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Abstract
Pearl opened the door to formally defining actual causation using causal models. His
approach rests on two strategies: first, capturing the widespread intuition that X = x

causes Y = y iff X = x is a Necessary Element of a Sufficient Set for Y = y, and
second, showing that his definition gives intuitive answers on a wide set of problem
cases. This inspired dozens of variations of his definition of actual causation, the
most prominent of which are due to Halpern & Pearl. Yet all of them ignore Pearl’s
first strategy, and the second strategy taken by itself is unable to deliver a consensus.
This paper offers a way out by going back to the first strategy: it offers six formal
definitions of causal sufficiency and two interpretations of necessity. Combining the
two gives twelve new definitions of actual causation. Several interesting results about
these definitions and their relation to the various Halpern & Pearl definitions are
presented. Afterwards the second strategy is evaluated as well. In order to maximize
neutrality, the paper relies mostly on the examples and intuitions of Halpern & Pearl.
One definition comes out as being superior to all others, and is therefore suggested
as a new definition of actual causation.

Keywords Actual causation · Causal sufficiency · NESS · Counterfactuals

1 Introduction

Two decades have passed since Judea Pearl’s groundbreaking book on causality was
published [16]. It offers a formal account of causal models that led causal modeling
to become a central part of Artificial Intelligence. One of the book’s most important
applications for philosophy is its formal definition of actual causation, i.e., causation
of particular events.

Pearl defends his account of actual causation using two strategies. The first
strategy starts with the widely shared intuition that X = x causes Y = y iff X = x
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is a Necessary Element of a Sufficient Set for Y = y (the NESS intuition, from now
on).1,2 Pearl claims that using causal models allows one to make this intuition for-
mally precise, whereas existing logical notions of necessity and sufficiency lack the
resources to do so. The second strategy is to demonstrate that his formal account
offers intuitive verdicts for a number of problematic examples.

Ever since, Pearl’s account has come under severe criticism. By now there are
dozens of papers – both from philosophers and from researchers in AI – attempting
to improve upon his account.3 Most prominently, Pearl himself has offered several
revisions of his account in collaboration with Halpern, culminating in the most recent
revision by Halpern individually [7–10, 17]. Together these accounts of causation are
referred to as the Halpern & Pearl definitions, or HP definitions for short, and they
are by far the most influential accounts of causation out there.

The problem with all of these attempts at revising Pearl’s initial account, is that
they completely ignore the first strategy and focus almost excusively on the second
strategy. Roughly put, the typical setup is to go over some examples for which exist-
ing definitions give counterintuitive answers, and then to construct a new definition
that does not do so. It is unrealistic to expect that this second strategy in and of itself
can deliver a satisfactory account of causation, because there are too many examples
and even more intuitions [3, 4].

To solve this problem, this paper starts out with an explicit focus on the first strat-
egy. It is striking that immediately after discussing the NESS intuition, Pearl diverges
into complicated technical notions like “sustenance” and “causal beams” and never
looks back, be it in his book or in the subsequent work on the HP definitions. Instead
I offer what is the most natural route down the first strategy, namely to look at formal-
izations of causal sufficiency (as opposed to logical sufficiency) and combine them
with two interpretations of necessity. Taken together this results in twelve distinct
formal definitions of actual causation.

These definitions are compared to each other and to the HP definitions, leading to
several interesting results. For one, it turns out that one of these twelve definitions
is equivalent to the most recent HP definition [7, 8]. Therefore this paper is the first
to show that one of the HP definitions succeeds in delivering Pearl’s promise. At the
same time, it also shows that the other HP definitions do not.

Next we turn to the second strategy. Given the diversity of intuitions about the
many examples presented in the literature, the best we can do is arrive at a com-
parative verdict: does one of the definitions here developed fare better than the HP
definitions? In order to avoid relying on my own intuitions, I present two criteria by

1This acronym was coined by Wright [22], but Pearl does not intend to formalize the specific manner
in which Wright understood it, nor do I in the current paper. I have formalized Wright’s interpretation
of the NESS definition elsewhere, in the process of developing another definition of causation [1]. The
latter definition is in many ways a simplification of the definition that I defend here. The precise relation
between these two definitions is the subject of future work.
2Mackie [13] formulates the same intuition differently, resulting in the equally famous INUS acronym.
See Wright [23] for a detailed discussion of the subtle differences between them.
3Just to name some of the most influential ones: Hall [6], Hitchcock [11, 12], Weslake [20] and
Woodward [21].
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which we can answer this question. First, I make use of Halpern and Pearl’s own
examples and rely almost exclusively on their intuitions, which for the most part align
with the consensus in the literature. (Example 6 forms a notable exception that was
suggested to me by a reviewer.) Here the answer is that one of the twelve definitions
does better than the HP definitions. Second, I present six examples that are very sim-
ilar to each other, and assess which definitions are able to handle them in a consistent
(and preferably also intuitive) manner. Here the answer is that the previous definition
again does better than the HP definitions.

Therefore I suggest adopting this definition of actual causation. Roughly, this
definition states that X = x causes Y = y iff there is a set W = w so that
(X = x,W = w) is sufficient for Y = y along a causal network N and there exists
some value x ′ so that (X = x′,W = w) is not sufficient for Y = y along any causal
subnetwork of N.

This paper is laid out as follows. The next section introduces structural equations
models, the formal causal models that are used to express all the definitions. Then I
state the three most recent HP definitions in Section 3. Section 4 presents six notions
of causal sufficiency and shows how they relate to each other. We then use these
six notions to formalize actual causation along the NESS intuition in Section 5, and
discuss several interesting results. After this theoretical groundwork, we start look-
ing for the best definition. Two definitions are discarded by showing that they have
certain unacceptable properties in Section 6. Finally, Section 7 compares the remain-
ing definitions to each other and to the HP definitions by considering examples from
Halpern & Pearl and a few additional ones.

2 Structural Equations Modeling

This section reviews the definition of causal models as they were introduced by Pearl
[16]. Much of the discussion and notation is taken fromHalpern [8] with little change.

Definition 1 A signature S is a tuple (U ,V,R), where U is a set of exogenous vari-
ables, V is a set of endogenous variables, andR a function that associates with every
variable Y ∈ U ∪ V a nonempty set R(Y ) of possible values for Y (i.e., the set of
values over which Y ranges). If X = (X1, . . . , Xn), R(X) denotes the crossproduct
R(X1) × · · · × R(Xn).

Exogenous variables represent factors whose causal origins are outside the scope
of the causal model, such as background conditions and noise. The values of the
endogenous variables, on the other hand, are causally determined by other variables
within the model (both endogenous and exogenous).

Definition 2 A causal model M is a pair (S,F), where S is a signature and F
defines a function that associates with each endogenous variable X a structural
equation FX giving the value of X in terms of the values of other endogenous and
exogenous variables. Formally, the equation FX maps R(U ∪ V − {X}) to R(X), so
FX determines the value of X, given the values of all the other variables in U ∪ V .
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Note that there are no functions associated with exogenous variables; their values
are determined outside the model. We call a setting u ∈ R(U) of values of exogenous
variables a context.

The value of X may depend on the values of only a few other variables. X depends
on Y in context u if there is some setting of the endogenous variables other than X

and Y such that if the exogenous variables have value u, then varying the value of
Y in that context results in a variation in the value of X; that is, there is a setting z
of the endogenous variables other than X and Y and values y and y′ of Y such that
FX(y, z,u) �= FX(y′, z,u). We then say that Y is a parent of X.

We extend this genealogical terminology in the usual manner, by taking the ances-
tor relation to be the transitive closure of the parent relation (i.e., Y is an ancestor of
X iff there exist variables so that Y is a parent of V1, V1 is a parent of V2, ..., and Vn

is a parent of X). The descendant relation is simply the reversal of the ancestor rela-
tion (i.e., X is a descendant of Y iff Y is an ancestor of X.) A path is a sequence of
variables in which each element is a child of the previous element.

In this paper we restrict attention to strongly recursive (or strongly acyclic) mod-
els, that is, models where there is a partial order � on variables such that if Y depends
on X, then X ≺ Y . In a strongly recursive model, given a context u, the values of
all the remaining variables are determined (we can just solve for the value of the
variables in the order given by �). We often write the equation for an endogenous
variable as X = f (Y); this denotes that the value of X depends only on the values
of the variables in Y, and the connection is given by the function f . For example, we
might have X = Y + 5.

An intervention has the form X ← x, where X is a set of endogenous variables.
Intuitively, this means that the values of the variables in X are set to the values x. The
structural equations define what happens in the presence of interventions. Setting the
value of some variables X to x in a causal model M = (S,F) results in a new causal
model, denoted MX←x, which is identical to M , except that F is replaced by FX←x:
for each variable Y /∈ X, FX←x

Y = FY (i.e., the equation for Y is unchanged), while
for each X′ in X, the equation FX′ for X′ is replaced by X′ = x′ (where x′ is the
value in x corresponding to X′).

Given a signature S = (U ,V,R), an atomic formula is a formula of the form
X = x, for X ∈ V and x ∈ R(X). A causal formula (over S) is one of the form
[Y1 ← y1, . . . , Yk ← yk]φ, where
– φ is a Boolean combination of atomic formulas,
– Y1, . . . , Yk are distinct variables in V , and
– yi ∈ R(Yi) for each 1 ≤ i ≤ k.

Such a formula is abbreviated as [Y ← y]φ. The special case where k = 0 is abbre-
viated as φ. Intuitively, [Y1 ← y1, . . . , Yk ← yk]φ says that φ would hold if Yi were
set to yi , for i = 1, . . . , k.

A causal formula ψ is true or false in a causal setting, which is a causal model
given a context. As usual, we write (M,u) |= ψ if the causal formula ψ is true in
the causal setting (M,u). The |= relation is defined inductively. (M,u) |= X = x if
the variable X has value x in the unique (since we are dealing with recursive models)
solution to the equations in M in context u (i.e., the unique vector of values that
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simultaneously satisfies all equations in M with the variables in U set to u). The
truth of conjunctions and negations is defined in the standard way. Finally, (M,u) |=
[Y ← y]φ if (MY←y, u) |= φ (i.e., the intervention Y ← y transforms M into a new
model MY←y, in which we assess the truth of φ).

3 HP Definitions

Now on to the HP definitions. As Pearl [16]’s initial definition is a precursor to the
HP definitions that gives less intuitive results and is far more complicated, I do not
discuss it. (It is safe to say that by now it has been unanimously rejected.) Two of
the HP definitions are developed by both Halpern and Pearl, whereas the third one
is solely due to Halpern. The relations between them are extensively discussed by
Halpern [8].

The general form of all three definitions is as follows (where φ is a Boolean
combination of atomic formulas):

Definition 3 X = x is an actual cause of φ in (M,u) if the following three
conditions hold:

AC1. (M,u) |= (X = x) ∧ φ.
AC2. See below.
AC3. X is minimal; there is no strict subset X′′ of X such that X′′ = x′′ satisfies

AC2, where x′′ is the restriction of x to the variables in X′′.

Questions of actual causation are posed relative to an actual context u, because
as we know from the previous section a context completely determines which events
actually took place. So AC1 represents the trivial requirement that the candidate
cause and effect are among the events which took place. AC3 is also fairly straight-
forward: we should not consider redundant elements to be parts of causes. The real
content of the definition lies with AC2.

Throughout the rest of the paper, settings of variables V with superscript ∗ (i.e.,
v∗) indicate that (M,u) |= (V = v∗). Settings of variables V with superscript ′ (i.e.,
v′) indicate that (M,u) |= (V �= v′) for each V ∈ V. Settings of variables without
any superscript can refer to any setting.

In line with the NESS intuition, we should expect AC2 to consist of formal variants
of these two conditions:4

AC2(b). There is a set W so that (X = x,W = w∗) is causally sufficient for φ.
AC2(a). X = x is necessary for the sufficiency of (X = x,W = w∗).

At first glance, the first two HP definitions seem to meet this expectation: they
consist of conditions AC2(a) and AC2(b), and Halpern refers to these as a “necessity
condition” and a “sufficiency condition” [7, p. 3]. Upon closer examination, however,

4I list them unalphabetically for consistency with the HP definitions.
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it is hard to see how either version of AC2(b) can sensibly be interpreted as capturing
causal sufficiency.

We start with Original HP [9]:

Definition 4 [Original HP]

AC2(a). There is a partition of V into two sets Z and W with X ⊆ Z and a setting
x′ and w of the variables in X and W, respectively, such that (M,u) |=
[X ← x′,W ← w]¬φ.

AC2(b). For all subsets Y of Z − X, we have (M,u) |= [X ← x,W ← w,Y ←
y∗]φ.

We call W = w a witness of X = x causing Y = y.

Note that one choice of Y for which the condition in AC2(b) is required to hold,
is Y = ∅. For that choice, AC2 states that the effect counterfactually depends on
the cause when holding fixed the witness W = w: (M,u) |= [X ← x,W ← w]φ
and (M,u) |= [X ← x′,W ← w]¬φ. Therefore AC2(a) can easily be interpeted as
expressing a – contrastive – necessity condition: there exist contrast values x′ such
that if those values were to obtain, then AC2(b) no longer holds.

The problem lies with interpreting AC2(b) as expressing causal sufficiency. The
main obstacle lies in the absence of the requirement that w = w∗, i.e., it is not
required that the supposedly sufficient set of events (X = x,W = w) actually took
place. Therefore we cannot simply view (X = x,W = w) itself as the causally
sufficient set we are looking for. Although it cannot be excluded that the conditions
imposed by invoking Z (and Y) somehow ensure the existence of some other set that
can be interpreted as a causally sufficient set, it is far from obvious that this is the
case. This is confirmed by the fact that Halpern & Pearl do not even offer an attempt
at giving an interpretation of AC2(b) as expressing causal sufficiency.

Matters get worse when we turn our attention to Updated HP [10]:

Definition 5 [Updated HP]

AC2(a). Identical to the previous one.
AC2(b). For all subsets V ofW and subsets Y of Z−X, we have (M,u) |= [X ←

x,V ← v,Y ← y∗]φ (where v is the restriction of w to V).

We see that AC2(b) has become even more complicated, and yet no argument
is given as to how this condition formalizes causal sufficiency, despite Halpern
explicitly claiming that this is what it aims to do.5 Instead, the updated version is jus-
tified on the basis of examples for which the previous version gave counterintuitive
answers.

5Concretely, when discussing sufficient causality we find the following [8, p. 53]:

The key intuition behind the definition of sufficient causality is that not only does X = x suffice
to bring about φ in the actual context (which is the intuition that AC2(b) [from Original HP] and
AC2(b) [from Updated HP] are trying to capture)...
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As a sidenote, Halpern and Pearl [10] also define strong causation by demanding
that the following condition holds in addition to the other two:

AC2(c). For all w ∈ R(W) we have that (M,u) |= [X ← x,W ← w]φ.
This definition has received almost no attention in the literature, because according

to Halpern & Pearl it is too strong.6 As we shall see, this is unfortunate, because
AC2(c) does adequately capture a variant of causal sufficiency.

Finally we haveModified HP, which is far simpler than the previous two [7].

Definition 6 [Modified HP]

AC2. There is a set W of variables in V − X, and a setting x′ of the variables in X
such that (M,u) |= [X ← x′,W ← w∗]¬φ.

The crucial difference here is thatModified HP does require the witness to consist
solely of events which actually took place, i.e., w = w∗. It is straightforward to show
that simply adding this requirement ensures that both versions of AC2(b) are satisfied
automatically, and therefore an explicit sufficiency condition is not required. Halpern
considers this definition to be an improvemement over the other two, and I agree
with him. However, Halpern arrives at this conclusion based on the many examples
in which it better agrees with intuition. As will become clear, another – and arguably
more compelling – justification is to be found in the fact that it is the only definition
of the three which has a natural interpretation as formalizing the NESS intuition with
which we started. To get there, we need to step away from the HP definitions and
start afresh.

4 Causal Sufficiency

4.1 Some Technical Preliminaries

1: Halpern [8] suggests treating “part of a cause” (i.e., any X = x that appears in
X = x) as synonymous with “cause” when talking aboutModified HP. I will follow
this suggestion throughout whenever discussing the judgment of Modified HP in
particular examples, unless stated otherwise. In stating theorems, however, the two
are kept apart.

2: The HP definitions allow the effect to be any propositional formula φ, whereas
the other definitions of causation will require effects to be of the form Y = y. A

6In retrospect, there is little basis for this judgment. They only discuss two examples in which strong
causation diverges from Updated HP. In the first of those (Ex. 3.2), it fails to call the lighting of each
of two matches (ML1 = 1 and ML2 = 1) to be causes of a forest fire, whereas Updated HP does not.
However, their conjunction (ML1 = 1,ML2 = 1) is a strong cause, and thus each of them is part of a
strong cause. As we will see, Halpern later suggests treating “part of a cause” as being synonymous to
“cause”, so the point would be moot. In the second example (Ex. 5.5), discussed as Example 4 later on,
S = 1 is not a strong cause although it is a cause according toUpdated HP. This is an example of trumping
causation, for which the majority opinion is that S = 1 is indeed not a cause. Moreover, Halpern’s later
definition Modified HP also does not consider it a cause.
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thorough discussion of complex effects is beyond the scope of this paper. I here limit
myself to two observations.

– Although the definitions of causation here developed can be generalized to allow
for conjunctive effects (i.e., effects of the form Y = y), it is not at all clear that
we should want to do so. The reason is that we can easily include variables into
the effect that have nothing whatsoever to do with the causes. Say we have a
variable Y with equation Y = U , where U is an exogenous variable, and we are
considering a context where U = 1. Then for any cause-effect pair X = x and φ,
we automatically get that X = x also causes φ ∧ Y = 1, which is not a sensible
result. Therefore we choose to simply exclude conjunctive effects.

– In the few examples in the literature where the HP definitions actually consider
an effect φ that is not of the form Y = y, φ takes on the form Y = y1 ∨
Y = y2, . . . , ∨Y = yn for some n. The definitions here developed can easily be
generalized to also allow for such effects. For reasons of simplicitly I choose not
to do so in general and limit the discussion of this generalization to one example
for which it is required.

3: The definitions of sufficiency below (and the definitions of actual causation
that follow in their wake) could be extended to also allow for exogenous variables as
members of a sufficient set, so that exogenous and endogenous variables are treated
alike. Since our goal is to make comparisons with the HP definitions, those would
also have to be extended. Concretely, the HP definitions restrict causes to being
endogenous variables, and they do not allow exogenous variables to be parts of a
“witness” (the set W above). For example, if we have Y = X ∨ U where U ∈ U
and we consider a context where U = 1 and X = 1, the HP definitions are unable
to identify X = 1 as a cause because they disallow considering what happens when
U = 0. The simplest way to sidestep this issue is to restrict ourselves to models
where exogenous variables only appear in equations of the form V = U . In that
manner, all influence of the exogenous variables can be overriden by interventions,
reducing their role to simply providing us with the actual values of all variables. For
any model which does not conform to this restriction, we can easily construct a very
similar model that does: simply replace any exogenous variable U which appears in
some equation that is not of this form with a new endogenous variable VU , and add
the equation VU = U . For the previous example this results in the model with equa-
tions Y = X ∨ VU , VU = U . (Note that now the HP definitions do consider X = 1
to be a cause of Y = 1.).

4.2 Six Variants of Sufficiency

Throughout the rest of the paper, we take X and Y to be non-identical subsets of the
endogenous variables V that appear in a causal model M .7

7We take them to be non-identical to exclude calling a setting X = x causally sufficient for itself, and a
fortiori to exclude calling it a cause of itself. A reviewer pointed out to me that Halpern and Pearl [10] do
not rule out self-causation, although they did consider doing so.
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Informally, to say that some setting X = x is sufficient for another setting Y = y,
is to say that the latter follows from the former.8 To formalize this requires making
explicit what it means for one setting to “follow” from another. In the context of
causal sufficiency, an obvious minimal demand is that this meaning captures the
causal directionality. In the framework of causal models this comes down to treating
X = x as an intervention and Y = y as a consequence of that intervention: if we set
X to the values x, then Y takes on the values y. At least this much is clear.

Yet by saying this, we have said nothing at all about the other endogenous variables
and their values, nor about the contexts in which we are evaluating the intervention.
The difficulty lies in deciding what conditions we choose to impose on the other
variables, both endogenous and exogenous. I consider six possible ways in which this
decision can be made that are fairly natural, but this is by no means an exhaustive list.

We start with the strongest conditions possible: in all contexts, if we set X to
the values x, then Y takes on the values y, independent of the values of all other
variables.9

Definition 7 We say that X = x is directly sufficient for Y = y in M if for all c ∈
R(V − (X ∪ Y)) and all u ∈ R(U) we have that (M,u) |= [X ← x,C ← c]Y = y.

The strength of this definition is also its weakness: by putting such strong demands
on the sufficient set, many interesting sets are excluded. This restrictiveness becomes
apparent later on when we add a necessity condition (Proposition 5): only parents
can ever be part of a minimal directly sufficient set. A trivial example illustrates this
point. Say the equation for Y is Y = A, the equation for A is A = X, and we are
looking at a context in which X = 1.10 Then X = 1 is not directly sufficient for
Y = 1, because intervening on A overrides any influence of X on Y . Still, there is
clearly a sense in which X = 1 is causally sufficient for Y = 1. In particular, X = 1
is directly sufficient for (A = 1, Y = 1).

Generalizing this intuition provides us with the second form of sufficiency: there
is some setting N = n that includes Y = y, so that in all contexts, if we set X to
the values x, then N takes on the values n, independent of the values of all other
variables. This can be formulated more succinctly as: X = x is directly sufficient for
some set to which Y = y belongs.

Definition 8 We say that X = x is strongly sufficient for Y = y in M if there exists
a N = n so that Y ⊆ N, y is the restriction of n to Y, and X = x is directly sufficient
for N = n.

8Note that in this paper we are interested in the causal sufficiency of settings of variables for other settings
of variables. This is quite distinct from how the term “causal sufficiency” is sometimes used in the causal
modelling literature, namely as a property of a set of variables in a causal graph.
9Weslake [20] also offers this definition of causal sufficiency to develop a definition of actual causation.
He mistakenly claims that Halpern & Pearl call this condition strong causation. As we have seen, strong
causation does not require C to contain all other variables.
10In all examples the variables are binary unless indicated otherwise. A binary variable is a variable that
has range {0, 1}.
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Observe that another intuitive way of viewing X = 1 as being causally sufficient
for Y = 1 in the simple example we just discussed, is to note that X = 1 is directly
sufficient for A = 1 and A = 1 is directly sufficient for Y = 1. This intuition can
also be generalized to define a form of sufficiency. Concretely, we can define strong
sufficiency along a network as the transitive closure of direct sufficiency.11

Definition 9 We say that X = x is strongly sufficient for Y = y in M along a
network N if there are (possibly overlapping) sets Ni such that N = Y ∪i∈{1,...,k} Ni
and there exist values ni ∈ R(Ni) for each i such that X = x is directly sufficient for
N1 = n1, N1 = n1 is directly sufficient for N2 = n2, ..., and Nk = nk is directly
sufficient for Y = y.

The following result shows that both forms of strong sufficiency are merely dif-
ferent ways of expressing the same notion of sufficiency (and hence the term is
appropriately chosen). Taking in mind the earlier observation (to appear later as
Proposition 5) that direct sufficiency combined with necessity is a relation between
parents and children, we can safely think of a network as consisting of variables
that lie on some path between X and Y. Doing so will make it easier to apply the
definitions of causation to examples.

Proposition 1 X = x is strongly sufficient for Y = y in M along a network N iff
X = x is strongly sufficient for Y = y in M .

(Proofs of all Theorems are to be found in the Appendices A, B, C and D.)
Another obvious way to weaken the conditions on the values of the endogenous

variables compared to direct sufficiency is to only consider the setting in which we
leave the other variables alone, giving: in all contexts, if we set X to the values x and
do not intervene on any other variable, then Y takes on the values y.12

Definition 10 We say that X = x is weakly sufficient for Y = y in M if for all
u ∈ R(U) we have that (M,u) |= [X ← x]Y = y.

The following straightforward result shows the relative strengths of the above three
notions of sufficiency.

Proposition 2 If X = x is directly sufficient for Y = y then X = x is strongly
sufficient for Y = y, and if X = x is strongly sufficient for Y = y then X = x is
weakly sufficient for Y = y.

11As with the definition of direct sufficiency, this one also appears in Weslake [20]’s construction of actual
causation, with the added requirement that N is minimal. This demand becomes redundant once we add
our necessity condition. The other conditions Weslake invokes are quite complicated and do not have a
counterpart in our story, which is why his definition also fails at the first strategy.
12This definition appears as just one condition in Halpern [8]’s definition of sufficient causality. One of
the other conditions is in fact actual causation.

1350 S. Beckers



So far we have considered three definitions that differ only with regards to the
conditions they impose on the values of the endogenous variables: they all agreed on
requiring their respective conditions to hold in all contexts. Yet questions of actual
causation are posed relative to an actual context u, and thus it is only natural that we
should consider doing the same for questions of causal sufficiency. This adds three
more definitions of sufficiency, which are simply the result of replacing the universal
quantifier over contexts with a particular context that is assumed to be given.

Definition 11 We say that X = x is actually directly sufficient for Y = y in (M,u)

if for all c ∈ R(V − (X ∪ Y)) we have that (M,u) |= [X ← x,C ← c]Y = y.

Definition 12 We say that X = x is actually strongly sufficient for Y = y in (M,u)

if there existN = n so thatY ⊆ N, y is the restriction of n toY, andX = x is actually
directly sufficient for N = n.

Definition 13 We say that X = x is actually weakly sufficient for Y = y in (M,u)

if (M,u) |= [X ← x]Y = y.

Obviously the counterpart of Proposition 2 holds as well for these notions of actual
sufficiency.

4.3 General Form of Causal Sufficiency

We can formalize and generalize the intuitions behind the definitions in the preceding
section by showing that all six definitions of sufficiency can be interpreted as simply
putting different constraints on the parameters that occur in the following general
definition of sufficiency. (We only explicitly discuss the three definitions of “non-
actual” sufficiency, but the same analysis trivially applies to the three definitions of
actual sufficiency.)

Definition 14 [General Definition of Sufficiency] We say that X = x is sufficient
for Y = y in M if there exist sets C ⊆ V − (X ∪ Y), N ⊆ V − (X ∪ C) with Y ⊆ N,
and a setting n ∈ R(N) where the restriction of n toY is y, such that for all c ∈ R(C)

and for all u ∈ R(U) we have that (M,u) |= [X ← x,C ← c]N = n.
We say that X = x is sufficient for Y = y in M along N independent of C.

This definition is more complicated than Definitions 7, 8, and 10. Its use lies in
the fact that it allows us to see exactly how the three definitions relate to each other,
and how one can construct other definitions of sufficiency, by invoking the following
trivial result.

Proposition 3 Definitions 7, 8, and 10, are equivalent to Definition 14 when making
respectively the following choices for N and C:

Weak Sufficiency. Choose both C and N to be minimal, i.e., C = ∅, N = Y.
Strong Sufficiency. Choose N to be maximal given C, i.e., N = V − (X ∪ C).
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Direct Sufficiency. ChooseC to be maximal, i.e.,C = V−(X∪Y) and thusN = Y.

Proposition 3 could inspire even more variants of sufficiency. In fact, we have
already come across the most obvious one: AC2(c). It is easy to see that it consists of
choosing N to be minimal given C, i.e., N = Y, meaning it sits in between Weak and
Strong Sufficiency. The condition also appears as a sufficiency condition in Pearl’s
notion of sustenance, which is the first step he takes towards formalizing the NESS
intuition [17]. Unfortunately it is also the last step, because the subsequent notions he
introduces are far more complicated and bear no resemblance to NESS. The added
complexity is introduced precisely because taken by itself sustenance fails to provide
a sensible definition of causation, which is why I leave the exploration of this and
other possible variants of sufficiency for another occasion.

5 Defining Causation Using Sufficiency

We are finally ready to take up the main challenge: defining actual causation as the
formal expression of the NESS intuition. In order to do so, several questions need to
be answered:

– Should we use actual sufficiency or not?
– Which of the three definitions of (actual) causal sufficiency should we use?
– Does necessity mean that there exist contrast values of X so that the set would

not be sufficient if those values obtained, or does it mean that the set is no longer
sufficient when we remove the subset X?

I have introduced six definitions of causal sufficiency in the previous section. For
each definition, we can define causation using either of the two interpretations of
necessity, giving twelve definitions of actual causation altogether. However, I will
show that several of these are equivalent to each other, and one will be impossible to
satisfy, leaving us with six definitions in the end. One of those will beModified HP.

5.1 A Family of Definitions

As with the HP definitions, Definition 3 gives the general form of all definitions,
except that φ is restricted to Y = y. (This restriction is assumed whenever com-
parisons are made with the HP definitions.) As before, the only difference lies with
the content of AC2. Using the first interpretation of necessity, which we shall call
contrastive necessity, the general form of AC2 is as follows:

Definition 15 [General Definition of Causation] There exist sets W,N such that

AC2(ac). There exist values x′ such that for all S ⊆ N, (X = x′,W = w∗) is not
sufficient for Y = y along S.

AC2(b). (X = x,W = w∗) is sufficient for Y = y along N.

We call W a witness of X = x causing Y = y.

1352 S. Beckers



By replacing sufficiency in the General Definition of Causation with any of
the six definitions of sufficiency from Section 4, we obtain six specific definitions
of actual causation.13 AC2(b) simply expresses causal sufficiency, whatever form it
may take. AC2(ac) offers a somewhat nuanced expression of necessity because it also
focusses on subsets of N. (Note that this nuance matters only for Strong Sufficiency,
since for Weak and Direct Sufficiency N = {Y } anyway.) The reason is that our
interest lies with the sufficiency for Y = y, and the network N is merely a means to
that end. If X = x′ accomplishes the same end using less means, then X = x was not
necessary for achieving it.

Under the second interpretation of necessity, which we shall call minimal neces-
sity, AC2(ac) is replaced with:

AC2(am). For all S ⊆ N,W = w∗ is not sufficient for Y = y along S.

Both interpretations of necessity are prima facie plausible. The contrastive inter-
pretation is explicitly counterfactual in nature, whereas the minimal interpretation is
more neutral. Our analysis will settle which one of them is to be preferred.

Filling in each of the six definitions of causal sufficiency into both versions of
theGeneral Definition of Causation gives twelve specific definitions of actual cau-
sation. I refer to each of these as Def x for x ∈ {1, . . . , 12} along the following
convention:

– Def 1 Contrastive actual weak sufficiency
– Def 2 Contrastive actual strong sufficiency
– Def 3 Contrastive actual direct sufficiency
– Def 4 Contrastive weak sufficiency
– Def 5 Contrastive strong sufficiency
– Def 6 Contrastive direct sufficiency
– Def 7Minimal actual weak sufficiency
– Def 8Minimal actual strong sufficiency
– Def 9Minimal actual direct sufficiency
– Def 10Minimal weak sufficiency
– Def 11Minimal strong sufficiency
– Def 12Minimal direct sufficiency

So to be clear, each Def x is constructed by taking the respective definition of
sufficiency (i.e., Definitions 7, 8, 10, 11, 12, or 13), filling that into the General
Definition of Causation where AC2(a) takes on AC2(ac) or AC2(am) depending on
whether x < 7 or not, and finally, filling those conditions AC2 into Definition 3. I
illustrate the result of this construction for Def 2.

Definition 16 [Def 2] X = x is an actual cause of Y = y according to Def 2 in
(M,u) if the following three conditions hold:

13Definition 15 can be made even more general by also incorporating C from Definition 14. Since we are
only considering notions of sufficiency for which C is determined entirely by the other sets, there is no
need to do so for our purposes. But it is important to keep this additional generality in mind if one wants
to use alternative definitions of sufficiency.
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AC1. (M,u) |= (X = x) ∧ Y = y.
AC2(ac). There exist sets W, N with Y ∈ N, and values x′, such that for all S ⊆ N

with Y ∈ S, and for all s ∈ R(S) such that y ∈ s, there exists a t ∈
R(V−(X∪W∪S)) so that (M,u) |= [X ← x′,W ← w∗,T ← t]S �= s.

AC2(b). For all c ∈ R(V − (X∪W∪N)) we have that (M,u) |= [X ← x,W ←
w∗,C ← c]N = n∗.

AC3. X is minimal.

Admittedly, Def 2 looks even more complicated than Updated HP. Further on
I provide some results that allow us in many cases to use simpler definitions as
stand-ins for Def 2. More importantly, although the notation of Definition 16 is com-
plicated, its meaning can be spelled out intuitively by stating thatX = x causes Y = y

iff X = x is a Minimal Contrastively Necessary Subset of a Strongly Sufficient Set
for Y = y (or MCNS4).14

5.2 Analysis

Let us now turn to investigating the relations between these definitions. (Knowing
these relations before getting into the discussion of examples makes life a lot easier.)
A first remark is that Def 7 is impossible to satisfy, as it requires that both (M,u) |=
[X ← x∗,W ← w∗]Y = y and (M,u) �|= [W ← w∗]Y = y hold, implying that
(M,u) |= Y = y ∧ Y �= y.

A second remark is that Def 3 is equivalent to a condition that appears in Pearl’s
first definition of actual causation [15].15

Ignoring Def 7, we are still left with eleven candidate definitions of actual cau-
sation (fourteen candidates if we count the three HP definitions), whereas we would
like to settle on just one. The rest of the paper is concerned with selecting the best
definition out of the lot. As a first step, we can reduce the number of definitions by
six.

Theorem 1 The following are all equivalences among the twelve definitions and the
three HP definitions:

– Modified HP iff Def 1
– Def 2 iff Def 5
– Def 8 iff Def 11
– Def 3 iff Def 6 iff Def 9 iff Def 12

Theorem 1 offers our first interesting result: it shows that Modified HP succeeds
in formalizing the NESS intuition, whereas the other two HP definitions do not. From
now on I will ignore the definitions appearing on the right-hand side in Theorem 1.

14Strictly speaking it should say “Actually Strongly Sufficient”, but that makes for a less elegant acronym.
I am cheating a bit by anticipating Theorem 1.
15It re-appears in his second definition of actual causation in the notion of a causal beam, but without the
necessity condition [17, p. 318]. To see the equivalence, one needs to invoke Proposition 5.
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The following is a helpful result for applying some of the definitions going forward.
(As is well known, the same result holds for Original HP [8].)

Proposition 4 If X = x causes Y = y in (M,u) according to a definition that uses
minimal necessity, then X is a singleton.

The following result offers important insights into the relations between the
remaining definitions.

Theorem 2 The only implications – involving either causes or parts of causes –
between the remaining five definitions (Def 2, Def 3, Def 4, Def 8, and Def 10) and
the three HP definitions are the following ones (and their immediate consequences,
of course):

– If part of Modified HP then Updated HP;16

– If part of Updated HP then Original HP;
– If Def 3 then Def 2;
– If part of Def 2 then Def 8;
– If Def 3 then Original HP;
– If Def 10 then Def 4.

6 Excluding Def 3 and Def 10

Two definitions can be excluded quickly. The following result shows whyDef 3 is not
a sensible candidate as a general definition of causation, since causation is obviously
not restricted to parent-children pairs.

Proposition 5 If X = x causes Y = y in (M,u) according to Def 3, then X is a
singleton, and X is a parent of Y .

Although we can dismiss Def 3 as a general definition of causation, it is still a
useful stand-in for – the arguably more complicated – Def 2 and Def 8 in case X

is a parent of Y and X is not an ancestor of Y along any path that is longer than a
single edge (which in fact covers a surprisingly large number of cases discussed in
the literature). In such cases we say that X is only a parent of Y .

Proposition 6 If X is only a parent of Y , then Def 2, Def 3, and Def 8 are all
equivalent for causes X = x.

A cornerstone of the counterfactual approach to causation is that counterfactual
dependence is sufficient for causation. More formally, there is widespread consensus
that causation should satisfy the following principle:17

16This is shorthand for: If X = x is part of a cause of Y = y according to the Modified HP definition
then it is a cause of Y = y according to the Updated HP definition.
17As does Halpern, I here restrict myself to counterfactual dependence on a single conjunct [8].
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Principle 1 (Dependence) Say (M,u) |= X = x ∧ Y = y. If there exists a value x ′
such that (M,u) |= [X ← x′]Y �= y then X = x causes Y = y in (M,u).

Accepting this principle means that Def 10 is excluded as well.

Proposition 7 Out of all definitions we have considered, Def 10 and Def 3 are the
only ones which do not satisfy Dependence.

That leaves us with Def 2, Def 4, and Def 8 as possible alternatives to the HP
definitions.

7 Def 2, Def 4, and Def 8, vs the HP Definitions

We have shown that all twelve definitions we developed (including Modified HP)
are instantiations of the General Definition of Causation (Def. 15), and thereby
they improve upon Original HP and Updated HP as far as the first strategy goes.
We now show that Def 2 also improves upon all three HP definitions as far as the
second strategy goes, whereas Def 4 and Def 8 do not. In order to remain as neutral
as possible, we go over Halpern & Pearl’s own examples, compare the verdicts of our
definitions to theirs, and stick as close as possible to their intuitions.

7.1 Comparison to Updated HP

The Updated HP definition is by far the most well-known. It was developed as
an improvement of Original HP, which sometimes gives unreasonable answers.
Halpern and Pearl [10] offer many examples to illustrate how it works and how it
successfully deals with paradigm cases of causation.

Their first example is one of those few cases – recall the beginning of Section 4 – in
which the effect is of the form Y = y1 ∨ Y = y2, and therefore allows us to illustrate
how we can generalize the General Definition of Causation to such effects. It is
also an example for whichDef 8 gives the wrong answer, but the subsequent example
is far simpler and more convincing in this respect.

Example 1 “Suppose that there was a heavy rain in April and electrical storms in the
following twomonths; and in June the lightning took hold. If it hadn’t been for the hea-
vy rain in April, the forest would have caught fire in May.” [10, p. 15] I agree with
Halpern andPearl’s judgment that itwould be very counterintuitive to say that theApril
rain caused the forest fire, since all it did was delay the fire. As they indicate, it is nev-
ertheless perfectly sensible to say that theApril rain caused the forest fire in June, as op-
posed toMay. In order to capture this distinction,weneed to invoke a disjunctive effect.

Let F represent there being a fire or not, with three possible values: 0 (no fire), 1
(fire in May), or 2 (fire in June). ES is a four-valued variable that captures whether
there are electric storms: (0, 0) (no electric storms in either May or June), (1, 0)
(electric storms in May but not in June), (0, 1) (storms in June but not May), and
(1, 1) (storms in both May and June). Lastly, AS is a binary variable expressing
whether or not there was April rain.
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The equation for F is then given by: F = 2 if (AS = 1 ∧ ES = (1, 1)) ∨ ES =
(0, 1), F = 1 if AS = 0∧(ES = (1, 1)∨ES = (1, 0)), and F = 0 otherwise. Given
that F = 2 counterfactually depends on AS = 1, all definitions we are considering
agree that AS = 1 causes F = 2. The question is whether AS = 1 also caused there
to be a fire, i.e., whether it caused F = 1 ∨ F = 2.

We can easily generalize sufficiency to such disjunctions: X = x is sufficient for
Y = y ∨Y = y′ iff X = x is sufficient for Y = y or X = x is sufficient for Y = y′.18
When integrated into our General Definition of Causation, this results in splitting
up AC2(a) so that there is one instance for each disjunct. AC2(b) need not be split
up, since it can only ever be satisfied for the actual value of Y .19

Let us apply this idea to our example. To satisfy AC2(b), we have to add ES to
the witness: (AS = 1, ES = (1, 1)) is directly sufficient for F = 2 and AS = 1 is
not. (We can focus on direct sufficiency because AS is only a parent of F . We cannot
invoke Proposition 6 though, since that requires an effect Y = y.) We then see that
one of the two conditions that now make up AC2(a) is not satisfied for Def 2 and
Def 4, because (AS = 0, ES = (1, 1)) is directly sufficient for F = 1. Therefore
Def 2 and Def 4 agree with the HP definitions that the April rain did not cause the
forest fire. But Def 8 does not reach this verdict, because ES = (1, 1) is not directly
sufficient for either F = 1, nor is it for F = 2. This means AC2(a) is fullfilled for
Def 8, which leads to a mistaken conclusion.

Although one counterexample need not disqualify a definition, the following
example is indicative of a deeper problem with Def 8: whenever X = x strongly
suffices for Y = y, it is automatically a cause according to Def 8, since ∅ is never
strongly sufficient for Y = y. The following example is but one of many paradigm
cases in the literature for which this property leads to a counterintuitive verdict.20

Therefore Def 8 is also excluded as a definition of causation.

18A reviewer pointed out the following worry with this proposal. Imagine there are only two contexts, u
and u′, and we have that X = x is sufficient for Y = y in (M,u) and X = x is sufficient for Y = y′ in
(M,u′). If we then move to non-actual sufficiency, we have to quantify over all contexts, and thus we get
that X = x is not sufficient for Y = y in M and nor is X = x sufficient for Y = y′ in M . This means that
under the current proposal it would not follow that X = x is sufficient for Y = y ∨ Y = y′ in M , which
may seem counterintuitive to some. For the current purposes we can dismiss this worry as it is irrelevant
for the following two reasons. First, Lemmas 1 and 2 together with the subsequent discussion in the proof
of Theorem 1 show that as far as applying the General Definition of Causation is concerned, actual
and non-actual sufficiency are equivalent for both direct and strong sufficiency. Therefore the imagined
situation cannot arise for any candidate cause X = x and effect Y = y. Second, as I will argue in favor of
adopting a definition that uses strong sufficiency, I am content with setting aside the remaining worry one
might have with regards to weak sufficiency.
19Note that this means generalizing to disjunctions across different variables – i.e., something like Y =
y ∨ Z = z – is more complicated.
20McDermott [14] offers an almost identical example involving a dog biting a terrorist. Another famous
case is that involving a boulder rolling towards a hiker [11]. All of these examples are counterexamples to
the transitivity of causation. The failure of transitivity has become broadly accepted by now [2]. Despite
what Def 8’s behavior in these examples might suggest, it is also not transitive. A simple counterexample
consists of equations Z = Y ∨ W , and Y = X ∧ W . If X = W = 1, Def 8 considers X = 1 a cause of
Y = 1, Y = 1 a cause of Z = 1, yet it does not consider X = 1 a cause of Z = 1.
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Example 2 “The engineer is standing by a switch in the railroad tracks. A train
approaches in the distance. She flips the switch, so that the train travels down the
right-hand track, instead of the left. Since the tracks reconverge up ahead, the train
arrives at its destination all the same...

Again, our causal model gets this right. Suppose we have three random variables:

– F for “flip”, with values 0 (the engineer doesn’t flip the switch) and 1 (she does);
– T for “track”, with values 0 (the train goes on the left-hand track) and 1 (it goes

on the right-hand track); and
– A for “arrival”, with values 0 (the train does not arrive at the point of reconver-

gence) and 1 (it does).

” [10, p. 26]
First observe that as described, this causal model makes little sense: the equation

for A is given by A = T ∨ ¬T , which can be rewritten as A = 1. This can be
fixed by extending the range of T with a value 2, representing the train not going
down any track (because it breaks down, for example). Then the equations become
A = (T �= 2) and T = F . The context is such that F = 1.

F = 1 is both weakly sufficient for A = 1 and strongly sufficient for A = 1 along
{T }, but so is F = 0. Therefore Def 2 and Def 4 agree with Updated HP (and with
intuition) that flipping the switch is not a cause of the train’s arrival. Def 8 fails to
reach this verdict, because ∅ is not strongly sufficient for A = 1.

Def 4 suffers from an even bigger defect than Def 8: it fails to distinguish pre-
empted causes from preempting causes. Since preemption cases are the bread and
butter of the literature on actual causation, this means that Def 4 is immediately
disqualified. The following is a famous example of late preemption discussed by
Halpern and Pearl [10] (and originally by Hall [5]).

Example 3 Suzy and Billy both throw a rock at a bottle. Suzy’s rock gets there
first, shattering the bottle. However Billy’s throw was also accurate, and would have
shattered the bottle had it not been preempted by Suzy’s throw. Halpern & Pearl
[10] use the following variables for this example, which capture the fact that Billy’s
throw was preempted by Suzy’s rock hitting the bottle: BS for the bottle shattering,
BH , SH for Billy’s (resp. Suzy’s) rock hitting the bottle, and two more variables
(BT , ST ) for either of them throwing their rock. The equations are then as follows:
BS = BH ∨ SH , SH = ST , BH = BT ∧ ¬SH . None of the definitions has any
problem arriving at the obvious result that Suzy’s throw (ST = 1) causes the bottle
to shatter (BS = 1). However, Def 4 is the only definition under consideration that
mistakenly also judges Billy’s throw to be a cause of the bottle’s shattering: in all
contexts BT = 1 is weakly sufficient for BS = 1, whereas BT = 0 is not weakly
sufficient for BS = 1 in the context where ST = 0.

This leaves us with Def 2 as the last potential alternative to the HP definitions.
Going through the many remaining examples, there is only one in which Def 2 dis-
agrees with Updated HP. I leave it to the reader to verify this claim, and restrict the
discussion to that single example.
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Example 4 Major (M) and sergeant (S) stand before corporal, and both shout
‘Charge!’ (M = 1, S = 1). The corporal charges (C = 1). Orders from higher-
ranking soldiers trump those of lower rank, so if the major had shouted ‘Halt’
(M = 0) the corporal would not have charged. If the major remains quiet (M = −1),
the corporal listens to the sergeant.21 The equation for C is thus: C = M if M �= −1
and C = S otherwise. The majority intuition is that the sergeant did not cause the
corporal to charge, because his order was trumped by that of the major.22

Def 2 agrees, as it does not consider S = 1 a cause of C = 1. The reason is that
M = 1 is directly sufficient by itself, and yet S = 1 needs M = 1 as a witness to
form a sufficient set. S = 1 is a cause of C = 1 according to both Original HP and
Updated HP. Halpern & Pearl do not consider this to be problematic, but they do
go through the trouble of showing how Original HP and Updated HP change their
verdict if one adds extra variables to the model. Moreover,Modified HP also agrees
with Def 2 here. Given Halpern’s later preference for Modified HP, it is fair to say
that Def 2 does at least as good as Updated HP on this example.

7.2 Comparison to Modified HP

Dissatisfied with Updated HP due to the many counterexamples that were presented
in the literature, Halpern [7] develops Modified HP. First of all, despite Theo-
rem 2, there do exist interesting connections between the three definitions we have
considered and Modified HP.

Proposition 8 If Modified HP with X a singleton, then Def 2, Def 4, and Def 8.

Halpern [7] goes over several counterexamples to Updated HP and shows that
Modified HP offers sensible verdicts. Taking into account Halpern’s suggestion that
“part of cause” is synonymous with “cause” for Modified HP, there are in fact only
three examples in which Modified HP disagrees with Updated HP (Examples 3.5,
3.8, and 3.11).23 In all three of those cases, Def 2 sides withModified HP.

There is only one example in which Def 2 disagrees with Modified HP.24 Cru-
cially, it is an example for which Halpern agrees thatModified HP reaches the wrong
verdict.

Example 5 A ranch has five individuals: a1, . . . , a5. They have to vote on two possi-
ble outcomes: staying at the campfire (O = 0) or going on a round-up (O = 1). Let

21This formulation is due to Weslake [20], but the example was first discussed by Schaffer [19] (who
attributes it to van Fraassen).
22See Weslake [20] for a discussion.
23When discussing Example 3.8 again in Halpern [8], he mistakenly claims thatModified HP agrees with
Updated HP when treating parts of causes as causes. In response, Halpern has suggested a small variation
on the example in which Modified HP indeed does agree with Updated HP (personal communication).
For that variation, Def 2 also agrees with the HP definitions.
24Halpern [8] discusses far more cases, but none of them reveal any further disagreements between these
definitions.
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Ai be the random variable denoting ai’s vote, so Ai = j if ai votes for outcome j .25

There is a complicated rule for deciding on the outcome. If a1 and a2 agree (i.e., if
A1 = A2), then that is the outcome. If a2, . . . , a5 agree, and a1 votes differently, then
the outcome is given by a1’s vote (i.e., O = A1). Otherwise, majority rules. In the
actual situation, A1 = A2 = 1 and A3 = A4 = A5 = 0, so by the first mechanism,
O = 1.26

Halpern states, and I agree, that intuitively one should expect only A1 = 1 and
A2 = 1 to be causes of O = 1. After all, a3, . . . , a5 voted against O = 1.Def 2 gives
that result, whereasModified HP considers every vote to be a cause. Halpern argues
for adding more variables to the model in order to get the right outcome, but it speaks
in favor of Def 2 that it is able to give the right answer with just these variables.

We conclude that judged by the second strategy and Halpern & Pearl’s own exam-
ples,Def 2 does better thanUpdated HP and at least as good asModified HP. Lastly
we consider a very simple example that was offered as a counterexample toModified
HP by Rosenberg and Glymour [18].27

Example 6 We have equations Y = X ∨ D and X = D, and we consider a context
such that D = 1. This looks very much like a standard case of overdetermination in
which X = 1 and D = 1 are both overdetermining causes. That is also the verdict
of all of the definitions considered in this paper, except for Modified HP: it does
not consider X = 1 a cause of Y = 1. The reason for this is that Y = 1 depends
counterfactually on D = 1 by itself, whereas it does not depend on X = 1 by itself
and nor does it when we take D = 1 as a witness. Rosenberg and Glymour [18] state
that Halpern endorses this conclusion, but offer the following story to motivate why
they consider that an untenable position.

“An obedient gang is ordered by its leader to join him in murdering someone, and
does so, all of them shooting the victim at the same time, or all of them together
pushing the plunger connected to a bomb. The action of any one of the gang would
suffice for the victim’s death. If responsibility implies causality, whom among them
is responsible? Were you among the jury, whom would you convict? What ought the
Hague Court to do in cases of subordinates sure to obey orders? Halpern’s theory says
the gang leader and only the gang leader is a cause of the victim’s death. This is a
morally intolerable result; absent a plausible general principle severing responsibility
from causation, any theory that yields such a result should be rejected.”

Even if one disagrees with this judgment, the next section offers further motivation
for preferring Def 2 over Modified HP.

25A reviewer correctly pointed out that due to the complexity of the voting rule, it can be ambiguous to
speak of voting for or against outcome j , because there exist contexts in which a voter can actually flip
the outcome from O = 1 to O = 0 by changing their vote from 0 to 1. If we assume that the voters are
unaware of the precise voting rule, we can ignore this complication.
26This is the formulation of the example found in Halpern [8, p. 109], but the example was first presented
by Glymour et al. [4].
27I thank a reviewer for pointing out this example.
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7.3 Def 2 vs the Others

Finally I will argue that Def 2 does better than all of the other definitions on a few
more examples according to two metrics: it offers verdicts that are both intuitively
plausible and consistent across minor changes of the examples. Before doing so, I
present an example that illustrates a special property of Def 2.

Recall from Section 3 that it is a necessary condition for all three HP definitions
that there exists some [W ← w] such that Y = y counterfactually depends on
X = x under that intervention. The same is true for the most well-known defini-
tions out there that have been inspired by the HP definitions (see Weslake [20] for an
overview), as well as for Def 3, Def 4, and Def 10. Let us call definitions with this
property strongly counterfactual. Although Def 2 clearly also relies on counterfactu-
als, and thus falls within the counterfactual approach to causation, it is not strongly
counterfactual, as the following example shows.28

Example 7 The equation for a binary variable Y is such that Y = 1 iff N �= 0, and
the range for N is {0, 1, 2, 3}. The equation for N is as follows: N = 0 if A = 0,
N = 1 if (A = 1 ∧ X = 1), N = 2 if (A = 1 ∧ X = 0 ∧ W = 1), and N = 3
if (A = 1 ∧ X = 0 ∧ W = 0). In a context where A = W = X = 1, we get that
X = 1 causes Y = 1 according to Def 2. Yet there is no intervention such that Y = 1
depends on X = 1 under that intervention (and thus none of the other definitions
would consider X = 1 a cause of Y = 1). In this case, both answers seem plausible.
Def 2 reaches its verdict because of the asymmetry between (A = 1, X = 1) and
(A = 1, X = 0): only the former is by itself causally sufficient for a network that
results in Y = 1, whereas the latter also needs the assistance of W = 1 or W = 0.

Now we consider six examples which are simple variations on the same theme,
because they all share the following equation for Y : Y = (X∧D)∨A. Moreover, they
all share a context such that X = 1 and A = 1. The only difference between them
lies with the value of D (0 or 1) and with the relation between A and D. (Concretely,
there could be no relation, or it can be given by A = D, A = ¬D, D = A, and
D = ¬A.) In all examples, all definitions agree that A = 1 is a cause of Y = 1. The
disagreement arises over whether X = 1 should be considered a cause as well.

Intuitively, I would find it unacceptable to consider X = 1 a cause whenever
D = 0, regardless of the relation between A and D. The disjunct in which X appears
is false, and therefore it played no positive part whatsoever in causing Y = 1. Perhaps
others are more tolerant. But even if that is the case, one should expect one’s verdicts
to exhibit some consistency. As we will see, Def 2 and Original HP are the only
definitions which can meet this demand.

The situation is simplest for Original HP: it considers X = 1 a cause of Y = 1
no matter what. To see why, take as a witness (D = 1, A = 0). Holding fixed that
witness, Y = 1 counterfactually depends on X = 1. Since Z = {X}, the former
is equivalent to AC2 for Original HP. So we gain consistency, but at the price of

28It is not so clear thatDef 8 also relies on counterfactuals, since it does not explicitly invoke counterfactual
values of the candidate cause. Exploring this topic further lies beyond the scope of this paper.
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extreme tolerance. In fact, Halpern and Pearl use precisely this example to argue
against Original HP and in favor of Updated HP [10]:

Example 8 “Suppose that a prisoner dies either ifX loadsD’s gun andD shoots, or if
A loads and shoots his gun. Taking Y to represent the prisoner’s death and making the
obvious assumptions about the meaning of the variables, ... [we can use the equation
described above]. Suppose that X loads D’s gun (X = 1), D does not shoot (D = 0),
but A does load and shoot his gun (A = 1), so that the prisoner dies. Clearly A = 1
is a cause of Y = 1.We would not want to say that X = 1 is a cause of Y = 1, given
that D did not shoot (i.e., given that D = 0).” [emphasis added]

If we agree with Halpern and Pearl here – which I do – then Original HP can
be discarded on the basis of this example (and on the basis of the many others we
discussed previously, of course). I leave it to the reader to verify that none of the other
definitions consider X = 1 to be a cause here.

However, the only definition that applies the intuition underlying this example to
all cases in which D = 0 is Def 2. Moreover, it is the only remaining definition that
offers a simple consistent answer in all cases: X = 1 is a cause of Y = 1 iff D = 1.
To see why this is the case, we go over the possible directly sufficient sets. (Since X

is only a parent of Y , we can invoke Proposition 6 and use Def 3 instead of Def 2.)
Clearly X = 1 is not directly sufficient for Y = 1 by itself. It is also clear that we
cannot add A = 1 to the witness, because A = 1 is directly sufficient for Y = 1 all
by itself. Therefore we are forced to choose D as our witness. If D = 0, this gives
(X = 1, D = 0), which is not directly sufficient for Y = 1 and thus X = 1 is not
a cause. If D = 1, we get (X = 1, D = 1), which is directly sufficient for Y = 1.
Since the same does not hold for (X = 0, D = 1), X = 1 is a cause of Y = 1.

The following examples show that Updated HP and Modified HP flip-flop
between calling X = 1 a cause or not even when holding fixed the value of D. Of
course I cannot exclude the possibility that some consistent argumentation can be
offered to explain the results of one of these definitions, but in its absence all of this
speaks in favor of Def 2. We start with the three possible ways in which it can arise
that D = 1.

Example 9 First consider the case where D is determined by the context, and we have a
context such thatD = 1. Here all four definitions agree thatX = 1 is a cause of Y = 1.

Example 10 Second consider the case where the equation for D is given by D = A

and thus again D = 1 in the context under consideration. Here Updated HP and
Modified HP flip their verdict, as they no longer consider X = 1 a cause of Y = 1.

Example 11 Third, we simply flip the relation between A and D so that A = D, and
again D = 1 in the context under consideration. Now Updated HP and Modified
HP go back to considering X = 1 a cause of Y = 1.

Next we consider the two remaining possible cases where D = 0 (Example 8 was
the first such case).
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Example 12 Consider the casewhere the equation forD isD = ¬A. Aswith Example 8,
we have that D = 0, and yet Updated HP changes its verdict, calling X = 1 a cause of
Y = 1.

Example 13 29 Lastly, consider the case where the equation for D is A = ¬D, and
thus we again have that D = 0. Now both Modified HP and Updated HP flip their
verdicts as compared to Example 8. To see why, it suffices to consider Modified
HP. The result for Updated HP then follows from Theorem 2. D = 0 by itself
is not a cause of Y = 1 because there is no choice of witness that makes Y = 1
counterfactually depend on D = 0. Since Y = 1 does counterfactually depend on
(X = 1, D = 0), X = 1 is part of a cause of Y = 1.

8 Conclusion

I have developed twelve definitions of actual causation that formalize the NESS
intuition with which Pearl started, and have shown that the most recent of the HP
definitions is among them. Although these definitions vary widely in terms of the
verdicts they reach, they all resemble each other as being instantiations of the same
general definition. Each definition is made up of two elements: a definition of causal
sufficiency, and a definition of necessity. Other definitions can easily be developed
by playing around with these elements.

After studying various properties of these definitions and the relations between
them, I moved on to the process of selecting the definition that does best in practice.
In the majority of the many examples that we have considered, Def 2 agrees with
Modified HP. However, in Section 7.2 we came across two examples for which Def
2 disagreed with Modified HP and where Modified HP gave the wrong verdict.
Moreover, contrary toModified HP, Def 2manages to give consistent (and intuitive)
answers to the group of cases considered in the previous section. Therefore I conclude
by suggesting that we should adopt Def 2 as a definition of actual causation. This
definition is made up of strong sufficiency and contrastive necessity. It states that
X = x causes Y = y iff X = x is a Minimal Contrastively Necessary Subset of a
Strongly Sufficient Set for Y = y, or MCNS4.

Appendix A: Causal Sufficiency

Proposition 1 X = x is strongly sufficient for Y = y in M along a network N iff
X = x is strongly sufficient for Y = y in M .

Proof First assume X = x is strongly sufficient for Y = y in M and N can be used
to show this. Then the result follows immediately from the observation that X = x

29The attentive reader will remember this example from the proof of Theorem 1.
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is directly sufficient for N = n and either N = n is directly sufficient for Y = y or
N = Y and n = y.

Second assume X = x is strongly sufficient for Y = y in M along a network N.
Define A = V − (X ∪ N). We need to show that for all a ∈ R(A) and all u ∈ R(U)

we have that (M,u) |= [X ← x,A ← a]N = n.
We know that X = x is directly sufficient for N1 = n1. Define C1 = V− (X∪N1)

and D1 = N − N1. Note that C1 = A ∪ D1. We have that for all c1 ∈ R(C1) and all
u ∈ R(U), (M,u) |= [X ← x,C1 ← c1]N1 = n1. In particular, we have that for all
a ∈ R(A) and all u ∈ R(U), (M,u) |= [X ← x,A ← a]N1 = n1.

Define C2 = V− (N1∪N2) and D2 = N− (N1∪N2). Note that C2 = A∪D2∪X.
We have that for all c2 ∈ R(C2) and all u ∈ R(U), (M,u) |= [N1 ← n1,C2 ←
c2]N2 = n2. In particular, we have that for all a ∈ R(A) and all u ∈ R(U), (M,u) |=
[X ← x,N1 ← n1,A ← a]N2 = n2. Combined with the conclusion from the
previous paragraph, it follows that for all a ∈ R(A) and all u ∈ R(U), (M,u) |=
[X ← x,A ← a]N1 = n1 ∧ N2 = n2.

Defining Nk+1 = Y, we can generalize this reasoning for all consecutive i ∈
{3, . . . , k + 1} to get the desired outcome.

Appendix B: Defining Causation using Sufficiency

Theorem 1 The following are all equivalences among the twelve definitions and the
three HP definitions:

– Modified HP iff Def 1
– Def 2 iff Def 5
– Def 8 iff Def 11
– Def 3 iff Def 6 iff Def 9 iff Def 12

Proof First we consider the equivalences that do hold.
We start with the first equivalence:Modified HP iff Def 1. This is simply a matter

of explicitly writing out the definitions, starting with actual weak sufficiency: X = x
is actually weakly sufficient for Y = y in (M,u) iff (M,u) |= [X ← x]Y = y. Next
we note that the following condition is trivially satisfied for any W ⊆ V: (M,u) |=
[X ← x,W ← w∗]Y = y.

Combining both claims, we can rewrite Modified HP as follows, which gives the
desired result:

AC2(a). There is a set W ⊆ (V − (X ∪ {Y })) and a setting x′ of the variables in X
such that (X = x′,W = w∗) is not actually weakly sufficient for Y = y

in (M,u).
AC2(b). (X = x,W = w∗) is actually weakly sufficient for Y = y in (M,u).

Next we consider all of the following equivalences: Def 2 iff Def 5, Def 8 iff
Def 11, Def 3 iff Def 6, Def 9 iff Def 12. The reason we can group these together,
is because we can prove all of them by invoking the following observation and two
subsequent lemmas.
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Observation 1 Recall our restriction on causal models that exogenous variables
only appear in equations of the form V = U . SayR ⊆ V are all variables which have
such an equation, and call these the root variables. It is clear that if we intervene
on all of the root variables, they take over the role of the exogenous variables. Con-
cretely, given strong recursivity, for any setting r ∈ R(R) there exists a unique setting
v ∈ R(V) so that for all contexts u ∈ R(U) we have that (M,u) |= [R ← r]V = v.

Lemma 1 Given a setting X = x, a setting N = n that includes Y = y and such that
N ∩ R = ∅, a context u, the following holds:30
– X = x is actually directly sufficient for Y = y in (M,u) iff X = x is directly

sufficient for Y = y in M;
– X = x is actually strongly sufficient for Y = y in (M,u) along N = n iff X = x

is strongly sufficient for Y = y in M along N = n.

Proof Filling in the definitions of direct and actually direct sufficiency, the first
equivalence reduces to the following: for all c ∈ R(V − (X ∪ {Y })), it holds that
(M,u) |= [X ← x,C ← c]Y = y iff for all u′′ ∈ R(U), (M,u′′) |= [X ← x,C ←
c]Y = y.

Because of Observation 1, we have that for any setting v ∈ V and any setting
r ∈ R(R), it holds that (M,u) |= [R ← r]V = v iff for all contexts u′′ ∈ R(U),
(M,u′′) |= [R ← r]V = v. Combining this with the fact that R ⊆ (C ∪X) gives the
desired result.

The second equivalence can be reformulated as follows: X = x is actually directly
sufficient for N = n in (M,u) iff X = x is directly sufficient for N = n in M . In
turn, this reduces to: for all c ∈ R(V − (X ∪ N)), it holds that (M,u) |= [X ←
x,C ← c]N = n iff for all u′′ ∈ R(U), (M,u′′) |= [X ← x,C ← c]N = n.

Given that N∩R = ∅, we still have that R ⊆ (C∪X), and therefore we can apply
the same reasoning as before.

Lemma 2 For all twelve instances of the General Definition of Causation we can
restrict ourselves to sets N so that (N − {Y }) ∩ R = ∅.

Proof Let A denote (N − {Y }) ∩ R. For all definitions using either variants of direct
or weak sufficiency the result follows immediately from the fact that N − {Y } = ∅.

First consider the case where we use non-actual strong sufficiency (Def 5 or Def
11). In that case, AC2(b) can never be satisfied unless A = ∅. To see why, note that
in all contexts u′′ ∈ R(U), it has to hold that (M,u′′) |= [X ← x,W ← w∗]A = a.
Since A∩ (X∪W) and the equation for each element Ai ∈ A is of the form Ai = U

for some exogenous variable U , this is impossible. (Strictly speaking it is possible,
namely if the range of U consists only of the single value a∗

i . Although I did not
make this explicit in Section 2, it is standard to assume that all variables have a range
that contains at least two elements.)

30R is defined in Observation 1.
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Second consider the case where we use actual strong sufficiency and contrastive
necessity (Def 2). (The case of Def 8 is entirely analogous.) Say we are considering
a candidate cause X = x, a candidate witness W = w∗, contrast values x′, and a
setting N = n that includes Y = y. Given AC1, we can safely assume that n = n∗.

I claim that the following holds, from which the result follows: X = x satisfies
AC2 using contrast values x′, witness W = w∗, and network N iff X = x satisfies
AC2 using contrast values x′, witness (W = w∗,A = a∗), and network N − A.

Because A ⊆ R, we have that for any set B ⊆ (V −A), and any setting b ∈ R(B),
(M,u) |= [B ← b]A = a∗. Moreover, since (M,u) |= A = a∗, for each setting
v ∈ (V − A) we also have that (M,u) |= [B ← b](V − A) = v iff (M,u) |= [B ←
b,A ← a∗](V − A) = v.

Using these observations and the fact that A ⊆ N, we get that the following two
conditions are equivalent, for which the result follows as far as AC2(b) is concerned:

AC2(b). For all c ∈ R(V − (X ∪ W ∪ N)) we have that (M,u) |= [X ← x,W ←
w∗,C ← c]N = n∗.

AC2(b). For all c ∈ R(V − (X ∪ W ∪ N)) we have that (M,u) |= [X ← x,W ←
w∗,A ← a∗,C ← c](N − A) = n2∗ (where n2 is the restriction of n∗ to
(N − A)).

Now we focus on AC2(ac).
Let us first assume AC2(ac) holds for X = x, contrast values x′, witness (W =

w∗,A = a∗), and network N − A. We need to show that it holds for X = x, contrast
values x′, witness (W = w∗), and network N.

Consider some S ⊆ N with Y ∈ S. We need to find a t ∈ R(V − (X ∪W ∪ S)) so
that (M,u) |= [X ← x′,W ← w∗,T ← t]S �= s∗. Define S1 = S − A, S2 = S ∩ A,
and A1 = A − S.

Since S1 ⊆ (N−A) with Y ∈ S1, we know that there exists some t1 ∈ R(V−(X∪
W∪A∪S1) so that (M,u) |= [X ← x′,W ← w∗,A ← a∗,T ← t1]S1 �= s1∗. Since
S1 ⊆ S, it also holds that (M,u) |= [X ← x′,W ← w∗,A ← a∗,T ← t1]S �= s∗.
Also, given our observations about A, it also follows that (M,u) |= [X ← x′,W ←
w∗,A1 ← a1,T ← t1]S �= s∗. Lastly, note that [V − (X ∪ W ∪ A ∪ S1)] ∪ A1 =
V − (X ∪ W ∪ S). Therefore we can choose t = (a1, t1).

Next we consider the other direction: assume AC2(ac) holds for X = x, contrast
values x′, witnessW = w∗, and network N. We need to show that it holds for X = x,
contrast values x′, witness (W = w∗,A = a∗), and network N − A.

Consider some S ⊆ (N−A) with Y ∈ S. We need to find a t ∈ R(V − (X ∪W ∪
A ∪ S) so that (M,u) |= [X ← x′,W ← w∗,A ← a∗,T ← t]S �= s∗.

Note that (S ∪ A) ⊆ N, and also Y ∈ (S ∪ A). Therefore there exists some
t2 ∈ R(V − (X ∪ W ∪ A ∪ S) so that (M,u) |= [X ← x′,W ← w∗,A ← a∗,T ←
t2](S �= s∗ ∨ A �= a∗). It follows that (M,u) |= [X ← x′,W ← w∗,A ← a∗,T ←
t2]S �= s∗. Choosing t = t2 gives the desired result.

Because of the above lemmas, all that remains is to show that the above equiva-
lences hold also when Y ∈ R. This is accomplished by showing that settings of such
variables do not have any cause, regardless of the definition one uses.
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AC2(a) requires us to look at all subsets of N = n that include Y = y, and
verify that the candidate cause and witness (X = x′,W = w∗) (or candidate witness
W = w∗ in case we use AC2(am)) is not sufficient for that subset. One such subset is
the one containing just Y = y. By AC1, we have that (M, u) |= Y = y. Since Y ∈ R,
there is no intervention on the other endogenous variables so that Y �= y under that
intervention in u. Therefore any definition of causation using a version of actual
sufficiency (i.e., Def 2, Def 3, Def 8, and Def 9) considers all sets that do not include
Y to be sufficient for Y = y in (M,u). In particular, they consider (X = x′,W = w∗)
to be sufficient for Y = y in (M,u), and thus fail to meet condition AC2(a).

For the definitions using non-actual variants of sufficiency (Def 5, Def 6, Def 11,
and Def 12), it is condition AC2(b) that can never be satisfied. Analogous to what
we saw in the proof of Lemma 2, this follows from the fact that whatever version of
sufficiency we use, Y = y has to hold in all contexts, which is impossible given that
Y �∈ (X ∪ W). From this the result follows.

Now we prove the only remaining equivalence: Def 6 iff Def 12. (Given the previ-
ous equivalences, other choices are possible too.) We need to show that the following
two statements are equivalent:

– W = w∗ is not directly sufficient for Y = y.
– There exists values x′ of X such that (X = x′,W = w∗) is not directly sufficient

for Y = y.

Filling in Definition 7, the result follows immediately:

– There exists a z ∈ R(V − (W∪X∪ {Y })), a x′ ∈ R(X), and a u′ ∈ R(U) so that
(M,u′) |= [W ← w∗,X ← x′,C ← c]Y �= y.

– There exists values x′ of X, a z ∈ R(V − (W ∪ X ∪ {Y })) and a u′ ∈ R(U) so
that (M,u′) |= [W ← w∗,X ← x′,C ← c]Y �= y.

Second, we go over some examples to show that none of the other equivalences
hold. (Obviously, from now on we may ignore Def 1, Def 5, Def 6, Def 7, Def 9, Def
11, and Def 12.)

Example 14 Equations: Y = (X ∧ A) ∨ D, D = A. Context: A = 1. Then X = 1 is
a cause of Y = 1 according to:

– Modified HP: We can always consider choosing W = ∅, in which case we
simply get counterfactual dependence: (M,u) |= X = x ∧ Y = 1 and (M,u) |=
[X ← x′]Y �= y. Doing so in this example, we see that Y = 1 counterfactually
depends on (X = 1, D = 1). There is clearly also no witness W = w∗ to show
that X = 1 or D = 1 are causes by themselves, so X = 1 is part of a cause.

– Updated HP and Original HP: taking (A = 1, D = 0) as a witness meets the
conditions.

– Def 3: again take (A = 1, D = 0) as a witness.
– Def 2: follows from the previous item and Theorem 4.
– Def 8: follows from the previous item and Theorem 4.

X = 1 is not a cause of Y = 1 according to:
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– Def 10: X = 1 by itself does not weakly suffice for Y = 1 (just look at a context
in which A = 0), so we need to add A or D to the witness. But both A = 1 and
D = 1 each weakly suffice for Y = 1.

– Def 4: (X = 0, A = 1) and (X = 0, D = 1) also weakly suffice for Y = 1.

So we know thatDef 4 andDef 10 are not equivalent to any of the other definitions.
We give an example to show that Def 4 and Def 10 are not equivalent to each other
either.

Example 15 Equations: Y = X ∧ A, X = A. Context: A = 1. Since X = 1 is
not weakly sufficient for Y = 1, we need to include A = 1 in the witness. Indeed,
(X = 1, A = 1) is weakly sufficient for Y = 1. However, so is A = 1, and therefore
X = 1 does not cause Y = 1 according to Def 10. Yet (X = 0, A = 1) is not weakly
sufficient for Y = 1, and therefore X = 1 causes Y = 1 according to Def 4.

This leaves us with the HP definitions, Def 2, Def 3, and Def 8. The next example
shows that the former are not equivalent to the latter.

Example 16 Equations: Y = (X ∧ ¬A) ∨ D, D = A. Context: A = 1. Then X = 1
is a cause of Y = 1 according to:

– Modified HP: Y = 1 counterfactually depends on (X = 1, A = 1), and not on
either X = 1 or A = 1. So X = 1 is part of a cause.

– Updated HP and Original: take A = 0 as a witness.

X = 1 is not a cause of Y = 1 according to:

– Def 3: X = 1 by itself does not directly suffice for Y = 1 (just look at [A ←
1, D ← 0]), so we need to add A or D to the witness. Since the actual value of
A is 1, it is of no use, which leaves us with D. But D = 1 directly suffices for
Y = 1 by itself, and thus so does (X = 0, D = 1).

– Def 2: follows from the previous item and Proposition 12.
– Def 8: follows from the previous item and Proposition 12.

That none of the HP definitions are equivalent is of course a well-established fact,
and also follows from the examples we consider in Section 7. Therefore we are left
with showing that Def 2, Def 3, and Def 8 are not equivalent. That Def 3 differs
from the other two is a direct consequence of some of our later results, but a simple
example illustrates this as well.

Example 17 Equations: Y = A, A = X. Context: A = 1. Then it is easy to see that
X = 1 causes Y = 1 according to all definitions here considered, except for Def 3.

Lastly, I refer the reader to Example 2 in Sections 7 for an example that shows Def
2 and Def 8 are not equivalent.

Proposition 4 If X = x causes Y = y in (M,u) according to a definition that uses
minimal necessity, then X is a singleton.
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Proof Since we know that Def 7 is unsatisfiable and we have Theorem 3, we only
need to consider Def 3, Def 8, and Def 10. The following applies to both weak and
direct sufficiency (i.e., Def 3 and Def 10.)

Assume (X1 = x1,X2 = x2,W = w∗) is sufficient for Y = y, and W = w∗ is
not sufficient for Y = y. If either (X2 = x2,W = w∗) or (X1 = x1,W = w∗) is also
sufficient for Y = y, then (X1 = x1,X2 = x2) is not minimal.

So let us assume that neither (X2 = x2,W = w∗) nor (X1 = x1,W = w∗)
is sufficient for Y = y. This means we can move X2 to the witness to show that
X1 = x1 satisfies AC2 by itself, and likewise for X2 and X1 reversed. From this the
result follows.

Now we prove that it also holds for strong sufficiency, i.e., for Def 8. Assume
(X1 = x1,X2 = x2,W = w∗) is sufficient for Y = y along N, and W = w∗ is not
sufficient for Y = y along any network S ⊆ N. If either (X2 = x2,W = w∗) or
(X1 = x1,W = w∗) is also sufficient for Y = y along N, then (X1 = x1,X2 = x2)
is not minimal.

So let us assume that neither (X2 = x2,W = w∗) nor (X1 = x1,W = w∗) is
sufficient for Y = y along N. If the same is true for all subnetworks S ⊆ N, then as
before, we can move either one of X1 and X2 to the witness to show that the other
satisfies AC2 by itself.

So let us assume that there is some subnetwork S′ ⊆ N such that (X1 = x1,W =
w∗) is sufficient for Y = y along S′. (Obviously the same reasoning applies to X2.)
Since all subnetworks S′′ of S′ are also subnetworks of N, it follows from the above
that (X1 = x1) satisfies AC2 by itself when taking W as witness and S′ as network.
From this the result follows.

Theorem 2 The only implications – involving either causes or parts of causes –
between the remaining five definitions (Def 2, Def 3, Def 4, Def 8, and Def 10) and
the three HP definitions are the following ones (and their immediate consequences,
of course):

– If part of Modified HP then Updated HP;
– If part of Updated HP then Original HP;
– If Def 3 then Def 2;
– If part of Def 2 then Def 8;
– If Def 3 then Original HP;
– If Def 10 then Def 4.

Proof The first two implications are proven in Halpern [8].
First we prove the third implication. Assume X = x causes Y = y with witness

W according to Def 3. It follows from Proposition 10 that X is a single conjunct X.
Note that this immediately implies minimality of X.

In other words, (X = x,W = w∗) is directly sufficient for Y = y, and there exists
some x′ such that (X = x′,W = w∗) is not directly sufficient for Y = y. From the
former it follows that (X = x,W = w∗) is strongly sufficient for Y = y along ∅.
From the latter it follows that (X = x′,W = w∗) is not strongly sufficient for Y = y

along ∅, from which the result follows.
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Second we prove the fourth implication. Assume (X = x,X2 = x2,W = w∗) is
sufficient for Y = y along N, and (X = x′,X2 = x2′,W = w∗) is not sufficient
for Y = y along any network S ⊆ N, for some N, x′ and x2′. We show that X = x

causes Y = y according to Def 8.
Taking (X2 = x2,W = w∗) as our witness and using N, AC2(b) remains

unchanged. If (X2 = x2,W = w∗) is not sufficient for Y = y along any network
S ⊆ N, then the result follows. We proceed by a reductio.

Let us assume that (X2 = x2,W = w∗) is sufficient for Y = y along some
S ⊆ N. If (X2 = x2′,W = w∗) is not sufficient for Y = y along any S′′ ⊆ S,
we have a violation of minimality (since X is redundant). Therefore we know that
(X2 = x2′,W = w∗) is sufficient for Y = y along some network S′′ ⊆ S.

This means that there exist values s′′ ∈ R(S′′) so that for all settings c ∈ R(V −
(S′′ ∪X2 ∪{X, Y }), and for all x′′ ∈ R(X), it holds that (M,u) |= [X2 ← x2′,W ←
w∗,C ← c, X ← x′′]S = s′′ and (M,u) |= [X2 ← x2′,W ← w∗,C ← c, X ←
x′′, S ← s′′]Y = y. In particular, this holds if we choose X = x′. But that means
that (X = x ′,X2 = x2′,W = w∗) is also sufficient for Y = y along S′′, which
contradicts our starting assumption.

Third we prove the fifth implication. As with the third implication, assume that
(X = x,W = w∗) is directly sufficient for Y = y, and there exists some x′ such that
(X = x′,W = w∗) is not directly sufficient for Y = y. From the latter it follows that
there exists a setting d of V − (X ∪ W ∪ {Y }) such that (M,u) |= [X ← x ′,W ←
w∗,D ← d]Y �= y. This means that if we take (W = w∗,D = d) as witness,
AC2(a) is satisfied for Original HP. Since (X = x,W = w∗) is directly sufficient
for Y = y, we know that (M,u) |= [X ← x,W ← w∗,D ← d]Y = y. Also,
we have that Z = X, and thus the former means that also AC2(b) is satisfied for
Original HP.

Fourth we prove the last implication. Assume X = x causes Y = y with witness
W according to Def 10. (We know because of Proposition 10 that X is a singleton.)
In other words, (X = x,W = w∗) is weakly sufficient for Y = y, and W = w∗ is
not weakly sufficient for Y = y. Remains to be shown that there exist a value x′ so
that (X = x′,W = w∗) is not weakly sufficient for Y = y.

Say u′ is a context such that (M,u′) |= [W ← w∗]Y �= y, and say x′ is the unique
value such that (M,u′) |= [W ← w∗]X = x′. Then also (M, u′) |= [X ← x′,W ←
w∗]Y �= y, which is what remained to be shown.

Fifth, we show that none of the remaining implications hold. (Again, we do not
consider the relations amongst the HP definitions explicitly and refer the reader to the
examples in Section 7. We also do not explicitly consider the remaining implications
for parts of causes, but the reader can verify that the following examples suffice to
falsify all those implications as well. For the left-hand side of all implications this
follows immediately from the fact that the causes in all the following examples are
singletons. For the right-hand side of implications, Propositions 4, 5, and 6 come in
handy.)

Example 15 shows that Def 4 does not imply Def 10.
Example 14 shows that none of the other definitons imply either Def 4 or Def 10.

So there are no remaining implications with either Def 4 or Def 10 on the right-hand
side.
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Example 17 shows that Def 3 is not implied by any definition.
Example 16 shows that none of the HP definitions imply Def 2 or Def 8. Note that

Def 4 and Def 10 also consider X = 1 a cause of Y = 1 in that example (since X = 1
is weakly sufficient for Y = 1, whereas X = 0 or the emptyset is not). Further,
Example 2 shows that Def 8 does not imply Def 2. Therefore there are no remaining
implications with Def 2 or Def 8 on the right-hand side.

That leaves us to consider implications with one of the HP definitions on the right-
hand side. Given the first two implications of Theorem 4, it suffices to show that
none of Def 4, Def 2, Def 8, or Def 10, imply Original HP, and that Def 3 does not
imply Updated HP.

I refer the reader to Example 7 in Section 7 for an example where Def 2 – and thus
also Def 8 – hold and Original HP does not.

The following example shows that neither Def 4 nor Def 10 impliesOriginal HP.

Example 18 Equations: Y = Z1 ∨ Z2 ∨ A, Z1 = X ∧ A, Z2 = X ∧ ¬A. Context:
A = 1 and X = 1. Then X = 1 is a cause of Y = 1 according to:

– Def 10: X = 1 is weakly sufficient for Y = 1 and ∅ is not.
– Def 4: follows from the previous one.

Yet X = 1 is not a cause of Y = 1 according to Original HP. To see why, note
that we need to include A = 0 into the witness in order to get AC2(a), and we must
exclude Z1. Also, we clearly cannot add Z2 = 1. Therefore the witness has to be
A = 0. The actual value of Z2 is 0. Since we have (M,u) |= [X ← 1, A ← 0, Z2 ←
0]Y = 0, AC2(b) is not satisfied.

Lastly, an example to show that Def 3 does not imply Updated HP.

Example 19 Equations: Y = (X∧D)∨A, D = A. Context: A = 1 and X = 1. Then
X = 1 is a cause of Y = 1 according to Def 3: (X = 1, D = 1) is directly sufficient
for Y = 1, and (X = 0, D = 1) is not. But X = 1 is not a cause of Y = 1 according
to Updated HP. To see why, note that we need to include A = 0 into the witness in
order to get AC2(a). But (M,u) |= [X ← 1, A ← 0]Y = 0, thus falsifying AC2(b)
for Updated HP.

Appendix C: Excluding Def 3 and Def 10

Proposition 5 If X = x causes Y = y in (M,u) according to Def 3, then X is a
singleton, and X is a parent of Y .

Proof That X is always a singleton is a direct consequence of the combination of
Proposition 10 and Theorem 3.

Recall that X is a parent of Y iff there exists a context u′′, a setting z ∈
R(V − {X, Y }), and values x, x′′ of X so that FY (u′′, z, x) �= FY (u′′, z, x′′). This
means precisely that for some y ∈ R(Y ), (M,u′′) |= [Z ← z, X ← x]Y = y and
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(M,u′′) |= [Z ← z, X ← x′′]Y �= y. If X = x causes Y = y according to Def 3,
the existence of values such that the previous holds follows immediately.

Proposition 6 If X is only a parent of Y , then Def 3, Def 2, and Def 8 are all
equivalent for causes X = x.

Proof Given Theorem 4, we only need to prove the implication from Def 8 to Def 3.
Assume X is only a parent of Y , and X = x causes Y = y according to Def 8.

Thus, there is a witness W and some network N such that (X = x,W = w∗) is
strongly sufficient for Y = y along N, and (W = w∗) is not strongly sufficient for
Y = y along any subnetwork of N.

First consider the case where N = ∅. This means that (X = x,W = w∗) is
directly sufficient for Y = y, and (W = w∗) is not directly sufficient for Y = y.
That means precisely that X = x causes Y = y according to Def 12. The result now
follows from Theorem 3.

Second consider the case where there exists some N ∈ N. If N is not an ancestor
of Y , it can be removed from N without consequence. If N is an ancestor of Y , then
it cannot be a descendant of X. But in that case it does not depend on X, and thus we
can remove it from N and add it to the witness W without consequence. Therefore
there always exists a choice of witness so thatN = ∅, and thus the result follows.

Proposition 7 Out of all definitions we have considered, Def 10 and Def 3 are the
only ones which do not satisfy Dependence.

Proof For the HP definitions this is proven in Halpern [8, p. 26].
Example 17 shows the result for Def 3.
Example 15 shows the result for Def 10.
Therefore it remains to be shown that Dependence implies Def 2, Def 4, and Def

8. This is a direct consequence of the fact that Dependence implies Modified HP,
combined with Proposition 14.

Appendix D: Def 2, Def 4, and Def 8, vs the HP Definitions

Proposition 8 If Modified HP with X a singleton, then Def 2, Def 4, and Def 8.

Proof Recall the root variables R from Observation 1. Note that for any setting r ∈
R(R), for any set Y ⊆ (V − R), there exists some y so that R = r is both weakly,
actually weakly, and strongly, sufficient for Y = y.

Assume X = x causes Y = y according to Modified HP with witness W. This
means there exists a x ′ so that (M,u) |= [X ← x ′,W ← w∗]Y �= y. Let S =
R − (W ∪ {X}).

First we focus on Def 4. Note that (X = x,S = s∗,W = w∗) is weakly sufficient
for Y = y. Furthermore, changing X from x to x′ obviously has no effect on any of
the values in R. Therefore (M,u) |= [X ← x′,W ← w∗]S = s∗, and thus we get
that (M,u) |= [X ← x′,W ← w∗, S ← s∗]Y �= y. (Also, we may assume that
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W ∩ R = ∅.) From this it follows that (X = x ′, S = s∗,W = w∗) is not weakly
sufficient for Y = y. So taking (S = s∗,W = w∗) as witness gives the desired result.

Second we focus on Def 2 (from which Def 8 follows due to Theorem 4). Com-
bining the previous statement about (X = x′, S = s∗,W = w∗) with Proposition 2
it follows immediately that there does not exist any network N so that (X = x′, S =
s∗,W = w∗) is strongly sufficient for Y = y along N.

Clearly there exists some N so that R = r∗ is strongly sufficient for Y = y along
N. (We can start by picking parentsA of Y = y such thatA = a∗ is directly sufficient
for Y = y. Then we can take parents of all elements inA, to get a set B so that B = b∗
is directly sufficient for A = a∗, etc.) But then also (X = x,S = s∗,W = w∗) is
strongly sufficient for Y = y along N, from which the result follows.
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