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Abstract
In a recent paper, Barrio, Pailos and Szmuc (BPS) show that there are logics that
have exactly the validities of classical logic up to arbitrarily high levels of inference.
They suggest that a logic therefore must be identified by its valid inferences at every
inferential level. However, Scambler shows that there are logics with all the validities
of classical logic at every inferential level, but with no antivalidities at any inferen-
tial level. Scambler concludes that in order to identify a logic, we at least need to
look at the validities and the antivalidities of every inferential level. In this paper, I
argue that this is still not enough to identify a logic. I apply BPS’s techniques in a
super/sub-valuationist setting to construct a logic that has exactly the validities and
antivalidities of classical logic at every inferential level. I argue that the resulting
logic is nevertheless distinct from classical logic.

Keywords Supervaluationism Subvaluationism Strict-Tolerant logic
Substructural Logic; metainferential hierarchy Metainference
Classification problem

1 Introduction

There are several different logics available: classical logic, intuitionistic logic, the
Strong Kleene logic K3, Priest’s Logic of Paradox LP, supervaluationism, sub-
valuationism, etc. These logics are uncontroversially distinct: no one is under the
impression that LP and intuitionistic logic are really two ways of presenting one
and the same logic. However, the same logic can be formulated in different ways.
Classical logic, for example, can be formulated in a natural deduction system, or a
Hilbert-style calculus, or a multiple-conclusion sequent calculus. Classical logic can
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also be given a variety of semantics, and can be given several different axiomatiza-
tions. Yet all of these, intuitively, are simply different ways of presenting the same
logic.

How can we identify a logic? Given two systems, how can we determine whether
they are distinct logics, or are merely different presentations of the same logic? This
is harder than it first seems. As a first pass, we might be tempted to say that a logic
should be identified by its axioms and rules of inference. But this is too strict: it
would count different formulations of classical logic as distinct logics, when in fact
they are just different presentations of the same logic.

We might say that a logic should be identified by its set of theorems: the sen-
tences that are derivable in the proof theory or get designated values at all models
in the semantics. But this is too lax; classical logic, supervaluationism and Priest’s
paraconsistent logic LP all have the same theorems, and yet are uncontroversially
distinct logics. One reason they are distinct is that they validate different inferences.
For example, is valid in classical logic and supervaluationism,
but not in LP, while is valid in classical logic and LP but not in
supervaluationism.1

We might therefore try to identify a logic by looking at its set of valid inferences.
However, this is also too lax. Two logics can agree on which inferences are valid, but
disagree on which meta-inferences are valid. The logic ST, for example, introduced
by Cobreros, Egré, Ripley and van Rooj (hereafter CERvR) in [7] and [8], has exactly
the valid inferences of classical logic, but does not validate the meta-inferential Cut
rule. It is therefore distinct from classical logic, which validates every instance of
Cut.

We therefore must at least look at which metainferences are valid. But even the
inferences and metainferences of a logic are not enough to identify a logic. In a recent
paper, Barrio, Pailos and Szmuc (hereafter BPS) show that there are logics that have
exactly the validities of classical logic up to arbitrarily high inference levels (in a
sense to be made precise below), but then differ from classical logic after that [2].
They argue that this means that a logic must by identified by its valid inferences at
every inferential level.

However, even this will not do the job. In a recent paper, Scambler builds on BPS’s
result, and shows that there are logics that have exactly the validities of classical logic
at every level, and yet do not have the antivalidities of classical logic at any level
(where an antivalidity is an inference such that every model is a counterexample to
that inference) [24]. He argues that this means that for L and L’ to be the same logic,
they must at least have all of the same validities and antivalidities at every inferential
level.

In this paper, I argue that this too is insufficient; there are logics that have exactly
the same validities and exactly the same antivalidities at every inferential level, and
yet are still intuitively distinct. In Section 2 I introduce the logical framework that
I’ll be using in the rest of the paper. In Section 3 I apply BPS’s methods in a

1I specifically have in mind here supervaluationism with what Williamson [29] calls the global conse-
quence relation.
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super/sub-valuationist framework, to construct notions of validity for inferences of
every inferential level that have exactly the validities and antivalidities of classical
logic. In Section 4 I argue that the resulting logic is distinct from classical logic. In
Section 5 I discuss what this means for the problem of identifying a logic. In Section 6
I consider whether this logic is paraconsistent, and what this means for ST and other
logics with similar consequence relations. In Section 7 I close with some concluding
remarks.

2 Background

In this section I will introduce the logical framework that I’ll be using in the rest of the
paper. Most of the notation comes from Scambler [24]. Most of the technical machin-
ery for the slice hierarchy comes from [2] and [18]. However, I will be extending
the hierarchy into the transfinite.2 The machinery for a super/sub-valuationist mixed
consequence relation comes from [9].

2.1 Languages

We define our set of languages inductively over the ordinals:

Base Case: Let L0 be a standard propositional language, with propositional constants
and the connectives .

Successor Case: Given a language for some ordinal , let L 1 be the set of all
pairs of sets such that L . I’ll write in a sequent format, as

1 . We’ll call an “inference of order ” or an “ -inference”. So
1 is a 1-inference, 1 2 1 is a 2-inference, and so on.

I will omit set brackets when no confusion can result.

Limit Case: Given languages for all , let L be the set of all pairs of sets
such that . We’ll call an “inference of order ” or

a “ -inference”. I will again will omit set brackets when no confusion can result.
Note that the limit-ordinal languages will be cumulative, in the terminology of

[25]: the sequents of limit-ordinal languages can contain inferences from any lower
level. The successor-ordinal languages, however, will not be cumulative in this sense:

1-sequents can only contain -inferences.

2.2 Valuations andModels

Let a Boolean valuation be a function L0 0 1 such that the connectives
obey the truth tables of classical logic. The set of Boolean valuations is

2Scambler [25] also extends the slice hierarchies into the transfinite, though his methods for doing so are
slightly different than mine. I suspect that the results using my transfinite framework carry over to his, and
vice-versa, but have not confirmed this.
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the set of models for propositional classical logic. I’ll call propositional classical
logic .

Let a supervaluation (SV) model be a nonempty set of Boolean valuations. I’ll use
V to denote the set of SV models. These models are based on the formal semantics
for supervaluationist and subvaluationist logics.3

2.3 Notions of Validity

We say a notion of -validity is a function V L 0 1 . We say a model
V satisfies an -inference iff 1. We can think

of a notion of 0-validity as a notion of “truth-in-a-model” that determines which
sentences get designated values at each model. A notion of 1-validity tells us
which inferences between sets of -inferences are valid, and a notion of -inference
for limit ordinal tells us which inferences between sets of lower-level inferences
are valid.

I will write in place of 1, and
in place of 0.

When no confusion can result, I will sometimes use in place of
for convenience. When it is necessary to indicate that is an -inference for some
ordinal , I will write as .

We say that an inference is valid on a notion of -validity iff for all V,
. We will write this as .

We say that an inference is anti-valid on a notion of -validity iff for all V,
. We will write this as .

In other words, an inference is valid iff no model is a counterexample; an inference
is antivalid if every model is a counterexample.

For all and all L , we say that whenever is a valid -inference
in classical logic .

2.4 Slice Hierarchies

BPS and Scambler use the following definition to produce logics of arbitrarily high
(finite) inference levels with notions of -validity:

Definition 2.1 Successor Slice Let and be notions of -validity. Then the slice
of and , which we write as , is the notion of 1 validity such that for all

V: 1 iff or .

We can extend this to the transfinite by adding the limit case:

3For a general overview of supervaluationism, see [15]; for earlier presentations and defenses see [10, 16,
17], and [26]; see [27] for a discussion of different consequence relations compatible with supervaluation-
ist semantics. For a general overview of subvaluationism, see [5]; for defenses and earlier presentations,
see [6, 12–14], and [28].
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Definition 2.2 Limit Slice: Let and be sets of notions of validity
for all . Then the limit slice of and , which we write as

is the notion of -validity such that for all V:
iff either:

such that is a -inference for some and , or
such that is a -inference for some and .

Given two notions of -validity and , we can build the transfinite slice
hierarchy over and :

, , ,
.
.
.

Using slices like the ones defined above, BPS show that one can use Strong Kleene
3-valued models to build a slice hierarchy based on CERvR’s Strict-Tolerant logic
ST. They prove that for every inferential level , there is a logic that has exactly
the validities of classical logic up to order , but differs from classical logic at higher
inferences levels. They suggest that classical logic therefore must be identified by
its valid inferences at every (finite) inferential level. But in [24] and [25], Scambler
shows that even a logic with exactly the validities of classical logic at every inferential
level can differ from classical logic. He demonstrates that what he calls the “tolerant
twist logic” has exactly the validities of classical logic at every inferential level, but
unlike classical logic, has no antivalidities.

In what follows, I construct a transfinite slice hierarchy that gives us a logic with
exactly the validities of classical logic at every inferential level, and exactly the anti-
validities of classical logic at every inferential level. I will then argue that this logic
still should not be identified with classical logic.

2.5 A Note about Local and Global Validity

It is important to note that the definitions of successor and limit slices given above
will produce notions of local validity, rather than notions of global validity. When
dealing with metainferences, there are at least two ways to define metainferential
validity over a class of models: local validity and global validity.4

In traditional (unsliced) contexts, local validity can be thought of as preservation
of satisfaction, while global validity can be thought of as preservation of validity. A
metainference is locally valid iff at every model, either some conclusion inference is
satisfied or some premise inference is not. A metainference is globally valid iff either
some conclusion inference in valid or some premise inference is valid. For example,
the metainference 1 2 1 is globally valid in classical logic,
because the premise inference 1 is not valid. But it is not locally valid in
classical logic, because there are classical valuations at which 1 is satisfied

4For a detailed discussion of the distinction between local and global metainferential validity, see [11].
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but 1 is not. In general, local validity implies global validity, but global
validity does not imply local validity.

We can generalize these notions to slice notions of validity: an inference is
locally valid iff at every model, either some premise is not -satisfied or some con-
clusion is -satisfied. Similarly, an inference is globally valid iff either some
premise is not -valid or some conclusion is -valid.

The notions of validity generated by the above definitions for successor and limit
slices are local, rather than global, notions of validity. Following [2, 18], and [24], I
will be restricting attention to local validity at each level, rather than global validity. I
will therefore use whenever is a locally valid inference in classical logic.
There is a sense in which local validity is more fine-grained than global validity: any
two logics with the same locally valid inferences must have the same globally valid
inferences, but not vice-versa. ST and classical logic have the same globally valid 2-
inferences (in the empty signature), but have different locally valid inferences: Cut
is locally valid in classical logic, but is not locally valid in ST (even in the empty
signature). Therefore, when we see in the following sections that the resulting logic
has exactly the local validities of classical logic, it immediately follows that it also
has exactly the global validities of classical logic.

3 The LMHierarchy

3.1 Two Notions of 0-validity

There are at least two interesting notions of 0-validity that can be defined over the
set of SV models V. These correspond to the notions of 0-validity for supervalua-
tionism and subvaluationism, so I’ll call them P (for suPervaluationism) and B (for
suBvaluationism):

iff 1 for all
iff 1 for some

It is easy to see that for all 0-inferences, iff iff . If every
Boolean valuation assigns 1 to , then every set of Boolean valuations contains only
valuations that assign 1 to . It is also easy to see that iff iff .
If every Boolean valuation assigns 0 to , then no set of Boolean valuations has any
valuations that assign 1 to .

3.2 Six Notions of 1-validity

We could slice together and to form a hierarchy of notions of validity. For
example, there are four notions of 1-validity that we can get just by slicing and :

1 iff either 0 or
1

1 iff either 0 or
1

1 iff either 0 or
1
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1 iff either 0 or
1

and correspond to the (global) 1-validity consequence relations for
supervaluationism and subvaluationism, respectively. Neither has all of the 1-
validities of classical logic. For example, 1 , and

1 .
The mixed-condition 1-validity consequence relations and are effec-

tively the super/sub-valuation equivalents of the K3/LP consequence relations
and .5 Like , is not reflexive, in the sense that 1 is not valid unless

is a classical tautology or classical contradiction. Like , has exactly the
same valid 1-inferences as classical logic. And like ST, there is a sense in which P/B
is not transitive. In particular, 1 and 1 do not imply

1 .6 Although and both have exactly the 1-validities of
classical logic, has an additional feature that does not have: has all of
the 1-validities of classical logic and all of the 1-antivalidities of classical logic.

and could be sliced together to construct a notion of 2-validity, which
will again have all of the 2-validities of classical logic. However, this notion of 2-
validity will only have some of the antivalidities of classical logic. For example, the
2-inference from 1 to 1 is classically antivalid, but it is not antivalid
in : there are SV models at which 1 is not -satisfied. In order to
construct a logic with all of validities and all of the antivalidities of classical logic,
we need to build our hierarchy using different notions of 1-validity.

Instead of using any of these notions of 1-validity, we will define notions of
1-validity directly, and build the hierarchy out of those. Our first such notion of
1-validity, , corresponds to what Williamson [29] calls the “local” consequence
relation on supervaluation models:

1 iff 0 1
A 1-inference is -satisfied at a model iff it is classically satisfied at every val-

uation in the model. It’s easy to see that this notion of 1-validity has exactly the
1-validities and 1-antivalidities of classical logic.

In addition to , we can also define a more tolerant consequence relation :
1 iff 0 1

A 1-inference is -satisfied at a model iff it is classically satisfied at some val-
uation in the model. Like , has exactly the 1-validities and 1-antivalidities of
classical logic. But despite this, is not transitive. To see this, let be a model
containing two valuations and , such that 1, 0, 0, and

0. In this case 1 and 1 , and yet 1 .

5For more information about the strict-tolerant approach in a super/sub-valuationist setting, see [9].
6There are many different ways to use the term “transitive” when discussing consequence relations. See
[20] for a survey of several different notions. My use of the term is somewhat idiosyncratic, in that it is
really transitivity of satisfaction that I have in mind, rather than transitivity of validity. However, I take
this to be an important and distinctive feature of the logic: it means that the set of sentences that are true in
a model are not closed under the valid inferences of the logic. This has significant consequences for how
the logic handles non-logical axioms, which will be discussed more in Sections 4 and 6.
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There is one fact about and that will be important in constructing the
hierarchy: for any SV model V, 1 iff , and 1
iff . Without this property, we couldn’t use these notions of 0- and 1-validity
together to construct anything that deserved to be called a “logic”.

It is easy to see, but important to note before we continue, that all six of these
notions of 1-validity have the following feature: given a singleton model , each
notion of validity gives us 1 iff 1 . Notions of -validity
at any level can have the equivalent property for -inferences. I will call this the
singleton property:

Definition 3.1 Singleton Property
A notion of -validity has the singleton property if for all singleton models

and all -inferences , iff .

We can now use , , and to construct a hierarchy of notions of validity that
have all of the validities and antivalidities of classical logic at every level of inference.

3.3 The Hierarchy

We will define what I will call the hierarchy inductively:

Base cases: 0 = P, 0 = B
1 = L, 1 = M

Successor Case: for 1:
1 , 1

Limit Case: for limit ordinals :
,

Call the logic that evaluates -validity at every ordinal in accordance with
. Similarly for .

My primary goal in this section will be to show that has exactly the validities
and antivalidities of classical logic at every inference level. First, we need to show
that every notion of validity in the hierarchy has the singleton property:

Lemma 1 If two notions of -validity and both have the singleton property,
then their slice also has the singleton property.

Proof 1 iff either there is a such that , or there
is a such that . Since and both have the singleton property,

iff and iff . 1 iff there
is a such that or there is a such that . Therefore

1 iff 1 .

This also holds for the limit slices:
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Lemma 2 If every notion of validity and has the
singleton property, then has the singleton property.

Proof Suppose . Then either for some , or
for some . By IH, for all , iff , and
iff . If for some and , then , and so

. Otherwise, for some and some .
Then , and so .

The reverse direction follows the same pattern.

It follows that if two notions of validity and have the singleton property, then
every notion of validity in the transfinite hierarchy over and has the singleton
property. Since , , , and all have the singleton property, this means that every
notion of validity in and in has the singleton property. We can use this fact
to prove sufficient conditions for a slice notion of 1-validity to have all of the
validities and all of the antivalidities of classical logic.

Lemma 3 Let and be two notions of -validity defined over the set of SV
models V that both have the singleton property. Suppose that for all SV models m,

implies for all , and implies for all
. Then 1 iff 1 .

Proof The left-to-right direction follows from lemma 1. Since and both have
the singleton property, does too. So implies that :
if some valuation is a counterexample to , then will be a
counterexample to .

For the right-to-left direction, suppose 1 . Then there is an SV
model V such that 1 . It follows that for all

and for all . By assumption, implies for all
, and implies for all . Therefore every is such

that for all and for all . Therefore 1 .

Lemma 4 Let and be two notions of -validity defined over the set of SV
models V that both have the singleton property. Suppose that for all SV models
V, for all implies , and for all implies

. Then 1 iff 1 .

Proof The left-to-right direction follows from lemma 1. Since and both have
the singleton property, does too. So implies that : if
some valuation is not a counterexample to , then will not be a
counterexample to .

For the right-to-left direction, suppose 1 . Then for every Boolean
valuation , for all and for all . By assumption,

for all implies , and for all implies
. It follows that for every SV model V, and .

Therefore, 1 .
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These conditions also hold for the limit slices:

Lemma 5 Let and be two sets of notions of -validity defined over
the set of SV models V for all that all have the singleton property. Suppose
that for all and all models V, implies for all

, and implies for all . Then iff
.

Proof The left-to-right direction follows from the singleton property.
For the right-to-left direction, suppose that . Then there is

an SV model V such that for all and all and all ,
and . It follows that for all , and for all and

. Therefore, .

Lemma 6 Let and be two sets of notions of -validity defined over
the set of SV models V for all that all have the singleton property. Suppose
that for all , all -inferences , and all models V, for
all implies , and for all implies . Then

iff .

Proof The left-to-right direction follows from the singleton property.
For the right-to-left direction, suppose that . Then for every

Boolean valuation , for all , and for all . By
assumption, for all implies , and for all

implies . It follows that for all SV models V, and
. Therefore .

So to show that the logic has all of the validities and antivalidities of classical
logic at every inferential level, it suffices to show that for all ordinals 1 and all
SV models V, iff for all , and iff
for all .

Lemma 7 For all 1, iff for all , and iff
for all .

Proof By induction. The base case is and , and follows immediately from the
definition of and .

For the successor case, we take the inductive hypothesis that for all SV models
V and all L , iff for all and iff

for all .
For 1, we note that 1 1 iff either or

. By IH, for all and all , iff for all
, and iff for all . By definition, for

all or for all iff 1 for all .

1376 B. Porter



For 1, we note that 1 1 iff and
. By IH, for all and all , iff for all ,

and iff for all . By definition, for all and
for all iff 1 for all .

For the limit case, we take the inductive hypothesis that for all , for all SV
models V and for all L , iff for all and

iff for all .
For , we note that iff either or

. By IH, for all and all and all ,
iff for all , and iff for all .

By definition, for all or for all
iff for all .

For , we note that iff and
. By IH, for all and all and all ,

iff for all , and iff for all .
By definition, for all and for all iff
for all .

With this, we can now prove the primary result of this section:

Theorem 8 For every ordinal , iff , and iff .

Proof Follows immediately from lemmas 3, 4, 5, 6, 7, and the fact that has
exactly the 0-validities and 0-antivalidities of classical logic and has exactly the
1-validities and 1-antivalidities of classical logic.

therefore has exactly the validities and antivalidities of classical logic at every
inferential level.

4 IsM Classical Logic?

We have just shown that the logic has exactly the validities and antivalidities of
classical logic at every inferential level. One might therefore be tempted to identify

with classical logic. However, this would be a mistake.
To illustrate why, we need to look at how the two logics handle the addition of non-

logical axioms. When presented with the same set of axioms in the same language,
and classical logic will generate different theories, at least in some cases. I take

this to be a reason for thinking that the two logics are distinct.
We often want to use a logic to prove theorems from sets of axioms, as in the case

of ZFC or Peano Arithmetic. This does not involve moving to a new logic; a single
logic, like classical logic, can be used with a variety of theory-specific non-logical
axioms and still be the same logic in each case. Any set of axioms will have certain
consequences in a logic. Given a logic L and a set of axioms , let the theory of in
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L be the set of formulae that are true (satisfied) at all L-models at which the members
of are true (satisfied).7

Suppose that we are presented with two logics, L and L . Suppose that, given the
same language L and the same set of non-logical axioms , the theory generated by

in L is strictly greater than the theory generated by in L . In that case, I take it
that L and L can safely be considered different logics. What follows from a given set
of axioms does not and should not depend on how the logic is presented. It would be
quite a shock to discover that whether or not the continuum hypothesis follows from
ZFC depends on how we present first order classical logic: in one presentation, the
continuum hypothesis is independent of the axioms of ZFC, but in another presen-
tation it is a theorem. That simply cannot happen; there must be some determinate,
presentation-independent fact of the matter as to what the consequences of such-and-
such axioms are in a given logic. What follows from a set of axioms in a logic is not
a matter of presentation; it is an essential feature of the logic.

With that in mind, let’s consider how classical logic and behave given the
same set of axioms in the same language. In the standard propositional language used
in the previous section, take 1 and 1 as axioms in both classical logic and . In
the sequent calculus presentation that we’ve been using, we can also use 1 1 1

1 as our set of axioms.8 We can then examine the theory of 1 1 1 1
in each logic.

The theory generated by these axioms in classical logic is trivial. Every sequent
whatsoever follows from 1 1 1 1 in classical logic, including 1 for all
formulae . In classical logic, there is no way for 1 1 and 1 1 to be satisfied
at the same valuation; the two inferences are not jointly satisfiable. Therefore it is
trivially true that is true in all models in which 1 and 1 are true, and so any
sentence is a member of the theory of 1 and 1 in classical logic.

However, this is not the case in . To see why, note that both 1 1 and
1 1 will be satisfied at any SV model in which at least one Boolean valuation

assigns 1 value 1, and at least one valuation assigns 1 value 0. Such models need
not be trivial in ; any set of two Boolean valuations assigning different values to

1 will do. 1 1 and 1 1 are therefore jointly satisfiable in : there are
models that satisfy both inferences. This means that the question of which formulae
and inferences are satisfied at the models of 1 1 1 1 is not at all trivial.
For some models and some formulae , there will be no valuation in that assigns
value 1 to . For example, there is no Boolean valuation that assigns value 1 to

1 1. As a result, 1 1 1 is antivalid in : there is no model that
satisfies 1 1 1. This is true even if we restrict our attention to models that
satisfy both 1 1 and 1 1. Therefore 1 1 1 is not in the theory of

1 1 and 1 1 in (even though 1 1 1 1 2 1 1 1
is valid). But it is in the theory of those axioms in classical logic; everything is. As

7Although “theory” is defined here semantically, this definition is equivalent to the proof-theoretic notion
of a theory as the set of formulae provable from a set of axioms. I use the semantic definition here for the
simple reason that I do not currently have a proof theory for the model-theoretically-defined logic .
8We can do this because in both and classical logic, a model is a counterexample to a formula iff it
is a counterexample to 1 iff it is a counterexample to 2 1 , and so on.
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such, the same axioms in the same language can have different theories in than
in classical logic. and classical logic are therefore distinct logics.

5 Identity Conditions for Logics

I’ve argued that classical logic and are not the same logic, despite the fact that
they have the same validities and antivalidities at every inferential level. We might
then ask, under what conditions can logics L and L rightfully be said to be the same
logic?

Together with the results of [2] and [24], I take the results here to show that having
the same validities and antivalidities is not sufficient to identify two formal systems
as the same logic, even if they have the same validities and antivalidities at every
inferential level. and classical logic have exactly the same validities and antiva-
lidities at every inferential level, and yet they can behave quite differently when given
the same set of axioms. But the consequences of a set of axioms are not presentation-
dependent features of a logic; the same axioms should not generate different theories
depending on how we present the logic. and classical logic must therefore be dis-
tinct logics, and so it is possible for two distinct logics to have all the same validities
and antivalidities at every level of inference.

We must look beyond validities and antivalidities in order to determine whether
two formal systems L and L are distinct logics, or are simply two presentations
of the same logic. In light of the discussion in the previous section, I propose that
we at least need to consider the sets of inferences that are jointly satisfiable in a
given logic. Even if two logics agree on which inferences have counterexamples and
non-counterexamples, the logics can still disagree regarding which sets of inferences
share a single counterexample and which do not. In classical logic, the 1-inferences

1 and 1 are not jointly satisfiable. In , they are. This seems to be
precisely the reason that classical logic and behave differently given 1 and 1
as axioms: the axioms are jointly satisfiable in , but are not jointly satisfiable in
classical logic. Having the same sets of jointly satisfiable inferences therefore seems
promising as an identity condition to distinguish logics.

In fact if we take sets of jointly satisfiable inferences as an identity condition,
then the antivalidities condition can be dropped. It is subsumed under the jointly
satisfiable sets condition: if two logics have exactly the same sets of jointly satis-
fiable inferences, then they must also have the same antivalidities. This is because
the -inference is antivalid iff is not satisfiable iff the singleton set of infer-
ences is not jointly satisfiable.9 However, the validities and jointly satisfiable sets

9Sets of inferences that are not jointly satisfiable therefore generalize the notion of antivalid inference: they
are, in effect, the sets of inferences that are together antivalid. We could apply an analogous generalization
to validity, and look at the sets of inferences that do not share a single counterexample. , the local
supervaluationist consequence relation, for example, has exactly the same valid 1-inferences as classical
logic, but has different sets of 1-inferences that do not share a counterexample: 1 and 1 cannot
share a counterexample in classical logic, but they can in the local supervaluationist logic. Whether or not
this generalization has any philosophically interesting applications remains to be seen.
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conditions are independent. To see why, consider the trivial logic in which every
inference is valid. In this logic, every set of inferences is jointly satisfiable. In at least
some languages, every set of 1-inferences is jointly satisfiable in the strict-tolerant
logic ST. This is because (without logical constants and the like) ST has a model in
which every formula gets value 1

2 , and every 1-inference is satisfied at that model.
So ST and the trivial logic have exactly the same sets of jointly satisfiable inferences,
yet they have different validities: some inferences are invalid in ST, but no infer-
ences are invalid in the trivial logic. The same-validities condition therefore cannot
be subsumed under the same-sets-of-jointly-satisfiable-inferences condition. Joint
satisfiability is a matter of there being a non-counterexample, and the existence of
non-counterexamples cannot by itself tell us whether there are no counterexamples.

It is worth noting that the new identity condition offered here is a semantic condi-
tion. Unlike validity (and possibly antivalidity), “sets of jointly satisfiable inferences”
is an inherently semantic notion, defined in terms of models and satisfaction con-
ditions. Some, especially those who take a purely instrumentalist approach to the
models for a logic, may object to this as an identity condition on logics.10

However, the identity condition offered here is a semantic condition in part
because, like the slice-hierarchy logics that came before it, is constructed
model-theoretically. As such, its consequence relation is defined semantically. There
may be proof theoretic ways to formulate these logics without appealing to any
model-theoretic definitions. Once this is done, it will hopefully be clear what the
proof-theoretic equivalent of jointly satisfiable inferences might be; it may be some
sort of closure operator on sets of non-logical axioms. By introducing this semantic
identity condition, I do not mean to suggest that there is no equivalent proof-theoretic
condition that could serve the same purpose. There may well be a way to distinguish

from classical logic without making any appeal to models or satisfaction condi-
tions. The important point is that, whatever that equivalent proof-theoretic condition
might be, it will have to be go beyond valid and antivalid inferences.

It is also worth noting that sets of jointly satisfiable inferences, as an identity
condition on logics, is more fine-grained than the usual properties used to identify
logics, like the set of valid inferences or a counterexample relation.11 One lesson we
can learn from comparing and classical logic (or comparing and classical
logic) is that the valid and antivalid inferences of a logic do not by themselves tell
us what consequences a set of axioms will have in the logic. and classical logic
have exactly the same valid inferences, yet in some cases they will give us different
consequences for the same set of axioms in the same language.

If we were to look only at validities, or only at validities and antivalidities, then
we would not have enough information to determine what we could or could not
prove in the logic from non-logical axioms. So in order to understand how the logic
behaves and what is or isn’t provable in the logic, we need to look to more fine-
grained details of the logic beyond just which inferences are valid. Valid inferences
alone are too coarse-grained to tell us what follows from a set of axioms in the logic,

10Thanks to an anonymous reviewer for raising this issue.
11Thanks to an anonymous reviewer for raising this issue.
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and are therefore too coarse-grained to tell us whether or not two formal systems are
in fact the same logic. As such, we need to look to more fine-grained distinctions in
order to determine whether two formal systems will give us the same consequences
for the same set of axioms.

6 Paraconsistency and Nontransitive Consequence Relations

6.1 Is M Paraconsistent?

In [24], Scambler argues that the hierarchy logic based on ST introduced in [2] and
[18] as a fully classical logic, which I will call , is not in fact classical logic. He
argues that, unlike classical logic, is really a paraconsistent logic: “In the case of
[ ], we have not really gotten rid of paraconsistency: we have merely thoroughly
repressed it, so that it does not affect validity at any orders. Nevertheless, it is still
present: there are valuations on which comes out valid” [24].

I take Scambler’s point here to be something like the following: when we discuss
paraconsistency, we often discuss it in terms of the validity or invalidity of the various
rules of Explosion, like 1 and 1 . However, in these discus-
sions, we are not interested in the validity of these schema for their own sake. Part of
our interest in the validity or invalidity in these schema is that we take them to give
us information as to whether or not the logical system can tolerate inconsistency. But

and can tolerate inconsistencies in their models: both logics have models
at which both 1 and 1 are satisfied. This, Scambler suggests, means that
they are really paraconsistent logics.

Normally, a logic is called “paraconsistent” only if some version of Explosion
(usually 1 or 1 ) is invalid in that logic. But and
validate every rule of Explosion that classical logic validates, including the metain-
ferential Explosion rule discussed in [3]. As such, and are neither strongly
nor weakly paraconsistent, in Hyde’s terminology [12, 13].12 So by any of the usual
definitions of “paraconsistent”, and simply are not paraconsistent.

However, per Scambler’s point, and certainly have some paraconsistent-
ish features. Both logics have models at which both 1 and 1 are
satisfied.13 As a result, the logics can tolerate inconsistent axioms in a way that
classical logic cannot. In classical logic, theories are closed under Explosion, in the
following sense: if for theory , then . Although Explosion is valid
in and , theories are not closed under Explosion in these logics: there are
theories containing and but not , for some sentences and . So although

and are not paraconsistent by the usual definitions of paraconsistency, they
should be considered at least psuedo-paraconsistent logics.

12Hyde credits this distinction to Arruda [1]. Equivalently, we could say in Ripley’s terminology that the
two logics are neither conjunctively nor collectively paraconsistent [21].
13It is worth noting that, although has no models at which both and get value 0, does.

is therefore in a similar situation: it validates the Law of Excluded Middle, yet has models that satisfy
neither 1 nor 1 .
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6.2 Scambler’s Tortoise Objection to ST andM

Scambler argues that this paraconsistency (or pseudo-paraconsistency) shows that
(and by analogy, ) cannot really be considered a presentation of classical

logic. On this point, Scambler and I are in agreement. But Scambler further argues
that there is something wrong with these logics. He argues that hierarchy logics like

are not “closed under their own laws” in an important sense, and that this raises
potential problems not just for any proponents of these logics, but for proponents of
ST and similar logics as well.

Scambler [24] compares to Lewis Carroll’s Tortoise [4]. The Tortoise accepts
A, and B, and accepts C := “if A and B are true, Z must be true” but still does not
accept Z. The Tortoise continues to accept statements of the form “if A and B and C
and... are true, then Z must be true”, but the Tortoise still refuses to accept Z.

I take the primary lesson of Carroll’s paper to be that accepting or endorsing the
statement of a rule is very different from actually obeying a rule. Asserting that an
inference is valid is not the same thing as actually making that inference. Scambler’s
objection to , and by extension to , is that these logics in effect “accept”
classical inferences as valid, without in fact allowing us to make those inferences.

Scambler illustrates this issue by introducing a liar constant to the language, but we
can make the same point without moving to a new language by looking at inconsistent
axioms. and both validate the Explosion Rule 1 , as well as the
Metainferential Explosion Rule 1 1 2 1 . However, if we take

and to be axioms (or 1 and 1 , in our sequent calculus presentation),
we see that the theory generated by these axioms is not closed under explosion. ,
for example, has models in which 1 and 1 are satisfied, but 1 is
not. The theory generated by these axioms in therefore does not contain every
sentence whatsoever.

Scambler says that is not “closed under its own laws”. For our purposes, we
might instead say that theories in and are not closed under valid inferences.
The end result, however, is the same: the valid inferences of these logics do not
necessarily correspond to rules of inference that we can use when proving theorems
from non-logical axioms. Like Carroll’s Tortoise, these logics accept the Explosion
Rule, but do not allow us to infer according to the Explosion Rule.

Scambler [24] suggests that this poses a potential problem for these logics.
and seem to make precisely the same move that the Tortoise makes: endorsing
rules that one does not follow. Defenders of these logics would therefore seem to be
endorsing inferences without actually making those inferences. But then it is not clear
exactly why one would want a logic that validates rules of inference that one cannot
use. This certainly does appear to be a problem for these logics. Any defenders of

and would have to explain what purpose validating rules of inference that
we cannot use might have.

6.3 The case of ST

Scambler argues that this is not just a problem for hierarchy logics like and ;
he argues that it also poses a problem for ST. ST has a nontransitive consequence
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relation for 1-inferences, but transitive consequence relations for every higher level
of inference.14 As Scambler puts it, “If the problem [with logics like and ]
is (as I suggested) that the logic is not closed under its own laws, then why isn’t the
fact that logics like [ST] also aren’t closed under their laws similarly problematic?
Don’t we have essentially the same structure in each case?” [24].

Scambler’s objection, I take it, is this: if nontransitive consequence relations are
simply endorsing rules that they don’t obey, then this seems like it will be a problem at
any level. The defenders of ST, who endorse a nontransitive consequence relation at
the level of 1-inferences, therefore have to explain why they are in any better position
than Carroll’s Tortoise, or the hierarchy logics that have nontransitive consequence
relations at every level.

I agree with Scambler that the full hierarchy logics like and seem to
face a serious problem that defenders of those logics would have to address. But I do
not think that this is necessarily a problem for defenders of ST.

In the case of ST, this is potentially a serious problem if we want to use the
1-inferences of ST to reason normally. Because ST holds premises to a different stan-
dard than it holds conclusions, valid 1-inferences do not preserve any nice properties
like truth in a model (i.e. 0-inference satisfaction). In particular, this means that the
theory of a set of axioms is not necessarily closed under the valid 1-inferences in
ST.15 The 1-inference 1 is valid in ST, yet there are models of ST in
which both and are satisfied 0-inferences but is not. So if we try to use
the valid 1-inferences of ST as rules of inference applied to axioms, we will end up
“proving” sentences that do not actually follow from those axioms in ST.

As I said, this is potentially a serious problem for ST. However, this is not a prob-
lem if we want to use ST in a different way. For example, Ripley [22] presents a
bilateralist interpretation of ST, according to which validity is understood in terms
of assertion and denial.16 On Ripley’s bilateralist interpretation of ST, a 1-inference

1 is valid iff the “position” of asserting all of the s and denying all of the s
is incoherent. So according to Ripley, “ 1 can now be read as the claim that the
position [of asserting the s and denying the s] is out of bounds.” (emphasis mine;
notation slightly altered) [22].

Thus on the bilateralist interpretation of ST, valid 1-inferences need not be under-
stood as representing rules of inference that are safe to use. Rather, they should be
understood as claims about what is impermissible to assert and deny. ST is then not
a tool for reasoning about sentences, but a tool for reasoning about positions. On this
interpretation, the 1-inferences are the claims about which we are making inferences;
they do not themselves correspond to rules that we use to make inference.

14Recall that by “transitive”, I mean that 1 and 1 imply .
15Valid 1-inferences in ST do have the disjunctive property of either preserving what we might call “tol-
erant truth” (having value 1 or 1

2 ) from left to right or preserving “tolerant untruth” (having value 0) from
right to left. Unfortunately, this does not suffice to close theories under the valid 1-inferences. This is in
part because the validity of an inference does not by itself tell us which property is preserved by that infer-
ence. As a result, neither property is preserved in all cases. Thanks to an anonymous reviewer for raising
this issue.
16For earlier defenses of bilateralism independent of ST, see [23] and [19].

1383Supervaluations and the Strict-Tolerant Hierarchy



In some sense, this means that the 1-inferences of ST cannot be used in the way
that we usually use inferences. But ST is still a perfectly usable logic for reasoning
about positions, because the valid 2-inferences preserve 1-inference validity. Further-
more, the theory generated by any set of 1-inferences that we take as axioms will be
closed under the (locally) valid 2-inferences of ST. If we take a set of 1-inferences as
axioms, we can therefore use (locally) valid 2-inferences as rules of inference.

This interpretation of ST therefore avoids Scambler’s objection, because it does
not endorse rules that it refuses to obey. It obeys the 2-inference rules that it endorses,
and it does not consider valid 1-inferences to be rules at all.17

However, this same approach will not work for or . It is crucial to the
bilateralist account of ST that we can understand metainferences in the usual way:
as formal representations of rules of inference that we can use. Without that, it’s not
clear how we could use the logic as a logic. But and have nontransitive
consequence relations at every level of inference. As a result, there is no level of infer-
ence at which the valid inferences can be understood as rules of inference: there is
no ordinal at which theories are closed under all valid -inferences. The bilateral-
ist interpretation of ST reinterprets valid inferences at one level as claims instead of
rules, but we can still use the valid inferences of the next level as rules of inference. In

and , every level has to be reinterpreted. This leaves no level at which valid
inferences can be understood as rules of inference that it is safe to use. It’s therefore
not clear how we are to use these logics, if we are to use them.

There are many ways to use a formal construction. For example, in this paper I
have used as an example in an argument for certain claims about identity criteria
for logics. But in doing so, I wasn’t really using as a logic. To use a logic as a
logic, “from the inside” so to speak, we need to be able to use the formal construction
as a tool for making inferences. I take Scambler’s objection to hierarchy logics like

and to be that, due to the non-transitive nature of the logics, they cannot
really be used as logics in this sense. In that, I agree. What purpose these logics might
serve depends in part on how these logics can be usefully interpreted. At the moment,
it is not clear how this is to be done. And this does indeed present a problem for any
defenders of these logics.

7 Conclusion

I’ve argued that a logic cannot be identified by its valid and antivalid inferences,
even at every inferential level. At a minimum, we suggest that we must also look
to which sets of inferences are jointly satisfiable. Ultimately, we need to look to the
rules of inference that the logic allows us to use. Two logics having exactly the same
validities and antivalidities does not suffice to guarantee that the two logics obey the
same rules of inference, or that they will allow us to prove the same consequences
from the same set of axioms.

17This is not to say that the bilateralist interpretation is free from objections; only that it is free from this
particular objection.
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I take it that when we attempt to characterize logics and logical properties by
the validity or invalidity of inferences, we often do so because we make cer-
tain assumptions about what those inferences represent. The recent development of
mixed-condition consequence relations has demonstrated that these assumptions can
be broken. In particular, the valid inferences of a logic can come apart from the rules
of inference that the logic allows us to use. This means that instead of looking only
at the inferences of a logic, we should be looking directly at the properties and rules
of inference that the logic allows. Although inferences can represent these properties
and rules in some settings, I take the results here and in [2] and [24] to show that
inferences do not always do so.18

References

1. Arruda, A. In R. Priest (Ed.) (1989). Norma aspects of the historical development of paraconsistent
logic. Philosophia: Munchen.

2. Barrio, E., Pailos, F., & Szmuc, D. (2019). A hierarchy of classical and paraconsistent logics. Journal
of Philosophical Logic, 49, 93–120.

3. Barrio, E., Pailos, F., & Szmuc, D. (2018). What is a paraconsistent logic?. In J. Malinowski, & W.
Carnielli (Eds.) Contradictions, from Consistency to Inconsistency. Verlag: Springer.

4. Carroll, L. (1895). What the tortoise said to achilles. Mind, 4(14), 278–280.
5. Cobreros, P. (2013). Vagueness: Subvaluationism. Philosophy Compass, 8(5), 472–485.
6. Cobreros, P. (2011). Paraconsistent vagueness: a positive argument. Synthese, 183(2), 211–227.
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