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Abstract
The Mares-Goldblatt semantics for quantified relevant logics have been developed
for first-order extensions of R, and a range of other relevant logics and modal exten-
sions thereof. All such work has taken place in the the ternary relation semantic
framework, most famously developed by Sylvan (née Routley) and Meyer. In this
paper, the Mares-Goldblatt technique for the interpretation of quantifiers is adapted to
the more general neighbourhood semantic framework, developed by Sylvan, Meyer,
and, more recently, Goble. This more algebraic semantics allows one to characterise
a still wider range of logics, and provides the grist for some new results. To show-
case this, we show, using some non-augmented models, that some quantified relevant
logics are not conservatively extended by connectives the addition of which do con-
servatively extend the associated propositional logics, namely fusion and the dual
implication. We close by proposing some further uses to which the neighbourhood
Mares-Goldblatt semantics may be put.

Keywords Relevant logic · Quantified nonclassical logic · Neighbourhood
semantics · Substructural logic

1 Introduction

There have been a number of proposals for enriching the relational semantics of
relevant logics to interpret quantifiers, such as [6, 7, 13, 20] and [8, Ch. 13]. These
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all have their virtues, but one which strikes a nice balance between flexibility and
naturalness, and which seems particularly generalisable beyond the usual relational
semantic framework, is that developed by Mares and Goldblatt [21]. This semantics
starts from a general frame version of the ternary relation semantics most famously
developed by Sylvan (née Routley) and Meyer (see [1, Section 48.3] or [28, Ch.
4] for detailed presentations). This involves adding to a ternary relation frame a set
of admissible propositions, by which formulas are interpreted. The usual problem
with providing semantics for quantified relevant logics, that one cannot simply use
a constant domain and a “Tarski-style” interpretation of the quantifiers, for which
see [14] (or [1, Section 52] for a summary), is thus avoided, as one can restrict the
interpretations of the quantifiers by explicit appeal to the admissible propositions.
While Mares and Goldblatt only consider quantified extensions of R, it is possible
to generalise their work to quantified extensions of other logics which admit of a
ternary relation semantic treatment along the same lines as R – this has been done
by Ferenz [10, 12] (who also considers quantified extensions of relevant logics with
modal operators), by Goldblatt and Kane, in interpreting propositional quantifiers
[17], and by Standefer [31] and Ferenz [11], who consider different ways of adding
identity. The general theory is developed further by Goldblatt in his [16].

It is, however, possible to generalise this semantic framework further, by consider-
ing a yet more general treatment of the propositional parts of the logics in question –
particularly, that of neighbourhood ternary relation semantics. A version of this was,
to our knowledge, first developed by Sylvan and Meyer [26, 27], and further work in
this semantic framework has been done by Lavers [19], Goble [15], Standefer [30],
and Tedder [32]. Many of these, following Sylvan and Meyer, worked with a frame-
work where one also includes a set of admissible propositions (the others opting for
something more akin to neighbourhood semantics as usually studied in modal logic
[24], where any set of points forms a proposition). This generalisation of the original
ternary relation framework allows one to characterise sets of models for which many
weaker logics are complete – as will be relevant to our purposes here, the usual way
in which relational models of modal logics of the “Kripke” variety can be seen as
special cases of neighbourhood models does naturally translate over to the relevant
logic setting. Indeed, in that setting, it can be seen that the difference comes in pre-
cisely at the closure of the set of propositions in a model under intensional operators
other than the arrow. Indeed, this fact is close to the heart of Gaggle theory, another
generalisation of the ternary relation semantics developed by Dunn [9] and his col-
laborators, including Bimbó [3]. The reason for this is that the additional intensional
operators are those which form a “complete gaggle” with implication.

In this paper, we’ll generalise the Mares-Goldblatt machinery, used to interpret the
quantifiers, to apply to the framework of neighbourhood ternary relation semantics.
In so doing, we’ll prove completeness for a collection of relevant logics weaker than
those to which the M-G machinery has been previously applied. Along the way, we’ll
investigate the relationship of the quantifiers and the additional intensional operators,
namely the fusion ◦ and the dual implication ←. In particular, we’ll show, using
some simple neighbourhood models, that certain quantified relevant logics are not
conservatively extended by the addition of ◦ or ← (though the propositional logics
of which they are quantified extensions are conservatively extended by them).
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2 Preliminaries

2.1 Languages

We’ll deal here with logics in a few languages – a basic logical language, and then
a couple of extensions by further connectives. For the most part, the basic language
will be our focus.

The logical part of every language includes V ar = {xi}i∈ω, a denumerable set
of individual variables, as well as the connectives t, ¬,∧, ∨, → (of arities 0,1,2,2,2,
respectively) and quantifiers ∀, ∃. In some cases, the set of logical connectives will
be expanded to include ◦, ← (both arity 2) as well. Whatever the case may be, a
language signature is composed of Pred = {F, F0, F1, . . . }, a set of of predicate
letters, Con = {c, c0, c1, . . . }, a set of name constants, and P = {p, p0, p1, . . . }, a
set of propositional atoms. We fix T erm = V ar∪Con, and define the set of formulas
to the be the smallest set satisfying the following conditions:

• All elements of P are formulas, as is t .
• If P ∈ Pred , of arity n + 1, and τ0, . . . , τn ∈ T erm, then P(τ0, . . . , τn) is a

formula.
• If A, B are formulas, then so are A∧B, A∨B, and A → B. (If ◦, ← are among

the connectives, then so are A ◦ B, A ← B.)
• If A is a formula and x ∈ V ar , then ∀xA, ∃xA are both formulas.

As here, we’ll use the first few capital letters of the Latin alphabet as variables over
formulas. We’ll write that an occurrence of x ∈ V ar is free in the formula A when
it is not bound by any quantifier (all other variables in A are bound). Furthermore,
we’ll call τ ∈ T erm “substitutable for x in A” when no variable clashes result from
substituting τ for x. As a notational convention, → is assumed to bind least strongly
of all the connectives, and A ↔ B is defined as (A → B) ∧ (B → A).

We’ll write the basic language, that without ←, ◦, as L. Extensions thereto by
these additional connectives will be notated L� where � ⊆ {←, ◦}. In the next
section, we’ll occasionally use various L� to refer to the propositional languages,
and not their first-order extensions, but no confusion should arise from this, as once
we start to talk about first-order logics, and languages, we won’t revert to talk of the
purely propositional parts.

2.2 Propositional Logics

The basic logic, F, of the neighbourhood semantic framework we’ll employ here is
axiomatised below.1 � is a separator for rules of proof, so A0, . . . , An � B should
be understood to mean “if A0, . . . , An are all theorems, then so is B”:

(Id) A → A

(∧E) A ∧ B → A, A ∧ B → B

(∨I) A → A ∨ B, B → A ∨ B

1Goble [15] calls the system F by the name Min.
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(Dist) A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

(DeM) ¬(A ∧ B) → ¬A ∨ ¬B

(t) t

(rMP) A → B, A � B

(rWB) A → B, B → C � A → C

(rCong) A′ ↔ A, B ′ ↔ B � (A → B) → (A′ → B ′)
(rAdj) A, B � A ∧ B

(r∧I) A → B, A → C � A → B ∧ C

(r∨E) A → C, B → C � A ∨ B → C

(rCont) A → B � ¬B → ¬A

(rt) A �� t → A

The concept of an axiomatic derivation is defined as usual – a sequence of formu-
las each of which is either an instance of an axiom or follows from other formulas
in the sequence by one of the rules. All the logics we’ll deal with here, proposi-
tional or quantified, will be considered just as sets of formulas (theorems) – i.e.,
in the terminology of [18] they’ll be presented as FMLA systems. One may also
be interested in more general formulations, such as FMLA-FMLA, SET-FMLA,
or something else, but given the lingering unclarity about what is the appropriate
account of logical consequence for relevant logics (see [1, p. 169] for some discus-
sion), we’ll leave that, and so questions of strong completeness, for consideration
elsewhere.

A neighbourhood F-frame is a tuple 〈W, N, R, ∗, P rop〉 composed out of ele-
ments of the following kind:2

• ∅ �= N ⊆ W
• R ⊆ W × P(W) × P(W)
• ∗ : W −→ W
• Prop ⊆ P(W)

Intuitively, W is a set of situations (worlds, set-ups,. . . ) and N is a subset of these
(the regular, normal, or logical situations), alongside R which interprets the condi-
tional (and, sometimes, ◦ and ←), and ∗ which interprets the negation. Finally, we
fix a set of admissible propositions, which shall be used to interpret formulas of the
language. Out of these elements, we define, for X, Y ⊆ W , the following subsets of
W (alongside X ∩ Y, X ∪ Y defined as usual):

• ¬X = {α ∈ W | α∗ /∈ X}
• X → Y = {α | RαXY }

2It should be noted that what we are defining here are a special class of neighbourhood frames, where
Prop is made explicit, and allowed to be a strict subset of (W). This means we are using what Pacuit [24]
calls general neighbourhood frames, and this is done to more smoothly transition into giving a Mares-
Goldblatt treatment of the quantifiers, which makes use of general frames. From now on, a ‘neighbourhood
L-frame’, for a logic L extending F, will just be referred to as an ‘L-frame’, or when no confusion will
arise just a “frame”.
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Finally, an F-frame is required to satisfy the following constraints:

(c0) N ∈ Prop; X, Y ∈ Prop only if ¬X, X∩Y, X∪Y, X → Y ∈ Prop

(c1) X ⊆ Y iff N ⊆ X → Y , for any X, Y ∈ Prop

In order to obtain a model M from a frame, for a propositional language, add a
function M : P −→ Prop, and define �·�M : L −→ Prop as follows:

• �p�M = M(p)
• �t�M = N
• �¬A�M = ¬(�A�M)
• �A ∧ B�M = �A�M ∩ �B�M

• �A ∨ B�M = �A�M ∪ �B�M

• �A → B�M = �A�M → �B�M

Let �M A hold iff N ⊆ �A�M , and �L A iff �M A holds for every M built on an
L-frame.

In order to obtain sets of frames, and models, for logics expanding F, we need to
consider some additional frame constraints. We’ll be considering a handful of such
extensions, for which the salient constraints are below (where X, Y, Z are variable
over Prop).3

(DNE) α∗∗ = α (i.e. ¬¬X = X)
(rB) X ⊆ Y only if Z → X ⊆ Z → Y

(rB′) X ⊆ Y only if Y → Z ⊆ X → Z

(∧I) (X → Y ) ∩ (X → Z) ⊆ X → (Y ∩ Z)

(∨E) (X → Z) ∩ (Y → Z) ⊆ (X ∪ Y ) → Z

(Cont) X → Y ⊆ ¬Y → ¬X

(CM) X → ¬X ⊆ ¬X

(WB) (X → Y ) ∩ (Y → Z) ⊆ X → Z

(B) X → Y ⊆ (Z → X) → (Z → Y )

(B′) X → Y ⊆ (Y → X) → (X → Z)

(W) X → (X → Y ) ⊆ X → Y

(CII) N → Y ⊆ Y

(C) X → (Y → Z) ⊆ Y → (X → Z)

(Mingle) X ⊆ X → X

To discover axioms/rules appropriate to each constraint, simply rewrite the above
expressions, replacing each instance of “only if” with one of �, elements of Prop by
formulas, ∩ by ∧, ∪ by ∨, and ⊆ by → (inserting parentheses as necessary). Under
this translation scheme, we have that (rB) becomes A → B � (C → A) → (C →
B) and (∧I), (A → B) ∧ (A → C) → (A → B ∧ C), for example.

3Those of the following clauses whose names are rendered as strings of sans-serif upper-case letters from
the Latin alphabet are so named to reflect the fact that most of the principles are related, in a more or
less direct way, to the implication type schemata of combinators bearing the same names – see [4] for a
treatment of combinatory logic which highlights the salient points.
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In terms of these extra axioms and rules, we can compile at least the following
propositional logics, including most of the usual relevant suspects – the axiomatisa-
tions here are more or less standard, and one can find nice natural deduction versions
of some of these systems in [5].4

FDE is F plus (DNE)
BB is FDE plus (rB), (rB′)
BM is BB plus (∧I), (∨E)

minus (DNE)
B is BB plus (∧I), (∨E)
BJ is B plus (WB)

DW is B plus (Cont)

TW is B plus (B), (B′)
T is TW plus (W), (CM)
E is T plus (CII)

RW is TW plus (C)
R is T plus (C)

RM is R plus (Mingle)

To augment this naming convention, let L(A1),...,(An) be L extended by the
axioms/rules (A1), . . . , (An). So, for example, BJ=B(WB).

Alongside the principles listed above, we’ll be concerned with logics including
the further connectives ◦ and ←. These are required to obey the following rules:

(r◦) A → (B → C) �� (A ◦ B) → C

(r←) A → (B → C) �� B → (C ← A)

Together ←, ◦, → form a residuated triple, or, in the language of [3], a complete
gaggle. It is a well-known fact that any of our logics which obey these rules also
prove some of the above axioms.

Fact 2.2.1 Suppose that L extends F. If L obeys (r◦), then L proves (∧I), and if it
obeys (r←), then it proves (∨E).

The salient derivations will have the same form as some derivations to be presented
below, in Facts 2.3.3 and 2.3.4, so we’ll leave working them out to the skeptical (and
impatient) reader.5

2.3 Adding ◦ and←

One of the topics of interest in this paper, besides proving completeness results for
first-order extensions of the logics introduced in Section 2.2, will be with the relation-
ship between neighbourhood Mares-Goldblatt models and relational Mares-Goldblatt
models, and this relation is, it will turn out, intimately related to the inclusion of

4The choice of the name FDE for ‘F plus (DNE)’ relies on the “first degree” part of “first degree entail-
ment.” As defined here, FDE does have higher-degree theorems, for instance (A → B) → (A → B), but
the important part is that if A → B is a first degree formula, then it is provable in F plus (DNE) just in case
it is the FMLA-FMLA sequent 〈A,B〉 is valid in FDE, as presented, for instance, in [2]. To see this, note
that using (DNE), we can obtain a short proofs of ¬(A ∧ B) → ¬A ∨ ¬B and ¬A ∧ ¬B → ¬(A ∨ B),
against the background of F, and further note that the converses of these are already derivable in F using
(rCont).
5Related discussion can be found in [19].
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◦, ←, so let us detour, a bit, into the behaviour of the connectives and how they cut
the difference between standard relational models and neighbourhood models.6

In order to model logics with ◦ or ←, we first need to ensure that Prop is closed
under some new operations, and furthermore that the models obey a constraint appro-
priate to ensuring that the above rules are satisfied. The trick here is well known from
the algebraic semantics for substructural logics, and the results simply variations on
well known facts therefrom. Let us, first, pick out the following new operations,
under which we’ll require Prop to be closed:

• X ◦ Y = ⋂{Z | X ⊆ Y → Z}
• Y ← X = ⋃{Z | X ⊆ Z → Y }

and furthermore, we’ll enforce the following frame constraints:

(c◦) For any {Xi}i∈I ∪ {Y } ⊆ Prop,
⋂

i∈I

(Y → Xi) = Y → ⋂

i∈I

Xi .

(c←) For any {Xi}i∈I ∪ {Y } ⊆ Prop,
⋂

i∈I

(Xi → Y ) = ⋃

i∈I

Xi → Y .

Fact 2.3.1 Let M be a model in which Prop is closed under ◦ , obeying (c◦). Then
M satisfies (r◦).
Proof First, note that if M satisfies (c◦), then it satisfies (rB). For suppose that X ⊆
Y , i.e. X = X ∩ Y . It follows that Z → X = Z → (X ∩ Y ), and so, by (c◦),
Z → X = (Z → X) ∩ (Z → Y ), and thus Z → X ⊆ Z → Y .

Now, in order to show that the set of formulas satisfied by M is closed under (r◦),
it suffices to show that for any X, Y, Z ∈ Prop, X ⊆ Y → Z iff X ◦ Y ⊆ Z. The
left-to-right direction of this equivalence is immediate from the definition (since if
X ⊆ Y → Z then Z ∈ {Z′ | X ⊆ Y → Z′}), so let us consider the converse.

Suppose that Z ⊇ X ◦Y = ⋂{Z′ | X ⊆ Y → Z′} Then Y → (X ◦Y ) ⊆ Y → Z,
by (rB). It suffices to show that X ⊆ Y → (X ◦Y ). For this, let {Zi}i∈I = {Z′ | X ⊆
Y → Z′}, and note that X ⊆ ⋂

i∈I

(Y → Zi). By (c◦),
⋂

i∈I

(Y → Zi) ⊆ Y → ⋂

i∈I

Zi ,

from which it follows that X ⊆ Y → ⋂

i∈I

Zi = X ◦ Y . Thus X ⊆ Y → Z.

We have an analogous fact for ←:

Fact 2.3.2 Let M be a model in which Prop is closed under ←, obeying (c←). Then
M satisfies (r←).

Proof First, note that if M satisfies (c←) then it also satisfies (rB′). For if X ⊆ Y

then Y = X ∪Y and so Y → Z = (X ∪Y ) → Z and so, by (c←), Y → Z = (X →
Z) ∩ (Y → Z), and so Y → Z ⊂ X → Z.

With this in hand, the argument that X ⊆ Y → Z holds iff Y ⊆ Z ← X goes
similarly to that above, so we’ll just consider the left-to-right direction. To that end,

6As a matter of fact, the interesting relations between relational and neighbourhood models mostly arises
in the propositional setting, so most of what we’ll have to say about this comes in this section, though
these points will resurface later.
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suppose that Y ⊆ Z ← X = ⋃{Y ′ | X ⊆ Y ′ → Z}. It follows that (Z ← X) →
Z ⊆ Y → Z, by (rB′), so it would be sufficient to show that X ⊆ (Z ← X) → Z. To
show this, let {Yi}i∈I = {Y ′ | X ⊆ Y ′ → Z}, and note that X ⊆ ⋂

i∈I

(Yi → Z), and

so, by (c←), X ⊆ ⋃

i∈I

Yi → Z = (Z ← X) → Z, as desired. Thus X ⊆ Y → Z.

Furthermore, we can go the other way around.

Fact 2.3.3 If M , with Prop closed under ←, satisfies (rB′) and the condition that

(← -res.)X ⊆ Y → Z iff Y ⊆ Z ← X

then it satisfies (c←).

Proof First, note the following short ‘derivation’:

1.
⋂

i∈I

(Yi → X) ⊆ Yi → X fact about
⋂

2. Yi ⊆ X ← ⋂

i∈I

(Yi → X) (←-res.)

3.
⋃

i∈I

Yi ⊆ X ← ⋂

i∈I

(Yi → X) fact about
⋃

4.
⋂

i∈I

(Yi → X) ⊆ ⋃

i∈I

Yi → X (←-res.)

For the other half of the inclusion, just note that Yi ⊆ ⋃

i∈I

Yi , and so, by (rB′),
⋃

i∈I

Yi → X ⊆ Yi → X holds for every i ∈ I .

The argument for the following is similar:

Fact 2.3.4 If M , with Prop closed under ◦, satisfies (rB) and the condition that

(◦-res.)X ⊆ Y → Z iff X ◦ Y ⊆ Z

then it satisfies (c◦).
Proof Note the following ‘derivation’:

1.
⋂

i∈I

(X → Yi) ⊆ X → Yi fact about
⋂

2.
⋂

i∈I

(X → Yi) ◦ X ⊆ Yi (◦-res.)

3.
⋂

i∈I

(X → Yi) ◦ X ⊆ ⋂

i∈I

Yi fact about
⋂

4.
⋂

i∈I

(X → Yi) ⊆ X → ⋂

i∈I

Yi (◦-res.)

For the converse, note that X → ⋂

i∈I

Yi ⊆ X → Yi holds for each i ∈ I , by (rB′),

and so X → ⋂

i∈I

Yi ⊆ ⋂

i∈I

(X → Yi).

These results are salient for the fact that they indicate the way in which the inclu-
sion of ◦, ← (against the background of logics including (rB) and (rB′)) splits the
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difference between neighbourhood semantics and the usual ternary relation seman-
tics. To see this, note that (c◦) and (c←) are closely related to the augmentation
constraints given by Goble [15, pp.502–503]. To state these as Goble does, and in a
way which makes obvious the connection to homonymous conditions in the neigh-
bourhood semantics for modal logics (see [24]), we need to define Cα(X) = {Y |
α ∈ X → Y } and Aα(X) = {Y | α ∈ Y → X}, and furthermore assume that Prop

is closed under these. With these definitions and assumptions, Goble’s augmentation
constraints are as follows:

(aug 1) For any Y ∈ Prop,
⋂

Cα(X) ⊆ Y iff α ∈ X → Y

(aug 2) For any X, Y ∈ Prop, ∀b ∈ X(α ∈ {b} → Y ) iff α ∈ X → Y

Goble shows that, in the presence of (rB) and (rB′), these are equivalent to the
following:

(aug 1’)
⋂

Cα(X) ∈ Cα(X) (i.e. α ∈ X → ⋂
Cα(X))

(aug 2’)
⋃

Aα(X) ∈ Aα(X) (i.e. α ∈ ⋃
Aα(X) → X)

In fact, in that context, these are, respectively, equivalent to (c◦) and (c←). The
first part of this can be proved in short order.

Fact 2.3.5 Let M be a neighbourhood model. Then we have:

• If M satisfies (c◦), its Prop closed under ◦, then it satisfies (aug 1’).
• If M satisfies (c←), its Prop closed under ←, then it satisfies (aug 2’).

Proof First, it is immediate that α ∈ ⋂

Y∈Cα(X)

(X → Y ), and thus α ∈ X →
⋂

Y∈Cα(X)

Y , by (c◦). Since
⋂

Cα(X) = ⋂

Y∈Cα(X)

Y , it follows that α ∈ X → ⋂
Cα(X),

as desired.
Second, it is immediate that α ∈ ⋂

Y∈Aα(X)

(Y → X), from which it follows that

α ∈ ⋃

Y∈Aα(X)

Y → X = ⋃
Aα(X) → X, by (c←).

The other part is only slightly more involved:

Fact 2.3.6 Given any neigbourhood model M:

• If M satisfies (aug 1’) and (rB), and its Prop is closed under ◦, then it satisfies
(c◦).

• If M satisfies (aug 2’) and (rB′), and its Prop is closed under ←, then it satisfies
(c←).

Proof First, suppose that (aug.1’) holds, and let {Yi}i∈I ⊆ (P rop). If α ∈ ⋂

i∈I

(X →
Yi), then

⋂
Cα(X) ⊆ ⋂

i∈I

Yi , and thus, since α ∈ X → Cα(X), by (rB), α ∈ X →
⋂

i∈I

Yi . For the converse, note that α ∈ ⋂

Y∈Cα(X)

(X → Y ), and thus α ∈ X →
⋂

Y∈Cα(X)

Y . Since
⋂

Cα(X) = ⋂

Y∈Cα(X)

Y , it follows that α ∈ X → ⋂
Cα(X).
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Second, suppose that (aug.2’) holds, and let {Yi}i∈I ⊆ (P rop). If α ∈ ⋂

i∈I

(Yi →
X), then Yi ∈ Aα(X) for every Yi , and thus

⋃

i∈I

Yi ⊆ ⋃
Aα(X), and thus, by (rB′),

α ∈ ⋃

i∈I

Yi → X.

So, in the context of logics all of whose neighbourhood models satisfy (rB) and
(rB′), models are augmented just in case they satisfy (c◦) and (c←) (supposing they
have Prop’s which are closed by the operations in question). This is especially
salient because, as Goble notes, augmented neighbourhood models are, in a sense,
just ternary relation models of the usual variety. So in those logics, the line of demar-
cation between the neighbourhood and the usual models just is the admission of ◦
and ←, along with the requirement that these form a complete gaggle with →, and
it serves to explain why the admissibility of these connectives is cooked into logics
whose neighbourhood models are all equivalent to ternary relation models. Indeed,
this is one of the core projects of Gaggle theory, if we substitute “algebraic” for
“neighbourhood” models.7

As we’ve seen, any logic with ◦ and ← is like this, but it is worth pausing a
moment to note what some of these look like. The most famous relevant logic, R,
is noteworthy in having both of these connectives definable. First, in the presence of
(C) the formula B ← A is simply a notational variant of A → B, as this axiom,
added to an extension of F, implies that the ← rule A → (B → C) �� B →
(A → C) is derivable. So any logic extending F(rB′),(C) will be characterised by a
class of neighbourhood models satisfying (aug 2), so long as Prop is closed under
the appropriate operations.

Furthermore, if such an extension also has (rB), (DNE), and (Cont), then we can
define A ◦B as ¬(A → ¬B), for note, then, that the following are all interderivable:

1. A → (B → C)

2. A → (¬C → ¬B)

3. ¬C → (A → ¬B)

4. ¬(A → ¬B) → C

Hence, both connectives are definable in RW. This serves to ensure that any
extension of RW will, of necessity, have only augmented neighbourhood models.
However, as we’ll see, the introduction of quantifiers allows one to prove that some
extensions of weaker relevant logics can have non-augmented neighbourhood mod-
els. Indeed, these logics also turn out not to be conservatively extended by ◦ and ←,
while, for some of them, their propositional parts are known to be so extended. This
result provides one reason why neighbourhood models for quantified relevant logics
are of interest. Before we can get there, though, we need to get some machinery to
interpret quantifiers under our belts.

7Mathematically speaking, the difference between general neighbourhood models and algebraic models
is so fine as to make little difference, though perhaps there is something to be said about the difference
philosophically.
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2.4 TheMares-Goldblatt Framework

With the neighbourhood semantics machinery now out in the open, the remaining
piece of the puzzle is the interpretation of the quantifiers via the Mares-Goldblatt
machinery. To present this, we’ll need to briefly discuss the standard ternary relation
semantic framework. To that end, a TR frame is a tuple 〈W, N, ∗, R〉 where W, N, ∗
are defined as before, and R ⊆ W 3.

The difference comes in with the treatment of the defined order: α ≤ β holds iff
there is a γ ∈ N s.t. Rγαβ. A great deal of complexity is brought in by the need to
use an order, and so we’ll discuss it as little as possible. The important point is that, in
building models on such a frame, we’ll need to interpret formulas as upwardly closed
sets of elements of W – i.e. we want to ensure that every formula is interpreted as a
member of P(W)↑ = {X ⊆ W | α ≤ β and α ∈ X imply β ∈ X}.8 Added to this, in
order to interpret the quantifiers, are the following frame elements (in our case, Prop

is not new, but is, unlike in the neighbourhood setting to be developed momentarily,
defined in terms of P(W)↑, rather than P(W)):

• D �= ∅

• Prop ⊆ P(W)↑
• PropFun ⊆ {φ | φ : Dω −→ Prop}

These are, intuitively, a domain, D, a set of “admissible propositions”, Prop, and
a set of propositional functions, PropFun, which take assignments to individual
variables, i.e. elements of Dω (the stipulation that V ar be denumerable is required
since ω is being used to assign values to variables), to admissible propositions. We
then need constraints appropriate to ensure that PropFun and Prop are closed under
enough operations to ensure that the resulting model assigns elements of PropFun

to every open formula, and elements of Prop to every closed formula, when we take
atomic propositions to these sets.

The first of these closure constraints are straightforward, but the last two, those for
the quantifiers, are more complicated. We’ll first state them, and then go into some
detail about how to understand them.

• There is an φN ∈ PropFun s.t. for all f ∈ Dω, φnf = N
• φf ⊗ψf = (φ ⊗ψ)f for and φ, ψ ∈ PropFun, f ∈ Dω, and ⊗ ∈ {∩, ∪,→}9

• ¬(φf ) = (¬φ)f for all f ∈ Dω

• for all n ∈ ω, φ ∈ PropFun, there is an ∀nφ ∈ PropFun s.t.
(∀nφ)f = �

j∈D

φ(f [j/n]) = ⋃{X ∈ Prop | X ⊆ ⋂

j∈D

φ(f [j/n])}

where f [j/n] ∈ Dω has values 〈f 0, . . . , f (n − 1), j, f (n + 1), . . . 〉 (i.e. this is one
of the “x-variants” of f , that assigning j to the nth variable, xn),

8To do this, we need to ensure that N is upwardly closed (i.e. if α ∈ N and α ≤ β, then β ∈ N ), that ∗ is
an inversion w.r.t. ≤ (i.e. if α ≤ β then β∗ ≤ α∗) and that R has some toncicity properties w.r.t. ≤ (i.e that
if Rαβγ , α′ ≤ α, β′ ≤ β, and γ ≤ γ ′, then Rα′β′γ ′). It is also usually assumed that ∗ is an involution,
but we’ll flag this wherever it matters.
9Also when ⊗ ∈ {◦,←}, where appropriate.
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• for all n ∈ ω, φ ∈ PropFun, there is an ∃nφ ∈ PropFun s.t.
(∃nφ)f = �

j∈D
φ(f [j/n]) = ⋂{X ∈ Prop | ⋃

j∈D

φ(f [j/n]) ⊆ X}

The idea behind these last two bullet points is that we ensure that PropFun

includes elements, ∀nφ, ∃nφ, which, given a variable assignment, take us to restric-
tions of the intersections and unions, respectively, of the collections of φ’s instances.
Goldblatt [16] has a brief, helpful explanation of how to understand the operation

�
,

so we’ll quote it at length:

Now the conjunction of a collection {Xi | i ∈ I } of admissible propositions is to
be an admissible X that (i) entails all of the X′

i s and (ii) does no more than that.
Here (ii) means that X is weaker than, i.e. is entailed by, any other admissible
proposition that entails all of the Xi’s. In other words:

(i) X ⊆ Xi for all i ∈ I

(ii) if Z ∈ Prop and Z ⊆ Xi for all i ∈ I , then Z ⊆ X

So the conjunction is to be the weakest admissible proposition that entails all of
the Xi’s. It will be a subset of

⋂

i∈I

Xi by (i), but need not be equal to
⋂

i∈I

Xi because

the latter may not be admissible. In general this conjunction will be the weakest
(=largest) admissible subset of

⋂

i∈I

Xi , and will be denoted by
�

i∈I

Xi when it exists.

[16, p. 17]

The interpretation of �is analogous. Given {Xi | i ∈ I } ⊆ Prop, �

i∈I
Xi (i’) is

entailed by every Xi and (ii’) entails any other element of Prop that is entailed by
every Xi .

This maneuver is what allows us to avoid the well-known failures of completeness
for mainstream quantified relevant logics w.r.t. their constant domain models (see
[14]). With this treatment, one can, a bit surreptitiously, sneak in the varying domains
by treating with restricted intersections and unions, while nonetheless having just one
fixed D for every point in W .10

Mares and Goldblatt concern themselves with two logics, QR and RQ, both quan-
tified extensions of R, but the machinery is quite flexible and can be more broadly
applied, including to logics with modal operators. Rather than going into that here,
we’ll just detail some of the quantifier extensions we’ll be interested in. First, every
logic will be extended by the following axioms and rules:

(∀E) ∀xA → A

(∃I) A → ∃xA

(r∀I) A → B � A → ∀xB (x not free in A)
(r∃E) B → A � ∃xB → A (x not free in A)

10There are some interpretive difficulties with this semantic framework, of a similar kind that haunt any
proposed semantics for relevant logics, but we won’t attempt to provide an account here. One proposed
reading is given by Mares [22].
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Given a propositional logic L, call that quantified extension resulting just from
the addition of these axioms and rules QL−. So QF− extends F by (∀E), (∀I), (r∀I),
and (r∃E). Note that, by the fact that we included t we also have as derivable the rule
(rGen) A � ∀xA. Furthermore, note that if L has (DNE), then the following further
axioms are derivable:

(dual 1) ∀xA ↔ ¬∃x¬A

(dual 2) ∃xA ↔ ¬∀x¬A

We can derive (dual 1) by the following pair of derivations (and those for (dual 2)
are left to the interested reader):

1. ∀xA → A (∀E)
2. ¬A → ¬∀xA (rCont)
3. ∃x¬A → ¬∀xA (r∃E)
4. ¬¬∀xA → ¬∃x¬A (rCont)
5. ∀xA → ¬∃x¬A (DNE)

1. ¬A → ∃x¬A (∃I)
2. ¬∃x¬A → ¬¬A (rCont)
3. ¬∃x¬A → A (DNE)
4. ¬∃x¬A → ∀xA (r∀I)

Hence we won’t include these as axioms, but just as consequences of (DNE) in
the various QL−.11

To remove the minus sign from the name of the logic, add as axioms all instances
of the following formulas, where x is not free in A:

(∀I) ∀x(A → B) → (A → ∀xB)

(∃E) ∀x(B → A) → (∃xB → A)

Finally, to turn QL− into LQ−, or QL into LQ, add instances of the following
formula, where x is not free in A:

(EC) ∀x(A ∨ B) → A ∨ ∀xB

As discussed in [21, p. 177], we can appeal to some of these axioms and rules that
substitute particular members of Con for the variable – let A[c/x] is the formula A

with c uniformly substituted for x. Then the following are all derivable in QF− (and
hence in all its extensions) when c is substitutable for x in A and x is not free in B –
note that only one of these, (r∀ICon), is proved by Mares and Goldblatt, but the others
are also derivable along the same lines:

(∀ECon) ∀xA → A[c/x]
(∃ICon) A[c/x] → ∃xA

(r∀ICon) B → A[c/x] � B → ∀xA

(r∃ECon) A[c/x] → B � ∃xA → B

Later we’ll discuss what needs to be added to the definition of a model in order to
accommodate the various added axioms. For now, note that if we have ◦ (←) then we

11It is, perhaps, interesting to consider systems which don’t include (DEM) but do satisfy these two
axioms, but we won’t go into that question here.
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can derive (∀I) from (r∀I) ((∃E) from (r∃E)) using reasoning which is now familiar
(from the ‘derivations’ in Section 2.3):

1. ∀x(A → B) → (A → B) (∀E)
2. ∀x(A → B) ◦ A → B (r◦)
3. ∀x(A → B) ◦ A → ∀xB (∀I)
4. ∀x(A → B) → (A → ∀xB) (r◦)

1. ∀x(B → A) → (B → A) (∀E)
2. B → (A ← ∀x(A → B)) (r←)
3. ∃xB → (A ← ∀x(A → B)) (∃E)
4. ∀x(A → B) → (∃xA → B) (r←)

So we have some collapses – for instance, QR− = QR and RQ− = RQ, as ◦,← are
definable in R. Finally, note that if L is a quantified logic with (Cont), then (∀I) and
(∃E) are interderivable – in logics without (Cont), one might consider investigating
systems with just one or the other of these quantifier axioms, analogously to studying
extensions of BB with just one or the other of (∧I), (∨E) as in [32], but we’ll leave
that to the side for now.

The task, now that our throat clearing is done with, is to combine the neigh-
bourhood and Mares-Goldblatt machineries into a general semantic framework
encompassing all the logics which can be put together out of the parts considered
thus far.

3 NeighbourhoodM-G Semantics

Now the task is just to glue together the M-G quantifier-interpreting machinery and
the neighbourhood machinery for the ‘propositional parts’ of quantified relevant log-
ics. We’ll start with a definition of frames and models, and proofs of soundness and
completeness, for QF−, before moving on to consider extensions thereof.

Definition 3.0.1 〈W, N, R, ∗, P rop, D, P ropFun〉 is a QF−-frame when:

• 〈W, N, R, ∗, P rop〉 is an F-frame
• D �= ∅

• PropFun ⊆ {φ | φ : Dω −→ Prop}
such that:

(c0) N ∈ Prop; X, Y ∈ Prop only if ¬X, X∩Y, X∪Y, X → Y ∈ Prop

(also, X◦Y , X ← Y ∈ Prop, when appropriate, with similar remaks
for (c0.0))

(c0.0) There is a φN ∈ PropFun s.t. for all f ∈ Dω, φNf = N ∈ Prop.
Futhermore, if φ, ψ ∈ PropFun, then ¬φ, φ ∩ ψ, φ ∪ ψ, φ → ψ ∈
PropFun where, for all f ∈ Dω:

• (¬φ)f = ¬(φf ) for all f ∈ Dω

• (φ ⊗ ψ)f = φf ⊗ ψf for all f ∈ Dω and ⊗ ∈ {∩, ∪,→}
(c0.1) If n ∈ ω and φ ∈ PropFun, then ∀nφ, ∃nφ ∈ PropFun, where

these are defined, for an argument f ∈ Dω, in terms of
�

, �as
above.
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(c1) for all X, Y ∈ Prop, X ⊆ Y iff N ⊆ X → Y

A model M is obtained from a QF−-frame by adding an interpretation M which
evaluates the non-logical parts of the language (including variables, when this is
paired with an f ∈ Dω):

• for c ∈ Con, M(c) ∈ D, and for any f ∈ Dω, Mf (c) = M(c)
• for xn ∈ V ar , Mf (xn) = f n
• for P ∈ Pred of arity n, M(P) : Dn −→ Prop
• for p ∈ P, M(p) ∈ Prop

From M we define �·�M : L × Dω −→ (W), satisfying the following constraints
(as a convention, (�A�M)f = �A�M

f ):

• �P(t1, . . . , tn)�
M
f = M(P)(Mf (t1), . . . , Mf (tn))

• �t�M
f = φNf

• �¬A�M
f = ¬(�A�M

f )

• �A ∧ B�M
f = �A�M

f ∩ �B�M
f

• �A ∨ B�M
f = �A�M

f ∪ �B�M
f

• �A → B�M
f = �A�M

f → �B�M
f

• �∀xnA�M
f = (∀n�A�M)f

• �∃xnA�M
f = (∃n�A�M)f

Finally, �M
f A (i.e. “A is satisfied at M, f ”) holds iff N ⊆ �A�M

f . Next, �M A (“A

is true in M”) holds iff for all f ∈ Dω, �M
f A. Finally, �QF− A iff �M A holds for

every QF− model M . (Similar definitions apply for other logics to be considered.)

As a notational convention, let “f ∼x f ′” be shorthand for “f is an x-variant of
f ′”, and note the following fact, provable as in [21].

Fact 3.0.2 For any M and f s.t. f ∼x f ′, �A�M
f = �A�M

f ′ when x isn’t free in A.

With this fact in hand, the following theorem is, as usual, pretty straightforward:

Theorem 3.0.3 (Soundness) If �QF− A then �QF− A

Proof The proof is standard, by induction on the length of the derivation of A. In the
case of axioms, given (c1), and the fact that every QL− axiom is of the form A → B,
we just need to show that for every M, f , �A�M

f ⊆ �B�M
f . For rules, we just need to

show that the appropriate quasi-inequations hold. For instance, to cover (rCont), we
need to show that if that if �A�M

f ⊆ �B�M
f then �¬B�M

f ⊆ �¬A�M
f , for (rAdj), we

need to show that if N ⊆ �A�M
f and N ⊆ �B�M

f then N ⊆ �A ∧ B�M
f , and for (r∧I)

we need to show that if N ⊆ �(A → B) ∧ (A → C)�M
f then N ⊆ �A → B ∧ C�M

f .
In the case of the propositional axioms, and those rules governing ∧, ∨, this follows
immediately from the fact that 〈Prop, ⊆〉 is a distributive lattice. For instance, for
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(r∨E) it is enough to note that N ⊆ (X → Z) ∩ (Y → Z) holds iff N ⊆ X → Z

and N ⊆ Y → Z, and so, by (c1), X ⊆ Z and Y ⊆ Z, from which it follows that
X ∪ Y → Z, and so, by (c1), N ⊆ (X ∪ Y ) → Z. Given this, since all propositions
will be evaluated to elements of Prop, all instances of the rule will preserve truth
in the model. The other axioms and rules can be verified similarly. The negation
principles are immediate from the properties of ∗. With this in mind, let’s consider
the quantifier principles.

Case (∀E): We want to show that �∀xnA�M
f ⊆ �A�M

f holds for every M, f . But

note that �∀xnA�M
f = ⋃{X ∈ Prop | X ⊆ ⋂

j∈D

�A�M
f [j/n]} ⊆ �A�M

f [j/n] holds for

every j ∈ D, including f n.

Case (r∀I): Suppose that �QF− A → B, where x is not free in A. Thus, for any
M, f , �A�M

f ⊆ �B�M
f , and furthermore for any f ′ ∼x f , �A�M

f ′ = �A�M
f . It follows

that �A�M
f ⊆ ⋂

j∈D

�B�M
f [j/n], and so �A�M

f ⊆ (∀n�B�M)f = �∀xnB�M
f follows from

the definition of ∀n.

Case (r∃E): Given that for any M, f , �B�M
f ⊆ �A�M

f and that �A�M
f ′ = �A�M

f

holds for any f ′ ∼x f , we have that
⋃

j∈D

�B�M
f [j/n] ⊆ �A�M

f , from which it follows

that �∃xnB�M
f ⊆ �A�M

f by the definition of ∃n.

Case (rGen): Suppose that N ⊆ �A�M
f holds for every M, f . It is immediate, then,

that for every M , N ⊆ ⋂

j∈D

�A�M
f [j/n], and thus N ⊆ �∀xnA�M

f , since N ∈ Prop.

3.1 Completeness of QF−

As per usual, the more difficult argument is completeness, though much of the fiddlier
work needed here can be taken over, with minor variations, from the proofs given in
[21]. We’ll present the broad strokes of the argument, going into details where they are
new, but where the moves are the same as, or substantially similar to, those made in the
Mares-Goldblatt argument, we’ll merely provide sketches. Also, for now, we’ll con-
cern ourselves only with QF− over the the base language, not including ←, ◦. The
proof proceeds, as usual, by the construction of a canonical model.

Definition 3.1.1 The canonical model of QF−, MQF−
, is composed out of the

following elements:

• WQF−
is the set of prime theories of QF−; i.e. those α ⊆ L s.t. (theoryness) if

�QF− A → B and A ∈ α then B ∈ α, and if A, B ∈ α then A ∧ B ∈ α and
(primeness) if A ∨ B ∈ α, then either A ∈ α or B ∈ α.

• NQF− = {α ∈ WQF− | if �QF− A then A ∈ α}
Given any closed formula A, let �A�QF− = {α ∈ WQF− | A ∈ α}. We need this to

go on to define:
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• RQF−
αXY holds iff for some closed formulas B, C we have B → C ∈ α,

X = �B�QF−
, and Y = �C�QF−

• α∗QF− = {A : ¬A /∈ α}
• DQF− = Con
• PropQF− = {X ⊆ WQF− | for some closed formula A, X = �A�QF−}

Given any formula A, let Af be A with every free variable xn replaced by f xn ∈
Con. Furthermore, Let φA : (DQF−

)ω −→ (W) be defined by φAf = �Af �QF−
.

With this, we can go on to define:

• PropFunQF− = {φA : A a formula}
• Mf (c) = c ∈ Con
• Mf (xn) = f xn ∈ Con

• MQF−
(P )(M

QF−
f (t1), . . . , M

QF−
f (tn)) = �P(t1, . . . , tn)�

QF−

As usual, the procedure is to first, verify that MQF−
is a model of QF−, and then

to show that if �QF− A then MQF−
� A. The work needed for the former falls

naturally into two parts, dealing with the ‘propositional’ stuff, which mainly con-
cerns PropQF−

, and then dealing with the ‘quantifier’ stuff, which mainly concerns
PropFunQF−

. First, however, we’ll state a pair of key lemmas:

Lemma 3.1.2 (Pair Extension) Fix 	, 
, sets of formulas, and L an extension of
QF−. If there are no finite sets {Ai}i∈I ⊆ 	, {Bj }j∈J ⊆ 
 s.t. �L

∧

i∈I

Ai → ∨

j∈J

Bj ,

then there is a prime theory α ⊇ 	 s.t. α ∩ 
 = ∅.

Proof See [25, 5.1–5.2] for details (note that we don’t require theories to be closed
under the constraint ”if A[τ/x] ∈ α for every term τ , then ∀xA ∈ α” or the dual “if
∃xA ∈ α then for some term τ , A[τ/x] ∈ α”).

Lemma 3.1.3 For any closed formulas A, B, and logic L extending QF−:
�L A → B iff �A�L ⊆ �B�L

�L A ↔ B iff �A�L = �B�L

Proof See [15, Lemma 1.12, Corollary 1.13] for details.

With these, it is now a routine matter of checking that MQF−
satisfies all the

needed constraints. First, those concerning the propositional part:

Lemma 3.1.4 MQF−
satisfies (c0) and (c1).

Proof For (c0), note first that NQF− = �t�QF− ∈ PropQF−
, and next note that

whenever X, Y ∈ PropQF−
, there are closed formulas A, B s.t. X = �A�QF−

and
Y = �B�QF−

(for the rest of this proof, we’ll continue to use A, B as the formulas
‘defining’ X and Y , respectively). We then proceed by cases, showing that there
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are formulas witnessing that ¬X, X → Y . . . ∈ PropQF−
- in fact, we prove that

�·�QF−
is a homomorphism over the propositional connectives, which suffices. The

arguments that X ∩ Y = �A ∧ B�QF−
and X ∪ Y = �A ∨ B�QF−

are straightforward,
and left to the skeptical reader, leaving the interesting cases.

Case ¬: We want to show that ¬X = �¬A�QF−
, for which note:

¬X = {α ∈ WQF− | α∗QF−
/∈ X}

= {α ∈ WQF− | A /∈ α∗QF− }
= {α ∈ WQF− | ¬A ∈ α} = �¬A�QF−

Case →: We want to show that X → Y = �A → B�QF−
, for which the following

series of identities suffices; note the use of Lemma 3.1.3 to get between the second
and third:

X → Y = {α | RQF−
αXY }

= {α | for some C, D(X = �C�QF−
, Y = �D�QF−

, and C → D ∈ α)}
= {α | for some C, D(�QF− A ↔ C,�QF− B ↔ D, and C → D ∈ α)}
= {α | A → B ∈ α} = �A → B�QF−

For (c1), the result follows by appeal to Lemma 3.1.3 and the definition of NQF−
,

that NQF− ⊆ X → Y iff �QF− A → B iff �A�QF− ⊆ �B�QF−
iff X ⊆ Y .

Now we turn to the quantified part:

Lemma 3.1.5 MQF−
satisfies (c0.0).

Proof First, note that N = φN = φt , tf = t for every f , so �t�QF− = �tf �QF−
.

Next, note that ¬(Af ) is syntactically identical to (¬A)f , as is Af ⊗Bf to (A⊗B)f

for ⊗ ∈ {∧, ∨, →}, and thus φ¬A = ¬φA, φA→B = φA → φB , φA∧B = φA ∩ φB ,
and φA∨B = φA ∪φB are all in PropFunQF−

, and furthermore variable assignments
commute over each, i.e. (¬φA)f = ¬(φAf ) holds for every f (and similarly for the
other connectives).

Lemma 3.1.6 If ∀xA is closed, then �∀xA�QF
− = �

c∈Con

�A[c/x]�QF−
.

Proof �∀xA�QF− ⊆ �A[c/x]�QF−
holds for each c ∈ Con given (∀ECon) and the def-

inition of WQF−
, and thus since �∀xA�QF− ∈ PropQF−

, we have that �∀xA�QF− ⊆
�

c∈Con

�A[c/x]�QF−
.

For the converse, suppose that α ∈ �

c∈Con

�A[c/x]�QF−
. Then, by the definition of

�
, there is a formula B s.t. α ∈ �B�QF− ⊆ ⋂

c∈Con

�A[c/x]�QF−
. Pick a c ∈ Con

which occurs in neither A nor B, and suppose that �QF− B → A[c/x]. Thus, using
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the pair extension lemma, we can find a prime theory β s.t. A[c/x] /∈ β and B ∈ β,
which contradicts the assumption that �B�QF− ⊆ ⋂

c∈Con

�A[c/x]�QF−
. It follows that

�QF− B → A[c/x] and therefore �QF− B → ∀xA follows, using (r∀ICon), and thus

α ∈ �∀xA�QF−
, as desired.

Corollary 3.1.7 MQF−
satisfies (c0.1).

Proof It suffices to show that for any formula A and n ∈ ω, φ∀xnA = ∀nφA.
Let Af/n be that formula which substitutes into A the value f xi for every i �= n.

Then we have, given the l lemma, that:
(∀nφA)f = �

c∈Con

φA(f [c/n]) = �

c∈Con

�Af [c/n]�QF− = �

c∈Con

�Af/n[c/xn]�QF−

= �∀xnA
f/n�QF− = �(∀xnA)f �QF− = φ∀xnAf .

Theorem 3.1.8 (Completeness) If �QF− A then �QF− A.

Proof If �QF− A, then we can construct an α ∈ NQF−
s.t. A /∈ α by noting that, by

the supposition, {B | �QF− B} and {A} are independent – the pair extension lemma
does the rest, generating the desired α. Therefore, �

MQF− A, and thus �QF− A, as
desired.

Corollary 3.1.9 (Adequacy) �QF− A iff �QF− A

This suffices for the simplest logic, which leaves the extensions, to which we now
turn.

4 Extending the Adequacy Theorem

As before, it is simplest to split the work into propositional extensions and quantified
extensions, and for the latter, to cleave off ◦ and ← for special treatment.

4.1 Propositional Expansions of QF− in the Basic Language

We need to address both the soundness and completeness directions.

Fact 4.1.1 If M satisfies any constraint in the above list, then it satisfies the
axiom/obeys the rule one obtains from the translation procedure described in
Section 2.2.

Proof We’ll consider two examples, one axioms and one rule – the others follow the
same pattern (many of the needed arguments are given in detail in [15, 26]).

Case: If M satisfies (rB), then �M A → B only if �M (C → A) → (C → B),
for any A, B, C ∈ L. If �M A → B, then N ⊆ �A → B�M = �A�M → �B�M , and
thus �A�M ⊆ �B�M . Thus, by (rB), for any Z ∈ PropM , Z → �A�M ⊆ Z → �B�M ,

475Neighbourhood Semantics for Quantified...



so this holds when Z = �C�M , for any C ∈ L, and thus N ⊆ �C → A�M → �C →
B�M , and so �M (C → A) → (C → B), as desired.

Case: If M satisfies (B′), then �M (A → B) → ((B → C) → (A → C))

holds for any A, B, C ∈ L. Fixing X = �A�M , Y = �B�M , and Z = �C�M , the
supposition entails that X → Y ⊆ (Y → Z) → (X → Z), which entails that
N ⊆ �A → B�M → �(B → C) → (A → C)�M , from which the desired result is
immediate.

We must also consider (dual 1) and (dual 2):

Fact 4.1.2 The axiom (dual 1) and (dual 2) are valid in all neighbourhood models
whose frames satisfy the constraint (DNE).

Proof Note that with (DNE), we have, for any {Xi | i ∈ I } ⊆ (W), both of the
following identites:⋂

i∈I

Xi = ¬⋂

i∈I

¬Xi

⋃

i∈I

Xi = ¬⋃

i∈I

¬Xi

and it is immediate from this, and the definitions of
�

and �, that:�

i∈I

Xi = ¬ �

i∈I

¬Xi �

i∈I
Xi = ¬ �

i∈I
¬Xi

and any model whose frame satisfies these constraints validates all instances of
(dual 1) and (dual 2).

This leaves the completeness direction, for which the following suffices: – letting
MML

be defined analogously to MQF−
, for L extending QF−.

Fact 4.1.3 If L, extending QF−, contains one of the propositional axioms, then ML

satisfies the associated condition.

Proof As before, we just consider the cases in turn, for which we give two illustrative
examples.

Case: If L is closed under (rB′), then ML is s.t. for any X, Y, Z ∈ PropL, we have
X ⊆ Y only if Y → Z ⊆ X → Y . By the definition of ML, there are closed formulas
A, B, C s.t. �A�L = X, �B�L = Y , and �C�L = Z (and we’ll continue with this
convention linking X, Y, Z and A, B, C in the rest of the cases). From the assumption
that X ⊆ Y it follows that �L A → B, and thus �L (B → C) → (A → C). So
�B → C�L ⊆ �A → C�L, and thus Y → Z ⊆ X → Z.

Case: Suppose L proves (B), and fix X, Y, Z ∈ PropL. Since �L (A → B) →
((C → A) → (C → B)), it follows that �A → B�L ⊆ �(C → A) → (C → B)�L,
and thus X → Y ⊆ (Z → X) → (Z → Y ), as desired.

One may ask, why not just give proofs of frame definability? The reason, basically,
is that while the canonical Prop’s are required to be defined to contain only the
‘truth sets’ of formulas in the language, this is not required in all models, given the
way we’ve set things up. In the generic definition of “model”, Prop is required to
contain all, but not necessarily only, the truth sets of formulas. For this reason, it
is not obvious that just because some logic contains an axiom, that all propositions
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satisfy the associated constraint – all those propositions which are the truth sets of
formulas do, but it’s not clear that the others have to.12

4.2 Quantifier Extensions of QF−

We’ll consider only those axioms introduced above not already included in QF−,
namely (∀I), (∃E), and (EC). The last of these is extensively treated in [21, Sections
10–11], so we’ll just summarise their results. The frame condition which does the
trick for (EC) is that, for every φ ∈ PropFun, X, Y ∈ Prop, n ∈ ω, and f ∈ Dω:

(EC) X/Y ⊆ ⋂

j∈D

φ(f [j/n]) only if X/Y ⊆ (∀nφ)f

Soundness and completeness (i.e. if L contains the axiom (EC), then ML satisfies
the frame-constraint bearing that name) are both provable in the same way as by
Mares and Goldblatt. Note also that in any extension of QFDE−, where we have all
the DeMorgan laws available, we also get the dual of (EC):

(dEC) A ∧ ∃xB → ∃x(A ∧ B) (x not free in A)

There is more to be said concerning the interaction between the quantifiers and
the lattice connectives in this setting (for instance, as discussed in [23]), but for now
we’ll focus on the interaction between the quantifiers and the conditional. To that
end, the constraints for (∀I) and (∃E), though, as could be anticipated, one winds up
with constraints which simply mirror the axioms.13 Namely, the constraints are as
follows, stated for any φ, ψ ∈ PropFun, f ∈ Dω, n ∈ ω:

(∀I) if, for all f ′ ∼x f , φf = φf ′, (∀n(φ → ψ))f ⊆ φf → (∀nψ)f

(∃E) if, for all f ′ ∼x f , φf = φf ′, (∀n(ψ → φ))f ⊆ (∃nψ)f → φf

Lemma 4.2.1 If M satsfies the constraint (∀I) then it validates the axiom (∀I).
Proof Fix a model M , and f ∈ Dω, and suppose that α ∈ �∀x(A → B)�M

f holds,

and that x is not free in A. Thus �A�M
f = �A�M

f ′ holds for every f ′ ∼x f , and fix

φ = �A�M, ψ = �B�M ∈ PropFun. By definition, α ∈ (∀n(φ → ψ))f , and
since φf = φf ′ for all f ′ ∼x f , it follows that α ∈ φf → (∀nψ)f , and thus
α ∈ �A�M

f → �∀xB�M
f = �A → ∀xB�M

f , as desired.

12In Goble’s presentation, where Prop = P(W) (actually, he just leaves “Prop” tacit), another problem
arises in certain cases, for instance (rB) and (rB′), which requires him to slightly tweak the natural con-
straint to something more general. [15, p. 496] The route we take here is simpler, in one sense, in allowing
us to appeal to the natural constraints and in fitting nicely into the Mares-Goldblatt approach for standard
ternary relation semantics, but it does invite this added problem for defining frames via formulas.
13Noted by Sylvan and Meyer [27], this feature of the semantics has been criticised, for instance by Smiley
[29, p. 246], who claimed that in virtue of this property, which he likened to “garbage in, garbage out”,
the resulting modeling has “little prospect of establishing the correctness of an axiom system.” We won’t
try to respond to this charge here, as doing so adequately would take us somewhat afield of the technical
aim of this paper, so we’ll just note it as a philosophical challenge.
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Lemma 4.2.2 If M satisfies the constraint (∃E) then it validates the axiom (∃E)

Proof Similar to the above.

So much for the soundness direction, let us turn to the completeness direction. As
before, we’ll prove the salient fact just for the canonical model – as before, when
plugged into the proof for QF−, this is enough to give the desired result for any logic
including this axiom.

Lemma 4.2.3 If L proves (∀I), then ML satisfies the condition that, if for arbitrary
φA, φB ∈ PropFunL, with φAf = φAf ′ for any f ′ ∼x f , then for any f ∈ Conω:

(∀n(φA → φB))f ⊆ φAf → (∀nφB)f

Proof What we need to show is that ML satisfies the constraint, equivalent to that
stated in the lemma, that when φAf = φAf ′ holds for every f ′ ∼x f :

�∀x(A → B)�L ⊆ �Af �L → �∀xB�M

This is immediate, for if φAf = φAf ′ then �A�L = �Af �L, and so x is not free
in A. So, if α ∈ (∀n(φA → φB))f = �∀xn(A → B)f �L, from which it follows, by
(∀I), that α ∈ �(A → ∀xB)f �L and thus, noting that (A → ∀xB)f is syntactically
identical to Af → (∀xB)f , α ∈ �Af → (∀xB)f �L = �Af �L → �(∀xB)f �L =
φAf → (∀nφB)f .

The argument for the following follows the same pattern.

Lemma 4.2.4 If L contains (∃E), then ML satisfies the condition:
(∀n(φA → φB)f ⊆ (∃nφA)f → φBf

4.3 Incorporating ◦ and←

Something akin to a soundness theorem has already been shown w.r.t. models sat-
isfying (c◦) or (c←) – i.e., it’s shown that if PropM is closed under the operations
◦/←, and M satisfies the constraint (c◦)/(c←), then the set of formulas true in M are
closed under (r◦)/(r←).

For the completeness direction, we’ll just focus on logics with (rB) and (rB′), not-
ing the, well-known, fact that if L, in the language including ◦/← is closed under
(r◦)/(r←), then we have that �·�L is a homomorphism w.r.t. ◦/← as defined earlier.
Note that this also ensures that PropL is closed under these operations.

Fact 4.3.1 Let L be a logic extending QF− in the language including ◦. Then if
X = �A�L and Y = �B�L, it follows that �A ◦B�L = X ◦Y = ⋂{Z ∈ PropL | X ⊆
Y → Z}.

Proof Suppose that α ∈ X ◦ Y , from which it follows that for any Z ∈ PropL s.t.
X ⊆ Y → Z, α ∈ Z. That is, for any C ∈ L s.t. �L A → (B → C), α ∈ �C�L.
But note that �L A → (B → (A ◦ B)), from which it follows that A ◦ B ∈ α, i.e.
α ∈ �A ◦ B�L.
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For the converse, suppose that A ◦ B ∈ α. Suppose that Z ∈ PropL and X ⊆
Y → Z. Then there is a C ∈ L s.t. �L A → (B → C), and thus �L (A ◦ B) → C,
from which it follows that C ∈ α, and so α ∈ Z.

The proof of the following is similar.

Fact 4.3.2 Let L be a logic extending QF− in the language including ←. Then if
X = �A�L and Y = �B�L, it follows that �B ← A�L = Y ← X = ⋃{Z ∈ PropL |
X ⊆ Z → Y }.

With these, let us prove a less-than-fully general completeness fact:

Theorem 4.3.3 If L is a logic with ◦ [←] which obeys (rB) and (r◦) [(rB′) and
(r←)], then ML satisfies (c◦) [(c←)].

Corollary 4.3.4 If L is a logic with ◦ and←, which obeys (rB), (rB′), (r◦), and (r←),
then ML is augmented.

While there is more to be said about ◦ and ←, this provides us at least a certain
completeness property, and one which highlights the completeness of certain logics
with these connectives for augmented models – indeed, for all logics which are char-
acterisable in the usual ternary relation semantics framework. Given that, we’ll leave
this here to be developed further in future work.

5 Putting NeighbourhoodModels toWork

So we have developed an adequate model-theoretic characterisation of a wide range
of quantified relevant logics using neighbourhood models. One reason to be inter-
ested in this is that it accommodates a wider range of logics than are accommodatable
using the Mares-Goldblatt enrichment of the usual ternary relation framework, since
it provides semantics for quantified extensions of propositional logics weaker than
B. Another is that while this semantics has a clear algebraic flavour, it is still not
too far removed from the ternary relation semantics which are, for various reasons,
the most commonly used semantics for relevant logics. It is similar to that semantics
while, nonetheless, allowing us to pull apart distinctions which are not available in
that semantics.

For instance, in building non-augmented neighbourhood models we can obtain
results not available in the usual setting. Here we’ll give two very simple neighbour-
hood model constructions, built on the natural numbers. Using these we’ll show that,
in certain weak quantified relevant logics, (∀I) and (∃E) are independent of all the
other quantifier axioms and rules considered thus far. Given that these are provable
with the use of ◦ and ←, these models also provide proofs that certain weak quan-
tified relevant logics are not conservatively extended by these connectives. While a
subtler model construction may work for stronger logics, we’ll just focus on weak
logics, and the simple model construction here – as a proof of concept, this will do the
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trick. It should be noted that we get conservative extensions for free in any quantified
logics extending RW, where both ◦ and ← are definable.14

The idea behind the model construction is to use the Tarskian definition for the
universal quantifier, i.e.

(∀nφ)f =
⋂

f ′∼xf

(φf ′)

and to fix the behaviour of → so that it satisfies (rB) and (rB′), and permits ‘finite aug-
mentation’, i.e. that it verifies (∧I) and (∨E), but does not permit full augmentation,
so that we don’t have one of the following, when |I | ≥ ℵ0:

⋂

i∈I

(X → Yi) ⊆ X →
⋂

i∈I

Yi

⋂

i∈I

(Yi → X) ⊆
⋃

i∈I

Yi → X

5.1 The First Model

We start with the following, where Rα , for α ∈ W , is the set of tuples 〈X, Y 〉 s.t.
RαXY .

• W = D = ω
• N = {0}
• ∗ = {〈n, n〉 | n ∈ ω}
• Prop = P(W)
• PropFun = {φ | φ : Dω −→ Prop}
• M(F)n = {i | n < i} (we’ll write this set [n))
• M(p) = {0}
• R0 = {〈X, Y 〉 | X ⊆ Y }
• R1 = {〈X, Y 〉 | X ⊆ {0} and for some n ∈ ω, [n) ⊆ Y }
• Rn = ∅ for n > 1

By the construction, we have that
⋂

n∈ω

M(F)n = ∅. Furthermore, since this is a

full frame, (∀nφ)f = ⋂

f ′∼xf

φf ′, and so �∀xFx�f = ∅ for any f ∈ Dω.

By the construction, we have that for any n, 1 ∈ {0} → M(F)n, and thus that
1 ∈ �p� → �Fx�f for any f ∈ Dω, and thus that 1 ∈ ⋂

f ′∼xf

�p → Fx�f ′ =
�∀x(p → Fx)�f or any f . Yet, 1 /∈ {0} → ∅, and thus 1 /∈ �p → ∀xFx�f for any
f . Thus �∀x(p → Fx)�f � �p → ∀xFx�f and thus 0 /∈ �∀x(p → Fx) → (p →
∀xFx)�f . So this is a countermodel to (∀I). Now what kind of countermodel is it?

Well, since the frame is full, it is trivial that we have (c0) and (c1), given the
definition of R. So it is at least a model of QF−. Furthermore, by the definition of ∗,
we have that ¬ is Boolean (in a first-degree fragment way – that is, if ¬A ∨ B is a

14Thanks to a referee for stressing this.
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theorem of classical logic in the language ∨, ¬, then this model validates A → B).
So, it is at least a model of QFDE− (among the logics we consider here).

Let’s check some frame constraints to see how → behaves.
(∧I) If (X → Y ) ∩ (X → Z) �= ∅, then one of 0,1 is a member of it. If 0 is, then

X ⊆ Y and X ⊆ Z, in which case X ⊆ Y ∩ Z, and so 0 ∈ X → (Y ∩ Z) as desired.
If 1 ∈ (X → Y ) ∩ (X → Z) then X ⊆ {0} and there are n, m ∈ ω s.t. [n) ⊆ Y and
[m) ⊆ Z, in which case [n) ∩ [m) ⊆ Y ∩ Z. Note, then, that either n ≤ m or m ≤ n.
If the former, then [m) ⊆ [n), and so [m) ∩ [n) = [n), in which case [n) ⊆ Y ∩ Z,
and so 1 ∈ X → (Y ∩ Z). The case where m ≤ n is similar.

(∨E) If (X → Z) ∩ (Y → Z) �= ∅, then one of 0,1 is a member of it. If 0, then
we have that 0 ∈ (X ∪ Y ) → Z just in virtue of properties of ⊆. For 1, suppose that
X, Y ⊆ {0} and Z is as needed. Then X ∪ Y ⊆ {0}, and so 1 ∈ (X ∪ Y ) → Z.

(rB) Suppose that X ⊆ Y . Note that Z → X ⊆ {0, 1}. If Z → X = ∅, then we
have Z → X ⊆ Z → Y immediately, so suppose otherwise. If 0 ∈ Z → X, then
Z ⊆ X, so Z ⊆ Y , and 0 ∈ Z → Y . If 1 ∈ Z → X, then Z ⊆ {0} and for some
n ∈ ω, [n) ⊆ X, from which it follows that [n) ⊆ Y , so 1 ∈ Z → Y . In any case,
Z → X ⊆ Z → Y .

(rB′) Suppose that X ⊆ Y , and note that Y → Z ⊆ {0, 1}. If Y → Z, then we’re
done. If 0 ∈ Y → Z then Y ⊇ Z, so 0 ∈ X → Z. If 1 ∈ Y → Z, then Y ⊆ {0},
in which case X ⊆ {0}, and Z is as needed, and thus 1 ∈ X → Z. In any case,
Y → Z ⊆ X → Z.

So far, we know that this thing is a model of QB−. However, since we
know that Prop is closed under Boolean negation, we do satisfy (EC), so we
know it’s a model of BQ− enriched with such a negation (something that would,
following the usual naming conventions, be called CBQ−, but since we’re not
focused on Boolean negation here, and the names of logics employed are dec-
orated enough, we’ll ignore the fact that we have Boolean negations from here
on).15 However, it does not validate (Cont); e.g. 1 ∈ {0} → [2) but 1 /∈
{0, 1} → W/{0}. It is a model of some other axioms, particularly two variations on
contraction:

(WB) Suppose that (X → Y ) ∩ (Y → Z) �= ∅. If 0 is a member, then we
immediately have that 0 ∈ X → Z since ⊇ is an order. If 1 ∈ Y → Z, then Y ⊆ {0},
in which case there is no n ∈ ω s.t. Y ⊇ [n), and so there is no X ∈ Prop s.t.
1 ∈ X → Y . In any case, then, (X → Y ) ∩ (Y → Z) ⊆ X → Z.

(W) It suffices to show that X → (X → Y ) = ∅ holds for any X, Y ∈ Prop.
So suppose otherwise, then either 0 or 1 is a member of X → (X → Y ). If 1, then
X ⊆ {0} and for some n ∈ ω, [n) ⊆ X → Y . But note that X → Y ⊆ {0, 1}
always holds, and so there can be no such n ∈ ω. So 1 /∈ X → (X → Y ). Next,
note that for 0 ∈ X → (X → Y ) it must be that X ⊆ X → Y . But if this were the
case, then 1 ∈ X implies 1 ∈ X → Y . But note that if 1 ∈ X then X � {0} and so

15As a related note, both of the theorems in this section (and their corollaries), since they employ the
Tarski-style truth conditions for the quantifiers, actually concern the constant domain extensions of the
logics in question. However, given that, to our knowledge, the constant domain versions of these logics
are not axiomatised (neither are the constant domain versions of their stronger neighbours), we’ll focus
on their ‘usual’ axiomatic presentation, even though this is strictly weaker than the systems the theorems
actually concern.
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1 /∈ X → Y . Thus X � X → Y for any X, Y , and so 0 /∈ X → (X → Y ). Thus
X → (X → Y ) = ∅, and so X → (X → Y ) ⊆ X → Y holds vacuously.

Since the logic extending B with both of these last two axioms does not, to our
knowledge, have a conventional name, we’ll use the, somewhat ugly, name BJQ−

(W)

to pick out the resulting extension of BQ−.

Theorem 5.1.1 BJQ−
(W) does not prove (∀I).

Corollary 5.1.2 BJQ−
(W) is not conservatively extended by ◦.

5.2 The SecondModel

To counterexample (∃E), let’s keep the same construction from before, changing only
the definition of R1. Note that

⋃

n∈ω

M(F)n = W . Let us set:

R1 = {〈X, Y 〉 | X ⊆ [n) for some n ∈ ω and 0 ∈ Y }
Note that this implies that 1 ∈ ⋂

n∈ω

([n) → {0}) = ⋂

f ∈Dω

(�Fx�f → �p�) and

thus 1 ∈ �∀x(Fx → p)�f holds for any f . However, 1 /∈ W → {0}, and so
1 /∈ �∃xFx → p�f for any f . Thus 0 /∈ �∀x(Fx → p) → (∃xFx → p)�f .

As before, it remains to see what this is now a model of, and the only new things
are the frame constraints, but with this new case for 1. Thus, we’ll only focus on the
new things.

(∧I) Suppose that 1 ∈ (X → Y ) ∩ (X → Z), for some n ∈ ω, X ⊆ [n) and
0 ∈ Y ∩ Z. It follows that 1 ∈ X → (Y ∩ Z).

(∨E) Suppose that 1 ∈ (X → Z) ∩ (Y → Z), and that 0 ∈ Z and that there are
n1, n2 ∈ ω s.t. X ⊆ [n1) and Y ⊆ [n2). Then X∪Y ⊆ [n1)∪[n2). Furthermore, either
n1 ≤ n2 or n2 ≤ n1. If the former holds, then [n2) ⊆ [n1) and so [n2) = [n1) ∪ [n2),
and thus X ∪ Y ⊆ [n2). It follows, then, that 1 ∈ (X ∪ Y ) → Z.

(rB) Suppose that X ⊆ Y , 1 ∈ Z → X, Z ⊆ [n), and 0 ∈ X. It follows that 0 ∈ Y ,
so 1 ∈ Z → Y .

(rB′) Suppose that X ⊆ Y , 1 ∈ Y → Z, Y ⊆ [n), and 0 ∈ Z. But then X ⊆ [n) so
1 ∈ X → Z.

(WB) Suppose that 1 ∈ (X → Y ) ∩ (Y → Z), and that both of these implications
hold at 1 because of the interesting clause in the definition of R1. Then for some
n1, n2 ∈ ω, X ⊆ [n1), Y ⊆ [n2), and 0 ∈ Y ∩ Z. It follows immediately that
1 ∈ X → Z.

Note that this construction doesn’t satisfy (W); note that {1} ⊆ {1} → {0} but
{1} � {0}, so that 0 ∈ {1} → ({1} → {0}) but 0 /∈ {1} → {0}. (Incidentally, it
doesn’t satisfy (WI) either). So we’ll state the following theorem for a more nicely
named system than in the case of (∀I):

Theorem 5.2.1 BJQ− does not prove (∃E).

Corollary 5.2.2 BJQ− is not conservatively extended by ←.
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6 Conclusion

We’ll conclude by noting a striking fact, which seems to be to suggest an avenue of
future work in this area. In particular, while we’ve noted that the inclusion of ◦, ←
in logics extending QF−

(rB),(rB′) enforces augmentation, and enforces (∀I) and (∃E)
to hold, it seems possible to build models of (some) logics extending QF(rB),(rB′)
which are not augmented, and hence which don’t support ◦ or ←. This makes it seem
that we might find extensions of this logic which are not conservatively extended by
these connectives. Such results would be particularly interesting, and would employ
the distinctively ‘M-G’ machinery more than do the failure of conservative extension
results we’ve given here.

Neighbourhood semantics is something of a waypoint between relational seman-
tics and algebraic semantics, and this project is, similarly, something of a waypoint
between taking the Mares-Goldblatt machinery, and adapting it, more generally, to
the algebraic semantics available for various relevant logics. Nonetheless, it is an
interesting waypoint, which allows for just enough additional generality beyond
the relational framework to start posing and answering some questions which,
though answerable using general algebraic methods, are particularly interesting
when seen from the perspective of relational semantics. This makes neighbour-
hoods a rather natural waypoint, and these results suggest that further model
constructions may prove interesting for deepening our understanding of quantified
extensions to relevant logics – a topic which, while understudied for some time,
seems, at the time of writing, to have come up for re-evaluation as interesting and
fruitful.
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