}x : x ∈ (0, ∞]})

w

u

(0, ∞]

The second, the gregarious frame, is composed of a world (w′) that has accessibil-
ity to continuum-many worlds, each with a distinct minimum degree of remoteness
above 0:

({w′} ∪ {u′
x : x ∈ (0, ∞]}, {{(w′, u′

x)}y : y ≥ x ∈ (0, ∞]})

w′

u′
1

[1, ∞]
· · ·

· · ·
u′

1
2

[ 1
2 , ∞]

· · ·
· · ·

· · ·
· · ·

u′√
2

[√2, ∞]
· · ·

· · ·
u′∞

{∞}

The committed frame has upwardly closed accessibility, so is a continuous acces-
sibility frame. It is also not well-founded, since u is not 0-accessible to w despite
being accessible at every higher degree of remoteness. So (a) is satisfied. The gregar-
ious frame also has upwardly closed accessibility, so it is a continuous accessibility
frame. But it is well-founded, since every u′

x is accessible to w′ at the minimum x.
So (b) is satisfied. Finally, for every valuation on the committed frame,

E := {
(w, w′)

} ∪ {
(u, u′

x) : x ∈ (0, ∞]}

is a bisimulation from the provided model of the committed frame to some model
of the gregarious frame. To see this, fix an arbitrary valuation V on the committed
frame, providing model M. We can select a valuation V ′ on the gregarious frame
such that, for all p ∈ P, V ′(w′, p) = V (w, p) and V ′(u′

x, p) = V (u, p) for each
x ∈ (0, ∞], providing model M′. By construction, for each p ∈ P and ordered pair
of worlds (v, v′) ∈ E,M, v � p if and only if M′, v′ � p. Moreover, for each
x ∈ (0, ∞], only Rx(w, u) holds in M, while R′

x(w
′, u′

x) holds M′. Finally, for each
x, y ∈ (0, ∞] such that y ≤ x, only R′

x(w
′, u′

y) holds in M′, while Rx(w, u) holds
in M. Thus, M is bisimilar to M′. So (c) is satisfied.

In well-founded continuous accessibility frames, for each pair of worlds where one
is accessible to the other, the minimum degree of remoteness is a unique real number
that can be treated as a magnitude describing how accessible it is. It is important to
note, however, that it does not follow that modalities like necessity and possibility
likewise have magnitudes. Consider, for example, the gregarious frame in the proof
above. Extend the frame to any model where some proposition p is true at all worlds
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u′
x such that x < 1, but false at u′

1. In that case, there is no maximum x such that �xp

is true at w′, and therefore no real-numbered magnitude describing how necessary p

is. Indeed, in general, for any formula ϕ, if there is a maximum x such that �xϕ, then
there is no minimum x such that ♦x¬ϕ. So the modalities themselves, while being a
matter of degree with the structure of the real numbers, might not have magnitudes.

3.3 Well-Foundedness, Completeness, and Canonicity

Since no axiom schemata induce adequately-founded accessibility, we will stipulate
that the frames in question are well-founded. The consequences of this stipulation
are surprisingly slight. This is because we can generalize the proof of Proposition 2
to apply to any continuous accessibility frame that is not well-founded, and indeed to
those that also satisfy certain extensions of C.

We begin by defining planted models, which are tree-unraveled models except that
self-0-accessibility is not unraveled.

Definition 4 For every model M = (M, {Rx : x ∈ [0, ∞]},V ) and world a ∈ M ,
the planted model of pointed model (M,a) is a tree-like pointed model

(
M†, 〈a〉)

such that M† = (
M†, {R†

x : x ∈ [0, ∞]}, V †
)
, constructed as follows.

The worlds in M† are all finite paths of worlds in M , where each world in the
path after the first is indexed to some x ∈ [0, ∞]. For every such path (as a world
of M†), we say that it corresponds to the final world (of M) in itself. M† is defined
recursively as follows:

• 〈a〉 is in M†.
• If path w† (corresponding to w) is in M†, then for each x �= 0 such that Rx(w, w)

holds, the path that results from concatenating w† and wx is in M†.
• If path w† (corresponding to w) is in M†, then for each u �= w ∈ M: for each x

such that Rx(w, u) holds, the path that results from concatenating w† and ux is
in M†.

The accessibility relations {R†
x : x ∈ [0, ∞]} are defined as follows:

• For each path w† ∈ M† (corresponding to w), if R0(w, w) holds, then
R

†
0(w†, w†) holds.

• For each pair of paths w†, u† ∈ M† such that u† is one longer than w†, R
†
x(w

†,

u†) holds, where x is the index of the final world in u†.

Valuation map V † is defined as follows: For all w† ∈ M† corresponding to w ∈ M

and for all propositions p ∈ P, V †(w†, p) = V (w, p).

Notably, planted models are well-founded, and a simple exercise reveals that a
pointed model is bisimilar to its planted model.

Next, we characterize a set of properties had by pointed models that can be
successfully applied to their planted models without undoing the latter’s well-
foundedness or its bisimilarity.
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Definition 5 Let � be a frame property. Let F = (M, {Rx : x ∈ [0, ∞]}) be an
arbitrary frame that has �. Let (M,a) be an arbitrary pointed model extending F.
Let

(
M†, 〈a〉) be its planted model, with M† = (

M†, {R†
x : x ∈ [0, ∞]}, V †

)
.

Property � is plantable if and only if there exists a set of accessibility relations
{R′

x : x ∈ [0, ∞]} such that:

1. for all x ∈ [0, ∞], R′
x ⊇ R

†
x ;

2.
(
M†, {R′

x : x ∈ [0, ∞]}) has �;
3.

(
M†, {R′

x : x ∈ [0, ∞]}) is well-founded; and
4. for all w†, u† ∈ M† corresponding to w and u, respectively, and for all x ∈

[0, ∞], R′
x(w

†, u†) holds only if Rx(w, u) holds.

The idea here is that, for plantable properties, some of the accessibility relations
of the pointed model can be added back to the planted model to recover the property
while preserving well-foundedness.

Proposition 3 The class of well-founded frames with a plantable property is modally
indistinguishable from the class of frames with that property.

Proof It suffices to show that every pointed model extending a frame with a plantable
property is bisimilar to a pointed model extending a well-founded frame with that
property.

By construction, a pointed model (M, a) extending a frame with a plantable prop-
erty is bisimilar to its planted model

(
M†, 〈a〉). By the definition of a plantable

property, there is a set of accessibility relations that extends
(
M†, 〈a〉) to a well-

founded pointed model with that property,
(
M′, 〈a〉). Since each of the additional

accessibility relations in M′ relate paths in M† that correspond to worlds in M that
are likewise related, (M,a) is bisimilar to

(
M′, 〈a〉).

Lemma 2 Upwardly closed accessibility is plantable.

Proof See Appendix A.1.

Theorem 3 The logic C is sound and strongly complete in the class of well-founded
continuous accessibility frames.

Proof Follows directly from Corollary 2, Proposition 3, and Lemma 2.

3.4 Comparison to the Fuzzy Semantics Approach

Recall the fuzzy semantics approach to continuous accessibility, where the accessi-
bility relation itself is a partial function from pairs of worlds to a real number (or ∞).
On this approach, we define a non-standard fuzzy frame F∗ as a pair (M,R∗) where
R∗ : M2 ⇀ [0, ∞] is called a fuzzy accessibility relation, and a fuzzy model M∗ as
(F∗,V ).
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Fuzzy satisfaction, denoted �∗, is defined in the standard way for non-modal
sentences. For modal sentences, we have:

• M∗, w �∗ ♦xϕ if and only if there is some u ∈ M such that R∗(w, u) ≤ x and
M∗, u �∗ ϕ.

Given a frame F = (M, {Rx : x ∈ [0, ∞]}), we can define

R∗(w, u) := inf{x ∈ [0, ∞] : Rx(w, u)}
to construct a fuzzy frame F∗ = (M,R∗). Call this map the classical–fuzzy map.
Notice also that, given a fuzzy frame F∗ = (M,R∗), we may construct a frame F =
(M, {Rx : x ∈ [0, ∞]}) where for any worlds w, u ∈ M and x ∈ [0, ∞], Rx(w, u)

holds if and only if x ≥ R∗(w, u). Notably, F is a well-founded continuous acces-
sibility frame. Call this the fuzzy–classical map. This leads us to the following
result.

Theorem 4 There is a satisfaction-preserving bijection between the class of well-
founded continuous accessibility frames and the class of fuzzy frames.

Proof We claim that the classical–fuzzy map, when restricted to well-founded
continuous accessibility frames, witnesses this theorem.

First, we show that it is satisfaction preserving. Fix an arbitrary well-founded
continuous accessibility frame (M, {Rx : x ∈ [0, ∞]}), which maps to fuzzy frame
(M,R∗). Select arbitrary valuation V , and extend the frames to models M and M∗.
For non-modal formulas, the definitions of satisfaction and fuzzy satisfaction are
the same, so M and M∗ satisfy the same non-modal formulas. For modal formulas,
suppose M, w � ♦xϕ. Then there must be some u ∈ M such that Rx(w, u) and
M, u � ϕ. By the definition of the classical–fuzzy map, R∗(w, u) ≤ x. It follows
that M∗, w �∗ ♦xϕ. So M and M∗ satisfy all the same formulas. Therefore, the
classical–fuzzy map is satisfaction-preserving.

Second, we show that it is injective. Fix well-founded continuous accessibility
frames F=(M, {Rx : x ∈ [0, ∞]}) and F′ =(M ′, {R′

x : x ∈ [0, ∞]}). F maps to F∗ =
(M, R∗) and F′ maps to F′∗ = (M ′, R′∗). Suppose that F∗ = F′∗. By the definition
of fuzzy frames, it must be that M = M ′ and R∗ = R′∗. Now fix w, u ∈ M and
x ∈ [0, ∞] such that Rx(w, u) holds. By the definition of the classical–fuzzy map, it
must be that R∗(w, u) ≤ x, which is just to say R′∗(w, u) ≤ x By the definition of
the classical–fuzzy map, and since F′ is well-founded, it must be that R′

x(w, u) holds.
Conversely, fix w, u ∈ M and x ∈ [0, ∞] such that R′

x(w, u) holds. By a symmetric
argument, Rx(w, u) holds. Therefore, for every x ∈ [0, ∞], Rx = R′

x , so F = F′.
Lastly, we show that it is surjective. Fix a fuzzy frame F∗ = (M,R∗). Then con-

struct F = (M, {Rx : x ∈ [0, ∞]}) using the fuzzy–classical map. It is clear that F
has upwardly closed accessibility and adequately-founded accessibility, and is there-
fore a well-founded continuous accessibility frame. Moreover, by simple calculation,
applying the classical–fuzzy map to F yields F∗.

This theorem proves that, in the cases of interest, classical multimodal semantics
and fuzzy semantics are equivalent. Nevertheless, there are benefits to developing
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continuous modal logic using the classical multimodal semantics approach. First, the
classical multimodal semantics approach uses frames and their properties in the stan-
dard way. This simplifies the interpretation of continuous accessibility modal logics.
Second, and relatedly, using classical multimodal semantics allows us to appeal to
the Canonical Model and Sahlqvist Completeness theorems, and transparently situ-
ates our logics in the family of multimodal logics. Third, the classical multimodal
semantics approach is more revealing than the fuzzy semantics approach about the
complexity of these structures. The fuzzy semantics approach obscures the modal
undefinability of adequately-founded accessibility in the definition of fuzzy acces-
sibility and the fuzzy satisfaction of modal formulas. By revealing this feature, the
advantages of the classical multimodal semantics approach are demonstrated.

For example, completeness proofs in the literature that take the fuzzy seman-
tics approach (or a sufficiently similar approach) rely on non-standard frames and
non-standard notions of satisfaction. How such frames are situated in the family
of Kripke frames has, up until this point, been unclear. The classical multimodal
semantics approach shows that such proofs are effectively taking for granted the
well-foundedness of standard Kripke frames. Thus, what is sometimes presented as
completeness is, implicitly, a form of relative completeness. Moreover, by taking the
classical multimodal semantics approach, we are able to prove (as we did above) that
relative completeness is, in many cases of interest, equivalent to completeness.

For another example, those aspects of continuous accessibility modal logic that
do not rely on the models being well-founded are purely modally definable, and
those that do rely on the models being well-founded are transparently not so. More
generally, the nature and extent of imposing first-order conditions on frames can be
tailored to suit the particular application.

To stipulate a class of frames via a first-order property is to make an assumption
about which frames are worth considering. Methodologically, weaker assumptions
should be prioritized over stronger assumptions. Developing a modal logic with a
continuous accessibility relation in fuzzy semantics makes a stronger assumption
than doing so in classical multimodal semantics. To see this, suppose we com-
bine fuzzy satisfaction with the [0, ∞]-indexed relations of the classical multimodal
semantics. In that case, we need to represent the fuzzy accessibility relation with a
frame property that constrains the [0, ∞]-indexed accessibility relations in the appro-
priate way. The obvious candidate property, since it constrains the set of relations to
be a function, is the following.

Definition 6 A frame (M, {Rx : x ∈ [0, ∞]}) has unique accessibility if and only
if: for every w, u ∈ M and y �= x ∈ [0, ∞], if Rx(w, u) holds then Ry(w, u) does
not hold.

Unique accessibility, however, like well-foundedness, is not modally definable.1

Notably, frames with unique accessibility trivially also have adequately-founded

1The tree unraveling of the trivial frame provides the proof.
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accessibility, but the converse does not hold. It follows, therefore, that unique
accessibility is a stronger assumption than adequately-founded accessibility.

Because of this, even though assumptions are required for many of our desired
applications, the classical multimodal semantics approach allows us to make weaker
assumptions than the fuzzy semantics approach. Most of our applications require that
the continuous accessibility frames have adequately-founded accessibility. In these
cases, as we stated earlier, we can stipulate that the frames are well-founded. But for
one application, real line continuous temporal logic, we require syntactic access to
the magnitudes of the accessibility relations. For that, we must stipulate further that
the frames have (a version of) unique accessibility. In each case, however, the extent
of the assumptions is transparent.

3.5 Continuous Accessibility Modal Logic with Unique Accessibility

The strength of unique accessibility is not needed for most applications developed
in this paper. Still, when it is needed, it can be incorporated into a “close cousin”
of continuous accessibility modal logic. Since frames with unique accessibility and
those with upwardly closed accessibility overlap only when no pairs of worlds are
x-accessible for any x ∈ [0, ∞), we will extend our language to include a second
set of modal operators to represent magnitudes. Define the language of basic μ-
extended [0, ∞]-indexed modal logic, L

μ
[0,∞], to be the smallest extension of L[0,∞]

that includes the additional modal operator symbols
{
�μ

x ,♦μ
x : x ∈ [0, ∞]}. The

well-formed formulas, W
μ
[0,∞], are defined in the standard way.

The basic μ-extended [0, ∞]-indexed multimodal logic, K
μ
[0,∞], is the smallest

normal multimodal logic in modal operators
{
�x,♦x,�μ

x ,♦μ
x : x ∈ [0, ∞]}. That

is, in addition to the rules of inference and axiom schemata of K[0,∞], K
μ
[0,∞] has the

standard versions of necessitation, modal distribution, and duality for �μ
x . Normal

form is also defined in the standard way.
Models and frames for K

μ
[0,∞] are defined as for K[0,∞], except that, in addition to

the x-accessibility relations Rx , there is another set of [0, ∞]-indexed accessibility
relations, the μ-x-accessibility relations R

μ
x , such that for every x ∈ [0, ∞], R

μ
x ⊆

M2. Satisfaction is then defined in the standard way for modal formulas with ♦μ
x .

Just as we extended K[0,∞] to C, we can extend K
μ
[0,∞] to the basic μ-extended

continuous accessibility logic, Cμ, by requiring that it contain upward closure in the
♦x operator (as in C), along with the following axiom schema:

(fμ) μ-corespondence: For every ϕ ∈ W
μ
[0,∞] and x ∈ [0, ∞],

♦μ
x ϕ→♦xϕ.

By Lemma 1, μ-corespondence is canonical for the following.

Definition 7 A frame (M, {Rx : x ∈ [0, ∞]}) has μ-corresponding accessibility if
and only if: for all w, u ∈ M and x ∈ [0, ∞], if R

μ
x (w, u) holds then Rx(w, u) holds.
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Any frame that satisfies Cμ is a μ-extended continuous accessibility frame. An
example of such a frame is the μ-extended trivial frame, which is the extension of
the trivial frame where w is also μ-0-accessible to itself.

w

[0, ∞]

{0}

We will stipulate that the frames have two further properties. The first is unique
μ-accessibility, that is, unique accessibility in the μ-x-accessibility relations. Unique
μ-accessibility is not modally definable, even restricting the domain to well-founded
μ-extended continuous accessibility frames.2

The second is a correlate of well-foundedness:

Definition 8 A frame
(
M, {Rx, R

μ
x : x ∈ [0, ∞]}) has μ-induced well-founded-

ness if and only if: for every w, u ∈ M , if Rx(w, u) holds for some x ∈ [0, ∞], then
there is a minimum y ≤ x such that R

μ
y (w, u) holds.

As with well-foundedness, there is a family of properties had by μ-extended
continuous accessibility frames with μ-induced well-foundedness and lacked by μ-
extended continuous accessibility frames without μ-induced well-foundedness. The
most inclusive such property is μ-induced adequately-founded accessibility.

Definition 9 A frame
(
M, {Rx, R

μ
x : x ∈ [0, ∞]}) has μ-induced adequately-

founded accessibility if and only if: for every w, u ∈ M and every x ∈ [0, ∞],
if Ry(w, u) does not hold for any y < x ∈ [0, ∞] and Ry(w, u) holds for every
y > x ∈ [0, ∞], then R

μ
x (w, u) holds.

Any μ-extended continuous accessibility frame with μ-induced adequately-
founded accessibility is well-founded, and thus has adequately-founded accessibility
(in the x-accessibility relations). It turns out that μ-induced adequately-founded

2The proof is similar to that of Proposition 2, but with the frame

({w, u}, {{(w, u)}x , {(w, u)}μz : x ∈ [0,∞], z ∈ {0, 1}}),

which is well-founded but lacks unique μ-accessibility, and the frame

({
w′, u′

0, u
′
1

}
,
{{(

w′, u′
0

)}
x
,
{(

w′, u′
1

)}
y
,
{(

w′, u′
z

)}μ

z
: x ∈ [0,∞], y ∈ [1,∞], z ∈ {0, 1}}),

which is well-founded and has unique μ-accessibility.
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accessibility is not modally definable.3 We conjecture that any property that distin-
guishes μ-extended continuous accessibility frames with μ-induced well-founded-
ness from those that lack μ-induced well-foundedness is not modally definable, even
restricting the domain to well-founded frames with unique μ-accessibility.4

For convenience, we call any μ-extended continuous accessibility frame with
unique μ-accessibility and μ-induced adequately-founded accessibility a well-
structured μ-extended continuous accessibility frame. Well-structured μ-extended
continuous accessibility frames are well-founded, and the corresponding minima are
encoded in the μ-x-accessibility relations. The μ-extended trivial frame is one such
frame.

The classical–fuzzy map can be extended to μ-extended continuous accessibility
frames by applying it to the subframe containing only the x-accessibility relations.
By construction, any fuzzy frame F∗ = (M,R∗) can be mapped to a μ-extended
continuous accessibility frame via the fuzzy–classical map together with the condi-
tion that for any worlds w, u ∈ M and x ∈ [0, ∞], R

μ
x (w, u) holds if and only

if x = R∗(w, u). Notably, this μ-extended continuous accessibility frame is well-
structured. Call this the μ-extended fuzzy–classical map. Extending fuzzy satisfaction
in the expected way:

• M∗, w � ♦μ
x ϕ if and only if there is some u ∈ M such that R∗(w, u) = x and

M∗, u � ϕ;

leads us to the following result.

Corollary 3 There is a satisfaction-preserving bijection between the class of well-
structured μ-extended continuous accessibility frames and the class of fuzzy frames.

Proof (sketch) The μ-extended fuzzy–classical map witnesses the corollary. By con-
struction, the map is injective and surjective. By Theorem 4, the map is satisfaction-
preserving over W[0,∞]. Moreover, by the above extension of fuzzy satisfaction, it is
satisfaction-preserving over all of W

μ
[0,∞].

3Again, the proof is similar to that of Proposition 2, but with the frame
({w, u}, {{(w, u)}x , {(w, u)}μ∞ : x ∈ [0,∞]}),

which lacks μ-induced adequately-founded accessibility, and the frame
({

w′, u′
x : x ∈ [0,∞]}, {{w′, u′

x

}
x
,
{
w′, u′∞

}μ

∞ : x ∈ [0,∞]}),
which has μ-induced adequately-founded accessibility. But note that the latter frame is not a μ-extended
continuous accessibility frame.
4The conjecture arises from the following reasoning. Restrict the domain of frames to well-founded μ-
extended continuous accessibility frames with unique μ-accessibility. We consider which sorts of modal
formulas frames with μ-induced well-foundedness satisfy that frames without the property fail to satisfy.
For all formulas ϕ ∈ W

μ
[0,∞] and all x ∈ [0,∞], the formula (∃y ≤ x)(♦xϕ→♦μ

y ϕ) is satisfied by
frames with μ-induced well-foundedness and not by frames without it. However, in general, there is no
single y for which a given frame with μ-induced well-foundedness satisfies the formula. Still, while the
property may not be modally definable, it is at least first-order definable without quantifying over worlds
or accessibility relations.

237Continuous Accessibility Modal Logics



4 Extensions and Applications

The basic continuous accessibility modal logic can be extended to give each x-
accessibility relation the correct structure for a variety of philosophical applications.

4.1 Simple Extensions of Continuous Accessibility Modal Logic

The basic continuous accessibility logic C includes no conditions on frames beyond
those, mentioned above, that establish the continuity of the accessibility relation.
Analogues to various modal axioms (like D, T, B, 4, and 5) can then be used to extend
C to analogues of extensions of K (like D, T , B, S4, and S5).

For every x ∈ [0, ∞], define the following extensions of C:

• The continuous accessibility system-Dx modal logic, denoted CDx , is the small-
est extension of C that contains the axiom schema:

(g) x-seriality (Dx): For every ϕ ∈ W[0,∞],

�xϕ→♦xϕ.

• The continuous accessibility system-Tx modal logic, denoted CTx , is the smallest
extension of C that contains the axiom schema:

(g) x-reflexivity (Tx): For every ϕ ∈ W[0,∞],

�xϕ→ϕ.

For every X ⊆ [x,∞], define the following extensions of CTx :

• The continuous accessibility system-Bx,X modal logic, denoted CBx,X, is the
smallest extension of CTx that contains the axiom schema:

(h) X-symmetry (BX): For every ϕ ∈ W[0,∞] and x′ ∈ X,

♦x′�x′ϕ→ϕ.

• The continuous accessibility S4x,X modal logic, denoted CS4x,X, is the smallest
extension of CTx that contains the axiom schema:

(h) X-transitivity (4X): For every ϕ ∈ W[0,∞] and x′ ∈ X,

�x′ϕ→�x′�x′ϕ.

• The continuous accessibility S5x,X modal logic, denoted CS5x,X, is the smallest
extension of CTx that contains the axiom schema:

(h) X-euclidean (5X): For every ϕ ∈ W[0,∞] and x′ ∈ X,

♦x′ϕ→�x′♦x′ϕ.

Corollary 4 For every x and X ⊆ [x,∞], each of the logics CDx , CTx , CBx,X,
CS4x,X, and CS5x,X are strongly complete in the respective classes of frames defined
by them.
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Proof Follows from the Sahlqvist Completeness Theorem.

4.2 Application to Counterfactual Conditionals

The basic continuous accessibility modal logic, along with these simple extensions,
have very general application. Let’s work through one prominent example.

Consider the analysis of counterfactual conditionals. In classical modal logic, the
counterfactual conditional ϕ �→ ψ (read if ϕ were true, then ψ would be true) is
evaluated by checking the truth of ϕ→ψ in all nearby possible worlds. Nearness in
this context represents how similar a world is to the actual world in some relevant
respect, implemented as a partial or total order on the worlds. So ϕ �→ ψ is true if
and only if ϕ→ψ is true in all nearby worlds, i.e., �(ϕ→ψ) given that only those
worlds that meet some nearness threshold are accessible. The largest set of nearby
worlds for a given true counterfactual conditional will be the one whose threshold
allows access to all and only worlds nearer than the nearest worlds where the material
conditional is false. Comparing the strength of two counterfactual conditionals at
the actual world can be done by comparing their respective largest sets of nearby
worlds, if nearness is a total order. It is difficult to do the same for two counterfactual
conditionals at distinct worlds, since each world can in principle have independent
nearness relations with all other worlds (that is, each world can have a distinct and
unrelated total ordering of all worlds).

Using a continuous accessibility modal logic, the accessibility relation itself (being
a measure of remoteness) can take the place of nearness. Since nearness is intuitively
a similarity relation, an appropriate extension to use is the continuous accessibility
system-B0,[0,∞] modal logic. We can then say ϕ �→ ψ is true if and only if there is
some x ∈ [0, ∞] such that �x(ϕ→ψ). Since there may be no largest such x, we can
take their supremum as a real-numbered magnitude measuring how true the coun-
terfactual conditional is, non-comparatively on some dimension that characterizes
the similarity of worlds. The comparative strength of two counterfactual condition-
als at the same world can be straightforwardly quantified. Similar analyses that rely
on the structure of the real numbers (like modeling the fuzziness at the threshold of
nearness) can also be done. Moreover, unlike in the classical case, we can compare
the strength of two counterfactual conditionals at distinct worlds, and this too can
be quantified. Other comparisons between worlds that rely on structured nearness
relationships across worlds can follow.

Finally, the fact that similarity is encoded directly into the accessibility relation
yields the relevant and expected valid modal formulas. For example, applying B[0,∞],
if at the actual world it is possible at least to degree 1 that some counterfactual
conditional is true to degree 1, then the associated material conditional is actually
true.

4.3 Counterfactual Stability

Above, we used the supremum of all x ∈ [0, ∞] such that �x(ϕ→ψ) as a measure
of how true a counterfactual conditional is. Alternatively, it is a measure of how

239Continuous Accessibility Modal Logics



counterfactually stable the truth of the material conditional ϕ→ψ is at a given world.
These considerations can be nicely generalized for all formulas.

Definition 10 For every continuous accessibility model M = (M, {Rx : x ∈
[0, ∞]},V ), w ∈ M , and ϕ ∈ W[0,∞], we define the counterfactual stability of ϕ at
w in M as

cs(M, w, ϕ) :=
{

sup{x ∈ [0, ∞] : M, w � �xϕ} if M, w � �0ϕ

∅ otherwise.

If cs(M, w, ϕ) ∈ (0, ∞], we say that ϕ is counterfactually stable at w in M.
Otherwise, it is counterfactually unstable at w in M.

Among other uses, counterfactual stability gives us further insight into the truth of
counterfactual conditionals. For example, a minimum threshold of truth for a coun-
terfactual conditional is often taken to be this: ϕ �→ ψ is true if and only if ψ is
true in the nearest possible worlds where ϕ is true. A sufficient condition for this is
that ϕ→ψ is more counterfactually stable than ¬ϕ.5

4.4 Interactive Extensions and Additive Transitivity

The simple extensions of C described above all share a common feature. Every indi-
vidual axiom in each extension includes no more than one [0, ∞]-indexed operator. It
follows that the conditions on frames apply separately to each degree of remoteness.
To generate more interesting conditions on frames, these [0, ∞]-indexed modalities
must interact with one another in some way other than upward closure.

For example, consider a Markov process where each state has an objective proba-
bility of transforming into each of a set of successor states, where the probability is
independent of its predecessor states. One way to model this process with a contin-
uous accessibility relation is to interpret (the magnitude of) the accessibility relation
as the objective probability of one state transforming into a given state. But another
way to model it is to interpret (the magnitude of) the accessibility relation as the prob-
ability of one state eventually transforming into a given state. In the latter case, we
want the accessibility relation to be transitive, but not in the way captured by 4X. For
example, if state A eventually transforms into state B with probability 0.5, and state
B eventually transforms into state C with probability 0.5, then 4[0,∞] requires that
state A eventually transforms into state C with probability 0.5. But this is obviously
undesirable; we know no more about the latter probability than that it is at least 0.25
(0.25 because it is the product of independent probabilities, and “at least” because
there may be other paths from A to C).

A better transitivity axiom schema would be interactive:

5It is not a necessary condition since the counterfactual stability of ϕ→ψ might equal that of ¬ϕ, and
yet ψ is true in all the nearest possible worlds where ϕ is true. This is because ¬ϕ might not be true in a
world x-accessible at the supremum, while ϕ→ψ is true in all such worlds. Handling these sorts of cases
requires flagging those formulas that are necessary up to, but not including, the supremum, and defining
inequality relations that involve them in the expected way.
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(h) Additive transitivity (A4): For every ϕ ∈ W[0,∞] and x, y ∈ [0, ∞],

�x+yϕ→�x�yϕ.

By Lemma 1, A4 is canonical for the following property.

Definition 11 A frame (M, {Rx : x ∈ [0, ∞]}) has additively transitive accessibil-
ity if and only if: for all w, u, v ∈ M and x, y ∈ [0, ∞], if both Rx(w, u) and
Ry(u, v) hold, then Rx+y(w, v) holds.

Continuous accessibility frames with additively transitive accessibility have
[0, ∞]-indexed accessibility relations that can model distances. But they can also
model probabilities. To understand A4 in this context, consider that we can map x-
accessibility (where x ∈ [0, ∞], 0 is most accessible, and ∞ is least accessible) to
probability p(x) (where p(x) ∈ [0, 1], 0 is least probable, and 1 is most probable)
using an inverse exponential function: p(x) = exp (−x), with exp (−∞) := 0. Now
consider the desired probabilistic transitivity condition: if the probability from A to
B is p(xAB) and the probability from B to C is p(xBC), then probability from A to C

is at least p(xAC) = p(xAB) · p(xBC). Since p(xAC) = p(xAB) · p(xBC) if and only
if xAC = xAB +xBC , the desired condition corresponds to: if A has xAB -accessibility
to B and B has xBC-accessibility to C, then there is some xAC ≤ xAB + xBC such
that A has xAC-accessibility to C. These are exactly the frames with both upwardly
closed accessibility and additively transitive accessibility.

The utility of A4 is hard to overstate. For example, to model reasoning about
credences or continuous dependence relations, one can produce an additive pre-
order modal logic by extending C to include T0 and A4. In the sections below, we
develop several interactive extensions of C that have a variety of uses. For each such
extension, the main interactive axiom schemata are upward closure and A4.

5 Pseudometric SpaceModal Logic

A metric space is a set of points related in the way we ordinarily think about distance.
A pseudometric space is a generalization of a metric space, where more than one
distinct point can be in the same position. In other words, in a pseudometric space,
two distinct points might have all the same distance relations to all points.

The basic pseudometric space modal logic presented below can be considered, in
some sense, the “workhorse” of continuous accessibility modal logics. Attempts to
characterize a relation between worlds as a distance along one or more dimensions
of similarity will likely implicitly appeal to the semantics of a pseudometric space
modal logic. For example, consider a Hilbert space whose axes are the parameters of
a physical theory for each particle in the universe. Each point in the Hilbert space is
a description of the physical state of some universe. The distance between points can
then be a measure of how similar two universes are. A pseudometric space modal
logic captures this similarity.
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5.1 The Basic Pseudometric Space Modal Logic

Define the basic pseudometric space modal logic, denoted Pseu, as the smallest
extension of C that contains the axiom schemata:

(f) 0-reflexivity (T0): For every ϕ ∈ W[0,∞],
�0ϕ→ϕ.

(g) [0, ∞]-symmetry (B[0,∞]): For every ϕ ∈ W[0,∞] and x ∈ [0, ∞],
♦x�xϕ→ϕ.

(h) Additive transitivity (A4): For every ϕ ∈ W[0,∞] and x, y ∈ [0, ∞],
�x+yϕ→�x�yϕ.

Since Pseu contains T0 and B[0,∞], it is an extension of CB0,[0,∞].
Unsurprisingly, since Pseu contains B[0,∞] and A4, Pseu proves the schema:

• Additive Euclidean (A5): For every ϕ ∈ W[0,∞] and x, y ∈ [0, ∞],
♦xϕ→�y♦x+yϕ.

The proof is substantially similar to using B and 4 to prove 5.6 Pseu thus also proves
∞-euclidean (5{∞}), which follows from the A5 schema when x = y = ∞. Since
Pseu also proves T∞ (by T0 and upward closure), it is an extension of CS5∞,{∞},
which is just S5 when restricted to �∞.

5.2 Pseudometric Space Frames

Any frame that satisfies Pseu and is universal in ∞-accessibility is called a pseudo-
metric space frame. As before, the trivial frame is a pseudometric space frame. Since
Pseu is an extension of S5 in �∞, any frame that satisfies Pseu is isomorphic to a
union of pseudometric space frames.

Pseudometric space frames have three notable properties. First, they are reflex-
ive, that is, reflexive in x-accessibility for all x ∈ [0, ∞]. This follows, by classical
results, from T0 and upward closure. Second, they are symmetric, that is, symmetric
in x-accessibility for all x ∈ [0, ∞]. This follows, by classical results, from B[0,∞].
Third, they have additively transitive accessibility. This follows from the canonicity
of A4.

Corollary 5 The logic Pseu is sound and strongly complete in the class of pseudo-
metric space frames.

6For arbitrary ϕ ∈ W[0,∞] and x, y ∈ [0,∞],
1. ♦xϕ→�y♦y♦xϕ (Instance of contraposition of B{y} on ♦xϕ)

2. ♦y♦xϕ→♦x+yϕ (Instance of contraposition of A4, commutativity of addition)

3. �y♦y♦xϕ→�y♦x+yϕ (Nec with �y , modal dist, and prop logic on 2)

4. ♦xϕ→�y♦x+yϕ (Propositional logic on 1 and 3)
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Proof Follows from Sahlqvist Completeness Theorem, Corollary 2, and the canon-
icity of A4.

Lemma 3 Upwardly closed accessibility, reflexivity, symmetry, and additively tran-
sitive accessibility are jointly plantable.

Proof See Appendix A.2.

Proposition 4 The logic Pseu is sound and strongly complete in the class of well-
founded pseudometric space frames.

Proof Follows from Corollary 5, Proposition 3, and Lemma 3.

5.3 Pseudometric Spaces as Pseudometric Space Frames

In this section, we examine the relationship between pseudometric spaces and
pseudometric space frames.

For our purposes, a pseudometric space is a pair (X,d) such that: X is a nonempty
set, and the pseudometric function d : X2 → [0, ∞] is such that for every w, u, v ∈
X, the following hold.

• Indiscernibility of identicals: d(w, w) = 0.
• Symmetry: d(w, u) = d(u, w).
• Triangle inequality: d(w, u) + d(u, v) ≥ d(w, v).

Spaces of this form have historically been called ∞-pseudometric spaces, since the
extended pseudometric can take on the value of ∞.

Lemma 4 (a) If a frame (M, {Rx : x ∈ [0, ∞]}) is a pseudometric space frame,
then under the classical–fuzzy map, (M,R∗) is a pseudometric space. (b) If a fuzzy
frame (M,R∗) is a pseudometric space, then under the fuzzy–classical map, (M,

{Rx : x ∈ [0, ∞]}) is a well-founded pseudometric space frame.

Proof of (a) Fix a frame F = (M, {Rx : x ∈ [0, ∞]}), which maps to F∗ = (M,R∗)
using the classical–fuzzy map.

Suppose that F is a pseudometric space frame. Because F is universal in ∞-
accessibility, for every w, u ∈ M , R∞(w, u) holds, and therefore R∗(w, u) exists.
R∗ : M2 → [0, ∞] is thus a total function. It remains to be shown that it is
pseudometric.

Because F is reflexive, for every w ∈ M ,

R∗(w, w) = inf{x ∈ [0, ∞] : Rx(w, w)} = 0.

Because F is symmetric, for every w, u ∈ M ,

R∗(w, u) = inf{x ∈ [0, ∞] : Rx(w, u)} = inf{x ∈ [0, ∞] : Rx(u, w)} = R∗(u, w).
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Because F has additively transitive accessibility, for every w, u, v ∈ M, if x′ ∈ {x :
Rx(w, u)} and y′ ∈ {y : Ry(u, v)}, then x′ + y′ ∈ {z : Rz(w, v)}. It follows that

R∗(w, u) + R∗(u, v) = inf{x : Rx(w, u)} + inf
{
y : Ry(u, v)

}

= inf
{
x + y : Rx(w, u) ∧ Ry(u, v)

}

≥ inf{z : Rz(w, v)}
= R∗(w, v).

Therefore, F∗ is a pseudometric space. (a)

Proof of (b) Fix a fuzzy frame F∗ = (M,R∗), which maps to F = (M,

{Rx : x ∈ [0, ∞]}) using the fuzzy–classical map. Suppose that F∗ is a pseudometric
space. We need to show that F is universal in the ∞-accessibility relation and that F
satisfies Pseu. Since F∗ is a pseudometric space, for all w, u ∈ M , R∗(w, u) exists.
Therefore, by the definition of the fuzzy–classical map, for all w, u ∈ M , R∞(w, u)

holds. F is thus universal in the ∞-accessibility relation. We now show that F satisfies
Pseu. The proof of Theorem 4 shows that F is a well-founded continuous accessibil-
ity frame. As a continuous accessibility frame, F satisfies C. We therefore need only
show that it satisfies T0, B[0,∞], and A4.

First, since R∗ is a pseudometric, for every w ∈ M , R∗(w, w) = 0. By the
definition of the fuzzy–classical map, R0(w, w) holds. Thus, F satisfies T0.

Second, since R∗ is a pseudometric, for arbitrary w, u ∈ M , R∗(w, u) =
R∗(u, w). By the definition of the fuzzy–classical map, both Rx(w, u) and Rx(u, w)

hold for all x ≥ R∗(w, u) ∈ [0, ∞], and neither Rx(w, u) nor Rx(u, w) hold for any
x < R∗(w, u) ∈ [0, ∞]. F is therefore symmetric, from which it follows that B[0,∞].

Third, since F∗ is a pseudometric space, for every w, u, v ∈ M , R∗(w, u) +
R∗(u, v) ≥ R∗(w, v). By the definition of the fuzzy–classical map, for all x, y, z ∈
[0, ∞]: Rx(w, u) holds if and only if x ≥ R∗(w, u); Ry(u, v) holds if and only if
y ≥ R∗(u, v); and Rz(w, v) holds if and only if z ≥ R∗(w, v). Now fix arbitrary
x, y ∈ [0, ∞] such that Rx(w, u) and Ry(u, v) hold. Since x + y ≥ R∗(w, u) +
R∗(u, v) ≥ R∗(w, v), Rx+y(w, v) also holds. F therefore has additively transitive
accessibility, and so satisfies A4.

Therefore, F is a pseudometric space frame. (b)

Based on these results, Pseu can be considered the canonical continuous modal
logic for pseudometric spaces.

Theorem 5 (Canonicity of Pseu for pseudometric spaces) A well-founded frame F

satisfies Pseu if and only if F∗ is a pseudometric space (or a union of pseudometric
spaces), under the classical–fuzzy map.

Proof Follows directly from Theorem 4 and Lemma 4.

Theorem 6 (Completeness of Pseu in pseudometric spaces) Pseu is sound and
strongly complete on the image of the class of pseudometric spaces under the
fuzzy–classical map.
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Proof Follows directly from Proposition 4 and Theorem 5.

5.4 Bounded Pseudometric Space Frames

For every D ∈ [0, ∞], define the pseudometric space of diameter D modal logic,
denoted PseuD , as the smallest extension of Pseu that contains the axiom schema:

(i) D-boundedness: For every ϕ ∈ W[0,∞],

♦∞ϕ→♦Dϕ.

Fix D ∈ [0, ∞]. A pseudometric space frame that satisfies PseuD is called a pseu-
dometric space of diameter at most D frame. As before, the trivial frame is one such
frame.

By Lemma 1, D-boundedness is canonical for the following.

Definition 12 A frame (M, {Rx : x ∈ [0, ∞]}) has D-bounded accessibility if and
only if: for all w, u ∈ M , if R∞(w, u) holds then RD(w, u) holds.

Since pseudometric space frames are universal in ∞-accessibility, by D-bounded
accessibility and upwardly closed accessibility, pseudometric space of diameter at
most D frames are universal in x-accessibility for all x ∈ [D,∞].

Corollary 6 For every D ∈ [0, ∞], the logic PseuD is sound and strongly complete
in the class of pseudometric space of diameter at most D frames.

Proof Follows from Corollary 5, the Sahlqvist Completeness Theorem, and the
canonicity of D-boundedness.

Lemma 5 Upwardly closed accessibility, reflexivity, symmetry, additively transitive
accessibility, and D-bounded accessibility are jointly plantable.

Proof See Appendix A.3.

Proposition 5 The logic PseuD is sound and strongly complete in the class of well-
founded pseudometric space of diameter at most D frames.

Proof Follows from Corollary 6, Proposition 3, and Lemma 5.

Now consider again pseudometric spaces. Define the diameter of a pseudometric
space (X,d) as sup{d(w, u) : w, u ∈ X}.

Lemma 6 (a) If a frame (M, {Rx : x ∈ [0, ∞]}) is a pseudometric space of diameter
at most D frame, then under the classical–fuzzy map, (M,R∗) is a pseudometric
space of diameter at most D. (b) If a fuzzy frame (M,R∗) is a pseudometric space of
diameter at most D, then under the fuzzy–classical map, (M, {Rx : x ∈ [0, ∞]}) is a
well-founded pseudometric space of diameter at most D frame.
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Proof of (a) Fix a frame F = (M, {Rx : x ∈ [0, ∞]}), which maps to F∗ = (M,

R∗) using the classical–fuzzy map. Suppose F is a pseudometric space of diameter
at most D frame. By Lemma 4, F∗ is a pseudometric space. Moreover, since F is a
pseudometric space of diameter at most D frame, RD is universal. Therefore, by the
definition of the classical–fuzzy map, the diameter of F∗ is at most D. (a)

Proof of (b) Fix a fuzzy frame F∗ = (M,R∗), which maps to F = (M,

{Rx : x ∈ [0, ∞]}) using the fuzzy–classical map. Suppose that F∗ is a pseudometric
space of diameter at most D. By Lemma 4, F is a well-founded pseudometric space
frame. Also, since F∗ is a pseudometric space of diameter at most D, sup{R∗(w, u) :
w, u ∈ M} ≤ D. Then by the definition of the fuzzy–classical map and upwardly
closed accessibility, it must be that for every w, u ∈ M , RD(w, u) holds. Hence it is
a pseudometric space of diameter at most D frame. (b)

As with Pseu, each PseuD can be considered the canonical continuous modal logic
for pseudometric spaces of diameter at most D.

Corollary 7 (Canonicity of PseuD for pseudometric spaces of diameter at most D)
A well-founded frame F satisfies PseuD if and only if F∗ is a pseudometric space of
diameter at most D (or a union of such spaces), under the classical–fuzzy map.

Proof Follows directly from Theorem 4 and Lemma 6.

Corollary 8 (Completeness of PseuD for pseudometric spaces of diameter at most
D) PseuD is sound and strongly complete on the image of the class of pseudometric
spaces of diameter at most D under the fuzzy–classical map.

Proof Follows directly from Proposition 5 and Corollary 7.

We can improve this result by refining the class of frames. A pseudometric space
frame that satisfies PseuD , but that for each x ∈ [0, D) does not satisfy Pseux , is
called a pseudometric space of diameter D frame. For each such D, the D-connected
frame proves that they exist: two worlds, each x-accessible to itself for all x ∈ [0, ∞],
and x-accessible to one another for all x ∈ [D,∞].

w u

[D, ∞]

[D, ∞]
[0, ∞] [0, ∞]

Each pseudometric space of diameter D frame is a pseudometric space of diam-
eter at most D frame, so the former are also universal in x-accessibility for all
x ∈ [D,∞]. But furthermore, pseudometric space of diameter D frames are not
universal in x-accessibility for any x ∈ [0, D).

Lemma 7 (a) If a frame (M, {Rx : x ∈ [0, ∞]}) is a pseudometric space of diame-
ter D frame, then under the classical–fuzzy map, (M,R∗) is a pseudometric space
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of diameter D. (b) If a fuzzy frame (M,R∗) is a pseudometric space of diameter
D, then under the fuzzy–classical map, (M, {Rx : x ∈ [0, ∞]}) is a well-founded
pseudometric space of diameter D frame.

Proof of (a) Fix a frame F = (M, {Rx : x ∈ [0, ∞]}), which maps to F∗ = (M,

R∗) using the classical–fuzzy map. Suppose F is a pseudometric space of diameter
D frame. By Lemma 6, F∗ is a pseudometric space of diameter at most D. For each
x ∈ [0, D), since F does not satisfy Pseux , Rx is not universal. So by the definition
of the classical–fuzzy map, sup{d(w, u) : w, u ∈ M} ≥ x for every x ∈ [0, D). It
follows that F∗ is a pseudometric space of diameter D. (a)

Proof of (b) Fix a fuzzy frame F∗ = (M,R∗), which maps to F = (M,

{Rx : x ∈ [0, ∞]}) using the fuzzy–classical map. Suppose that F∗ is a pseudomet-
ric space of diameter D. By Lemma 6, F is a well-founded pseudometric space of
diameter at most D frame. Moreover, since sup{d(w, u) : w, u ∈ M} = D, by
the definition of the fuzzy–classical map, Rx is not universal for any x ∈ [0, D).
Therefore, F is a pseudometric space of diameter D frame. (b)

Unsurprisingly, since pseudometric spaces of diameter at most D can be embed-
ded in pseudometric spaces of diameter D, we get the following lemma:

Lemma 8 For each D ∈ [0, ∞], the class of pseudometric space of diameter D

frames is modally indistinguishable from the class of pseudometric space of at most
diameter D frames.

Proof It suffices to show that every pointed model extending a pseudometric space
of diameter at most D frame is bisimilar to a pointed model extending a pseudometric
space of diameter D frame.

Let (M,a) be an arbitrary pointed model extending a pseudometric space of diam-
eter at most D frame. The proof of Lemma 5 generates (M′, 〈a〉), to which (M,

a) is bisimilar. By construction, (M′, 〈a〉) has D-bounded accessibility but for each
x ∈ [0, D) does not have x-bounded accessibility, so it is a pseudometric space of
diameter D frame.

Theorem 7 (Completeness of PseuD in pseudometric spaces of diameter D) PseuD

is sound and strongly complete on the image of the class of pseudometric spaces of
diameter D under the fuzzy–classical map.

Proof Follows directly from Corollary 8, Lemma 7, and Lemma 8.

6 Metric SpaceModal Logics

The difference between a metric space and a pseudometric space is that no two dis-
tinct points in a metric space can be in the same position. That is, no two distinct
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points have all the same distance relations to every point. In the context of modal
logic, where the points are worlds, this means that no two distinct worlds are
maximally accessible (accessible to a degree of remoteness of 0) to one another.

Attempts to characterize a relation between worlds as a distance along one or
more dimensions that together completely characterize a world implicitly appeal to
the semantics of a metric space logic. The continuous accessibility relation can then
be interpreted as a complete similarity relation: no two distinct worlds are perfectly
identical, and therefore no two distinct worlds are perfectly accessible to one another.

6.1 The Basic and BoundedMetric Space Modal Logics

Define the the basic metric space modal logic, denoted Met, as the smallest extension
of Pseu that contains the axiom schema:

(i) 0-coreflexivity: For every ϕ ∈ W[0,∞],

ϕ→�0ϕ.

For every D ∈ [0, ∞], define the metric space of diameter D modal logic, denoted
MetD , as the smallest extension of Met that contains the axiom schema:

(j) D-boundedness: For every ϕ ∈ W[0,∞],

♦∞ϕ→♦Dϕ.

Any pseudometric space frame that satisfies Met is called a metric space frame,
and such frames exist (again, the trivial frame is a metric space frame). For every
D ∈ [0, ∞], a pseudometric space frame that satisfies MetD is called a metric space
of diameter at most D frame, and such frames exist (again, for each D ∈ [0, ∞], the
trivial frame is a metric space of diameter at most D frame). For every D ∈ [0, ∞],
a pseudometric space frame that satisfies MetD but fails to satisfy Metx for every
x ∈ [0, D) is called a metric space of diameter D frame, and such frames exist
(the trivial frame is a metric space of diameter 0 frame, and for each D ∈ (0, ∞],
the D-connected frame is a metric space of diameter D frame). All such frames are
coreflexive in 0-accessibility. This follows, by classical results, from 0-coreflexivity.

Results analogous to those of Section 5 follow without difficulty. The more
important ones are presented below.

Corollary 9 For every D ∈ [0, ∞], the logic MetD is sound and strongly complete
in the class of metric space of diameter at most D frames.

Proof Follows from Corollary 6 and the Sahlqvist Completeness Theorem.

Lemma 9 Upwardly closed accessibility, reflexivity, symmetry, additively transitive
accessibility, D-bounded accessibility, and coreflexivity in 0-accessibility are jointly
plantable.

Proof See Appendix A.4.
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Lemma 10 The class of metric space of diameter D frames is modally indistinguish-
able from the class of metric space of diameter at most D frames.

Proof (sketch) Follows from Lemma 8 and the proof of Lemma 9.

Proposition 6 For every D ∈ [0, ∞], the logic MetD is sound and strongly complete
in the class of well-founded metric space of diameter D frames.

Proof Follows from Corollary 9, Proposition 3, Lemma 9, and Lemma 10.

6.2 Metric Spaces as Metric Space Frames

For our purposes, a metric space is a pseudometric space (X,d) such that for all
w, u ∈ X,

• Identity of indiscernables: If d(w, u) = 0 then w = u.

Under the classical–fuzzy map, not all metric space frames map to metric spaces.
A metric space frame that is not well-founded might have one world accessible to
a distinct world at all magnitudes except zero. Since the classical–fuzzy map takes
the infimum, the value of the fuzzy accessibility relation between the worlds is zero,
violating the identity of indiscernables. So we must stipulate that the metric space
frames of interest are those with adequately-founded accessibility around 0, that is,
for frame (M, {Rx : x ∈ [0, ∞]}), for every w, u ∈ M , if Rx(w, u) holds for every
x > 0, then R0(w, u) holds.

Lemma 11 (a) If a frame (M, {Rx : x ∈ [0, ∞]}) is a metric space of diameter D

frame with adequately-founded accessibility around 0, then under the classical–fuzzy
map, (M,R∗) is a metric space of diameterD. (b) If a fuzzy frame (M, R∗) is a metric
space of diameter D, then under the fuzzy-classical map,(M, {Rx : x ∈ [0, ∞]}) is a
well-founded metric space of diameter D frame.

Proof of (a) Fix a frame F = (M, {Rx : x ∈ [0, ∞]}), which maps to F∗ = (M,

R∗) using the classical–fuzzy map. Suppose F is a metric space of diameter D frame
with adequately-founded accessibility around 0. By Lemma 7, F∗ is a pseudometric
space of diameter D. Now fix w, u ∈ M such that R∗(w, u) = 0. Since F has
adequately-founded accessibility around 0, this implies that R0(w, u) holds. Since
F is coreflexive in 0-accessibility, this means that w = u. Therefore, F∗ is a metric
space of diameter D frame. (a)

Proof of (b) Fix a fuzzy frame F∗ = (M, R∗), which maps to F = (M, {Rx : x ∈
[0, ∞]}) using the fuzzy–classical map. Suppose F∗ is a metric space of diameter D.
By Lemma 7, F is a well-founded pseudometric space of diameter D frame. Now fix
w, u ∈ M such that R0(w, u) holds. By the definition of the classical–fuzzy map,
R∗(w, u)=0. Since F∗ is a metric space, this implies that w=u. Thus, F is coreflexive
in 0-accessibility. Therefore, F is a well-founded metric space of diameter D frame.

(b)
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As above, Met can be considered the canonical continuous modal logic for met-
ric spaces, with MetD the canonical continuous modal logic for metric spaces of
diameter at most D.

Theorem 8 (Canonicity of MetD in metric spaces of diameter at most D) A well-
founded frame F satisfies MetD if and only if F∗ is a metric space of diameter at most
D (or a union of such spaces), under the classical–fuzzy map.

Proof Follows directly from Theorem 4 and Lemma 11.

Moreover, Met is the complete logic for metric spaces, with MetD the complete
logic for metric spaces of diameter D.

Theorem 9 (Completeness of MetD in metric spaces of diameter D) MetD is sound
and strongly complete on the image of the class of metric spaces of diameter D under
the fuzzy–classical map.

Proof Follows from Proposition 6 and Lemma 11.

6.3 Neighborly Theories

Given a metric space frame F = (M, {Rx : x ∈ [0, ∞]}), we say that F is discrete if
inf{R∗(w, u) : w �= u ∈ M} > 0. Notably, every metric space frame with a finite set
of worlds is discrete. If a Met-theory is satisfiable in a discrete metric space frame,
we say that it is discretely satisfiable.

Definition 13 A Met-theory T is neighborly if the following conditions are satisfied
for all ϕ ∈ W[0,∞].
• If ϕ ∈ T , then there is some x ∈ (0, ∞] such that �xϕ ∈ T .
• If ♦xϕ ∈ T for some x ∈ [0, ∞], then there is some y ∈ (0, ∞] such that

♦x�yϕ ∈ T .

Proposition 7 Any discretely satisfiable Met-theory can be extended to a neighborly,
maximally consistent Met-theory.

Proof Fix a discretely satisfiable Met-theory T . Then there is a discrete metric space
model M = (M, {Rx : x ∈ [0, ∞]},V ) and w ∈ M such that T ⊆ Th(M, w).
Let m := inf{R∗(w, u) : w �= u ∈ M} and T := Th(M, w). By definition and
completeness, T is maximally consistent. We now claim that T is also neighborly.
Consider that, since m

2 < m, the only world within m
2 of w is w itself. It follows that

if ϕ ∈ T , then �m
2
ϕ ∈ T .

Moreover, suppose that, for some ϕ ∈ W[0,∞] and x ∈ [0, ∞], ♦xϕ ∈ T . Then
there is some u ∈ M such that R∗(w, u) ≤ x and M, u � ϕ. As above, the only
world within m

2 of u is u itself. It follows that M, u � �m
2
ϕ, so ♦x�m

2
ϕ ∈ T .
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By the finite model property, any finite Met-theory is finitely, and hence dis-
cretely, satisfiable. Therefore, any finite Met-theory can be extended to a neighborly,
maximally consistent Met-theory. However, the same result doesn’t hold for even
countably infinite theories.

Proposition 8 There is a countably infinite Met-theory that is not neighborly and
has no neighborly extensions.

Proof Consider T := {p} ∪ {
♦1

n
¬p : n ∈ N

}
. Construct model M = (M, {Rx :

x ∈ [0, ∞]},V ) such that: M = [0, 1]; for all w, u ∈ M , Rx(w, u) holds for all
x ≥ |w − u| and does not hold otherwise; and V (0, p) = 1, with all other valuations
being 0. T is clearly consistent since it is satisfied at world 0 in M. But it is also not
neighborly and has no neighborly extensions, since for every x ∈ (0, ∞], T ∪ {�xp}
is inconsistent.

We conjecture that the converse of Proposition 7 does not hold, i.e., we believe
there is a neighborly, maximally consistent Met-theory that is not discretely satisfiable.

Proposition 9 For any Met-consistent formula ϕ, there is a metric space model and
world in that model such that ϕ is counterfactually stable in that model at that world.

Proof Fix a Met-consistent formula ϕ. Then {ϕ} is a consistent Met-theory. By
Proposition 7, extend {ϕ} to a maximally consistent and neighborly Met-theory {ϕ}.
Since Met is complete, there is a metric space model M = (M, {Rx : x ∈ [0, ∞]},
V ) and world w ∈ M such that M, w � {ϕ}. Since {ϕ} is neighborly, for some
x ∈ (0, ∞], M, w � �xϕ. Therefore, cs(M, w, ϕ) ≥ x > 0.

6.4 Topological Metric Space Modal Logic

Let L
top
[0,∞], the language of the basic topology and [0, ∞]-valued multimodal logic,

be L[0,∞] with the addition of a new modal operator, �int, called the interior operator.
Define the well-formed formulas, W

top
[0,∞], and normal form in the standard way. Models

and satisfaction remain the same as before with the following additional condition.

• M, w � �intϕ if and only if for some x ∈ (0, ∞], M, w � �xϕ.

Likewise for fuzzy satisfaction:

• M, w �∗ �intϕ if and only if for some x ∈ (0, ∞], M, w �∗ �xϕ.

It directly follows from this definition that ϕ is counterfactually stable at world w

in M if and only if M, w � �intϕ.
For every D ∈ [0, ∞], define the proof system Mettop

D to be the smallest extension
of MetD that contains the axiom schema:

(k) Induced topology: For every ϕ ∈ W
top
[0,∞] and x ∈ (0, ∞],

�xϕ→�intϕ.
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Proposition 10 For every D ∈ [0, ∞], a frame satisfies MetD if and only if it
satisfies Mettop

D .

Proof The reverse direction is trivial. The forward direction follows directly from
the definition of the satisfaction relation and the fact that Mettop

D is an extension of
MetD .

Corollary 10 For every D ∈ [0, ∞], every MetD-theory is also a Mettop
D -theory.

Proof Let T be a MetD-theory. By Theorem 9, there is a metric space of diameter D

model M = (M, {Rx : x ∈ [0, ∞]},V ) and world w ∈ M such that T ⊆ Th(M, w).
By Proposition 10, M extends a frame that satisfies Mettop

D . Therefore, T must be

Mettop
D -consistent, and hence a Mettop

D -theory.

Theorem 10 For every D ∈ [0, ∞], any discretely satisfiable MetD-theory T can
be extended to a Mettop

D -theory T such that if ϕ ∈ T , then �intϕ ∈ T .

Proof Let T be a discretely satisfiable MetD-theory. By Proposition 7, extend T

to a maximally consistent and neighborly Met-theory T ′. By Corollary 10, T ′ is
also a Mettop

D -theory. Then define T as the set of consequences of T ′. T is clearly

a Mettop
D -theory, since it is Mettop

D -equiconsistent with T ′. Then fix ϕ ∈ T . By the
construction of T ′, there is some x ∈ (0, ∞] such that �xϕ ∈ T ′. So by the definition
of T ,�intϕ ∈ T .

We conclude this subsection with a brief remark that in the topological metric
space modal logic, we lose the finite model property.

Proposition 11 For every D ∈ (0, ∞], the logic Mettop
D does not have the finite

model property.

Proof Fix arbitrary D ∈ (0, ∞]. For arbitrary p ∈ P, consider the formula p ∧
¬�intp. The formula is clearly Mettop

D -consistent, since the following metric space of
diameter D fuzzy model satisfies it at world 0: (M, R∗,V ) such that M = [0, D], R∗
is the Euclidean metric, and V (0, p) = 1 with all other valuations being 0. We need
only show that the formula is not satisfied on any finite model.

Fix a fuzzy model M∗ = (M, R∗,V ) that satisfies Mettop
D and such that M is

finite. Let m := min{R∗(w, u) : w �= u ∈ M}. Then for every w ∈ M , M∗, w �∗
p ↔ �m

2
p. It follows by the induced topology schema that for every w ∈ M ,

M∗, w �∗ p→�intp, from which it follows that M∗, w �
∗ p ∧ ¬�intp.

6.5 Metrizable Topological Spaces

Let Ltop be the classical topological modal language found in [14], with modal oper-
ator �int. The topological well-formed formulas are generated naturally, and denoted
by W top. By this construction, W top ⊆ W

top
[0,∞].

A topological frame, in the classical sense, is a pair (M,O) where M is a
nonempty set and O is a topology on M . Topological frames can be extended to
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topological models when they are paired with a valuation V : M × P → {0, 1}. The
classical topological semantics is defined as usual on the standard propositions and
logical connectives, and on modal operator �int as M, w �top �intϕ if and only if w

is in the topological interior of the set of all worlds that satisfy ϕ.
A metrizable topological frame is a topological frame (M,O) such that there is a

metric d : M2 → [0, ∞] where the open sets of the metric space (M,d) under the
induced topology are precisely the open sets O.

Theorem 11 Over topological well-formed formulas, there is a satisfaction-
preserving map from the class of metrizable topological frames (M,O) into the class
of well-founded metric space frames.

Proof Fix a metrizable topological frame (M,O). Extend this frame to an arbitrary
model M = (M,O,V ). Via the axiom of choice, fix a metric d : M2 → [0, ∞]
such that (M,d) induces the set O as the open sets of M . Define R∗ := d. Clearly
satisfaction is preserved between (M,O,V ) and (M, R∗,V ) for non-modal formulas.

To see that it is preserved for formulas containing �int, first fix ϕ ∈ W top and
w ∈ M such that M, w �top �intϕ. By the definition of topological interior, there is
some O ∈ O such that w ∈ O and for every u ∈ O,M, u �top ϕ. Since d induces
the same open sets, there must be some ball (neighborhood) of w with radius ε > 0
contained in O. Therefore, M, w �∗ � ε

2
ϕ. Hence, by the induced topology axiom

schema, M, w �∗ �intϕ.
Next fix ϕ ∈ W top and w ∈ M such that M, w �top ¬�intϕ. It must be that for

all O ∈ O such that w ∈ O there is some u ∈ O, M, u �top ¬ϕ. But again, since d

induces the same open sets, then for every ball of w with radius ε > 0, there is some
u in that ball such that M, u �∗ ¬ϕ. It follows that for every ε > 0, M, w �∗ ¬�εϕ.
Hence, by definition, M, w �∗ ¬�intϕ.

By Theorem 8 and since W top ⊆ W
top
[0,∞], there is a unique well-founded metric

space model (M, {Rx : x ∈ [0, ∞]},V ) that satisfies the same topological well-
formed formulas as (M, R∗,V ).

Corollary 11 If fuzzy frame (M,R∗) is a dense-in-itself metric space, then under
the fuzzy–classical map, frame (M, {Rx : x ∈ [0, ∞]}) satisfies S4 in the interior
operator.

Proof It is a well-known result of [16] that S4 is sound and complete on the class of
dense-in-themselves metric spaces considered as topological frames. The result then
follows from the proof of Theorem 11.

Remark The rational fragments of the metric space and topological metric space
logics become fragments of the logic given in [7] with the identifications of �∞ �→
∀, �q �→ ∀≤q for every q ∈ Q, and N �→ �, along with the elimination of the �0 and
♦0 operators by 0-reflexivity and 0-coreflexivity. In [7], the decidability problem for
that extension is shown to be EXPTIME-complete. It is currently unknown, however,
if the same complexity result holds for the rational fragment of the logic given here
as well.
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7 Continuous Temporal Logics

Even though all the continuous accessibility logics described above are technically
multimodal, they are interpreted as having a single continuous accessibility relation.
But for some applications, we need more than one continuous accessibility relation.
For example, a continuous temporal logic would require two such relations, one for
distance into the future, and one for distance into the past. Some interactive multi-
modal extensions of continuous accessibility modal logic generate difficulties, but
these difficulties can be overcome by an appeal to our magnitude operators.

7.1 The Basic Bimodal Continuous Accessibility Logic

Define the language of basic bimodal [0, ∞]-indexed multimodal logic, L±
[0,∞], to be

the smallest normal multimodal language containing
{[+]x, 〈+〉x, [−]x, 〈−〉x : x ∈

[0, ∞]} as its set of modal operator symbols. The well-formed formulas, W±
[0,∞], are

defined in the standard way.
The basic bimodal [0, ∞]-indexed multimodal logic, K±

[0,∞], is the smallest nor-

mal multimodal logic in modal operators
{[+]x, 〈+〉x, [−]x, 〈−〉x : x ∈ [0, ∞]}.

That is, in addition to the modus ponens and the tautologies of modal logic, K±
[0,∞]

has the standard versions of necessitation, modal distribution, and duality for each of
[+]x and [−]x . Normal form is also defined in the standard way.

Models and frames for K±
[0,∞] are defined as expected, with accessibility relations

R+
x and R−

x for each x ∈ [0, ∞]. Satisfaction is defined in the standard way for
modal formulas with 〈+〉x and 〈−〉x . K±

[0,∞] is sound and complete in this class of
frames, as well as in the class of well-founded such frames.

Extend K±
[0,∞] to the basic bimodal continuous accessibility logic, denoted C±,

to include upward closure in 〈+〉x and in 〈−〉x . C± satisfies C in each of the [+]x
and [−]x operators. It is sound and complete in the class of bimodal continuous
accessibility frames, that is, frames that are continuous accessibility frames in each of
the R+

x and R−
x relations. It is also sound and complete in the class of well-founded

such frames.
The expected relationship holds between bimodal continuous accessibility frames

and fuzzy frames. A bimodal fuzzy frame is a triple
(
M,R+∗

, R−∗) such that both(
M,R+∗) and

(
M,R−∗) are fuzzy frames. For any bimodal continuous accessibility

frame F = (
M,

{
R+

x , R−
x : x ∈ [0, ∞]}), by the classical–fuzzy map, both

(
M,R+∗)

and
(
M,R−∗) are fuzzy frames, so F∗ := (

M,R+∗
, R−∗) is a bimodal fuzzy frame.

Call this the bimodal classical–fuzzy map. A bimodal fuzzy–classical map can be defi-
ned as in Section 3.4, yielding well-founded bimodal continuous accessibility frames.

Corollary 12 There is a satisfaction-preserving bijection between the class of well-
founded bimodal continuous accessibility frames and the class of bimodal fuzzy
frames.

Proof (sketch) The bimodal classical–fuzzy map witnesses the corollary, following
as the direct bimodal extension of Theorem 4.
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7.2 Continuous Temporal Logic

Extend C± to the minimal continuous temporal logic, denoted Ct , to include the
following axiom schemata:

(g) [0, ∞]-converse: For all ϕ ∈ W±
[0,∞] and all x ∈ [0, ∞],

ϕ→[+]x〈−〉xϕ and ϕ→[−]x〈+〉xϕ.

Note that Ct satisfies the classical minimal temporal logic in the [+]x and [−]x
operators for each x ∈ [0, ∞]. Given upward closure in 〈+〉x and in 〈−〉x , it is natural
to interpret [+]∞ and [−]∞ as classical G (“it will always be the case that”) and H

(“it has always been the case that”) operators, respectively.
By classical results, frames that satisfy Ct are ±-antisymmetric, that is, for all

w, u ∈ M and x ∈ [0, ∞], R+
x (w, u) holds if and only if R−

x (u, w) holds. More-
over, Ct is sound and complete in the class of ±-antisymmetric bimodal continuous
accessibility frames, as well as in the class of well-founded such frames.

Just as with classical minimal temporal logic, Ct can be extended to yield a desired
temporal structure. A particularly useful one for our purposes is to include the addi-
tive preorder axioms. Extend Ct to the continuous temporal logic, denoted CTL, to
include 0-reflexivity (T0) in [+]0 and additive transitivity (A4) in [+]x . CTL proves
T0 in [−]0 and A4 in [−]x .

Note that CTL is equivalent to the pseudometric space modal logic if the following
axiom schema is introduced: For every ϕ ∈ W±

[0,∞] and x ∈ [0, ∞], [+]xϕ ↔
[−]xϕ. Further introducing the 0-coreflexivity axiom schema makes it equivalent to
the metric space modal logic.

Note also that CTL satisfies the classical reflexive and transitive temporal logic in
the [+]∞ and [−]∞ operators. This is because ∞-reflexivity follows from T0 and up-
ward closure, while ∞-transitivity follows from additive transitivity when x = y = ∞.

Call any frame that satisfies CTL and is universal in the relation R+∞ ∪ R−∞ a con-
tinuous temporal frame. As with pseudometric space frames, any frame that satisfies
CTL is isomorphic to unions of continuous temporal frames.

Continuous temporal frames are x-reflexive in each of the R+
x and R−

x relations (by
0-reflexivity and upward closure), and have additively transitive accessibility in the
R+

x relations and in the R−
x relations. They are therefore reflexive and additively tran-

sitive ±-antisymmetric bimodal continuous accessibility frames. CTL is sound and
complete in this class of frames, as well as in the class of well-founded such frames.

Moreover, just as with pseudometric spaces, when such frames are well-founded,
they are antisymmetric quasi-pseudometric spaces (sometimes called directed pseu-
dometric spaces). The addition of 0-coreflexivity to the axioms yields a logic whose
frames (similarly defined) are antisymmetric quasi-metric spaces (sometimes called
directed metric spaces).

7.3 Theμ-Extended Continuous Temporal Logic

One important application of a continuous temporal logic is time understood as a
real-numbered dimension. For this application, not only will the continuous temporal
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logic need to be well-founded, but we will need syntactic access to the minima. Since
C± is a continuous accessibility logic in each of the [+]x and [−]x operators, we will
apply the μ-extension techniques from Section 3.5 separately to each operator.

This procedure yields (for well-formed formulas W
±,μ
[0,∞]) the basic μ-extended

bimodal continuous accessibility logic, C±,μ, where μ-corespondence applies sepa-
rately to 〈+〉x and 〈−〉x . Frames that satisfy C±,μ are μ-extended bimodal continuous
accessibility frames. We will be concerning ourselves with those frames that are well-
structured, where again unique μ-accessibility and μ-induced adequately-founded
accessibility apply separately to the R

+,μ
x and R

−,μ
x relations.7

As in Section 3.5, the bimodal classical–fuzzy map can be extended to μ-extended
bimodal continuous accessibility frames by applying it to the subframes contain-
ing only the R+

x and R−
x relations. Again by construction, any bimodal fuzzy frame

F∗ = (
M,R+∗

, R−∗) can be mapped to a μ-extended bimodal continuous acces-
sibility frame via the bimodal fuzzy–classical map together with the conditions
that for any worlds w, u ∈ M and x ∈ [0, ∞], R

+,μ
x (w, u) holds if and only if

x = R+∗
(w, u) and R

−,μ
x (w, u) holds if and only if x = R−∗

(w, u). Notably, this
μ-extended bimodal continuous accessibility frame is well-structured. Call this the
μ-extended bimodal fuzzy–classical map.

Corollary 13 There is a satisfaction-preserving bijection between the class of well-
structured μ-extended bimodal continuous accessibility frames and the class of
bimodal fuzzy frames.

Proof (sketch) The bimodal classical–fuzzy map witnesses the corollary, following
Corollary 3 and Corollary 12.

Extend C±,μ to the μ-extended continuous temporal logic, C
μ
TL, by including the

following axiom schemata:

(g) μ-[0, ∞]-converse: For all ϕ ∈ W
±,μ
[0,∞] and all x ∈ [0, ∞],

ϕ→[+]μx 〈−〉μx ϕ and ϕ→[−]μx 〈+〉μx ϕ.

(h) μ-0-reflexivity (Tμ
0 ): For every ϕ ∈ W

±,μ
[0,∞],

[+]μ0 ϕ→ϕ.

(i) μ-additive transitivity (A4μ): For every ϕ ∈ W
±,μ
[0,∞] and x, y ∈ [0, ∞],

[+]μx+yϕ→[+]μx [+]μy ϕ.

C
μ
TL proves Tμ

0 in [−]μ0 and A4μ in [−]μx . T0 follows from Tμ
0 and μ-corespondence.

Any frame that satisfies C
μ
TL and is universal in the R+∞ ∪ R−∞ relation is a

μ-extended continuous temporal frame. As above, any frame that satisfies C
μ
TL is

isomorphic to a union of μ-extended continuous temporal frames.
A μ-extended continuous temporal frame has three notable properties:

• It is μ-±-antisymmetric, that is, ±-antisymmetric in the R
+,μ
x and R

+,μ
x relations.

7Those familiar with alternative formulations of metric temporal logics (like those in [1] and [2]) may
recognize the resultant 〈+〉μx and 〈−〉μx operators as “punctuality” operators.
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• It is reflexive in the R
+,μ
0 and R

−,μ
0 relations, and in each R+

x and R−
x relation.

• It has additively transitive accessibility in the R
+,μ
x and R

−,μ
x relations.

Since well-structured μ-extended continuous temporal frames have μ-induced ade-
quately-founded accessibility, such frames are also ±-antisymmetric in each R+

x and
R−

x relation and additively transitive in the R+
x and R−

x relations. Well-structured
μ-extended continuous temporal frames therefore satisfy CTL.

Proposition 12 If (M, {R+
x , R−

x , R
+,μ
x , R

−,μ
x : x ∈ [0, ∞]}) is a well-structured μ-

extended continuous temporal frame, then for every w, u ∈ M , exactly one of the
following is true.

• Only R
+,μ
0 (w, u) and R

−,μ
0 (w, u) hold;

• R
+,μ
x (w, u) holds for exactly one x ∈ [0, ∞] and R

−,μ
x (w, u) holds for no x ∈

[0, ∞];
• R

−,μ
x (w, u) holds for exactly one x ∈ [0, ∞] and R

+,μ
x (w, u) holds for no x ∈

[0, ∞].

Proof Fix a well-structured μ-extended continuous temporal frame F = (M,

{R+
x , R−

x , R
+,u
x , R

−,u
x : x ∈ [0, ∞]}), and worlds w, u ∈ M . By definition, R+∞∪R−∞

is universal, so at least one of R+∞(w, u) or R−∞(w, u) holds. Since F is a continuous
accessibility frame in R+

x and R−
x , it follows from μ-induced adequately-founded ac-

cessibility that either R
+,μ
x (w, u) holds for some x ∈ [0, ∞] or R

−,μ
y (w, u) holds

for some y ∈ [0, ∞], or both. If R
+,μ
x (w, u) holds, then by unique μ-accessibility,

R
+,μ

x′ (w, u) holds for no x′ �= x ∈ [0, ∞], and likewise for R
+,μ
y (w, u).

Suppose that both R
+,μ
x (w, u) and R

−,μ
y (w, u) hold. By μ-±-antisymmetry,

R
+,μ
y (u, w) holds. So by additively transitive accessibility, R

+,μ
x+y(w, w) holds. It

follows from reflexivity in R
+,μ
0 and unique μ-accessibility that x = y = 0.

7.4 Real line continuous temporal logic

Extend C
μ
TL to the real line continuous temporal logic, denoted CRL, by including the

following axiom schemata:

(j) μ-[0, ∞]-seriality (Dμ

[0,∞)): For every ϕ ∈ W
±,μ
[0,∞] and x ∈ [0, ∞),

[+]μx ϕ→〈+〉μx ϕ and [−]μx ϕ→〈−〉μx ϕ.

(k) μ-[0, ∞]-functionality (Fμ

[0,∞)): For every ϕ ∈ W
±,μ
[0,∞] and x ∈ [0, ∞],

〈+〉μx ϕ→[+]μx ϕ and 〈−〉μx ϕ→[−]μx ϕ.

(l) No endpoints:

¬〈+〉μ∞
 and ¬〈−〉μ∞
.
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Notably, CRL proves the schema:

• μ-subtractive transitivity: For every ϕ ∈ W
±,μ
[0,∞] and x, y ∈ [0, ∞),

〈+〉μx+y〈−〉μy ϕ→〈+〉μx ϕ.

The proof relies on μ-[0, ∞]-converse, A4μ, Dμ

[0,∞), and Fμ
[0,∞].8

Any μ-extended continuous temporal frame that satisfies CRL is called a real
line continuous temporal frame. By classical results and Lemma 1, here are further
notable properties of such a frame:

• It is serial in the real R
+,μ
x relations. That is, for each x ∈ [0, ∞) and w ∈ M ,

R
+,μ
x (w, u) holds for some u ∈ M . It is also serial in the real R

−,μ
x relations. (It

is also serial in each R+
x and R−

x relation, as a consequence of x-reflexivity.)
• It is functional in each R

+,μ
x relation. That is, for each x ∈ [0, ∞] and all w, u ∈

M , if R
+,μ
x (w, u) holds, then R

+,μ
x (w, v) does not hold for any v �= u ∈ M . It

is also functional in each R
−,μ
x relation.

• It has finiteμ-accessibility in R
+,μ
x , that is, for all w, u ∈ M , R+,μ∞ (w, u) doesn’t

hold. It also has finite μ-accessibility in R
−,μ
x .

• It is coreflexive in R
+,μ
0 and R

−,μ
0 , as a consequence of functionality and μ-0-

reflexivity.
• It has subtractively transitive accessibility in the R

+,μ
x and R

−,μ
x relations. That

is, if R
+,μ
x+y(w, v) holds and R

−,μ
y (v, u) holds, then R

+,μ
x (w, u) holds.

Well-structured real line continuous temporal frames, moreover, are coreflexive in
R+

0 and R−
0 , and have subtractively transitive accessibility in the R+

x and R−
x rela-

tions.

Proposition 13 If F = (M, {R+
x , R−

x , R
+,u
x , R

−,u
x : x ∈ [0, ∞]}) is a well-struc-

tured real line continuous temporal frame, then for every w �= u ∈ M , either
R

+,μ
x (w, u) holds for exactly one x ∈ (0, ∞) and R

−,μ
x (w, u) holds for no x ∈

[0, ∞], or R
−,μ
x (w, u) holds for exactly one x ∈ (0, ∞) and R

+,μ
x (w, u) holds for

no x ∈ [0, ∞].

8For arbitrary ϕ ∈ W
±,μ
[0,∞] and x, y ∈ [0,∞),

1. 〈+〉μx+y〈−〉μy ϕ→[+]μx+y〈−〉μy ϕ (Instance of Fμ
x+y (+) on 〈−〉μy ϕ)

2. 〈−〉μy ϕ→[−]μy ϕ (Instance of Fμ
y (−))

3. [+]μx+y〈−〉μy ϕ→[+]μx+y [−]μy ϕ (Nec with [+]μx+y , modal dist, and prop logic on 2)
4. [+]μx+y [−]μy ϕ→[+]μx [+]μy [−]μy ϕ (Instance of A4μ on [−]μy ϕ)
5. [+]μy [−]μy ϕ→〈+〉μy [−]μy ϕ (Instance of Dμ

y (+) on [−]μy ϕ)
6. 〈+〉μy [−]μy ϕ→ϕ (Instance of contraposition of μ-y-converse)
7. [+]μy [−]μy ϕ→ϕ (Propositional logic on 5 and 6)
8. [+]μx [+]μy [−]μy ϕ→[+]μx ϕ (Nec with [+]μx , modal dist, and prop logic on 7)
9. [+]μx ϕ→〈+〉μx ϕ (Instance of Dμ

x (+))
10. 〈+〉μx+y〈−〉μy ϕ→〈+〉μx ϕ (Propositional logic on 1, 3, 4, 8, and 9)
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Proof Fix a frame F = (M, {R+
x , R−

x , R
+,u
x , R

−,u
x : x ∈ [0, ∞]}), and worlds

w �= u ∈ M . By co-reflexivity in R
+,μ
0 and in R

−,μ
0 , neither R

+,μ
0 (w, u) nor

R
−,μ
0 (w, u) hold. By finite μ-accessibility, neither R

+,μ∞ (w, u) nor R
−,μ∞ (w, u) hold.

The proposition then follows immediately from Proposition 12.

7.5 Real Lines as Real Line Continuous Temporal Frames

The real number line can be understood as the pair (R,d), where the directed distance
function d : R2 → R is such that, for all w, u ∈ R, d(w, u) := u−w. To conform to
our indexing convention, we must restrict the range of the distance function to [0, ∞).
Therefore, define the standard real line as the triple

(
R,d+, d−)

, where d+(w, u) :=
u − w is defined only on w ≤ u ∈ R, and d−(w, u) := w − u is defined only on
w ≥ u ∈ R. For our purposes, a real line is a triple that is isomorphic to the standard
real line. Note that, on this definition, real lines are bimodal fuzzy frames.

Lemma 12 (a) If a frame (M, {R+
x , R−

x , R
+,u
x , R

−,u
x : x ∈ [0, ∞]}) is a well-

structured real line continuous temporal frame, then under the bimodal classical–
fuzzy map,

(
M,R+∗

, R−∗) is a real line. (b) If a bimodal fuzzy frame
(
M,R+∗

, R−∗)

is a real line, then under the μ-extended bimodal fuzzy–classical map, F =
(M, {R+

x , R−
x , R

+,u
x , R

−,u
x : x ∈ [0, ∞]}) is a well-structured real line continuous

temporal frame.

Proof of (a) Fix a well-structured real line continuous temporal frame F = (M,

{R+
x , R−

x , R
+,u
x , R

−,u
x : x ∈ [0, ∞]}), which maps to F∗ = (

M,R+∗
, R−∗) using the

bimodal classical–fuzzy map. We will construct a bijection E : M → R, and then
show that E is an isomorphism from F∗ into the standard real line.

Via the axiom of choice, fix w0 ∈ M . Define E(w0) := 0. By Proposition 13, for
every world w �= w0 ∈ M , there is some unique x ∈ (0, ∞) such that exactly one
of R

+,μ
x (w0, w) or R

−,μ
x (w0, w) holds. If R

+,μ
x (w0, w) holds, then define E(w) :=

x. If R
−,μ
x (w0, w) holds, then define E(w) := −x. By μ-[0, ∞)-seriality and

μ-[0, ∞]-functionality, E is a bijection.
To show that E is an isomorphism, we prove that for every world w, u ∈ M ,

R+∗
(E−1(w), E−1(u)) = u − w and is defined only when u ≥ w. The proof for

R−∗ is symmetric.
For all w, u, v ∈ M , using the bimodal classical–fuzzy map, note the following

properties of the bimodal fuzzy accessibility relations:

• By reflexivity in R
+,μ
0 and in R

−,μ
0 , R+∗

(w, w) = R−∗
(w, w) = 0.

• By μ-±-antisymmetry, R+∗
(w, u) = −R−∗

(u, w).
• By additively transitive accessibility, R+∗

(w, v) = R+∗
(w, u) + R+∗

(u, v).
• By subtractively transitive accessibility, R+∗

(w, v) = R+∗
(w, u) + R−∗

(u, v).

That R+∗
(E−1(w), E−1(u)) is defined only when u ≥ w follows immediately

from the definition of E and μ-±-antisymmetry. So fix w ≤ u ∈ M . Using the
definition of E and the properties of the bimodal fuzzy accessibility relation, we
examine three cases: w ≤ u < 0, w ≤ 0 ≤ u, and 0 < w ≤ u.
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When w ≤ u < 0, using subtractively transitive accessibility and μ-±-antisym-
metry:

R+∗
(E−1(w), E−1(u)) = R+∗

(E−1(w), E−1(0)) + R−∗
(E−1(0), E−1(u))

= −R−∗
(w0, E

−1(w)) + R−∗
(w0, E

−1(u))

= −w + u = u − w.

When w ≤ 0 ≤ u, using additively transitive accessibility and μ-±-antisymmetry,
along with reflexivity:

R+∗
(E−1(w), E−1(u)) = R+∗

(E−1(w), E−1(0)) + R+∗
(E−1(0), E−1(u))

= −R−∗
(w0, E

−1(w)) + R+∗
(w0, E

−1(u))

= −w + u = u − w.

When 0 < w ≤ u, using μ-±-antisymmetry and subtractive transitivity:

R+∗
(E−1(w), E−1(u)) = −R−∗

(E−1(u), E−1(w))

= R+∗
(E−1(0), E−1(u)) − R+∗

(E−1(0), E−1(w))

= R+∗
(w0, E

−1(u)) − R+∗
(w0, E

−1(w))

= u − w. (a)

Proof of (b) It is straightforward to check that real lines satisfy CRL. (b)

As above, CRL can be considered the canonical directed continuous modal logic
for real lines.

Theorem 12 (Canonicity of CRL for real lines) A well-structured μ-extended
continuous temporal frame satisfies CRL if and only if it is a real line.

Proof Follows directly from Corollary 13 and Lemma 12.

Remark C
μ
TL could alternatively be extended to an A-continuous temporal logic,

where A is any subset of R that is algebraically closed under + and −, such as Z

or Q. To do so, extend C
μ
TL with schemata μ-A ∩ [0, ∞)-seriality, μ-A ∩ [0, ∞]-

functionality, and no endpoints. Such a logic is canonical, by similar proofs to the
above, in the class of frames isomorphic to

(
A,d+, d−)

, the corresponding subset of
the standard real line.

Appendix A: Plantability Proofs

Recall the definition of a plantable property from Section 3.3:

Definition 5 Let � be a frame property. Let F = (M, {Rx : x ∈ [0, ∞]}) be an
arbitrary frame that has �. Let (M, a) be an arbitrary pointed model extending F.
Let

(
M†, 〈a〉) be its planted model, with M† = (

M†, {R†
x : x ∈ [0, ∞]}, V †

)
.

Property � is plantable if and only if there exists a set of accessibility relations
{R′

x : x ∈ [0, ∞]} such that:
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1. for all x ∈ [0, ∞], R′
x ⊇ R

†
x ;

2.
(
M†, {R′

x : x ∈ [0, ∞]}) has �;
3.

(
M†, {R′

x : x ∈ [0, ∞]}) is well-founded; and
4. for all w†, u† ∈ M† corresponding to w and u, respectively, and for all x ∈

[0, ∞], R′
x(w

†, u†) holds only if Rx(w, u) holds.

Below we show that various properties considered in this paper are plantable.

A.1 Proof of Lemma 2

We will show that upwardly closed accessibility is plantable.
Let (M, a) be an arbitrary pointed model with upwardly closed accessibility, with

M = (M, {Rx : x ∈ [0, ∞]}, V ). Let
(
M†, 〈a〉) be its planted model, with M† =

(M†, {R†
x : x ∈ [0, ∞]}, V †). Define M′ := (

M†, {R′
x : x ∈ [0, ∞]}, V †

)
, where

{R′
x : x ∈ [0, ∞]} is constructed as follows.

• Definition of R′
x : For w†, u† ∈ M† and x, y ∈ [0, ∞],

R′
x := {(w†, u†) : R†

y(w
†, u†) holds for some y ≤ x}.

In other words, the x-accessibility relations of M′ are defined to be the upwardly
closed accessibility relations of M†.

By construction, {R′
x : x ∈ [0, ∞]} satisfies the first three conditions of being a

plantable model. For the fourth condition, fix arbitrary w†, u† ∈ M†, corresponding
to w, u ∈ M , respectively. Suppose that R′

x(w
†, u†) holds for some x ∈ [0, ∞]. By

definition, there is some y ≤ x such that R
†
y(w

†, u†) holds. Since (M, a) is bisim-
ilar to (M†, 〈a〉), Ry(w, u) holds. Since (M, a) has upwardly closed accessibility,
Rx(w, u) holds.

A.2 Proof of Lemma 3

We will show that upwardly closed accessibility, reflexivity, symmetry, and additively
transitive accessibility are jointly plantable.

Let (M, a) be an arbitrary pointed model that has upwardly closed accessibility,
reflexivity, symmetry, and additively transitive accessibility, with M = (M, {Rx :
x ∈ [0, ∞]}, V ). Let (M†, 〈a〉) be its planted model, with M† = (M†, {R†

x : x ∈
[0, ∞]}, V †). Define M′ := (M†, {R′

x : x ∈ [0, ∞]}, V †), where {R′
x : x ∈ [0, ∞]}

is constructed via transfinite recursion as follows.

• Definition of R′
x :

R′
x :=

⋃

α∈ORD

R′α
x .

• Base case: For w†, u† ∈ M† and x, y ∈ [0, ∞],

R′0
x :=

{
(w†, u†) : R†

y(w
†, u†) or R†

y(u
†, w†) holds for some y ≤ x

}
.
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• Successor case: For w†, u†, v†∈ M† and x, y ∈ [0, ∞],
R′α+1

x+y :=
{
(w†, v†) : R′α

x (w†, u†) and R′α
y (u†, v†) hold for some u†

}
.

• Limit case:
R′α

x :=
⋃

β<α

R′β
x .

In other words, the x-accessibility relations of M′ are defined to be the upwardly
closed and symmetrized accessibility relations of M†, successively made additively
transitive (which preserves upwardly closed accessibility and symmetry).

By construction, R′
x ⊇ R

†
x for all x ∈ [0, ∞], satisfying the first condition of being

a plantable property. We show that {R′
x : x ∈ [0, ∞]} satisfies the remaining three

conditions.

Lemma 13 M′ has all of upwardly closed accessibility, reflexivity, symmetry, and
additively transitive accessibility.

Proof To show that M′ has upwardly closed accessibility, we perform a simple proof
by transfinite induction. For the base case, by construction, {R′0

x : x ∈ [0, ∞]} is
upwardly closed. For the successor case, the inductive hypothesis is that, for fixed
α ∈ ORD, {R′α

x : x ∈ [0, ∞]} is upwardly closed. Fix w†, v† ∈ M† and z′ ≥ z ∈
[0, ∞]. Suppose that R′α+1

z (w†, v†) holds. Then there is some u† ∈ M† and x, y ∈
[0, ∞] such that R′α

x (w†, v†) and R′α
y (u†, v†) hold and x + y = z. Since {R′α

x :
x ∈ [0, ∞]} is upwardly closed, there is an x ′ ≥ x, y′ ≥ y ∈ [0, ∞] such that
R′α

x′ (w†, u†) and R′α
y′ (u†, v†) hold and x′ + y′ = z′. It follows from the definition

of the successor case that R′α+1
z′ (w†, v†) holds. Therefore, {R′α+1

x : x ∈ [0, ∞]} is
upwardly closed. For the limit case, the proof is transparent.

To show that M′ is reflexive, note that (M, a) is reflexive. By the definition of
planted models, (M†, 〈a〉) is thus reflexive in 0-accessibility. It follows that M′ is
reflexive in 0-accessibility. Since M′ also has upwardly closed accessibility, M′ is
reflexive.

To show that M′ is symmetric, we again proceed by transfinite induction. For the
base case, by construction, {R′0

x : x ∈ [0, ∞]} is symmetric. For the successor case,
the inductive hypothesis is that, for fixed α ∈ ORD, {R′α

x : x ∈ [0, ∞]} is symmetric.
Fix w†, v† ∈ M† and z ∈ [0, ∞]. Suppose that R′α+1

z (w†, v†) holds. Then there is
some u† ∈ M† and x, y ∈ [0, ∞] such that R′α

x (w†, u†) and R′α
y (u†, v†) hold and

x + y = z. Since {R′α
x : x ∈ [0, ∞]} is symmetric, R′α

x (u†, w†) and R′α
y (v†, u†) also

hold. It follows from the definition of the successor case that R′α+1
x+y (v†, w†) holds,

which means R′α+1
z (v†, w†) holds. Therefore, {R′α+1

x : x ∈ [0, ∞]} is symmetric.
For the limit case, the proof is transparent.

To show that M′ has additively transitive accessibility, fix w†, u†, v† ∈ M† and
x, y ∈ [0, ∞]. Suppose that R′

x(w
†, u†) and R′

y(u
†, v†) hold. By the definition of

R′
x , it follows that for some α, β ∈ ORD, R′α

x (w†, u†) and R
′β
y (u†, v†) hold. Fix

one such α and β, and let γ be the larger of the two. By the definitions of the suc-
cessor case and the limit case, it follows from reflexivity in 0-accessibility that if
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R′α
x (w†, u†) holds, R

′γ
x (w†, u†) holds, and if R

′β
y (u†, v†) holds, R

′γ
y (u†, v†) holds.

Thus, by the definition of the successor case, R
′γ+1
x+y(w

†, v†) holds. From this it fol-
lows by the definition of R′

x that R′
x+y(w

†, v†) holds. M′ therefore has additively
transitive accessibility.

Lemma 14 M′ is well-founded.
Proof (M†, 〈a〉) is well-founded. Here is the concern for M′. Planted models ensure
well-foundedness by expanding one world’s continuum-many accessibility relations
to a single world into one world’s single accessibility relation to continuum-many
worlds. But the construction of R′

x allows one world to access another through
continuum-many paths. We must ensure that these paths don’t generate a set of
accessibility relations with no minimum.

Definition 14 For all w†, v† ∈ M†, a direct path from w† to v† is a path from w†

to v† such that:

1. for each element of the path u
†
1 before v†, the next element u

†
2 is such that, for

some x ∈ [0, ∞], either R
†
x(u

†
1, u

†
2) holds or R

†
x(u

†
2, u

†
1) holds; and

2. no element appears in the path more than once.

The planted model (M†, 〈a〉) is just the tree-unraveling of (M, a), save for self-
0-accessibility. Since, by definition, no direct path has a world that appears more
than once, self-0-accessibility cannot connect two elements of a direct path. So for
the construction of direct paths, (M†, 〈a〉) is a rooted tree-like structure. From this it
follows that, for all w†, v† ∈ M†, there is exactly one direct path from w† to v†, and
the path has a finite number of elements. We will henceforth call it the direct path
from w† to v†.

Definition 15 For all w†, v† ∈ M†, the length of the direct path from w† to v† is
the sum of the indices of the accessibility relations connecting each pair of successive
elements of the path.

More formally, let 〈u†
1, u

†
2, . . . , u

†
n〉 be the direct path from w† to v†. Define {xi :

1 ≤ i ≤ n} as follows.

xi :=
{

x such that R
†
x(u

†
i , u

†
i+1) or R

†
x(u

†
i+1, u

†
i ) holds if i < n;

0 if i = n.

The length of the path is then:

λ(w†, v†) :=
n∑

i=1

xi .

Consider arbitrary worlds w†, u†, v† ∈ M†, and the direct paths from w† to u†,
from u† to v†, and from w† to v†. Construct a possibly indirect path from w† to v†

by concatenating the direct paths from w† to u† and from u† to v†, merging the last
element of the former with the first element of the latter. The direct path from w† to
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v† is a subpath of the possibly indirect path from w† to v†, for otherwise there would
be more than one direct path from w† to v†. Therefore, for all w†, u†, v† ∈ M†,

λ(w†, v†) ≤ λ(w†, u†) + λ(u†, v†).

To prove that M′ is well-founded, we will prove that, for all w†, v† ∈ M†,
λ(w†, v†) is the minimum x such that R′

x(w
†, v†) holds. Since M′ is reflexive

in 0-accessibility and has additively transitive accessibility, for all w†, v† ∈ M†,
R′

λ(w†,v†)
(w†, v†) holds. We thus need to show that, for all x such that R′

x(w
†, v†)

holds, x ≥ λ(w†, v†). We show this by performing a proof by transfinite induction.
For the base case, fix w†, v† ∈ M† and x ∈ [0, ∞]. Suppose that R′0

x (w†, v†)

holds. By construction, there is a y ≤ x such that either R
†
y(w

†, v†) holds or

R
†
y(v

†, w†) holds. Since (M†, 〈a〉) is a rooted tree-like structure, it follows that
the direct path between w† and v† is 〈w†, v†〉, which has length λ(w†, v†) = y.
Therefore, x ≥ λ(w†, v†).

For the successor case, the inductive hypothesis is that, for fixed α ∈ ORD: for
all w†, v† ∈ M† and x ∈ [0, ∞], if R′α

x (w†, v†) holds, then x ≥ λ(w†, v†). Now
fix w†, v† ∈ M† and z ∈ [0, ∞]. Suppose that R′α+1

z (w†v†) holds. Then there is
some u† ∈ M† and x, y ∈ [0, ∞] such that R′α

x (w†, u†) and R′α
y (u†, v†) hold and

x +y = z. By hypothesis, x ≥ λ(w†, u†) and y ≥ λ(u†, v†). Therefore, z = x +y ≥
λ(w†, u†) + λ(u†, v†) ≥ λ(w†, v†).

For the limit case, the proof is straightforward.

Lemma 15 For all w†, v† ∈ M† corresponding to w, v ∈ M , respectively, and for
all x ∈ [0, ∞], if R′

x(w
†,v†) holds, then Rx(w, v) holds.

Proof We perform a proof by transfinite induction.
For the base case, fix w†, v† ∈ M†, corresponding to w, v ∈ M , respectively, and

fix x ∈ [0, ∞]. Suppose that R′0
x (w†, v†) holds. By construction, there is a y ≤ x

such that either R
†
y(w

†, v†) holds or R
†
y(v

†, w†) holds. Since (M†, 〈a〉) is bisimilar
to (M, a), either Ry(w, v) or Ry(v, w) holds. Since M is symmetric, if Ry(v, w)

holds, then Ry(w, v) holds. Thus, Ry(w, v) holds. Since M has upwardly closed
accessibility, Rx(w, v) holds.

For the successor case, the inductive hypothesis is that, for fixed α ∈ ORD: for
all w†, v† ∈ M† corresponding to w, v ∈ M , respectively, and all x ∈ [0, ∞],
if R′α

x (w†, v†) holds, then Rx(w, v) holds. Now fix w†, v† ∈ M† corresponding
to w, v ∈ M , respectively, and fix z ∈ [0, ∞]. Suppose that R′α+1

z (w†, v†) holds.
Then there is some u† ∈ M† corresponding to u ∈ M and x, y ∈ [0, ∞] such
that R′α

x (w†, u†) and R′α
y (u†, v†) hold and x + y = z. By hypothesis, Rx(w, u)

and Ry(u, v) hold. Since M has additively transitive accessibility, Rx+y(w, v) holds,
which means Rz(w, v) holds.

For the limit case, the proof is straightforward.

A.3 Proof of Lemma 5

We will show that upwardly closed accessibility, reflexivity, symmetry, additively
transitive accessibility, and D-bounded accessibility are jointly plantable for each
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D ∈ [0, ∞]. The proof is the same as for Lemma 3 in Appendix A.2, except as
follows.

Fix D ∈ [0, ∞]. Stipulate that (M, a) also has D-boundedness. Define M′ :=
(M†, {RD

x : x ∈ [0, ∞]}, V †), with:

• Definition of RD
x : For w†, u† ∈ M† and x, y ∈ [0, ∞],

RD
x :={(w†, u†) : R′

x(w
†, u†) holds, or R′

y(w
†, u†) holds for some y ≥ x ≥ D}.

In other words, the accessibility relations of M′ are defined to be the same as in
Lemma 3 in Appendix A.2, except that they are D-bounded.

By construction, RD
x ⊇ R

†
x for all x ∈ [0, ∞]. Also by construction, M′ will

have D-bounded accessibility, preserving upwardly closed accessibility, reflexivity,
symmetry, and additive transitivity. Again by construction, since R′

x is well-founded,
RD

x is well-founded. So the first three conditions of being a plantable property are
satisfied.

For the fourth condition, fix w†, u†, ∈ M†, corresponding to w, u ∈ M , respec-
tively, and fix x ∈ [0, ∞]. Suppose RD

x (w†, u†) holds. Then either R′
x(w

†, u†) holds
or there is a y ≥ x ≥ D such that R′

y(w
†, u†) holds. In case R′

x(w
†, u†) holds, then

by Lemma 15, Rx(w, u) holds. In case there is a y ≥ x ≥ D such that R′
y(w

†, u†)

holds, then by Lemma 15, Ry(w, u). Since M has upwardly closed accessibility,
R∞(w, u) holds. Since M has D-bounded accessibility, RD(w, u) holds. Since M

has upwardly closed accessibility, Rx(w, u) holds.

A.4 Proof of Lemma 9

We will show that upwardly closed accessibility, reflexivity, symmetry, additively
transitive accessibility, D-bounded accessibility, and coreflexive 0-accessibility are
jointly plantable for each D ∈ [0, ∞]. The proof is the same as for Lemma 5 in
Appendix A.3, except as follows.

Stipulate that (M, a) is coreflexive in 0-accessibility. By the definition of planted
models, (M†, 〈a〉) is also coreflexive in 0-accessibility. From this it follows that M′
is coreflexive in 0-accessibility.
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