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Abstract
I propose a theory of space with infinitesimal regions called smooth infinitesimal
geometry (SIG) based on certain algebraic objects (i.e., rings), which regiments a
mode of reasoning heuristically used by geometricists and physicists (e.g., circle
is composed of infinitely many straight lines). I argue that SIG has the following
utilities. (1) It provides a simple metaphysics of vector fields and tangent space
that are otherwise perplexing. A tangent space can be considered an infinitesi-
mal region of space. (2) It generalizes a standard implementation of spacetime
algebraicism (according to which physical fields exist fundamentally without an
underlying manifold) called Einstein algebras. (3) It solves the long-standing prob-
lem of interpreting smooth infinitesimal analysis (SIA) realistically, an alternative
foundation of spacetime theories to real analysis (Lawvere Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 21(4), 277–392, 1980). SIA is formulated in
intuitionistic logic and is thought to have no classical reformulations (Hellman Jour-
nal of Philosophical Logic, 35, 621–651, 2006). Against this, I argue that SIG is
(part of) such a reformulation. But SIG has an unorthodox mereology, in which the
principle of supplementation fails.

Keywords Continuum · Smooth infinitesimal geometry ·
Smooth infinitesimal analysis · Vectorial quantity · Tangent space ·
Einstein algebras · Nonclassical mereology

1 Continua with Infinitesimal Parts

What is a circle? Some—for example, Bryson of Heraclea, Kepler, Galileo and
Leibniz—say that a circle is a regular polygon with infinitely many sides, each of
which has an infinitesimal length (Boyer [6]; see also Bell [5]). This conception of a
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circle was utilized in reasoning about the area of a circle: just as the area of a regular
polygon with finitely many sides is equal to half of the product of its apothem (the
distance from the center to a side) and its perimeter, the area of a circle as a regular
polygon with infinitely many sides is equal to half of the product of its radius and its
perimeter. In general, any smooth curve is composed of infinitesimally short straight
microsegments.

This idea about circles and curves also continues to be part of widely used heuristic
reasoning in physics. For example, consider an object rotating along a circular orbit
at a constant speed. What is its acceleration? Here’s how physicists use infinitesimals
to anticipate the answer. We can first imagine that the object in question rotates for
an infinitesimal amount of time �t . By assuming (among other things) that the tra-
jectory of the object during �t is straight, we can easily obtain the correct equation
for its acceleration (see Morin [30]).

But this mode of reasoning is considered merely heuristic, because space and time
(or spacetime) standardly construed do not have infinitesimal parts. The standard
view says that a line is composed of uncountably many unextended points, which
can be algebraically represented by real numbers. Every extended part of a line has
a finite length, and there are no infinitesimal line segments. The aforementioned rea-
soning can be regimented by the limit approach without involving infinitesimals.
For example, velocity is the limit of distance divided by time as the distance in
question gets smaller and smaller. As this view became more influential, infinites-
imals were condemned as “cholera-bacilli” [10] and “unnecessary, erroneous, and
self-contradictory” [36].

However, the standard view faces many conceptual difficulties. For one thing,
the reformulation of infinitesimal reasoning in terms of limits is rather baroque and
unintuitive, and leads to various interpretative issues for vectorial-like physical quan-
tities. If a velocity is the limit of distance divided by time as the time approaches
zero, then is it a mere logical construction out of occupying various spacetime points
(for example, see Tooley [40], Arntzenius [1], Butterfield [9])? The nature of the
electromagnetic field is similarly puzzling: are the vectorial field values extrinsic to
spacetime points (see Weatherson [44], Busse [8])? Things get even messier when
it concerns curved spacetime, which involves tangent spaces and their relations. Are
tangent spaces physical spaces over and beyond our ordinary spacetime, or are they
reducible to other physical features of the world? How are different tangent spaces
joined up in curved spacetime? Reading answers directly from the mathematical
formalism would commit us to all kinds of abstract entities at the fundamental level.

These questions (among others) motivate us to look for alternatives to the stan-
dard view. In this paper, I would like to address these questions by advancing a
novel theory of space with infinitesimal regions and consider tangent space as such
regions. Although infinitesimals were banished from standard calculus, researches
on infinitesimals have been vibrant (see Ehrlich [15]). I will utilize the mathemat-
ical literature on an alternative foundation of calculus called smooth infinitesimal
analysis (SIA) (part of the more encompassing theory synthetic differential geometry
(SDG)), developed by Lawvere and others (see Lawvere [25], Kock [24], Moerdijk
and Reyes [29]). (Another well-known infinitesimal theory is Robinson’s [33] non-
standard analysis, which augments the familiar real numbers with infinite numbers
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and their infinitesimal inverses. But this theory is less relevant to the geometric
considerations I have mentioned.1)

While SIA is an interesting candidate because it is motivated exactly by the pur-
pose of regimenting physicists’ mode of reasoning with infinitesimals (see Lawvere
[25], Moerdijk and Reyes [29]), there is a serious problem with interpreting its state-
ments literally and realistically. The problem is that it is formulated in intuitionistic
logic and is classically inconsistent (see Bell [4]). Hellman [23] also argued that there
SIA cannot be reformulated as a classically consistent theory of infinitesimals.2

But there is a way for classical logicians to share the insight of SIA, for I will argue
that there is a classically consistent theory of space with infinitesimal regions in its
vicinity that also regiments the aforementioned mode of reasoning. I will advance
such a theory—smooth infinitesimal geometry (SIG)—based on the models for SIA
proposed by Moerdijk and Reyes [29] consisting of algebraic objects called rings
(Section 2). According to SIG, each of those rings represents a region of space (or
spacetime) and some represent infinitesimal ones. I will argue that this new theory
has several distinct merits. First of all, it can provide a straightforward understanding
of vectorial physical quantities and tangent spaces (Section 3). We can indeed say
that, for example, velocities are properties of trajectories that are intrinsic to infinites-
imal durations of time. Similarly, electromagnetic field values are intrinsic properties
of infinitesimal parts of the field. A tangent space at a spacetime point is simply
an infinitesimal spacetime region. However, I will leave open whether this theory
is overall better than the standard view due to its very unusual features: its mereol-
ogy is nonclassical in that the principle of supplementation (according to which X
is a proper part of Y only if Y has a proper part disjoint from X) fails. My under-
lying interest is to expand our understanding of space with conceptually rigorous,
mathematically grounded, and technically fruitful alternative theories of space.

Second, SIG generalizes Einstein algebras discussed in philosophy of physics,
which is considered a distinct way of conceptualizing relativistic physics alterna-
tive to substantivalism (see Geroch [19], Earman and Norton [14], Rosenstock,
Barrett and Weatherall [34], Menon [28]). The algebraic objects involved in this
approach typically constitute a proper subcollection of those involved in SIG because
infinitesimal regions are excluded.3 Such an exclusion, as I will argue, is unnecessary.

I will further argue that SIG can be considered a realistic interpretation of SIA and
thereby overcome the main interpretative difficulty of SIA (Section 5). Recall that

1Here’s a brief explanation for why. According to nonstandard analysis, we can use the same arithmetic
operations (e.g., multiplication, square root, logarithm) on the infinitesimals as on standard real numbers.
A polygon with N sides—where N is an infinite number in nonstandard analysis—is not a circle but still
a polygon with sharp angles (180◦ − 360◦

N
). (see Bell [4], Mayberry [27], Reeder [32]; for infinitesimal

theories of space based on nonstandard analysis, see Chen [11, 12])
2There is a disagreement on the significance of this problem in the literature. As I will also mention later
in the paper, some people hold that we should give up on classical logic as the correct logic for fully-
interpreted theories [21], while others hold that we should give up SIA as a candidate realistic theory of
space [23, 32].
3The explicit exclusion, as far as I am concerned, only occured in [34]. It may be excluded in other authors’
work as a non-obvious consequence of their formalism. But this requirement is not necessary for doing
physics, as demonstrated in [13].
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SIG is based on the classical models for SIA. The usual perspective on the relation
between SIA and its models is that the models are abstract structures invoked to prove
the intuitionisticconsistency of SIA (Bell [4], Hellman [23]). But we can reverse
the usual order of things: instead of taking the object language realistically and its
models instrumentally, we can take the models realistically and the object language
instrumentally (akin to the semantic view of theories in [42]). Also, an interpretation
ought to preserve the important virtues of the theory to be interpreted. SIG indeed
satisfies this and therefore captures the realistic significance of SIA.

It might be worth mentioning that there are other recent proposals for alternative
theories of nilpotent infinitesimals that obey classical logic, such as [20] ring of Fer-
mat reals. These alternative approaches—while deserving more attention—will not
be discussed in this paper. But I shall briefly note that these alternative theories do not
have the distinct features of SIG. For example, Giordano’s approach does not provide
a unique interpretation of a tangent space.4 It also does not have a natural connection
to Einstein algebras.

2 Smooth Infinitesimal Geometry

In this section, I will present a preliminary theory of space with infinitesimal regions
that is useful for regimenting geometricists’ and physicists’ mode of reasoning with
infinitesimals and for solving the conceptual difficulties related to vectorial quantities
and tangent space. I call this theory Smooth Infinitesimal Geometry (SIG).

2.1 Ontology andMereology

According to SIG, all regions of space can be represented by rings of smooth func-
tions on real coordinate space (“smooth” means being indefinitely differentiable).
A ring is a set closed under binary operations addition and multiplication satisfy-
ing certain axioms like distributivity. Smooth functions are closed under addition
and multiplication. For example, if we multiply f (x) = ax with g(x) = b, we get
h(x) = abx. For simplicity, I will start by focusing on one-dimensional region of
space (or pretending that our space is one-dimensional). I will postulate that regions
of (one-dimensional) space are represented by all the quotient rings of C∞(R), the
ring of all smooth functions over the real line R.

A quotient ring of C∞(R) consists of equivalence classes of members of C∞(R)

under certain equivalence relations that preserve the original ring structure. For exam-
ple, consider the equivalence relation of having the same value on the real interval
[0, 1]. Then, two smooth functions belong to different equivalence classes if and only

4In Giordano’s approach, a line is not represented by real numbers but by a + bx, where a, b range over
real numbers, and b2 = 0. Then, for each real number a (standard point), it is associated with infinitely
many infinitesimal segments [a − bx, a + bx], each of which seem to have equal standing to represent
a tangent space. In contrast, the approach I am considering features a unique “smallest” extended region
around each point that serves as a tangent space (“smallest” in the sense that it is properly contained in all
other extended regions around the point).
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if their values differ on [0, 1], which allows each class to be represented by a smooth
function on [0, 1]. Thus, these equivalence classes form a quotient ring isomorphic to
the ring of all smooth functions on [0, 1], which is denoted by C∞([0, 1]).5 (Hence-
forth I will identify quotient rings with such representatives for brevity.) Similarly,
C∞({0}), or the ring of real numbers R, is a quotient ring of C∞(R) under the
equivalence relation of having the same value at zero.

Furthermore, I postulate that the quotient relation between rings represents the
parthood relation between regions. For example, since C∞([0, 1]) is a quotient ring
of C∞(R), the region it represents is a part of the region represented by C∞(R).
It is not hard to see, then, that C∞(R) represents the whole space, while its proper
quotient rings represent its proper parts. To take stock, we have the following
principle:

RING REPRESENTATION. There is a one-to-one correspondence between all
nonzero quotient rings of C∞(R) and all regions of space such that region X is
a part of region Y iff X’s corresponding ring is a quotient ring of Y.6

Before I expound on the implications of this principle, let me first contrast it to the
standard view of space. According to the standard view, (one-dimensional) space
consists of points that can be algebraically represented by real numbers. Every region
can be represented by a subset of the real line, and one region is a part of another
if the corresponding set of the former is a subset of that of the latter. Some readers
might wonder whether RING REPRESENTATION eventually amounts to an equivalent
view of space with merely different representations: instead of representing a region
with a subset of the real line, it might seem that I represent it with all the smooth
functions on the subset (for any two closed subsets A, B of R, if A is a subset of B,
then C∞(A) is a quotient ring of C∞(B)). What is the difference? Let me explain.

To reason about the relations between regions more conveniently in the upcoming
discussions, I shall utilize the technical notion of ideals which uniquely determine
quotient rings. An ideal of a ring is a subset of it closed under addition and multipli-
cation by ring members. For example, the set of even numbers is an ideal of the ring
of natural numbers because even + even = even and even × integer = even. It
is helpful to think of an ideal of a ring as a set of elements that can be consistently
identified with zero—it is “collapsable” set. More technically, for any rings A and
B, and any homomorphism from A to B, the set of all elements that it maps to zero
in B is an ideal of A (a homomorphism is a map that preserves the ring structure).
For example, the set of all smooth functions that vanish at zero is an ideal of C∞(R)

5In general, for any closed set A of real numbers, the set of all equivalence classes consisting of all smooth
functions that agree on A constitutes a quotient ring of C∞(R) isomorphic to the ring of all smooth
functions on A. Note, however, that the set of all smooth functions on an open set of real numbers does
not constitute a quotient ring of C∞(R). Consider C∞((0, 1)). This includes smooth functions whose
extensions to [0,1] diverge at point 0 and 1. Such functions cannot be extended to smooth functions on
R and thus do not correspond to any equivalence class of smooth functions on R as previously indicated.
However, this is a quotient ring of C∞(R2). In fact, for every manifold, the set of all smooth functions on
it is a quotient ring of C∞(Rn) for some dimension n.
6I admit only nonzero rings because the zero ring would correspond to the null region, which I do not
consider real.
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(call it “I0”) because those functions can be mapped to zero in R under the map that
takes each function to its value at zero. Every ideal of a ring defines a quotient ring
by collapsing all elements that agree within that set, just as I0 defines the ring R by
collapsing all functions that agree at zero.

A quotient ring that plays a special role in SIG is the ring of affine functions on R,
which have the form f (x) = a +bx. Call this ring L (for “linear”). This is a quotient
ring of C∞(R) under the equivalence relation of having the same value at zero and
the same derivative at zero. In this case, each equivalence class can be represented by
an affine function with its coefficients respectively being the value and the derivative
of the members of that equivalence class at zero.7 The ideal that determines this ring
is the set of all smooth functions that have both zero value and zero derivative at zero
(call it “I�”).

Because ideals uniquely determine quotient rings, RING REPRESENTION implies
that every region of space can be represented by an ideal of C∞(R). The part-
hood relation between regions can be conveniently represented by the subset relation
between their corresponding ideals, but with the direction reversed. This is because
the larger the ideal is, the fewer equivalence classes it yields, which form a smaller
quotient ring, and therefore the smaller region it represents. For example, R is a
quotient ring of L, and correspondingly, we have I0 ⊃ I�. To highlight, RING

REPRESENTATION implies:

IDEAL REPRESENTATION. A region X is a part of another region Y if and only
if Y ’s representing ideal is a subset of X’s ideal.

Now, I can show a few basic results about the structure of space based on this
principle. First:

Space contains points that are mereologically simple.
To show this, we just need to show that C∞(R) have maximal (nontrivial) ideals.

Indeed, I0 is one such ideal. Suppose there is a larger ideal I than I0. Let f be an
element of the larger ideal that is not in I0. Then, f is a smooth function whose value
at zero is not zero. Then, every smooth function over R can be obtained through
f , which means that this ideal equals the whole ring C∞(R), and therefore trivial.8

Therefore, I0 is a maximal (nontrivial) ideal. We say, then, for any real number p,
the ideal of all smooth functions that vanish at p represents a point p in space.

7As a result, addition on L is as usual, but multiplication on L is the “affine approximation” of the multi-
plication on C∞(R)—that is, for two affine functions f and g, if h is their product in C∞(R), then their
product in L equals h(0) + h′(0)x). A special feature of the ring is that it contains nilpotent elements,
elements that square to zero. For example, consider the function f (x) = bx, where b is an arbitrary real
number. Since f 2(x) = b2x2 has zero value and zero derivative at zero, it equals the zero function in L.
So f (x) = bx is a nilpotent element of L.
8Suppose f (0) �= 0. Then for any smooth function g, we have

g = g(0)

f (0)
f + (g − g(0)

f (0)
f )

Here, g(0)
f (0) f is in I because f is in the ideal and g(0)

f (0) is a ring element. g − g(0)
f (0) f is also in I because it

vanishes at zero and therefore is in I0 ⊂ I . So, g is in I .
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Second:

Each point is contained in an infinitesimal region that is part of all other regions
around the point.

Putting aside “infinitesimal” for the moment, this claim amounts to there being next
largest ideals to the maximal ideals in the sense that there no other ideals strictly
between them and the maximal ideals. We can show that I� is indeed the next largest
ideal to I0.9 Suppose there is an ideal I between them. Let f be an element of I

that is not in I�. Then, f is a smooth function that either has a non-zero value or
a non-zero derivative at zero. By the previous reasoning, f cannot have a non-zero
value at zero without I becoming trivial. But by a similar reasoning, f cannot have a
non-zero derivative either without I being identical to I0.10 Thus, the supposition is
impossible. So, I� is the next largest ideal, and represents the smallest region around
zero. I will call it a nilpotent region. Note that the region is so minuscule that it does
not contain any other point. We can picture each point of space as tightly “shelled”
by such nilpotent regions. Moreover, we can show that such a shell is further shelled
by a third smallest region, which in turn is shelled by a fourth smallest, ad infinitum.
Each of these infinitely many layers can be represented by the ideal of smooth func-
tions whose zeroth, first, ..., and nth derivatives all vanish at some point for some
appropriate n.

All these regions are infinitesimal in the sense that they are contained in every
finite interval around the relevant points. A finite interval region [a, b] is represented
by the ideal of all smooth functions that vanish on the interval [a, b]. It is easy to
confirm that all infinitesimal regions around a point are contained in all the finite
intervals around that point: if a function vanishes at an interval, then its i-th derivative
at a point properly within the interval has to be zero for any i. Another way of seeing
these regions as infinitesimal is that their ideals throw out all information of a smooth
function other than its value and derivatives at a point.

To summarize: space is composed of unextended points, each of which is con-
tained in an infinitesimal region (and indeed infinitely many of them) that is
properly contained in all finite regions around it. A nilpotent region is the smallest
infinitesimal region around a point, which has the point as its only proper part.

Nonclassical mereology The above picture implies that the mereology of space
does not satisfy classical mereology. In particular, the principle of supplementation,
according to which there is always a reminder when you “subtract” a proper part
from a whole.

9One may ask whether there are ideals that neither properly include I� nor are properly included by I�.
Yes, there are. But such ideals do not represent regions around point zero. For example, the ideal of all
functions that vanish at both zero and some other point represents the fusion of zero and the other point.
This ideal is not strictly between I0 and I�.
10Suppose f ′(0) �= 0. Then for any smooth function g that vanishes at zero, we have

g = g′(0)
f ′(0)

f + (g − g′(0)
f ′(0)

f )

This shows that g is also in I because both g′(0)
f ′(0) f and g− g′(0)

f ′(0) f are in I (the latter is in I�). Thus, I = I0.
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First, we can quickly confirm that the mereology of space satisfies the following
three core axioms of parthood [41]:

REFLEXIVITY. Every region is a part of itself.
TRANSITIVITY. If region X is a part of region Y , and Y is a part of region

Z, then X is a part of Z.
ANTISYMMETRY. No two distinct regions are part of each other.

These three axioms are deemed essential to any mereology, so it is a reassurance that
the mereology postulated indeed satisfies them. They are satisfied because the subset
relation between ideals is reflexive, transitive and antisymmetric.

However, the mereology of space violates supplementation, which is an important
(but not core) axiom of classical mereology:

SUPPLEMENTATION. If x is a proper part of y, then y also has a proper part z

that is disjoint from x.

This is violated because a point is a proper part of a nilpotent region, which has no
other proper parts disjoint from the point. Moreover, a nilpotent region is contained
in a third smallest region which does not have other disjoint parts. So on and so forth.
We can see that this picture differs drastically from the standard view as well as
alternative infinitesimal theories of space. For example, in a theory of space based on
nonstandard analysis proposed by [12], there are no smallest infinitesimal regions—
every infinitesimal interval contains a smaller interval, and there is no violation of
supplementation.

To be clear, I do not intend to defend this violation, but will leave it to the readers
to weigh this cost against the benefits of SIG, which I will explain in the upcoming
sections. Instead, I shall contrast this feature with other violations of supplementation
in the literature that I am aware of (see Varzi [41]). For example, some philosophers
argue that a lump of clay that constitutes a statue is a part of the statue but not iden-
tical to it, since they have different modal properties (the lump of clay can survive
squashing while the statue can’t). However, there are no other parts that make up the
difference between them (Thomson [39], Walters [43]). So, supplementation is vio-
lated. But the counterexample in our case has a very different feature. The statue and
its lump of clay are spatially coextensive and geometrically indiscernible, while a
nilpotent region and a point are not spatially or geometrically identical. The idea that
the mereology of space could violate SUPPLEMENTATION has rarely been discussed
(with the exception of Forrest [17, 18]).11

While the loss of supplementation is counterintuitive, I believe that we should
not reject the theory outright on this ground. For one thing, our intuition about the
structure of reality can be highly unreliable when it comes to scales wildly out of

11The violation of supplementation also leads to other strange features. For example, suppose we define
“fusion” in the usual way, namely that x is a fusion of ys just in case ys are parts of x and everything that
overlaps with x also overlaps with one of ys. Also suppose that the fusion of all nilpotent regions, each
of which includes a point, is the whole line. Then, it follows that the fusion of all points is also the whole
line, even though intuitively they do not cover any nilpotent region. [18] discusses alternative definitions
of “fusion” when SUPPLEMENTATION is violated.
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the ordinary ranges, especially when it comes to infinities and infinitesimals. It is
well accepted that infinities are bizarre—for example, the Hilbert hotel is full but can
accommodate infinitely more guests. Even for finitely small scales, our intuitions
become flimsy, as witnessed by highly counterintuitive quantum physics.

2.2 Differential Structure and Vectors

I will introduce the differential structure of space as well as the notion of vectors,
in preparation for the metaphysical explication of physical vectorial quantities such
as velocity and electromagnetic field values (in general, structures involving tangent
spaces) in the next section. I will first focus on one-dimensional space, and extend to
the higher-dimensional case toward the end.

To postulate the differential structure of space, we need to first postulate smooth
functions on space. Those functions should be considered primitive structures that
are not definable through point sets—after all, a nilpotent region contains no more
than a single point but should admit more functions than a single point does. We
shall let homomorphisms between quotient rings of C∞(R) represent smooth maps
between regions of space. In particular, for any region represented by a quotient ring,
let homomorphisms from C∞(R) to that quotient ring represent smooth functions on
this region.

More precisely, let C∞(R)/I be the quotient ring of C∞(R) determined by ideal
I , which consists of equivalence classes whose members agree within the ideal. Let’s
strengthen IDEAL REPRESENTATION with the following clause:

SMOOTH. For any ideal I of C∞(R), all smooth functions on the region repre-
sented by I can be represented by members of C∞(R)/I . (That is, the ring of
smooth functions on the region is isomorphic to C∞(R)/I .)

For convenience, I will identify an equivalence class of smooth functions with “the
common part” of those functions whenever possible. For example, the equivalence
class of all smooth functions that have the same value on zero is identified with
their value on zero. Similarly, the equivalence class of all smooth functions that have
the same values on the real interval [0, 1] is identified with their restriction to [0, 1]
(which is a smooth function only defined on [0, 1]). It follows from SMOOTH that all
the smooth functions on space can be represented by smooth functions on the real
line (in this case, the ideal in question is the zero ideal consisting of only the zero
function). Also, all the smooth functions on a nilpotent region can be represented by
affine functions. In this sense, all smooth functions on a nilpotent region are affine.12

A trajectory is a path that an object follows through space as a function of
time. In standard formalism, it is usually expressed as a function from the unit
real interval [0, 1] to real-coordinate space. Suppose time has the same structure as
one-dimensional space. Then, SMOOTH entails that a trajectory in one-dimensional
space can be represented by a smooth function on the real interval [0, 1], just like in
standard formalism.

12This is very similar to KOCK-LAWVERE AXIOM, a central axioms in SIA (smooth infinitesimal
analysis). See Section 5.

865Smooth Infinitesimals in the Metaphysical Foundation of Spacetime Theories



The differential structure of space turns out to be attractively simple. The deriva-
tive of a smooth function f at a point x is simply the slope of the affine function
resulting from restricting f to the nilpotent region around x. But first, let me explain
what “restricting a smooth function” means in our picture given IDEAL REPRESEN-
TATION and SMOOTH. Let the representation function that maps ideals to regions be
denoted “R”: that is, let the region represented by an ideal I be R(I). Let “[f ]I ”
refer to the equivalence class defined by ideal I with representative f .

RESTRICTION. For any ideals I and J , if J ⊆ I , then for any function on
region R(J ) represented by [f ]J ∈ C∞(R)/J , the restriction of the function
to region R(I) is represented by [f ]I ∈ C∞(R)/I .

This definition is not arbitrary. Restricting a function on R(J ) to a smaller region
R(I) amounts to abandoning information outside regionR(I), which in turn amounts
to ignoring the difference between functions according to the broader equivalence
relation determined by I that defines the smaller region. For example, consider
restricting a function on space represented by a smooth function f on R to region
[0, 1]. Recall that the region [0, 1] is represented by the ideal of all functions van-
ishing at the real interval [0, 1]. It follows from RESTRICTION that the restriction
is represented by the equivalence class [f ] consisting of all smooth functions agree
with f on [0, 1], which we conveniently identify with f restricted to the real interval
[0, 1]. This means that the restriction of the function represented by f to region [0, 1]
just amounts to the restriction of f to the real interval [0, 1] in the standard sense.

It gets more interesting when it comes to restricting a function to a nilpotent
region. Consider the nilpotent region R(I�). The restriction of a smooth function to
this region amounts to ignoring all information other than its value and its derivative
at zero. More elaborately, for any smooth function on space represented by smooth
function f over R, its restriction to the nilpotent region is represented by the affine
function g(x) = f (0) + f ′(0)x. This applies to other nilpotent regions as well: for
any point p, the restriction of the function represented by f to the nilpotent region
around p is represented by g(x) = f (p) + f ′(p)x. This implements the idea that,
for any smooth curve and any point on the curve, there is a straight microsegment
of the curve around that point. This is how we can make sense of the mode of rea-
soning with infinitesimals employed by geometricists and physicists (Section 1). For
any affine function represented by f (x) = a + bx, call b the slope of the function.
Then, it is natural to define the derivative of a smooth function at a point p to be the
slope of the function restricted to the nilpotent region around p.

DERIVATIVE. For any smooth function f on a region X, and for any point p in
X, the derivative of f is the slope of the restriction of f to the nilpotent region
around p.

Similarly, second-order derivatives of a smooth function at various spacetime
points are intrinsic to second smallest infinitesimal shells around those points
(namely regions represented by ideals of all functions that have zero value, zero first
derivative, and zero second derivative at those points). Second-order derivatives are
ubiquitous in physics. The Laplace operator, for example, is a second-order derivative
operator in the one-dimensional case.
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The strategy presented so far also applies to the higher-dimensional cases. A
detailed account of such cases is beyond the scope of the paper, but I will give a fla-
vor of it here. Consider the n-dimensional case. We can let regions be represented
by ideals of C∞(Rn). In particular, a nilpotent region can be represented by an ideal
of smooth functions over Rn that have zero value and zero derivative at a point. The
resulting quotient ring is isomorphic to the ring of affine functions over Rn. Such
affine functions can be more generally expressed as f (x) = a + bx, where x ranges
over n-dimenisional vectors (or “n-vectors”), and b is a covector (also known as
“dual vector” or “1-form”) which maps n-vectors to real numbers. The differentia-
tion works very similarly as the one-dimensional case. The restriction of a smooth
function f on an n-dimensional region to a nilpotent region around point p corre-
sponds to two values: one is a real number, which is the value of f at p, and the other
is a covector, which defines the total derivative or the gradient of f at p.13 As I will
explain in the next section, this provides a straightforward conceptual foundation for
vectorial physical fields.

3 Metaphysics of Vectors

One of the main advantages of SIG is that it offers a straightforward metaphysical
analysis of vectorial-like physical quantities or objects that otherwise lack an attrac-
tive account. Take a simple vectorial quantity, velocity, as an example. Standardly,
the velocity of an object following trajectory q at time t is the derivative of q at t ,
which in turn is understood as a certain limit as we approach smaller and smaller
parts of the trajectory around t . There has been a lasting debate on whether veloc-
ity is intrinsic to an instant of time [9]. It seems wrong to consider velocity intrinsic
to an instant because the velocity of an object does not only depend on its position
at the instant but also on its positions at nearby times (the nearby trajectory needs
to approach a certain limit). But the standard view, which reads the limit definition
of velocity literally and reduces velocity to occupying various spacetime points, also
seems unattractive. For one thing, it causes difficulties for formulating determinism
and precludes velocity from being part of an explanation for motion (Tooley [40],
Arntzenius [1]).

But in our picture, where space and time are enriched with infinitesimal parts,
we have a simple solution. Under the definition of derivatives in SIG, the veloc-
ity in question is simply the slope of the trajectory q restricted to the infinitesimal
duration �t around t . The trajectory of the object during �t is characterized by
a pair of real numbers, one of which indicates the location of the object, and
the other indicates its velocity. Note that the velocity of the object during the

13Covectors (which are associated with derivatives) and vectors (which are associated with gradients) are
closely related. In Euclidean space, covectors and vectors are equivalent. In other cases, covectors can be
easily converted to vectors given a pseudo-Riemannian metric. Metrics are not discussed in this paper,
which can raise complicated questions for SIG and can be discussed elsewhere. For this paper, I shall
pretend that space is Euclidean.
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infinitesimal duration does not depend on or impose any restriction on any part of
the trajectory outside that duration. Hypothetically, even if an object existed only
for an infinitesimal duration, it still would have a well-defined velocity. There-
fore, we can say that velocity is intrinsic to an infinitesimal duration. This avoids
the difficulties that other views face. It would be natural, for example, to formu-
late determinism in terms of the intrinsic states at instants taken as infinitesimal
durations.

Second, consider the electric field in three-dimensional space, which is a vector
field. The physical meaning of the value of an electric field at a point is the force
(per unit charge) a charged body would experience at that point. Thus, the elec-
tric field value at a point has a spatial direction that determines the trajectory of a
charged body passing through that point. Like the case of velocity, there is a debate
on whether we should consider those vectors as intrinsic to spatial points (see Weath-
erson [44], Busse [8]). If those vectors are intrinsic to the electric field within spatial
points, then it is strange that they can have spatial directions since a point does not
have any spatial direction. But if they are extrinsic to points, then it is unclear how
we should think about them. While velocity is standardly reduced to occupying cer-
tain positions at various times, it is unclear what electric field values are reduced
to or whether they should be reduced at all (we can also consider an electromag-
netic field instead, which is considered fundamental). Once again, SIG provides an
easy solution. We can say that the electric field values are properties of the electric
field intrinsic to infinitesimal regions, or simply that they are infinitesimal parts of
the field.14

More generally, we now have a new metaphysical framework for understanding
physical structures based on tangent spaces and tangent bundles (see Arntzenius
and Dorr [2]). Informally, a tangent space at a point encodes all directions one
can pass through that point. The nature of such spaces is puzzling: it’s unclear
whether they are physical objects (perhaps spaces) in addition to our ordinary space
or reducible to other physical features of the world. Like vectorial quantities, it
is puzzling whether they are intrinsic features of points. Moreover, how are they
joined up in various ways as in curved spacetime? How should we understand
curvatures and connections? Directly reading the answer from the mathematical
formalism would require us to posit all sorts of platonic objects which have mys-
terious interactions with the physical world. But a theory of space with nilpotent
regions starts to suggest answers to these questions based on a simple explication
of tangent space. Since all the smooth functions of the form f (x) = bx on a nilpo-
tent region form a vector space, a nilpotent region is just like a tangent space. In
this way, we can regiment the idea that tangent spaces are infinitesimal parts of
physical space, and pave the way for understanding more complicated infinitesimal
structures.

14Or we can say that the electric field values are properties of the electric potential field, which is a scalar
field of which the electric field is the gradient. Recall that when restricting a scalar field f to a nilpotent
region around p, we obtain the value and the gradient of f at p (Section 2.2). So restricting the electric
potential field to a nilpotent region around a point results in the electric field value at that point.
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4 Generalizing Einstein Algebras

The idea of using algebraic structures like rings to represent geometric entities is not
new. Indeed, algebraic geometry is a prominent branch of mathematics that studies
the relation between geometric and algebraic structures. In this section, I will explain
how SIG generalizes and expands an established way of conceptualizing space in the
literature of philosophy of physics.

Spacetime algebraicism, the view that physical fields exist fundamentally with-
out an underlying spacetime, appeals to algebraic structures of smooth functions as
substitutes for space. This view is initially proposed as a way to avoid the difficul-
ties troubling spacetime substantivalism (see Geroch [19], Earman and Norton [14]).
However, [37] forcefully points out that there are parallel difficulties against such an
approach.15 Although this approach does not achieve some of the goals it was set
out for, it provides an alternative framework of formalizing space and geometry with
various possible implementations that have other advantages (see Bain [3], Chen and
Fritz [13]).16 In what to follow, I will explain the connection between SIG and a stan-
dard implementation of spacetime algebraicism called Einstein algebras, and argue
that SIG generalizes the latter.

Our physical space is standardly modeled by smooth manifolds in standard dif-
ferential geometry. Roughly, manifolds are topological spaces that are locally like a
real coordinate space Rn, and a smoothmanifold have a differential structure defined
by smooth functions. Here’s the basic idea of spacetime algebraicism: every smooth
manifold M can be substituted by an algebraic structure M∗ consisting of all the
smooth functions on the manifold—called Einstein algebra—as all information of
the manifold is preserved.17 For example, given two smooth manifolds M, N , a
smooth map φ from M to N can be uniquely encoded by a homomorphism from N∗
to M∗ that maps each smooth function on N to its composition with φ, which is a
smooth function on M . The other direction also holds: all information about Einstein
algebras can be encoded in smooth manifolds.

MANIFOLD-ALGEBRA DUALITY.
There is a one-to-one correspondence between smooth manifolds and Ein-

stein algebras such that for any two manifolds M and N , every smooth map
from M to N uniquely corresponds to a homomorphism from N∗ to M∗ and
vice versa. (Rosenstock et al [34])

This one-to-one correspondence between manifolds and smooth algebras is called a
“duality” because maps between manifolds correspond to homomorphisms between
algebras with the opposite directions.

15Rynasiewicz’s conclusion is contended by [3], who argues that the difficulties are not exactly parallel.
16Many alternative formalisms of spacetime algebraicism are underexplored, which may have advantages
over the substantivalist approach to spacetime. For example, non-commutative geometry (which is associ-
ated with noncommutative algebras of functions) is an important approach to physics, but it is unclear what
structure of space underlies those noncommutative functions (see Bain [3] and Heller and Sasin [22]).
17More precisely, an Einstein algebra has an additional metric structure that corresponds to the metric of
a Lorentzian manifold, which is used to model space in general relativity (see Rosenstock et al [34]). But
I ignore the metric aspect in this paper.
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Given a manifold M , an Einstein algebra is a special sort of quotient ring of
C∞(M). Not all quotient rings of C∞(M) are isomorphic to the rings (or algebras)
of all smooth functions on some manifolds.18 In particular, not all quotient rings
of C∞(R) are isomorphic to the rings of all smooth functions on some subspaces
of R.19 For example, there are no (non-zero-dimensional) subspaces on which all
smooth functions are affine. So the ring of affine functions L does not correspond to
any manifold. Indeed, Einstein algebras in Rosenstock et al. [34] are defined in a way
that precisely excludes those rings like L that do not correspond to any manifolds to
ensure MANIFOLD-ALGEBRA DUALITY. More specifically, all rings that have non-
zero nilpotent elements are ruled out for not being “geometric,” a defining condition
for Einstein algebras (Rosenstock et al. [34], 311).20

Note, however, that the condition of “geometricity” imposed on quotient rings
has no independent justification apart from that it is a necessary condition for the
rings to have the one-to-one correspondence with manifolds under standard differen-
tial geometry. But we are precisely considering alternatives to standard differential
geometry, which should not be ruled out from the outset. (Insofar as spacetime
algebraicism aims at dealing away with manifolds and substantive spacetime, the
restriction cannot even be motivated by preserving classical mereology.) The removal
of this restriction allows for interesting generalizations. In this sense, the route
to a theory of infinitesimal regions that provides an attractive account of vectors
converges with a natural generalization of Einstein algebras.

Just as Einstein algebras can represent smooth manifolds in virtue of MANIFOLD-
ALGEBRA DUALITY, the quotient rings in SIG can represent generalized manifolds,
which includes infinitesimal ones represented by nilpotent rings. Thus understood,
SIG is a preliminary theory of generalized manifolds, which can be developed into
a full-blown theory. We can envision its full-blown theory because it has a close
connection to synthetic differential geometry and its associated smooth infinitesi-
mal analysis, as well as some possible variants (such as in [7]). I will turn to this
connection in the next section.

It is worth clarifying that SIG can be made compatible with both spacetime alge-
braicism and substantivalism. As it currently is, SIG is noncommittal in whether
spacetime as a substance is fundamental. To make SIG a view of spacetime alge-
braicism, we can interpret rings as consisting of physical field configurations, and
interpret RING REPRESENTATION as describing how spacetime is constructed or
derived from fundamental physical fields (see Bain [3]; Norton [31] also calls space-
time algebraicism “constructivism”). Such an approach would not undermine the

18For our purposes, the difference between rings and algebras is not important.
19As will become apparent soon, this is not entirely due to that n-manifolds are standardly defined as being
locally like R

n and therefore a closed interval is not a manifold (since its boundary points do not have
line-like neighborhoods), which entails that rings like C∞([0, 1]) are not smooth algebras. The discussion
in the main text won’t be affected even if we use “manifold” in the broad sense that includes those with
boundaries.
20An algebra A is geometric iff there are no non-zero elements of A that belong to the kernels of all
homomorphisms from A to R (where a kernel of a homomorphism is the set of elements it maps to zero).
For any homomorphism from a ring A to R, since it preserves squares of elements, all nilpotent elements
in A are mapped to 0. So if A has non-zero nilpotent elements, then A is not geometric.
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merits of SIG recommended because the questions we are interested in do not
depend on the fundamentality of substantive spacetime. For example, without sub-
stantive spacetime, fundamental vectorial quantities would be considered intrinsic to
infinitesimal parts of fundamental physical fields.

5 Interpreting Smooth Infinitesimal Analysis

Smooth infinitesimal analysis (SIA), which is part of the more comprehensive theory
called synthetic differential geometry (SDG), is an influential theory of infinitesimals
that purports to regiment physicists’ heuristic reasoning with infinitesimals. How-
ever, there is a long-standing problem for interpreting it realistically as a theory of
space: it is formulated in intuitionistic logic and is classically inconsistent (see Bell
[4]). Also, [23] argued that the theory cannot be reconstructed as a classically con-
sistent theory of infinitesimals. But I will argue that SIG can be considered as (part
of) a realistic interpretation of SIA (or SDG). In particular, I will explain how the
model consisting of quotient rings can be used to interpret two classically incon-
sistent statements under KC semantics as an illustration of the full-blown semantics
(called “sheaf semantics”) and models proposed by [29]. Then, I will recommend
adopting the semantic view of SIA and taking its models realistically.

SIA features the indefinitely extended smooth lineR that carries usual operations
like addition and multiplication (that is, R is a field). The idea that an infinitesimal
segment of a curve is straight and non-degenerate (i.e., not identical to a point) is
formally captured by a core principle called the Kock-Lawvere axiom (“f ” ranges
over smooth functions; � = {x ∈ R | x2 = 0}):

KOCK-LAWVERE AXIOM (KL). (∀f : � → R)(∃!a, b ∈ R)(∀x ∈ �)f (x) =
a + bx.

We say that all smooth functions on � are affine. KL implies that, for any smooth
function on R, when it is restricted to an area as small as �, its graph becomes
straight. Note that this is very similar to the features of nilpotent regions (Section 2.2).
SIA is formulated in intuitionistic type theory ([29]; see also [16]).21 Here, the vari-
able f is of a function type, while R and � are number types.22 Otherwise, the
language of SIA is similar to that of standard analysis. For example, there are con-
stants for real numbers, and function symbols for operators like +, ·, log and relation
symbols like = and <.

KL implies that not all nilpotent numbers are zero (i.e., � �= {0}). For suppose
� = {0}; then any function f over � would be a constant function, and so there
would not be a unique b such that f (x) = a + bx, which contradicts KL. However,
although � is not identical to {0}, we can nevertheless prove that no element of � is

21In Feferman’s term, it is a language of “variable types”: there are not only types to which each term
belong, there are also variables for types. Thus we can talk about properties of types in such a language.
22It is worth remembering that SIA conflicts with standard set theory: as I will explain soon, the set of
nilpotent infinitesimals � is not the singleton of zero, but it doesn’t have other members. So the function
type � → R is not reducible to pairs of numbers respectively from � and R.

871Smooth Infinitesimals in the Metaphysical Foundation of Spacetime Theories



distinct from zero. Suppose there is a non-zero nilpotent infinitesimal ε. Given that
R is a field, which implies that non-zero elements ofR have multiplicative inverses,
we have ε = ε · 1 = ε · (ε · ε−1) = ε2 · ε−1 = 0 · ε−1 = 0. This contradicts the
assumption that ε is not zero. So there are no non-zero nilpotent infinitesimals.23

We have arrived at the following two classically contradictory statements in SIA:

CLAIM 1. ¬∀x ∈ R(x2 = 0 → x = 0). CLAIM 2. ¬∃x ∈ R(x2 = 0∧ x �= 0).

These claims are nonetheless consistent in intuitionistic logic: although ¬∃x ∈
R(x2 = 0 ∧ x �= 0) intuitionistically implies ∀x ∈ R(x2 = 0 → ¬x �= 0), ¬x �= 0
does not intuitionistically imply x = 0.

Assuming that a realistic theory needs to be classically consistent, we need to rec-
oncile SIA with classical logic in order to take advantage of it as a realistic theory
of space. However, this is not easy. Having examined all the options, Hellman comes
to “no clear resolution” (643) on whether there is a classical reinterpretation of SIA.
As a result, he does not consider SIA as “a theory of actual constitution of ordinary
space.” (645) So it seems that we face an unpleasant choice: we either give up on SIA
as a realistic theory (Hellman [23], Reeder [32]) or give up classical logic [21]. How-
ever, I will argue that we have a third option—we can interpret SIA as a classically
consistent theory of space. Indeed SIG is (part of) such an interpretation.

The claim that quotient rings constitute part of a model for SIA is not technically
new—such classical models are proposed by [29]. In what follows, I will illustrate
how we can use the quotient rings to interpret the statements of SIA—in particular,
the two classically inconsistent claims—and how that helps meet the challenge of
interpreting SIA as a realistic theory of space.

KC Semantics The interpretations of SIA proposed by Moerdijk and Reyes in their
models require a rich semantics called sheaf semantics (see Mac Lane and Moerdijk
[26]). But since I will only show the interpretation of CLAIM 1 and CLAIM 2 from
the last section, which involve only one type R, I will appeal to a much simpli-
fied semantics, which is Kripke semantics for intuitionistic logic with counterpart
relations—call it KC semantics. I will explain the semantics in set-theoretical lan-
guage (as opposed to the language of category theory, which is typically used for
sheaf semantics). A model under KC semantics is a triple 〈W, C, σ 〉. W is a set of
objects analogous to “possible worlds.” C is a set of maps between members of W

that determine “counterpart relations” between things in those worlds. σ is an inter-
pretation function that, for each w in W , assigns objects of w to constants, n-tuples
to n-ary predicates, and single-valued n-tuples to (n-1)-ary function constants. The

23Note that this proof is valid in intuitionistic logic. Although we cannot prove a statement to be true by
showing its negation leads to contradiction in intuitionistic logic, we can nevertheless derive the negation
of a statement by showing that the statement leads to a contradiction. We can also prove that nilpotent
infinitesimals are not invertible. Suppose ε is an invertible nilpotent infinitesimal. Then we have 1 =
1 · 1 = (ε · ε−1) · (ε · ε−1) = ε2 · ε−2 = 0—contradiction. Therefore, nilpotent infinitesimals are not
invertible. The result that nilpotent infinitesimals are not non-zero also straightforwardly follows from this
and the fact that every non-zero number is invertible. See [38]. Although infinitesimals are not invertible,
they satisfy the cancellation law: if a · ε = b · ε, then a = b, where a, b are real numbers and ε is an
infinitesimal. This is all we need for calculus. See [20] for related discussions.
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main difference between a KC model and a Kripke model is that, instead of a single
accessibility relation between possible worlds, there can be many (often infinitely
many) counterpart maps between worlds. Indeed, a Kripke model can be considered
as a KC model with at most one counterpart map between any two possible worlds.

The Basic Model In what I call the basic model for SIA, W is a set of quotient rings
of C∞(R), and the counterpart maps in C are all the homomorphisms among them.
For convenience, we can define the accessibility relation between worlds: for any
rings w, w′, we define that w′ is accessible from w (abbr. wRw′) just in case there is
a homomorphism from w to w′. It follows that the accessibility relation is reflexive
and transitive just like in Kripke semantics for intuitionistic logic.

For every real number constant c in SIA, the interpretation σ assigns to c the
constant function c in each member of W . The addition and multiplication in SIA
corresponds to addition and multiplication on smooth functions in each member of
W .24 For example, “0 + 1” is interpreted as 0 + 1 (where 0 and 1 are the constant
functions of value zero and one, and + is the addition of smooth functions). If P is an
atomic sentence, for each w, σw(P ) is either 1 (“true”) or 0 (“false”) determined in
the usual way. For instance, “0+ 1 = 1” is true for every w since in every ring 0+ 1
is equal to 1.

For logically compound formulas in SIA (restricted to first-order sentences that
have only variables of typeR), the clauses for conjunction, disjunction, and the exis-
tential quantifier are like in standard semantics for first-order logic.25 The following
clauses are more special:

NEGATION. w |= ¬φ[s] iff for any w′ such that wRw′ and any f from w to
w′, w′ �|= φ[f ◦ s].
CONDITIONAL. w |= φ → ψ[s] iff for all w′ such that wRw′, for any f from
w to w′, if w′ |= φ[f ◦ s], then w′ |= ψ[f ◦ s].
UNIVERSAL QUANTIFIER. w |= ∀xφ[s] iff for all w′ such that wRw′, and for
all d ∈ w′, w′ |= φ[s(x �→ d)].26

A sentence S is a theorem in SIA if for every w ∈ W and every assignment s, we
have w |= S[s]. Notice that the above connectives behave as if they were in the scope
of “necessarily” in modal logic with counterpart relations. For example, the clause

24In a full-blown model for SIA, the rings of smooth functions are equipped with every operator that can
be used on real numbers, which can be used to interpret every operator in SIA. Such rings are called
“C∞-rings.” [29]
25Apart from having only one type, the difference between KC semantics and more general sheaf seman-
tics is this: when unpacking the existential quantifier or the connective “or” at a possible world w in sheaf
semantics, it involves evaluating the relevant sentential components not only at w but also all the possible
worlds in an open cover of w, an additional structure of a model. Thus, KC semantics can be consid-
ered as a special sheaf semantics with the constraint that every world has itself as the sole member of its
open cover. (See Moerdijk and Mac Lane [26] for the full detail.) A full interpretation of SIA proposed
by [29] involves full-blown sheaf semantics. But all the statements of SIA examined in this paper can be
interpreted through presheaf semantics alone. Therefore, I will henceforth not worry about the difference
between the two semantics.
26“s(x �→ d)” means an assignment like s except assigning d to variable x.
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for “¬p” is like the classical clause for “necessarily, not p.” Thus, p ∨ ¬p is not a
theorem.

Interpreting SIA First, consider CLAIM 1: ¬∀x ∈ R(x2 = 0 → x = 0). Its inter-
pretation is as follows: for any rings w1, w2 with w1Rw2, it is not the case that, for
any ring w3 with w2Rw3, for all d ∈ w3, for any ring w4 with w3Rw4 and any f

from w3 to w4 if f (d)2 = 0, then f (d) = 0. (The w1 quantifier comes from evalu-
ating the sentence at every ring; the w2 quantifier comes from the negation; the w3
quantifier comes from the restricted quantifier; and the w4 quantifier comes from the
conditional.) This boils down to the condition that every ring has access to some ring
that has non-zero nilpotent elements. This is true in the basic model because the ring
of affine functions L is accessible from every quotient ring of C∞(R).27

Consider CLAIM 2: ¬∃x ∈ R(x2 = 0 ∧ x �= 0). The interpretation of this claim
in the model is that, for any rings w1, w2 with w1Rw2, it is not the case that, there
is a d ∈ w2 such that d2 = 0 and for any ring w3 with w2Rw3 and any map f

from w2 to w3, f (d) �= 0. (The w2 quantifier comes the first negation and the w3
quantifier comes from the second negation.) This comes down to the condition that
every nilpotent element has zero as a counterpart, which is true in the model. For
every quotient ring of C∞(R), there is a homomorphism from it to R, which simply
maps every ring element to its value at zero. The only nilpotent element in R is 0.
Since a homomorphism must preserve squares, any nilpotent element in any ring is
mapped to 0 in R under any homomorphism. So, every nilpotent element in every
quotient ring has zero as a counterpart.

The basic model is a substructure of a full-blown model for SIA. Like what we see
for CLAIM 1 and 2, all statements of SIA can be interpreted through sheaf semantics
as statements about quotient rings of C∞(R) and their relations. Usually, such a
model is considered an abstract tool for proving the consistency of SIA. But we can
reverse this order: we can take the object language instrumentally and the models
realistically.28 Akin to the semantic view of theories in van [42], we can consider
SIA as saying that one of its classical models corresponds to reality.

But this can’t be the whole story. An interpretation should also preserve the impor-
tant characteristics and virtues of the theory to be interpreted (or “discharge its
scientific duties,” as [35] puts it). One apparent obstacle for taking the models seri-
ously is that the models seem to be about smooth functions on real coordinate space:
we can consider these smooth functions as representing physical scalar fields living
on standard space and have certain algebraic properties. This does not seem to say

27For any quotient ring of C∞(R), there is a homomorphism that maps each ring element A to an element
of L by evaluating the value and derivative of a representative member (arbitrarily chosen) of A at a point
that all members of each element of the quotient ring agree on (for any nonzero quotient ring of C∞(R),
there is at least one point that all members of each element agree on).
28It might seem odd to some to take SIA as a heuristic device for reasoning about the models, because
it is not so convenient to use intuitionistic logic. To reply, I shall point out that it is still easier to derive
statements in SIA than reasoning about the its models directly, especially its full-blown models that involve
sheaf structures (see Moerdijk and Reyes [29]). Also see Footnote 29.
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anything substantially different from the standard view of space, and therefore does
not capture what SIA is about. However, this reading is not mandatory. We can inter-
pret the rings according to RING REPRESENTATION and other structures accordingly,
and the resulting theory is precisely SIG (or rather, its fully developed versions). As
we have seen, SIG preserves important claims of SIA such as space has infinitesimal
regions on which all smooth functions are affine, which are responsible for its charac-
teristic virtues of regimenting a mode of reasoning with infinitesimals and providing
a simple metaphysical analysis of vectors and tangent space. This justifies treating
SIG as a realistic interpretation of SIA, and SIA a heuristic device for SIG.29

One may object that although SIA and SIG share many similarities, the transla-
tion from SIA to SIG through the semantics does not seem to be even approximately
faithful. For example, the claim that not all nilpotent numbers are zero is translated
into the algebraic relations between different rings through KC semantics. Even if
we understand those rings geometrically through the lens of SIG, the claim would
still be about the geometric relations between different regions (including a nilpotent
region), which significantly deviates from what the original statement says. To reply,
I shall note that it is an open question whether there is a more direct way of translating
from SIA to SIG through the exchange between intuitionistic logic and nonclassical
mereology.30 But regardless of the answer, the strategy at least opens up a new inter-
pretative option for those who are enticed by the virtues of SIA as a theory of space
but do not want to give up classical logic, and are comfortable with reasoning in SIA.
They can turn to SIG as a realistic theory of space while continue to use the SIA as a
reasoning tool.

6 Conclusion

I have proposed a new theory of space called “smooth infinitesimal geometry” (SIG)
according to which space has infinitesimal regions that are too small to “bend” (that
is, on which all smooth functions are affine). This theory can regiment a convenient

29Despite SIG involving a much simplified version of the full models proposed by Moerdijk and Reyes,
we can see that it is still complicated to obtain even the most basic results (see Section 2.1). Thus, although
SIA is less straightforward than standard analysis, it’s still easier to use than SIG. Also see Footnote 28.
30The sheaf models for SIA proposed byMoerdijk and Reyes are topoi. We can embed the basic model into
the sheaf model in a way that preserves all homomorphisms between all rings in the basic model (except
that all directions are reversed), known as Yoneda embedding. Here, we interpret the rings as representing
regions of space, and homomorphism as representing smooth functions between regions (except that all
directions are reversed). This is roughly why there is a structural similarity between regions of space in
SIG and the subsets ofR that SIA talks about. One main reason why I can appeal to a much simpler model
than the sheaf models is that the language I use to describe the theory is not definable in the basic model,
while the language of SIA (intuitionistic type theory) is internal to the sheaf model (all elements of the
language, including logic symbols, can be defined in the topoi). If we can formulate the internal language
of a topos as one with nonclassical mereology rather than nonclassical logic, then we can more directly
reformulate SIA into a classically consistent theory that has nonclassical mereology. Note that for such
a theory—because it is modeled in a topos, which involves complicated superstructures on rings—would
not have a simple and direct relation with rings as in RING REPRESENTATION.
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and elegant mode of scientific reasoning with infinitesimals, and provide a straight-
forward strategy for tackling philosophical puzzles about vectorial quantities and
tangent space. It is also connected to the literature on spacetime algebraicism (accord-
ing to which physical fields exist without a fundamental spacetime manifold), and
can be considered as a natural generalization of Einstein algebras (a standard imple-
mentation of spacetime algebraicism). Moreover, SIG can be considered a realistic
interpretation of smooth infinitesimal analysis, which shares many features with SIG
but is formulated in intuitionistic logic and is classically inconsistent, a feature that
has concerned many philosophers. On the other hand, SIG has highly unorthodox
features: its mereology is nonclassical and the principle of supplementation fails. In
particular, an infinitesimal region has a point as proper part without a remainder. The
overall benefit of such a theory is left to the readers to evaluate. To develop a com-
plete theory of space from here, there are many more questions to consider, such as
how we should understand spacetime curvature and Einstein field equations. These
are left for other occasions.
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Catégoriques, 21(4), 277–392.

26. Mac Lane, S., & Moerdijk, I. (1992). Sheaves in Geometry and Logic: a first introduction to topos.
New York: Springer-Verlag.

27. Mayberry, J. (2000). Review. British Journal for the Philosophy of Science, 51, 339–345.
28. Menon, T. (2019). Algebraic fields and the dynamical approach to physical geometry. In Philos. Sci.

86.5, pp. 1273–1283.
29. Moerdijk, I., & Reyes, G. (1991). Models for Smooth Infinitesimal Analysis. New York: Springer-

Verlag.
30. Morin, D. (2008). Introduction to Classical Mechanics With Problems and Solutions. Cambridge:

Cambridge University Press.
31. Norton, J. D. (2008). Why Constructive Relativity Fails?. British Journal for the Philosophy of

Science, 59(4), 821–834.
32. Reeder, P. (2015). Zeno’s arrow and the infinitesimal calculus. Synthese, 192, 1315–1335.
33. Robinson, A. (1966). Non-Standard Analysis. North-Holland: Amsterdam.
34. Rosenstock, S., Barrett, T., & Weatherall, J. (2015). On einstein algebras and relativistic spacetimes.

Studies in History and Philosophy of Modern Physics, 52, 309–315.
35. Ruetsche, L. (2011). Interpreting Quantum Theories. Oxford: Oxford University Press.
36. Russell, B. (1903). The Principles of Mathematics. Cambridge: Cambridge University Press.
37. Rynasiewicz, R. (1992). Rings, holes, and substantivalism: on the program of leibniz algebras.

Philosophy of Science, 59(4), 572–589.
38. Shulman, M. (2006). Synthetic Differential Geometry. Retrieved from: http://home.sandiego.edu/

shulman/papers/sdg-pizza-seminar.pdf.
39. Thomson, J. (1998). The statue and the clay. Noû,s, 32(2), 149–173.
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