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Abstract
This paper is a step toward showing what is achievable using non-classical
metatheory—particularly, a substructural paraconsistent framework. What standard
results, or analogues thereof, from the classical metatheory of first order logic(s)
can be obtained? We reconstruct some of the originals proofs for Completeness,
Löwenheim-Skolem and Compactness theorems in the context of a substructural
logic with the naive comprehension schema. The main result is that paraconsistent
metatheory can ‘re-capture’ versions of standard theorems, given suitable restric-
tions and background assumptions; but the shift to non-classical logic may recast the
meanings of these apparently ‘absolute’ theorems.

Keywords Paraconsistent logic · Inconsistent mathematics · Substructural logic ·
Non-classical metatheory · Completeness theorems

1 Introduction

What can be done in a properly non-classical metatheory—particularly, a sub-
structural paraconsistent framework?1 Metatheory (or sometimes, in older sources,

1For discussions of paraconsistent metatheory, see [35], [15, 47], or [39].
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metamathematics) is the study of mathematical systems themselves, and in particu-
lar of formal properties of logic(s).2 For example, given some proposed formal logic,
often both a model theoretic interpretation and a proof system are presented, and
soundness and completeness theorems guarantee that these two bits of formalism
relate in the right way; that sort of metatheoretic result is the sine qua non for showing
that any would-be logic is legitimate. But facts in a metatheory are themselves proven
by valid arguments. While classical logic has been the dominant theory of validity for
the past century, it has always been disputed, and there are today many other well-
motivated and well-understood non-classical logics [33]. A natural question arises:
when giving valid proofs in metatheory—‘valid’ according to what logic?

1.1 Metamathematics, Classical and Non-Classical

Here are three famous theorems of classical metatheory, what we call the ‘Big Three’,
where we will focus our attention:

Completeness (1929) If an argument is semantically valid, then it is proof-
theoretically valid.

Löwenheim-Skolem (1922) If a theory has a model with an uncountably infinite
domain, then it has a model with a countable domain.

Compactness (1930) If every finite subset of a set of sentences is satisfiable, then
the whole set of sentences is satisfiable.

Gödel proved completeness in his doctoral dissertation [16]. He used a highly syntac-
tic argument, improving earlier techniques from Löwenheim [22] and Skolem [43].
Together, these theorems are now understood to characterize classical first order
logic, via Lindström’s theorem [21]. They also show some limitations of classical
first order logic; Skolem, for example, thought he had found a paradox; cf. [23]. In
any case, whatever one makes of the ‘Big Three’, they are nowadays presented and
taught as absolute mathematical facts—core truths about logic, valid simpliciter.

Notably, the Big Three are all (usually) informally glossed as conditionals, as
above. Put this way, these can look not only absolute but rather arresting at first
meeting. Conditionals, though, as anyone casually acquainted with logical research
(classical and non-classical alike) knows, are highly charged. There have always been
doubts, going back to Łukasiewicz in 1910 and Lewis in 1912,3 about the material
conditional p ⊃ q := ¬p ∨ q as a formalization of implication, due to the fact that
various paradoxical-sounding arguments come out as valid using it.4 So in the stan-
dard theorems of metatheory, what is the ‘if / then’? An examination of proofs of
the Big Three may reveal that some more mundane ‘material’ fact has been argued,
which happens to be logically equivalent to the more exciting conditional statements.
For example, ‘if every finite subset of a set of sentences is satisfiable, then the whole

2In this we follow Gödel, taking a broader stance than Kleene in the classic [18], where only work with
strictly finitary methods is allowed in metamathematics. Kleene [18, p.423] in fact claims that “Gödel’s
completeness theorem (. . . ) cannot belong to metamathematics”.
3Even ancient doubt, as reported by Sextus Empiricus [10, Book II, 115-118].
4E.g. ‘¬(p ⊃ q) therefore p’ is valid but has the instance ‘It’s false that if ghosts exist then materialism
is true, so, ghosts exist’ has a true premise but false conclusion. See [41, ch.1] for a barrage of further
counterexamples.
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set is satisfiable’ verges on seeming miraculous; but it holds because the contrapos-
itive, ‘if a whole set of sentences is inconsistent, then it is inconsistent in some finite
part’ holds, and this because of the disjunction ‘either a whole set of sentences is
consistent, or some finite part of it is inconsistent’ holds. This last is, perhaps, the
most stripped-down way of putting the compactness theorem, and it verges on seem-
ing obvious. Of course, the reader will want to point out, these are all ways of saying
the same thing—the same, anyway, in classical logic. But, we suggest, maybe not in
non-classical logic.

The proper statement and logical status of metatheorems is no idle curiosity. At
the end of a widely-used textbook on non-classical logics, Graham Priest writes:

It may fairly be asked what logic I have been using to specify and reason about
... the various logics we have been dealing with. The procedures employed have
not been formal ones, of course. Like most mathematics, matters have been left
at an informal level. They could be formalized in...classical logic. But to some-
one, such as an intuitionist or paraconsistent logician, who takes such reasoning
not to be correct, at least in part, things cannot be left like this. The classical
ladder must, so to speak, be kicked away [33, p.585].

Priest’s preferred (paraconsistent) logic LP is provided a model theory and a proof
theory and he proves the completeness of LP proof methods with respect to their
semantics [33, theorem 8.7.9, p.157]. But as Priest says above, adherents of a logic
are within their rights to expect proofs to hold up in their preferred logic. And for, say,
someone committed to the paraconsistent logic LP as a basis for reasoning, proofs
using ex contradictione quodlibet (p, ¬p � q), disjunctive syllogism (p∨q,¬p � q),
contraposition (p � q therefore ¬q � ¬p), and other principles are not valid proofs,
due to constraints imposed by e.g. the Liar [3, ch.1] and Russell paradoxes [32, ch.1,
2], [33, ch.7.7.3]. And this is to say nothing of substructural constraints imposed e.g.
by versions Curry’s paradox, where contraction (p, p � q therefore p � q) is not
(meta)valid [5, ch.7].5 The standard proofs, however, for completeness and related
results do use all these principles. So, for an adherent of (substructural) LP, it is
worth asking: what is the status of these famous meta-theorems? Are the ‘Big Three’
absolute mathematical truths, or contextual truths relative to some specific logical
background?

In 1947 Henkin gave the now-standard proof of Gödel’s completeness theorem,
via a contrapositive argument: if there is no proof from A to B, then there is a coun-
terexample making A true but B false. As is well known, he proves it by building a
maximum consistent set of sentences H and showing that there are some things not
provable from H—on the assumption that nothing is both provable and not. Henkin’s
method is now standard for proving completeness for a wide class of logics. But
Henkin’s proof cannot, it seems, be repeated paraconsistently.6 As a matter of pure
(paraconsistent) logic, one simply can’t assume for reductio that the proof relation
at issue is consistent, i.e. that � � A and � �� A together are impossible; indeed,

5Alternatively, one may go substructural in response to the paradoxes by keeping contraction but dropping
transitivity [37] or even reflexivity [13].
6For example, in the meta-theoretic reasoning involved in the Henkin proof of completeness for proposi-
tional LP in [31], Lemma 2 (the existence lemma for a suitable deductively closed, prime theory) relies on
reductio arguments not available using LP.
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the possibility that the proof relation may be inconsistent is one of the founding
motivations for Priest’s LP approach [30], [32, ch.3, 17].

If Henkin’s argument is out of reach for a paraconsistentist, whither completeness?
We are faced with an apparent dilemma. On the one hand, an adherent of LP can
believe their logic is complete, but then must admit that LP is not independently
viable, insofar as it on its own is not up to the task of providing a logic for proving true
mathematical results.7 On the other hand, an LPer can deny (or refuse to accept) that
their logic is complete after all, but in doing so they must say something radically at
odds with classical logic, taking the stance of a mathematical revisionist—something
that Priest, at least, has explicitly avoided [32, p.221].

We submit that this dilemma is a false one, and look for an alternative strat-
egy. Firstly, we approach this problem from the direction of committed inconsistent
mathematics8 and in particular a ‘purist’ approach that does not appeal to classi-
cal logic or model theory—a step toward independent inconsistent metamathematics.
Secondly, we use as ‘low-tech’ an argument as possible, going back to Gödel’s
original completeness proof from his dissertation (and so avoiding some of the
higher-power machinery needed for Henkin’s more abstract proof; cf. [2]). The
proof is direct, proving a (classical) equivalent of the same fact without a detour
through its (classically equivalent) contrapositive version. Together, we suggest that
these strategies—starting from scratch, so to speak, avoiding as much as possible
“theft over honest toil,” and using some old tools to do it—are ways forward for a
paraconsistent mathematics program.

1.2 Targets

A proof of the completeness of propositional LP (more precisely, a substructural ver-
sion of it), also by a low-tech direct argument, is in [47]. The methods there, though,
do not extend to quantifiers, leaving open the mathematically more substantial ques-
tion of the completeness of first order LP (from a purely paraconsistent viewpoint).
Answering that is our main task in this paper; then we consider the closely-related
Löwenheim-Skolem and compactness properties. So, with the plan of stripping back
any classical ‘special effects’ to see what bare, mutually-agreed-upon mathematical
facts underly the Big Three, let us set targets by fixing definitions to work with. The
idea is to focus on the basic forms of the statements that are proved in Gödel’s thesis;
these are, quite explicitly, material conditionals.

A key concept in Gödel’s original completeness proof is the following, a refine-
ment of the more common notion of prenex normal form:9

7Of course, taking this horn is not the end of the story, qua classicality and recapture. For ways a
paraconsistentist can proceed see [3, ch.5], [4], [34].
8A field of mathematics that emerged in the second half of the 20th century, which uses paraconsistent
logic to study abstract structures and describe them with non-trivial theories that include contradictions
[25, 26, 40].
9Strictly speaking, Gödel worked with a different but equivalent notion of what we call SNFs. More press-
ingly, since we’ve admitted the possibility of inconsistency, there may be concerns about this definition or
others in this paper, e.g. how do we know that ‘preceedes’ behaves consistently? This is addressed, to the
extent that it can be addressed, with Principle 2 below; for discussion of the possibility of an inconsistent
proof relation see [32, pp.237-243].
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Definition 1 A formula is said to be in Skolem normal form (SNF) iff all its quan-
tifers appear at the beginning, and, furthermore, all existential quantifiers precede
all universal quantifiers, or, in other words, an ∃∗∀∗-formula (where the number of
existential or universal quantifiers may be 0) [17, p. 85].

This definition immediately raises a challenge. In Gödel’s original argument, he
shows (as in Hilbert and Ackermann [17, p. 88]) that any formula can be put into
Skolem normal form; or more carefully, for any formula A there is a formula A′ in
SNF such that A is a theorem if and only if A′ is. But this is highly sensitive to the
logical principles available, and could be seen as more of an artifact of the classical
tendency to show (too) many things are equivalent, rather than any deep truth about
logical forms. Paraconsistently, it appears to be out of reach.10 Compare this situation
to the intuitionistic case, where a completeness proof with respect to the Tarskian
semantics by fully intuitionistic methods is only available for restricted classes of
formulas (since in intuitionistic logic there is no prenex-normal form theorem, let
alone Skolem normal forms) [19, 20]. It is therefore more neutral to state the Big
Three explicitly with the hypothesis involving Skolem normal forms.

The statement of the type of completeness we aim for uses notions (like satisfia-
bility and validity) that will be properly defined and internalized below.11

Definition 2 A logic L is Gödel complete iff for any formula A in SNF, either �� A

or � A.

This notion of completeness is well-motivated historically: it is a close variant (see
theorem 4 below) of the one found at the heart of the main result of Gödel’s famous
article [16, Thm. II]. Similarly, we have the material version of Löwenheim-Skolem,
with the SNF assumption made explicit:

10The proof is in [17]. Another standard reference on this is [7, p. 224–227], which we will follow. The
strategy generally consists in obtaining a prenex-normal form for the formula A (which we can also do in a
paraconsistent setting) and cleverly performing some manipulations, including substitutions of predicates,
to obtain a desired A′. Some of the final manipulations demand some form of disjunctive syllogism, which
we do not have available. In particular, at some point we need to show that if A is of the form

∃x1, . . . xn∀yB(x1, . . . xn, y),

where B(x1, . . . xn, y) might have any number of quantifiers, A is a theorem (or valid) iff the formula A′

∃x1, . . . xn(∃y(B(x1, . . . xn, y)&¬H(x1, . . . xn, y)) ∨ ∀zH(x1, . . . xn, z))

is a theorem (or valid), where H is a new relation symbol. Already the direction “(A′ is a theorem) ⇒ (A
is a theorem)” is problematic: the idea of substituting B for H and eliminating the contradictory formula
∃y(B(x1, . . . xn, y)&¬B(x1, . . . xn, y)) from the result is an application of disjunctive syllogism.
11From the classical point of view, another, perhaps less spectacular, result of Gödel is that the validity
problem is decidable for the class of ∃2∀∗-formulas since the fragment ∀2∃∗ of the language of first-
order logic without equality has the finite model property. In fact, ∃2∀∗ is best possible with respect to
decidability of the validity problem and, of course, the full ∃∗∀∗ fragment is undecidable by Church’s
theorem. An interesting open problem would be to investigate the situation in a paraconsistent setting.
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Definition 3 A logic L has the Löwenheim-Skolem property iff, for every formula A

in SNF, either A is true in every domain, or else it is falsified in some denumerable
domain.

And compactness:12

Definition 4 A logic L is countably compact iff, for every denumerable set X of
formulas in negated SNF, either some finite subset of X is not jointly satisfiable, or
else X is jointly satisfiable.

Again the property being defined is in its ‘material’ form: not ‘if p then q’ but
rather ‘either not p or q’. (E.g. Definition 4 says, materially: every finite subset of X

is jointly satisfiable ⊃ X is jointly satisfiable.) This is the form of the target theorems;
we return to the issue of their meanings in Section 5 at the end. The logic in question
will be, again, a version of first order LP, the details of which we now spell out.13

2 Logic

This section presents a proof system for doing metatheory, for ‘talking about’ logical
languages and structures: evaluation, interpretation, and validity. It is a substruc-
tural paraconsistent logic, taking as a base substructural LP (that is, LP but without
structural contraction), with quantifiers ∀, ∃, identity, the Church constant ⊥ (which
stands for an absurd statement, discussed below), a conditional operator ⇒ that obeys
modus ponens, and substitution abiding identity =. We call this logic subLPQ⊥⇒.
Our aim is to prove the Big Three (or something like them) about the object logic
subLPQ⊥, using the stronger system subLPQ⊥⇒ plus some mathematical axioms.14

2.1 Proof Theory

Here is the logic presented as a Gentzen system, taking cues from [12]; cf.
[29, p.1026]. The introduction of this system is being conducted in the meta-
metatheory—which we consider to be a substructural paraconsistent framework,
too.15 The language of subLPQ⊥ consists of the constants &,∨, ¬, ∃, ∀, and ⊥,

12In the literature on reverse mathematics, it is known that (classically) countable compactness is equiv-
alent to the so called Weak König’s Lemma (which is provable in Zermelo-Fraenkel set theory without
choice): every infinite tree of finite sequences of 0s and 1s has a path [42, Thm. IV 3.3]. This is estab-
lished in a subtheory of second-order Peano Arithmetic known as RCA0. What the situation looks like in
our case is an interesting open problem.
13The question of whether a paraconsistent metatheory can prove the completeness of classical first order
logic is highly interesting but for another day.
14This leaves open the completeness of subLPQ⊥⇒, and the ‘holy grail’ (as a referee puts it) of a system
that could establish its own completeness without recourse to anything stronger. Gödel also weighed in on
that question, though paraconsistency puts more options back on the table. See [32, ch.3].
15As the great relevant/paraconsistent logician R.K. Meyer puts it, “I am not going to fight with the
C[lassical]-partisan about what goes on in the ‘metalanguage.’ ... [T]hat would just give us another formal
system to talk about...but eventually the escalator ride has got to stop. ... The solution, already presented,
is not to ride escalators” [24, p.160]).
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variables x, y, z, ..., constants a, b, c, ..., predicate symbols of any finite arity, and
brackets. Well-formed expressions A, B, C, ... are defined in the usual way (see
Principles 3, 4 below).

A sequent is of the form � |− ϕ, with � a multiset. The following are initial
sequents:

A |− A

|− A ∨ ¬A ⊥ |− A |− ¬⊥

∀x(A&B) |− ∀xA&∀xB ∀x(A ∨ B(x)) |− A ∨ ∀xB(x)

Left and right introduction rules for connectives are as follows. For (additive)
disjunction,

� |− A
(R∨)

� |− A ∨ B

� |− B
(R∨)

� |− A ∨ B

�, A |− C �, B |− C
(L∨)

�, A ∨ B |− C

For (multiplicative) conjunction,
� |− B � |− C

(R&)
�, � |− B&C

�, A, B |− C
(L&)

�, A&B |− C

For (de Morgan) negation,16

�, A |− B

�, ¬¬A |− B

� |− A

� |− ¬¬A

� |− ¬A

� |− ¬(A&B)

� |− ¬B

� |− ¬(A&B)

�, ¬A |− C �, ¬B |− C

�, ¬(A&B) |− C
� |− ¬A � |− ¬B

�, � |− ¬(A ∨ B)

�, ¬A,¬B |− C

�, ¬(A ∨ B) |− C

which we will refer to as (R de Morgan) or (L de Morgan) depending on whether the
rule introduces on the right or the left. For quantifiers,

�, Ax
t |− B

(L∀)
�, ∀xA |− B

t any term
� |− Ax

y
(R∀)

� |− ∀xA
y not free in �

� � Ax
t

(R∃)
� |− ∃xA

t any term
�, Ax

y |− B
(L∃)

�, ∃xA |− B
y not free in B, �

� |− ¬Ax
t

(R¬∀)
� |− ¬∀xA

t any term
�, ¬Ax

y |− B
(L¬∀)

�, ¬∀xA |− B
y not free in B, �

�, ¬Ax
t |− B

(L¬∃)
�, ¬∃xA |− B

t any term
� |− ¬Ax

y
(R¬∃)

� |− ¬∃xA
y not free in �

16It is a little outré to mix additive disjunction with multiplicative conjunction, but not unprecedented; see
[38]. It is more unusual to connect them via de Morgan laws, but not incoherent; see [1]. On a similar
note, the issue of additive versus multiplicative quantifiers eventually needs to be addressed (for a start,
see [49, p.509]); but there is not space here.
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The logic has the following structural rules,
� |− A

(Weakening)
�, B |− A

� |− B �, B |− C
(Cut)

�, � |− C
noting the lack of contraction. Exchange—where if A, B |− C then B, A |− C—

follows automatically from the order-insensitivity of multisets.
A sequent is derivable iff it is an initial sequent, or follows from an initial sequent

by rules. An argument from � to A is valid iff � |− A is a derivable sequent. A
theorem � A is a derivable sequent with nothing on the left.

That’s subLPQ⊥. To get subLPQ⊥⇒, add ⇒ to the language and the rules:

�, A |− B
(R⇒)

� |− A ⇒ B

� |− A �, B |− C
(L⇒)

�, �, A ⇒ B |− C
� |− A � |− ¬B

(R¬ ⇒)
�, � |− ¬(A ⇒ B)

giving a decent working (non-material) conditional.17 Adding = to the language
of subLPQ⊥⇒, too, it is governed by the following initial sequents:

|− x = x x = y |− A(x) ⇒ A(y)
where substitution holds for any A.

2.2 Set Theory

The purpose of this perhaps baroque system is to add the highly natural naive com-
prehension schema to it. For this we add to our language the set membership symbol
∈ and the term-forming operator {· : ·}, and to our logic add the axioms:

Principle 1 (Comprehension) x ∈ {z : A(z)} ⇔ A(x), x �∈ {z : A(z)} ⇔ ¬A(x)

This makes the system inconsistent, but the logic is prepared to handle this.18

From comprehension, it follows immediately that

∀z(x ∈ z ⇒ y ∈ z) � x = y

since x ∈ {u : u = x}. Combined with our logical assumption that identity substi-
tutes, which may now be expressed x = y � ∀z(x ∈ z ⇒ y ∈ z), this makes = an
equivalence relation.19

17There is no rule for introducing ¬(A ⇒ B) on the left, to avoid falling back into a material conditional.
See Section 3 below.
18Without explosion (EFQ) or contraction, the Russell contradiction is derivable but inert, and Curry’s
paradox is avoided. There are other problematic pieces of reasoning to be careful of, for example, [6, 27];
to avoid these, we do not have an axiom of extensionality, which is integral to several more advanced
paradoxes. There is a proof that the logic itself is robustly contraction free [1]. But there is not yet known
a full non-triviality proof for this system once comprehension is added. Such a proof would be a relative-
consistency proof carried out in a classical metatheory, which may be problematic for some principled
reasons. See [46, ch.3].
19Symmetry: x = y, x ∈ {u : u = x} � y = x. Transitive: ∀u(x ∈ u ⇒ y ∈ u),∀u(y ∈ u ⇒ z ∈ u) �
∀u(x ∈ u ⇒ z ∈ u).
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In terms of the language, further notation needed below is taken to be defined in
terms of ∈, as in

X ⊆ Y := ∀z((z ∈ X ⇒ z ∈ Y )&(z /∈ Y ⇒ z /∈ X))

〈x, y〉 := {{x}, {x, y}}
X × Y := {〈x, y〉 : x ∈ X & y ∈ Y }

The law of ordered pairs, 〈x, y〉 = 〈x′, y′〉 ⇔ x = x′ & y = y′ is derivable (by the
same proof as in [6, p.356]). Then a function f : X −→ Y is a set f ⊆ X × Y such
that ∀z(〈z, y〉 ∈ f & 〈z, x〉 ∈ f ) ⇒ y = x; and so forth. Along these lines, we can
introduce, for example, the following abbreviations:

Func(f ) := (∀u∈f )(∃y, z(u=〈y, z〉))&(∀x, y, z(〈z, y〉∈f &〈z, x〉∈f )⇒y =x)

Dom(f ) := {x : ∃y(〈x, y〉 ∈ f )}
Range(f ) := {y : ∃x(〈x, y〉 ∈ f )}

We can express f : X −→ Y by writing Func(f ) & Dom(f ) = X & Range(f ) ⊆
Y . With each function with a finite domain, there is an associated ordered n-tuple
f = 〈f (1), . . . , f (n)〉.20

Beyond notation, ideally, one would use set theory as a foundation for other
mathematical theories; but that is a story for another day. For present purposes, the
following additional postulates simply record how much strength is necessary to
carry off our results, as a rough kind of reverse mathematics. For steps towards deriv-
ing these principles substructurally, see [36, ch.11], [1, sec.8], [45, p.88], [46, ch.5,
6].

Principle 2 (Arithmetic) There is a set Z+ = {1, ...} of positive integers for which
basic properties of arithmetic hold. But 1 = 2 does not hold, on pain of ⊥. In general,
for any i ∈ Z

+, i = i + 1 is not provable, although other contradictions may be.

As a consequence, we have

Principle 3 (Mathematical Induction) For any set X, if 1 ∈ X, and whenever k ∈ X

s.t. k ∈ Z
+ also k + 1 ∈ X, then ∀y(y ∈ Z

+ ⇒ y ∈ X).

Informally here X stands for some property, which we want to obtain for all
the integers. More generally, we can work inductively over the initial segment of
ordinals. Let V = {x : ¬⊥} (the universe of sets).

20In a paraconsistent context, there are significant complications that can arise around the addition of
function symbols to the language [28], [46, p.174–178]. The language of subLPQ⊥⇒ with its conditional
is stronger than ‘stock’ LP and so avoids some of these worries, but there is more work to be done in the
paraconsistent theory of functions. The ‘functional’ properties here are minimal.
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Principle 4 (Recursion) Let h : Z+ × V −→ V be a ‘class function’. Then there
exists a unique function f : Z+ −→ V such that, for every n ∈ Z

+, f (n) = h(n, f �
n), where f � n is the restriction of f to n.

Principle 5 (Countable Choice) A countable union of finite sets is countable.

This provides a substantial basis for undertaking a mathematical study of logic
itself. It is a modification of the apparatus used in [47].

This presentation of our framework brings out one general aspect of how we will
tackle these proofs, and also why our solution is only a partial one. We help ourselves
to restricted quantification e.g. over members of a function, writing ‘∀x ∈ f ’, rather
than ∀x(if x is in f then...). For proofs, we will need to write e.g. (∀n ∈ Z

+)(A(n)) or
∃BA(B) to mean ‘all natural numbers are A’ or ‘some structure is A’, respectively.
The final component of our framework, then, recording the requirements for proving
completeness, are primitive restricted quantifiers: obeying dualities,

(∀xA(x))(¬B(x)) |− ¬(∃xA(x))(B(x)) ¬(∃xA(x))(B(x)) |− (∀xA(x))(¬B(x))

(∃xA(x))(¬B(x)) |− ¬(∀xA(x))(B(x)) ¬(∀xA(x))(B(x)) |− (∃xA(x))(¬B(x))

a kind of ‘modus ponens’,

A(a), (∀xA(x))(B(x)) |− B(a)

and at least the rules:

�, Ax
y, B

x
y |− C

�, (∃xA(x))(B(x)) |− C
y not free in �

�, Ax
y |− Bx

y

� |− (∀xA(x))(B(x))
y not free in �

These are used, for instance, in the proof of Theorem 2, dealing with Cases 1 and
2 in the proof of Theorem 4, and elsewhere. Until restricted quantification is given a
full treatment, our result here is a partial solution.21 The next section opens with a
discussion of just how useful restricted quantification is, focusing on the definition
of validity.

2.3 Propositional Semantics

With this, we can turn around and interpret parts of our logical calculus. That is,
the theory just presented can account for the meaning of its own terms, say for the
propositional part of the language. Let’s record this here for intuitive interest and
for use in more involved encoding later. Let t, f be two objects, like 1, 2 which by
principle 2 are distinct. Focusing on just a propositional language, with PROP a set of

21The issue of restricted quantification is extremely difficult and is, to our knowledge, as yet unsolved. But
research does not advance by waiting for everything to be finished before proceeding. We here suspend
judgment on the issue to solve several other problems. See [34, §8], [11].
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propositional atoms, then a relation v ⊆ PROP×{t, f} is a valuation (or an assignment
of truth-values) iff (where v[p] = {x | 〈p, x〉 ∈ v}):

t ∈ v[p] ∨ f ∈ v[p]
t ∈ v[p] ⇔ f �∈ v[p]
f ∈ v[p] ⇔ t �∈ v[p]

Given a valuation v, we want to extend it recursively to a relation v′ assigning
truth values to all formulas of a propositional language in the following manner:22

t ∈ v′[¬A] ⇔ f ∈ v′[A]
f ∈ v′[¬A] ⇔ t ∈ v′[A]

t ∈ v′[A & B] ⇔ t ∈ v′[A] & t ∈ v′[B]
f ∈ v′[A & B] ⇔ f ∈ v′[A] ∨ f ∈ v′[B]

t ∈ v′[A ∨ B] ⇔ t ∈ v′[A] ∨ t ∈ v′[B]
f ∈ v′[A ∨ B] ⇔ f ∈ v′[A] & f ∈ v′[B]

t ∈ v′[�] ⇔ �
f ∈ v′[�] ⇔ ⊥

t /∈ v′[�] ⇔ ⊥
f /∈ v′[�] ⇔ �

A proposition A is a logical law iff t ∈ v(A) for every valuation v.
Notably, there is at least one proposition that is true and only true on pain of

triviality, ruling out any ‘trivial’ models in which every formula is both true and
false (as can happen in basic LP [35]). Otherwise, completeness can be made almost
trivially true, if there is an evaluation that makes everything both true and false: the
existence of a ‘universal counterexample’ makes studying the relationship between
proofs and counterexamples vacuous [46, ch.10]. Having ⊥ in the language makes
proving completeness a meaningful exercise; cf. theorem 4 below.

3 Validity: Expressing and Internalizing

To do metamathematics requires representing the critical notions within the sys-
tem itself. We must interpret ‘interpretations’. The work we are about to do will
indicate how validity may be ‘internalized’ in a paraconsistent system. But the
way it is expressed brings out an important issue that arises repeatedly in shifting
from classical formalisms to non-classical ones. This is to do with the relationship
between validity and counterexamples, which is at the heart of any soundness and
completeness theorems.

The problem is already visible at the level of a conditional operator. Because the
material conditional is sub-optimal, non-classicists propose an alternative implication
connective, ⇒, that is supposed to fare better. For a ‘gap’ theorist (who does not
accept LEM),

• if p ⇒ q then p ⊃ q

22The recursive extension v′ can be obtained by applying Principle 4 and defining a notion of complexity
degree for the formulas of the propositional language (in symbols, dg(A) for a given formula A), i.e.,
propositional variables have degree 0, � has degree 1, a formula ¬A has degree 2+dg(A), and both A∨B

and A&B have degree 3 + dg(A) + dg(B). Then v′[A] can be given a recursive definition on dg(A) using
the above conditions (strictly speaking we obtain v′[dg(A)]).
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will break down (else the (true) instance p ⇒ p will deliver p ∨ ¬p) while for the
‘glut’ theorist (who accepts failures of ex falso),

• if p ⊃ q then p ⇒ q

will break down (else the (true) instance p&¬p ⊃ q will deliver real explosion).
Both of these end up challenging the direct identification, made so explicitly in
classical logic, between the truth of an implication p ⊃ q and the falsity of any
counterexample p&¬q. Non-classically, just because we don’t have an implication
doesn’t mean we do have a counterexample; just because we don’t have a counterex-
ample doesn’t mean we have an implication. And while that is by design, it leads
to serious difficulties in ‘recapturing’ classical results—especially classical results
about conditionality itself and its grown-up cousin, validity. For a completeness the-
orem is fundamentally about validity, and yet in its classical formulation, the theorem
(along with soundness) amounts to identifying valid arguments with absences of
counterexamples, and vice versa.

How does this play out? The standard definitions of validity and invalidity, if
uncritically transcribed into our formalism, would leave room for a gap. An argument
from � to ϕ is valid iff for every valuation v, if t ∈ v(ψ) for all ψ ∈ � then t ∈ v(ϕ),

∀v(t ∈ v(ψ0)&...&t ∈ v(ψn) ⇒ t ∈ v(ϕ))

An argument is invalid iff there is a valuation that provides a counterexample to the
argument,

∃v(t ∈ v(ψ0)&...&t ∈ v(ψn)&t �∈ v(ϕ))

But in the paraconsistent case, it is not true that ¬∃x(ϕ(x)&¬ψ(x)) implies
that ∀x(ϕ(x) ⇒ ψ(x)); and it is not true that ¬∀x(ϕ(x) ⇒ ψ(x)) implies
∃x(ϕ(x)&¬ψ(x)). Some arguments may have no counterexample, so not be invalid,
yet be without proof of validity. That is, on this way of writing things, just because
an argument is not valid does not mean that it is invalid.

This raises some profound questions about the meaning of general validity, which
are not our main purpose today. For the purposes of today’s exercise, we observe
that completeness proofs, even direct ones, do trade in the duality between validity
and counterexamples. Our aim is to find a way to prove completeness. So to avoid
‘validity-gaps’, let’s not work with the general notion of validity, but (as in [47]) just
with tautologies:

• A proposition ϕ is valid, � ϕ, iff ∀v(t ∈ v(ϕ)).
• A proposition ϕ is invalid, �� ϕ, iff ∃v(t �∈ v(ϕ)).

From quantifier duality, these are now interlinked in the classical way: tautologies are
identified with those propositions that have no counterexample. This is where appeal-
ing to restricted quantification is so important. But non-classicality is just below
the surface: for all that has been said, there would be nothing incoherent about a
proposition being both valid and invalid.

Once the basic idea of the semantics has been understood at the propositional level
(as above), the task is to introduce the universal and existential quantifiers ∀, ∃. The
first step in that direction is as usual to introduce a more sophisticated notion of an
interpretation, including a domain of objects and relations on it. Our object language
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will consist of the so called pure predicate calculus [7, 18], where there is no equality
symbol and the only terms are the individual variables.

Definition 5 An interpretation A is a pair 〈D, I 〉 consisting of a non-empty domain
D (i.e., ∃x(x ∈ D)) and a map I assigning to each individual variable an element
of D and to each relation symbol Rn of the vocabulary τ an n-ary relation Rn

I ⊆
Dn × {t, f} such that

〈〈a1, . . . , an〉, t〉 ∈ Rn
I ⇔ 〈〈a1, . . . , an〉, f〉 /∈ Rn

I〈〈a1, . . . , an〉, f〉 ∈ Rn
I ⇔ 〈〈a1, . . . , an〉, t〉 /∈ Rn

I

For any interpretation A of the logical vocabulary τ , we will define the relation of
satisfaction |=, which holds between A and formulas of the language. This is typically
done by some sort of recursion but in fact using some tricks originally due to Dana
Scott it can be done without any lengthly recursion-theoretic methods [9, p. 91]. We
can start by identifying formulas with particular sequences of set-theoretic objects
(their “Gödel set”). For relations,

�Rn
k xi1 , . . . , xin� is 〈1, k, n, 〈i1, . . . , in〉〉

where n is the arity of the relation (working in a language with a single count-
able sequence of variables and xi represented by i ∈ Z

+). For the connectives,
�A ∨ B� is 〈2, �A� , �B�〉
�A&B� is 〈3, �A� , �B�〉
�¬A� is 〈4, �A�〉

�∃viA� is 〈5, i, �A�〉
�∀viA� is 〈6, i, �A�〉
�⊥� is 〈7〉

For ∀ and ∃, we say that vi—represented by i—is bound by the respective quan-
tifier. Then we can introduce a precise meta-mathematical definition of formula in
terms of Gödel sets:

Definition 6 A relation Fm(u, s, n) says that u = �M� for some formula M , and s

is a function which describes the construction of u as the Gödel set of M in n steps
(the strict definition is just like in [9, p. 91]).

It is important to observe that no two formulas can have the same Gödel set or
else i = i + 1 for some i ∈ Z

+, which by Principle 2 gives ⊥. Furthermore, we
will define the notion of a variable x being free in a formula M as: either M has no
quantifiers on pain of ⊥, or x is the bound variable of a quantifier from M implies ⊥.
For instance, in ∀x1(R

2
1x1x2), the Gödel set is 〈6, 1, 〈1, 1, 2, 〈1, 2〉〉〉, so if x2 were

the variable bound by ∀ (i.e. x1), 〈6, 1, 〈1, 1, 2, 〈1, 2〉〉〉 = 〈6, 1, 〈1, 1, 2, 〈1, 1〉〉〉 and
then 1 = 2, which gives ⊥. For another example take the formula R4

6x5x1x1x1,
which is represented by 〈1, 6, 4, 〈5, 1, 1, 1〉〉, and ask: is x1 free in this formula? If
R4

6x5x1x1x1 had a quantifier that would mean it was two different formulas at the
same time, which again leads to ⊥.

We are now ready to define the satisfaction relation |=:

Definition 7 Let M be a formula with Gödel set u, and let A = 〈D, I 〉 be an inter-
pretation. Define the relation |= between A, M (more precisely, u), and a set b (in
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symbols, A |= M[b]) as

∃t, s, n, r(n, r ∈ Z
+&(Fm(u, s, n))&(Func(t))&(Dom(t) = n + 1)

&(b ∈ t (n))&(∀k < n + 1 S(k, t, r, s,A)))

where S(k, t, r, s,A) (the ‘compounded’ satisfaction of sub-fomulas of M) is the
disjunction of the following statements:

(i) ∃o, p ∈ Z
+∃ f : o + 1 −→ Z

+ ((s(k) = 〈1, p, o, f 〉)&(t (k) = {a ∈
Dr | 〈〈af (1), . . . , af (o)〉, t〉 ∈ I (Ro

p)})), i.e., k is the Gödel set of an atomic
formula and t (k) is the set of sequences of elements that satisfy it: A |=
Ro

pxf (1), . . . , xf (o)[a] iff 〈〈af (1), . . . , af (o)〉, t〉 ∈ I (Ro
p),

(ii) ∃l, m < k((s(k) = 〈2, s(l), s(m)〉)&(t (k) = t (l)∪ t (m))), i.e., k is the Gödel
set of a disjunction of the formulas represented by the Gödel sets l and m < k,
and t (k) is the union of the sets t (l) and t (m) of sequences satisfying the
respective disjuncts: A |= (A ∨ B)[a] iff A |= A[a] or A |= B[a],

(iii) ∃l, m < k((s(k) = 〈3, s(l), s(m)〉)&(t (k) = t (l) ∩ t (m))),

(iv) ∃l < k((s(k) = 〈4, s(l)〉)&(t (k) = {a ∈ Dr | a /∈ t (l)})),
(v) ((s(k) = 〈7〉)&(t (k) = {Dr | ⊥}))

(vi) ∃i ∈ Z
+∃l < k((s(k) = 〈5, i, s(l)〉)&(t (k) = {a ∈ Dr | (∃x ∈ D)(a(i/x) ∈

t (l))})), where a(i/x) = 〈d1, . . . , x, . . . dr 〉 if a = 〈d1, . . . , di, . . . dr 〉.
(vii) ∃i ∈ Z

+∃l < k((s(k) = 〈6, i, s(l)〉)&(t (k) = {a ∈ Dr | (∀x ∈ D)(a(i/x) ∈
t (l))})), where a(i/x) = 〈d1, . . . , x, . . . dr 〉 if a = 〈d1, . . . , di, . . . dr 〉.

Think of (vi) as saying that for all a ∈ Dr , A |= ∃xiB[a] iff there is x ∈ D s.t.
A |= B[a(i/x)]. Think of (vii) as saying that for all a ∈ Dr , A |= ∀xiB[a] iff for
all x ∈ D, A |= B[a(i/x)]. Importantly, think of r as the maximum of all numbers
appearing in the Gödel set u; that way, it suffices to consider r-sequences of elements
in the satisfaction relation.

Definition 8 Define finitary logical consequence,23 in symbols, N1, N2, . . . , Nm �
M , as

(∀A)((A |= N1&N2& . . . &Nm) ⇒ (A |= M)),

i.e., any interpretation A that satisfies N1&N2& . . . &Nm also satisfies M .

Definition 9 Define logical validity (in symbols, � M) as ∅ � M , where ∅ is the
empty set of premises, and the conjunction of its members is defined as �. So ∅ � M

amounts to
∀A(A |= M),

i.e., any interpretation A satisfies M .

Now we can show that the theory is sound. The proof is conducted in mathematical
English, saving more detailed Gentzen-style derivations for the more substantial Big
Three.

23The premises may be thought of a finite multiset. Repeat occurrences of a premise are tracked by & in
the definition of �. Cf. multiset consequence as studied in [8].
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Lemma 1 For any n, r ∈ Z
+, n � r , A an interpretation, a and b sequences of

length r of elements from A identical on their first n values, and M a formula with
free variables in the list x1, . . . , xn, we have thatA |= M[a] if and only ifA |= M[b].

Proof Induction on complexity of M .

Theorem 2 (Soundness of SubLPQ⊥) If M1, M2, . . . , Mm |− A is a provable
sequent then M1, M2, . . . , Mm � A. In particular, every theorem is valid, i.e., � A

implies that � A.

Proof By induction on the length of the proof of N1, N2, . . . , Nm |− M . The fol-
lowing illustrates the (tedious) use of Definition 7 to show soundness of some initial
sequents in the basis case of the induction. Such details are then elided in the
inductive step and the rest of the paper.24

BASIS: We need to show that the initial sequents have the property.

• A |− A is an initial sequent. But ∀A((A |= A) ⇒ (A |= A)) is an instance of a
valid form in subLPQ⊥⇒, so A � A.

• ⊥ |− A is an initial sequent. Take an arbitrary interpretation A and element
b ∈ D such that A |= ⊥[b]. By Definition 7, there exists t, s, r such that b ∈ t (1)

and S(1, t, r, s,A). The latter is the formula s(1) = 〈7〉 & t (1) = {Dr |⊥}, so
b ∈ t (1) implies that b ∈ {D|⊥}. By Comprehension, b ∈ {Dr |⊥} implies ⊥ (in
the meta-theory). Since ⊥ implies everything, we get for free that A |= A[b] for
any A.

• In the following proof we replace contractions by using the following pat-
tern of reasoning: if A � C and B � D then A & B � C & D. This is
derivable from applying the right and left conjunction rules. So, on with the
induction: ∀x(B & C) |− ∀xB & ∀xC is an initial sequent. We need to show
that ∀x(B & C) |= (∀xB & ∀xC). Take an arbitrary interpretation A and ele-
ment b ∈ D such that A |= ∀x(B & C)[b]. By Definition 7 (vii), there exists
i, n ∈ Z

+, a function t and an l < n such that s(l) = �B & C� and b ∈ {a ∈
D|(∀x ∈ D)(a(i/x) ∈ t (l)}, so (∀x ∈ D)(b(i/x) ∈ t (l)). Take an arbitrary
c ∈ D, then b(i/c) ∈ t (l) = t (o)∩t (p), for some o, p < l such that s(o) = �B�,
s(p) = �C� and s(l) = 〈3, s(o), s(p)〉. Thus, b(i/c) ∈ t (o) and b(i/c) ∈ t (p).
Because c was chosen arbitrarily, we get that (∀x ∈ D)(b(i/x) ∈ t (o)) and
(∀x ∈ D)(b(i/x) ∈ t (p)), so b ∈ {a ∈ D|(∀x ∈ D)(a(i/x) ∈ t (o))} and
b ∈ {a ∈ D|(∀x ∈ D)(a(i/x) ∈ t (p))}. Now, let s′ and t ′ be functions such
that s′(x) = s(x) and t ′(x) = t (x) for every x < l. Let s′(o + 1) = 〈6, i, s(o)〉

24E.g. a standard looking step like
A |= ∀xA ⇒ A |= Ax

t

is rough shorthand for

A |= ∀xA[b] ⇒ ∃i ∈ Z
+∃l < k((s(k) = 〈6, i, s(l)〉)&(b ∈ {a ∈ D | (∀x ∈ A)(a(i/x) ∈ t (l))}))

which may be unpacked using Definition 7.
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and s′(p + 1) = 〈6, i, s(p)〉, and let t ′(p + 1) = t ′(o + 1) = {b}. We get that
there exists t ′, s′, n′, r ′ such that b ∈ t ′(n′) = t ′(o′) ∩ t ′(p′) for some o′, p′ with
s′(o′) = �∀xB� and s′(p′) = �∀xC�, and finally s′(n′) = 〈3, s′(o′), s′(p′)〉.
Therefore, A |= (∀xB & ∀xC)[b].

The other initial sequents are left as exercises.
INDUCTIVE STEP: Here we have various rules to check the property for.
Case (L∀): Assume that �, Ax

t � B by inductive hypothesis to show that �, ∀xA �
B. Let � be N1, N2, . . . , Nm. So our assumption consists in that

(∀A)((A |= N1&N2& . . . &Nm&Ax
t ) ⇒ (A |= B)),

where t is a term (i.e. a given variable). We then need to show that

(∀A)((A |= N1&N2& . . . &Nm&∀xA) ⇒ (A |= B)).

By the principles of restricted quantifiers, we can take an arbitrary A to show that

(A |= N1&N2& . . . &Nm&∀xA) ⇒ (A |= B),

which would follow by a conditional proof. So assume then that A |=
N1&N2& . . . &Nm&∀xA, so A |= N1&N2& . . . &Nm and A |= ∀xA, and from
the latter, again by restricted quantifiers, A |= Ax

t . But then we have by conjunc-
tion principles (without contraction!) that A |= N1&N2& . . . &Nm and A |= ∀xA

gives that A |= N1&N2& . . . &Nm and A |= Ax
t , and the latter implies that

A |= N1&N2& . . . &Nm&Ax
t . Applying the inductive hypothesis, A |= B, and we

are done.
Case (L¬∀): Assume for inductive hypothesis that �, ¬Ax

y � B to show that
�, ¬∀xA � B. Let � be N1, N2, . . . , Nm. By assumption:

(∀A)((A |= N1&N2& . . . &Nm&¬Ax
y) ⇒ (A |= B)),

where y is not free in �. We want to show that

(∀A)((A |= N1&N2& . . . &Nm&¬∀xA) ⇒ (A |= B)).

By the principles of restricted quantifiers, we can take an arbitrary A to show that

(A |= N1&N2& . . . &Nm&¬∀xA) ⇒ (A |= B).

We do a conditional proof: assume that A |= N1&N2& . . . &Nm&¬∀xA, so A |=
N1&N2& . . . &Nm and A |= ¬∀xA. From the latter, by restricted quantifiers prin-
ciples, for some a ∈ A, A �|= A[a], so A �|= Ax

y[a], i.e., A |= ¬Ax
y[a]. But then

A |= N1&N2& . . . &Nm&¬Ax
y[a] (using Lemma 1), and, by inductive hypothesis,

A |= B.
Case (R∀): Assume for inductive hypothesis that � � Ax

y to show that � � ∀xA.
Let � be N1, N2, . . . , Nm. The assumption consists in that

(∀A)((A |= N1&N2& . . . &Nm) ⇒ (A |= Ax
y)),

where y is not free in �. We want to show that

(∀A)((A |= N1&N2& . . . &Nm) ⇒ (A |= ∀xA).
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Suppose that for arbitrary A we have that A |= N1&N2& . . . &Nm, and, in particular,
we have this for any assignment of an element a from A as the value of the variable
y (since y is not free in �), so A |= A[a] for any such a by inductive hypothesis,
which gives us that A |= ∀xA as desired.

Other cases are omitted.

4 Proving the Big Three

Now for our main order of business. Our strategy will be to carefully follow and
modify the completeness argument from [7, Thm. 440], identifying the logical and
mathematical resources required for our version of the proof. The argument is origi-
nally due to Gödel [16] (with a few modifications) but the presentation in [7] (which
corrects the first textbook proof given in [17]) stands out for its clarity. Furthermore,
we will be interested in other applications of the same proof method (and its dual ver-
sion). Gödel’s approach originates with Löwenheim [22] and Skolem [43]: his proof
rehashes the original argument of the Löwenheim-Skolem theorem. Appropriately,
then, each of the Big Three will be established below using variations on the same
argument.

In this section, we let A be a formula in SNF,

∃a1, . . . , am∀b1, . . . , bnM,

where M is the quantifierless matrix of A in the free variables a1, . . . , am, b1, . . . , bn

(now allowing a, b, c, ... to be variables rather than constants). Recall that � A means
the sequent ∅ |− A is provable in the system subLPQ⊥.

4.1 Gödel’s Completeness

The general strategy of this kind of proof is to reduce first-order problems about
� A and �� A to propositional problems. For each A we obtain a list of propositional
formulas (i.e., no quantifiers involved) 〈Ck | k ∈ Z

+〉 such that (1) if any Ck were
provable, A would be too, and that, furthermore, (2) if none of the Ck were valid,
then A would not be valid either, and, in particular, that it would have a countermodel
in the domain Z

+. The trick will be to make the formulas 〈Ck | k ∈ Z
+〉 be all the

possible instantiations of the quantifiers ∃a1, . . . , am∀b1, . . . , bn in the domain Z
+.

Since the first stream of quantifiers is a block of m existentials, begin by finding a
way to organize all the possible values for these variables. Hence, for each m, define
an ordering <∗ on all the m-tuples of positive integers according to increasing sums,
and lexicographically within each group having the same index sum. More precisely,

〈i1, . . . , im〉 <∗ 〈j1, . . . , jm〉 if i1 + i2 + · · · + im < j1 + j2 + · · · + jm

or i1 + i2 + · · · + im = j1 + j2 + · · · + jm

and ∃k < m, i1 = j1, . . . , ik = jk, ik+1 < jk+1.

Then for the sequences of m-tuples, our ordering should start:

〈1, 1, . . . , 1〉, 〈1, 1, . . . , 2〉, 〈1, 1, . . . , 2, 1〉, 〈1, 1, . . . , 2, 1, 1〉, . . .
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The notation [kl] is for the lth integer in the kth m-tuple according to the ordering
<∗. No integer in the kth m-tuple is greater than k on pain of absurdity: it would
imply that i = i + 1 for some integer i, which by Principle 2 cannot be.

Next, for any k � 1, define Bk (using vertical notation to show substitutions, i.e.

M

(
a

x

)
for M(a/x)) as

M

(
a1 a2 . . . am b1 b2 . . . bn

x[k1] x[k2] . . . x[km] x(k−1)n+2 x(k−1)n+3 . . . xkn+1

)
.

Each Bk is a substitution instance of the quantifierless matrix M . By the way we
have defined things, the lists of variables x(k−1)n+2, x(k−1)n+3, . . . , xkn+1 are pair-
wise different for different k. The numbering is chosen so that the variables that are
substituted for the bs are not the same as the variables that are substituted for the as,
and also that they are all different among themselves.

Furthermore, Ck will be defined as

B1 ∨ B2 ∨ · · · ∨ Bk,

and, finally, we let Dk be
∀x1, . . . , xkn+1Ck .

To simplify notation where possible, runs a1, ..., am will be denoted am.

Lemma 3 The sequent Dk |− A is provable for all k.

Proof By our coding into Gödel sets, if y is one of

a1, a2, . . . , am, b1, . . . , bn

and z one of x1, x2, x3, . . . , then y = z implies triviality (⊥). The proof of the Lemma
proceeds by Principle 3 on the number k.

BASIS: k = 1. The sequent

∀x1∀b1, . . . , bnM(am/x1) |− ∃a1, . . . , am∀b1, . . . , bnM(am/x1)

is derivable by one application of (L∀) followed by m applications of (R∃).
INDUCTIVE STEP: k + 1. Assume the claim for k, i.e., that the following is

provable:
Dk |− A.

Then we establish it for k + 1 (i.e., Dk+1 |− A).
First, by multiple applications of (Cut) and the initial sequent (Distribution of ∀

over ∨),

∀xkn+2, xkn+3, . . . , x(k+1)n+1(Ck∨Bk+1) |−Ck∨∀xkn+2, xkn+3, . . . , x(k+1)n+1Bk+1

is a provable sequent. Ck+1 is by definition Ck ∨ Bk+1 and Dk+1 is
∀x1, . . . , x(k+1)n+1Ck+1. Using these facts with multiple applications of (L∀) and
(Cut) the following sequent is provable:

Dk+1 |− Ck ∨ ∀xkn+2, xkn+3, . . . , x(k+1)n+1Bk+1.
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By multiple applications of the following derivation (on the hypothesis that (B
y
x )xy =

B—making sure that x is free for substitution in B—and observing that (B
y
x )xx = B

y
x )

and (Cut),

A |− A
(R∨)

A |− A ∨ ∀yB

B
y
x |− B

y
x

(B
y
x )xx |− B

y
x

(L∀)∀x(B
y
x ) |− B

y
x

R∀∀x(B
y
x ) |− ∀yB

(R∨)∀x(B
y
x ) |− A ∨ ∀yB

(L∨)
A ∨ ∀x(B

y
x ) |− A ∨ ∀yB

we obtain the provability of the sequent:

Ck ∨ ∀xkn+2, xkn+3, . . . , x(k+1)n+1Bk+1 |− Ck ∨ ∀bnM(am/x[(k+1)m])
Once more by (Cut),

Dk+1 |− Ck ∨ ∀bnM(am/x[(k+1)m]).
Now, by multiple applications of (R∃),

∀bnM(am/x[(k+1)m]) |− A.

So we have the derivation

Ck |−Ck
(R∨)

Ck |−Ck∨A

∀bnM(am/x[(k+1)m]) |− A
(R∨)∀bnM(am/x[(k+1)m]) |−Ck∨A
(L∨)

Ck ∨ ∀bnM(am/x[(k+1)m]) |− Ck ∨ A

and then Dk+1 |− Ck ∨ A is provable by (Cut) since we also have that Dk+1 |−
Ck ∨∀bnM(am/x[(k+1)m]). By (R∀), the initial sequent (Distribution of ∀ over ∨) and
(Cut),

Dk+1 |− Dk ∨ A.

By inductive hypothesis (which is used only once!), we know that

Dk |− A,

so we obtain the derivation:

Dk+1 |− Dk ∨ A

Dk |− A A |− A
(L∨)

Dk ∨ A |− A
(Cut)

Dk+1 |− A.

Now for (Gödel) completeness:

Theorem 4 (Gödel Completeness) Either �� A or � A.

Proof The argument follows an application of (Law of Excluded Middle) and (L∨)
in the meta-theory:
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Case (1): There is a k ∈ Z
+ such that Ck is valid ((∃k ∈ Z

+)(� Ck)).
Case (2): There is no k ∈ Z

+ such that Ck is valid (¬(∃k ∈ Z
+)(� Ck), i.e.,

(∀k ∈ Z
+)(�� Ck)).

From Case (1), and, by (Kalmar’s Completeness of Propositional SubLP⊥) [47, The-
orem 4], � Ck , and, by (R∀), � Dk . From Lemma 3 and (Cut), � A, as
desired.

Our next goal is to show that �� A when Case (2) holds. From Case (2), for each Ck ,
we can find some assignment of truth-values to the atomic subformulas of Ck such
that the truth-value of Ck , when calculated by the truth tables for the propositional
connectives, is at least f (i.e., a falsifying assignment). The collection of all falsifying
assignments for Ck will be denoted by Sk .

By Principle 5, we let E1, E2, E3, . . . be an enumeration, without repetitions, of
the atomic formulas in C1, C2, C3, . . . , in the order that they appear in the latter
enumeration (each Ci contains finitely many atomic formulas). Our strategy will
consist in making a “master” assignment of truth-values, φ, to E1, E2, E3, . . . from
which we can define a first-order interpretation A, with the natural numbers Z

+ as
domain, where A �|= A.

We proceed by Principle 4 on n to define the values of En by φ. The basis is n = 1.
By (Law of Excluded Middle), either

(i) some infinite subset of
⋃

k∈Z+ Sk is s.t. each of its elements gives E1 at least
the value t, or

(ii) no infinite subset of
⋃

k∈Z+ Sk is s.t. each of its elements gives E1 at least the
value t.

Note that if (ii), every infinite subset of the enumeration
⋃

k∈Z+ Sk is such that at
least one of its elements gives E1 at least the value f (since it does not give it the value
t (though perhaps it also does!)). So we define 〈E1, x〉 ∈ φ (where x = t or x = f) by
cases as follows:

E1φ

{
t if (i) holds,

f if (ii) holds.

Conditions (i) and (ii) might hold simultaneously, in which case our definition assigns
both t and f to E1 by φ.

Next we assign truth-values to En+1 after we have assigned them to E1, . . . , En

as follows. We consider the subset SE1,...,En of
⋃

k∈Z+ Sk of all assignments that give
E1, . . . , En the same truth-values as they have according to the master assignment φ.
Then, by (Law of Excluded Middle), either

(i) some infinite subset of SE1,...,En is s.t. each of its elements gives En+1 at least
the value t, or

(ii) no infinite subset of SE1,...,En is s.t. each of its elements gives En+1 at least the
value t.

So we set again:

En+1φ

{
t if (i) holds,

f if (ii) holds.
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We show by Principle 3 that for any k, Ck gets value at least f according to φ.
The basis of the induction is n = 1, so we need to show the claim for C1, which
by construction is only the formula B1. All the atomic formulas in B1 must appear
in some section of the list E1, E2, E3, . . . , say in, E1, E2, . . . , El . Observe that any
two assignments that give the same truth-values to a list of atomic formulas will give
the same truth-values to any SubLP⊥-formula. An induction on formula complexity
suffices to establish this. Now, when assigning truth-values to El according to φ, we
restricted attention to only those falsifying assignments of B1 that had the same truth-
values assigned to E1, E2, . . . , El−1 as φ had. Indeed, for such assignments either
El would get t in infinitely many of them, or it would get f in all infinite subsets of
them.25 Hence, in either case, B1 must take at least the value f according to φ. Now,
for the inductive step, assume that Ck gets value at least f according to φ, and we
show that Ck+1 also does. Since Ck+1 is defined as Ck ∨Bk+1, by the truth conditions
for ∨ and the inductive hypothesis (used only once!), it suffices to show that Bk+1
also gets value at least f according to φ. This follows as in the basis of the induction.

Now, to construct the interpretation A, with the natural numbers Z
+ as domain

using φ we proceed as follows. We define the interpretation function I of A, which
assigns to each relation symbol Rn of τ a relation Z

+n × {t, f}. We let I (Rn) be

{〈〈u1, . . . , un〉, x〉 | x ∈ {t, f}, Rxu1 , . . . , xunφx, 〈u1, . . . , un〉 ∈ Z
+n}

and, for any variable xu, I (xu) = u. The interpretation I simply uses φ as a guide to
compute the truth-value of the claim ‘tuple 〈u1, . . . , un〉 stands in the relation Rn’

For any k, in this model A, Bk gets truth-value f, which means that for any k-tuple
〈[k1], [k2], . . . , [km]〉,

A �|= ∀b1, . . . , bnB
x(k−1)n+2/b1,x(k−1)n+3/b2,...,x[kn+1]/bn

k [[k1], [k2], . . . , [km]],
i.e.,

A �|= ∀b1, . . . , bnM
a1/x[k1],a2/x[k2],...,am/x[km] [[k1], [k2], . . . , [km]].

The latter implies that

A �|= ∃a1, . . . , am∀b1, . . . , bnM,

as desired.

An erudite reader might point out that in [16, theorem II], the formulation of
completeness is actually as follows:

Definition 10 A logic L is Gödel complete0 if for any formula A which is the
negation of a formula in SNF, either A is refutable (� ¬A) or satisfiable (it has a
model).

So, prima facie, it appears like our formulation is not faithful to the name it bears.
However, since ¬¬A and A are interdeducible classically as well as in subLPQ⊥,
Gödel completeness and Gödel completeness0 are, in fact, equivalent:

25 If El getting both t and f in infinitely many such assignments would be trivial, then there would be
infinitely many such assignments where it would get simply t (it would be trivial that they get f) or infinitely
many such assignments where it would get simply f (it would be trivial that they get t).
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Lemma 5 A logic L is Gödel complete0 ⇔ L is Gödel complete.

Proof To prove this, one only needs conditional proof and proof by cases. In the
first direction, assume that every A in SNF is either a theorem or invalid. Consider
¬B, the negation of a formula B in SNF. By Definition 1, either �|= B or � B. In
the latter case � ¬¬B, by double-negation introduction, so ¬B is refutable. In the
former case, by definition and using the behaviour of our restricted quantifiers, ¬B

is satisfiable. Conversely, assume that every A which is the negation of a formula in
SNF is either refutable or satisfiable. Now take an arbitrary B in SNF, then ¬B is
the negation of a formula in SNF. By Definition 2, either � ¬¬B (so � B) or ¬B is
satisfiable (�� B).

Corollary 6 subLPQ⊥ is Gödel complete0.

4.2 Löwenheim-Skolem Theorem

Modifying the argument for completeness leads to an independent proof of a
Löwenheim-Skolem theorem. This result could be easily obtained as a corollary of
Theorem 4 together with soundness; however, the proof below has the virtue of intro-
ducing a simpler case, used to establish Theorem 9, which cannot be obtained as a
consequence of Theorem 4, even in the classical case. Recall that Theorem 4, classi-
cally, is sometimes called “weak completeness”, and various logics have this property
without being compact.

Theorem 7 (Löwenheim-Skolem Theorem) Either (i) A is not true in some enumer-
able domain or (ii) A is true in every non-empty domain.

Proof This follows using meta-theoretic (L∨) and (Law of Excluded Middle), fol-
lowing the proof technique of Theorem 4. For any k ∈ Z

+, Ak will denote the
conjunction (&) of k-many copies of A, whereas

∨
k A will be the disjunction (∨) of

k-many copies of A.
By (Law of Excluded Middle), either

Case (1): for some k,
∨

k A is true in every non-empty domain; or
Case (2): for every k,

∨
k A is not true in some non-empty domain.

Since

A |− A A |− A
(L∨)

A ∨ A |− A

... A |− A
(L∨)∨

k−1

A |− A A |− A

(L∨)
(
∨
k−1

A) ∨ A � A
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we have that
∨

k A � A is provable, and, hence, when (1) holds, then A is true in
every non-empty domain by soundness. If (2) holds, on the other hand, if we can
establish that

(∗) for every k, (¬A)k |− ¬Dk is provable,

then we would have essentially Case (2) of Theorem 4, and we can construct the
interpretation showing that A is not true in Z

+ as in the proof of that theorem. So
all our work consists in establishing that (∗) holds. As before, the proof proceeds by
Principle 3 on the number k.

First, observe that

¬A |− ∀a1, . . . , am∃b1, . . . , bn¬M

is provable by first alternating applications of (R∃) and (L¬∀) n times, starting with
the sequent ¬M |− ¬M , and then alternating applications of (L¬∃) and (R∀) m

times.
Second observe that

∀a1, . . . , am∃b1, . . . , bn¬M |− ¬A

is provable by a dual procedure, first alternating applications of (R¬∀) and L∃,
and then (L∀) and (R¬∃). Moreover, the sequents

¬Dk |− ∃x1, . . . , xkn+1

k

&
i=1

(¬Bi)

and

∃x1, . . . , xkn+1

k

&
i=1

(¬Bi) |− ¬Dk

are also both provable by similar methods. Now, for the proof of (∗):
BASIS: k = 1. We observe that

¬A |− ∃x1∃bn(¬M(am/x1))

is provable by m applications of (L∀) to the sequent ∃bn(¬M(am/x1) |−
∃bn(¬M(am/x1), followed by one application of (R∃).

INDUCTIVE STEP: k + 1. Assume the claim for k, i.e.,

(¬A)k |− ¬Dk

is provable and we establish it for k + 1 ((¬A)k+1 � ¬Dk+1 is provable). First,
applying the derivations (here we use A and B schematically where no confusion
should arise),

A |− A B(y) |− B(y)
(R&)

A, B(y) |− A&B(y))
(R∃)

A, B(y) |− ∃x(A&B(x))
(L∃)

A, ∃xB(x) |− ∃x(A&B(x))
(L&)

A&∃xB(x) |− ∃x(A&B(x))
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and

A |− A

B(y) |− B(y)
(R∃)

B(y) |− ∃xB(x)
(R&)

A, B(y) |− A&∃xB(x)
(L&)

A&B(y) |− A&∃xB(x)
(L∃)∃x(A&B(x)) |− A&∃xB(x)

and various applications of (Cut), the following sequent is provable:

(¬Ck)&∃xkn+2, xkn+3, . . . , x(k+1)n+1(¬Bk+1)

|− ∃xkn+2, xkn+3, . . . ., x(k+1)n+1((¬Ck)&(¬Bk+1)).

We also have the derivation

¬Ck |− ¬Ck ¬Bk+1 |− ¬Bk+1
(R de Morgan)

(¬Ck), (¬Bk+1) |− ¬(Ck ∨ Bk+1)
(L&)

(¬Ck)&(¬Bk+1) |− ¬(Ck ∨ Bk+1)
Def of Ck+1

(¬Ck)&(¬Bk+1) |− ¬Ck+1
(R∃)

...
(R∃)

(¬Ck)&(¬Bk+1) |− ∃xkn+2, xkn+3, . . . , x(k+1)n+1¬Ck+1
(L∃)

...
(L∃)

∃xkn+2, xkn+3, . . . , x(k+1)n+1((¬Ck)&(¬Bk+1)) |− ∃xkn+2, xkn+3, . . . , x(k+1)n+1¬Ck+1

It is a similar exercise to derive the sequent

∃xkn+2, xkn+3, . . . , x(k+1)n+1¬Ck+1 |− ¬Dk+1.

By another application of (Cut),

∃xkn+2, xkn+3, . . . , x(k+1)n+1((¬Ck)&(¬Bk+1)) |− ¬Dk+1

is provable. Hence, by (Cut) again,

(¬Ck)&∃xkn+2, xkn+3, . . . , x(k+1)n+1(¬Bk+1) |− ¬Dk+1.

is also provable. Again very much as in the proof of completeness, by multiple appli-
cations of the following derivation (on the hypothesis that (B

y
x )xy = B—making sure

that x is free for substitution in B—and observing that (B
y
x )xx = B

y
x ) and (Cut),

A |− A

B
y
x |− B

y
x

(R∃)
B

y
x |− ∃yB

(L∃)∃x(B
y
x ) |− ∃yB

(R&)
A, ∃x(B

y
x ) |− A&∃yB

(L&)
A&∃x(B

y
x ) |− A&∃yB
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we obtain the provability of the following sequent:

(¬Ck)&∃bn(¬M(am/x(k+1)i )) |− (¬Ck)&∃xkn+2, xkn+3, . . . , x(k+1)n+1(¬Bk+1).

All we have done here is change bound variables. Another application of (Cut)
returns

(¬Ck)&∃bn(¬M(am/x(k+1)i )) � ¬Dk+1.

By multiple applications of (L∀), ∀am∃bn(¬M) |− ∃bn(¬M(am/x(k+1)i )) is prov-
able. Using (Cut), ¬A |− ∃bn(¬M(am/x(k+1)i )) is provable. But then we have the
following derivation:

¬Ck |− ¬Ck ¬A |− ∃bn(¬M(am/x(k+1)i ))
(R&)

(¬Ck),¬A |− (¬Ck)&∃bn(¬M(am/x(k+1)i ))

and then, by (Cut),

(¬Ck),¬A |− ¬Dk+1

is provable. We have the following derivation:

(¬Ck),¬A |− ¬Dk+1
(L¬∀)

(¬∀xkn+1Ck),¬A |− ¬Dk+1

...

(¬∀x2, . . . , xkn+1Ck),¬A |− ¬Dk+1
(L¬∀)

(¬∀x1, . . . , xkn+1Ck),¬A |− ¬Dk+1
Def of Dk

(¬Dk),¬A |− ¬Dk+1
(L&)

(¬Dk)&¬A |− ¬Dk+1

Our inductive hypothesis (which will be used only once!) is

¬Ak |− ¬Dk,

which we can use in our final derivation:

¬Ak |− (¬Dk) ¬A |− ¬A
(R&)¬Ak, ¬A |− (¬Dk)&¬A

(L&)¬Ak&¬A |− (¬Dk)&¬A

Finally, by (Cut),

¬Ak+1 |− ¬Dk+1

is provable.
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4.3 Compactness

To show compactness, we introduce an equivalent notion, that of dual compactness.
The following definition comes from [14], plus the restriction to formulas in Skolem
normal form:

Definition 11 A logic L is dually countably compact iff, for every denumerable set
X of formulas in SNF, either some finite subset of X is not jointly falsifiable, or else
X is jointly falsifiable.

Lemma 8 Dual compactness is equivalent (in the sense of ⇔) to compactness as
stated in Definition 4.

Proof Suppose that L is dually countably compact. Let X be a countable set of for-
mulas in negated SNF. Take X∗ = {A | ¬A ∈ X}. By assumption, either (1) some
finite subset of X∗ is not jointly falsifiable, or else (2) X∗ is jointly falsifiable. If (1)
holds, then some finite subset of X is not jointly satisfiable, and if (2) holds, then X

is not jointly satisfiable. On the other hand, suppose that L is countably compact. Let
X be a countable set of formulas in SNF. Take X′ = {¬A | A ∈ X}. By assumption,
either (1) some finite subset of X′ is not jointly satisfiable or else (2) X′ is jointly sat-
isfiable. If (1), then some finite subset of X is not jointly falsifiable, whereas if (2),
X is jointly falsifiable.

The (dual) compactness theorem for countable sets of sentences can be obtained
by the same method for establishing the Löwenheim-Skolem result. 26

Theorem 9 Let X be a set of formulas enumerated with positive integers. For every
denumerable set X of formulas in SNF, either some finite subset of X is not jointly
falsifiable, or X is jointly falsifiable.

Proof Start by displaying the formulas in X, i.e. those listed in the sequence
A1, A2, A3, . . . , as:

∃a11 , . . . , am1∀b11 , . . . , bn1M1

∃a12, . . . , ao2∀b12 , . . . , bp2M2

...

∃a1j
, . . . , aqj

∀b1j
, . . . , brj Mj

...

26The logical resources required for obtaining completeness (Theorem 4) are a bit less than those needed
for Theorem 9 below. Theorem 4 does not require as many duality principles between ∃ and ∀ as Theorem
9 do. So if we had been only interested in Theorem 4 some of that duality could have been dropped.
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We may always assume that none of the formulas in X use the same variables on
pain of triviality. Next we define, for any k, j � 1, Bkj

as

Mj

(
a1j

a2j
. . . aqj

b1j
b2j

. . . brj

x[k1] x[k2] . . . x[kqj ] x(k−1)rj +2 x(k−1)rj +3 . . . xkrj +1

)

Furthermore, Ck will be defined inductively as

Ck−1 ∨ (Bk1 ∨ Bk−12 ∨ · · · ∨ B1k
).

We then obtain a sequence of formulas following the pattern:

C1 := M1

(
a11 a21 . . . am1 b11 b21 . . . bn1

x1 x1 . . . x1 x2 x3 . . . xn1+1

)

C2 := C1 ∨ (M1

(
a11 a21 . . . am1 b11 b21 . . . bn1

x1 x1 . . . x2 xn1+2 xn1+3 . . . x2n1+1

)

∨M2

(
a12 a22 . . . ao2 b12 b22 . . . bp2

x1 x1 . . . x1 x2 x3 . . . xp2+1

)
)

...

Finally, we let Dk be the universal closure of the formula Ck . By metatheoretic (Law
of Excluded Middle), either

(1) for some k, and every non-empty domain,

¬A1& . . . &(¬A1& . . . &¬Ak−1)&(¬A1& . . . &¬Ak)

is falsified, or
(2) for every k,

¬A1& . . . &(¬A1& . . . &¬Ak−1)&(¬A1& . . . &¬Ak)

is satisfiable in some non-empty domain.

We argue by meta-theoretic (L∨). If (1) holds, some finite subset of X is not jointly
falsifiable (in every model, one of its members is true, but as usual this doesn’t
preclude the possibility that it is also false), and there is nothing to prove by meta-
theoretic (R∨). So we focus on showing that if (2) holds, X is jointly falsifiable.
The idea is to extend the construction technique in Theorem 7 to handle now a
denumerable list of formulas simultaneously.

Hence, we wish to establish that

(∗∗) for every k, ¬A1& . . . &(¬A1& . . . &¬Ak−1)&(¬A1& . . . &¬Ak) |− ¬Dk .

is provable. Once more, the proof proceeds by Principle 3 on the number k.
BASIS: k = 1. Exactly as in the proof of the corresponding claim in the

Löwenheim-Skolem theorem, we obtain that

¬A1 |− ∃x1∃bn(¬M(am1/x1))
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which, by the sequent obtained one paragraph before in the mentioned proof, change
of variables and (Cut), gives that

¬A1 |− ¬D1

is provable.
INDUCTIVE STEP: k + 1. Next assume the claim for k, i.e.,

¬A1& . . . &(¬A1& . . . &¬Ak−1)&(¬A1& . . . &¬Ak) |− ¬Dk,

is provable and we establish it for k + 1:

¬A1& . . . &(¬A1& . . . &¬Ak)&(¬A1& . . . &¬Ak+1) |− ¬Dk+1

is provable.
Reasoning almost exactly as in the corresponding part of the proof of the

Löwenheim-Skolem theorem,

(¬A1& . . . &¬Ak+1) |− (∃b11 , b2, . . . , bn1¬M1
(

a11 a21 . . . am1

x[k1] x[k2] . . . x[k+1m1 ]

)
)

& . . . &(∃b1k+1 , b2k+1 , . . . , brk+1¬Mk+1
(

a1k+1 a2k+1 . . . aqk+1

x1 x1 . . . x1

)
)

is provable, and then,

(¬Ck)&(¬A1& . . . &¬Ak+1) |− (¬Ck)&(∃b11 , b2, . . . , bn1¬M1
(

a11 a21 . . . am1

x[k1] x[k2] . . . x[k+1m1 ]

)
)

& . . . &(∃b1k+1 , b2k+1 , . . . , brk+1¬Mk+1
(

a1k+1 a2k+1 . . . aqk+1

x1 x1 . . . x1

)
)

is also provable. Thus

(¬Ck)&(¬A1& . . . &¬Ak+1) |− ¬Dk+1

is provable, so
(¬Dk)&(¬A1& . . . &¬Ak+1) |− ¬Dk+1

is provable. By inductive hypothesis (applied only once!), we know that

¬A1& . . . &(¬A1& . . . &¬Ak−1)&(¬A1& . . . &¬Ak) |− ¬Dk,

is provable and, since

(¬A1& . . . &¬Ak+1) |− ¬Ak+1

is provable, we obtain the sequent

¬A1& . . . &(¬A1& . . . &¬Ak)&(¬A1& . . . &¬Ak+1) |− (¬Dk)&(¬Ak+1).

Finally, by (Cut),

¬A1& . . . &(¬A1& . . . &¬Ak)&(¬A1& . . . &¬Ak+1) |− ¬Dk+1

is provable.

5 Discussion

This paper has specific results, and a general one. The specific results are (qualified)
versions of the Big Three for quantified substructural LP. The general result is that a
substructural paraconsistent framework has the potential to do its own metatheoretic
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‘heavy lifting’. The paraconsistent logician can, given some assumptions, ‘recap-
ture’ important theorems that are also proved using classical logic. This can be done
without the assumption of global consistency.

This is important in itself, as many paraconsistent attempts to recapture results
up to now have been not encouraging.27 The approach we use suggests that some
version of a recapture is still possible, and explains why some previous efforts fell
short. Previous efforts attempted to take highly-developed models of various theories,
fashioned after decades of group effort, and to tweak those high-tech models to try to
get all classical results ‘for free’. But, obviously, this is not how the classical results
were obtained. Classical results were obtained through a lengthy process of reasoning
from basic building blocks and first principles; only later did more abstract (and more
powerful) notions get developed. A real ‘re’-capture for a non-classical approach will
need to do the same thing—not try to skip to the end of a long process done by others
based on other (disputed) methods and ideas, but rather to capture results (maybe
new or different ones) afresh: new proofs with old tools.

What does all of this ‘honest toil’ prove? One objection might be that we didn’t
really prove completeness, on two counts. First, our theorems are only for the
fragment of the language that can be brought into Skolem normal form. Second, com-
pleteness is a conditional—‘if A is a tautology, then it is derivable’—whereas we
proved a disjunction, and in a paraconsistent setting, that’s weaker. Our broad reply
on both counts is that what we proved is classically equivalent to the classical theo-
rem. But this reply raises as many questions as it answers. To unpack it, let’s view it
from three different perspectives.

One fairly simple view is that, from the classical standpoint, our restricted theo-
rems and the classical versions thereof are the same. On this view, we agree on the
completeness of e.g. LP, because we agree that, for all the sentences in SNF, either
they are invalid, or else provable. The difference lies in what further commitments
one makes, e.g that all sentences have an SNF, or what further reading one wants to
give statements of the form ‘not p, or else q’. Going on to say that, if a sentence is
not provable, it has a counterexample, or that any sentence with no counterexample
is provable, is from our perspective going on to say significantly more. Löwenheim
and Gödel gave arguments that clearly show the material versions, and we have too.
So we do say something at odds with the interpretation of the Big Three: they are
just disjunctions. But that is only a meaningful distinction from our non-classical
standpoint.

Another view is that things are more complicated and nuanced than the simpler
view suggests. Contra the simple view, it could be fair to say that, from either the
classical or paraconsistent standpoint, just because our results are ‘classically equiv-
alent’ does not change the fact that our results are only partial. After all, we admit
that we do not think that our theorems are conditionals or that they apply to the entire
language, and everyone else knows that we think so. The above response requires
a kind of stereotyped Quinean inability to understand the meaning of non-classical

27If only there were some way to cite all the work towards this end that was never finished or published.
Cf. [32, pp.221–2].
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language, and only to be able to parse anything classically (see [44]); but in the cur-
rent pluralistic, anti-exceptionalist climate perhaps this is an unrepresentative view,
maybe even of Quine. Perhaps both classical and paraconsistent logicians can rea-
son ‘counter-logically’ and see that, from the other party’s perspective, something is
missing. We know that our theorems do not say the same thing, to us, as the original
Big Three say to the classicist—and the classicist can ‘see’ this [48]. When it comes
to the meaning of what we’ve proved, we aren’t trying to prove things in a way that
the classicist finds acceptable; they can do that for themself just fine. So, what have
we done?28

We’ve tried to answer an initial challenge to the non-classicist, which was: can you
do what the classicist can do? And we’ve put this paper forward as a candidate for
that challenge. The classical theorems are extensional statements about SNF formulas
and we’ve at least approximated those. Proving intensional conditional statements
would be, from our perspective, doing a great deal more than Gödel’s proof achieves,
showing something stronger that might not even be true. If it turns out that what
we’ve done here wasn’t what was asked for—perhaps we’ve met the letter but not
the spirit of the challenge?—then at least we hope the effort provides more concrete
evidence to examine, for advancing a more informed and subtle discussion in future.
A more complicated appraisal of the situation indeed raises hard questions about how
discussion and communication between committed logical ‘partisans’ can proceed,
and what—if anything—the absolute or logic independent meaning of mathematical
theorems might be. If our efforts here bring out some new aspects of the question a
little more vividly, that in itself is progress.

A third, neutral sort of view—if there is such a thing—is that this exercise simply
shows what assumptions are required for the Big Three, and what Gödel’s proof
techniques establish. They show that the Big Three hold in material form for the
fragment of the language that can be put into SNF. In summary, in subLPQ⊥⇒,

Completeness of subLPQ⊥ Either A is not semantically valid, or it is proof-
theoretically valid, for all A in SNF.

Compactness of subLPQ⊥ Either some finite subset of X is not jointly falsifiable,
or X is jointly falsifiable, for every deumerable set X of formulas in SNF.

Löwenheim-Skolem property for subLPQ⊥ Either A is valid, or it is falsifiable in
an enumerable domain, for all A in SNF.

This paper shows how substructural paraconsistency can prove metatheorems that
are the same or similar to those of classical logic, suggesting that the framework is
independently viable without being (too) mathematically revisionary. From a purely
paraconsistent standpoint, the completeness theorem is true, in a weak sense—the
one Gödel proved.
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