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Abstract
We consider extending the modal logic KD45, commonly taken as the baseline sys-
tem for belief, with propositional quantifiers that can be used to formalize natural
language sentences such as “everything I believe is true” or “there is something that
I neither believe nor disbelieve.” Our main results are axiomatizations of the logics
with propositional quantifiers of natural classes of complete Boolean algebras with
an operator (BAOs) validating KD45. Among them is the class of complete, atomic,
and completely multiplicative BAOs validating KD45. Hence, by duality, we also
cover the usual method of adding propositional quantifiers to normal modal logics
by considering their classes of Kripke frames. In addition, we obtain decidability for
all the concrete logics we discuss.

Keywords Modal logic · Doxastic logic · Propositional quantifiers ·
Algebraic semantics · Pesudo-monadic algebras · Kripke incompleteness

1 Introduction

In this paper, we consider extending the modal logic KD45, commonly taken as the
baseline system for belief, with propositional quantifiers that can be used to formalize
natural language sentences such as “everything I believe is true” or “there is some-
thing that I neither believe nor disbelieve.” Our main results are axiomatizations of
the logics with propositional quantifiers of natural classes of complete Boolean alge-
bras with an operator (BAOs) validating KD45. Among them is the class of complete,
atomic, and completely multiplicative BAOs validating KD45. Hence, by duality, we
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also cover the usual method of adding propositional quantifiers to normal modal log-
ics by considering their classes of Kripke frames. In addition, we obtain decidability
for all the concrete logics we discuss.

The present work can be seen as sitting at the intersection of two strands of
literature: the doxastic logic literature, since we are extending KD45, and the liter-
ature on modal logics with propositional quantifiers, since we are extending with
propositional quantifiers. In both bodies of literature, algebraic approaches are not
particularly popular. Moreover, KD45 was not discussed in the literature of modal
logics with propositional quantifiers until very recently [1]. To explain our motiva-
tion and potential contribution to the two bodies of literature in more detail, we use
two subsections below.

1.1 Dubious Principles and Possible-World Semantics

Since Hintikka [2], modal logic has been indispensable for the study of intensional
propositional operators like knowledge and belief. For the belief case, the system
KD45 arose naturally as a baseline system. The reason may be that KD45 puts
together the properties that we immediately recognize as what an ideal agent’s belief
(or an agent’s ideal belief) should have: logical omniscience, consistency, and full
introspection. Indeed, the modal rule and axioms in the standard axiomatization of
KD45 can be matched precisely to these properties: the necessitation rule and K to
logical omniscience, D to consistency, and 4 and 5 to introspection. The attitudes
toward these idealizations vary (see, for example, more friendly views in [3] and
Section 1.3 of [4] and much less friendly views in [5]), but the system KD45 remains
central (for its most recent appearance, see [6] but also [7]).

Coming along with the syntactical formalism of modal logic is the possible-
world semantics based on possible-worlds and accessibility relations (namely Kripke
frames). The use of possible-world semantics is perhaps mainly fueled by the cor-
respondence and completeness results for most philosophically interesting modal
formulas. When deciding which axioms to use, if we accept that possible-world
semantics in general is appropriate, we may first find out the axioms’ corresponding
frame conditions. To quote David Lewis in [8, p. 19], “instead of asking the baffling
question whether whatever is actual is necessarily possible, we could try asking: is
the relationR symmetric?”When we already have a strong intuition on which logic is
the most appropriate (for whatever purpose), we may still want to use possible-world
models to succinctly represent a consistent set of formulas describing a situation and
then guide our syntactic reasoning in that situation. Completeness guarantees that
this is always possible.

For the belief case, if we are not venturing below K, the standard possible-world
semantics based on Kripke frames is always appropriate by Sahlqvist’s completeness
theorem [9, § 5.6], since the relevant axioms are D, 4, and 5, which are all Sahlqvist
formulas. Moreover, all modal logics extending KD45 are Kripke-complete in the
sense that they are complete with respect to the classes of Kripke frames on which
they are valid [10]. Even with the addition of dynamic operators as in [11], semantics
based on possible-worlds is still largely appropriate, and many such extensions start
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with possible-world semantics. While it is well known that there are Kripke incom-
plete logics [12], meaning that no classes of Kripke frames can validate precisely the
theorems in those logics, perhaps, when studying belief operators, Kripke frames are
always enough for us, and there is nothing that can “banish” us from, to borrow from
David Lewis again, “a doxastic logician’s paradise”?

As another way of extending the language of Doxastic logic, consider proposi-
tional quantifiers. While we naturally quantify over propositions in both ordinary and
philosophical discourses about belief, the addition of propositional quantifiers is not
given much attention in the literature. Can we repeat the success story of the Kripke
semantics here again, or are we in the situation that, with propositional quantifiers,
we gain enough expressivity so that Kripke frames with their well-documented quirks
in the literature on Kripke incompleteness lead to unwanted validities? Note that if
there are formulas in the extended language such that, on the one hand, they are valid
on Kripke frames validating a logic L, and on the other hand, we have strong reasons
to at least treat them as optional and study and use extensions of L without them,
Kripke frames must go.

Indeed, a number of new principles about belief that seem conceptually significant
are formalizable in the extended language.

– “One believes that everything one believes is true” is formalized as B∀p(Bp→
p).

– “If no matter what p stands for, one believes that ϕ, then one believes that no
matter what p stands for, ϕ” is formalized as ∀pBϕ→ B∀pϕ.

– “There is a proposition that the agent takes to be consistent and to settle
everything” can be formalized as ∃q(̂Bq ∧ ∀p(B(q → p) ∨ B(q → ¬p))).

Conceptually, then, we can ask: if we would like to take all the idealizations encoded
in KD45 on board, should we also adopt or are we already committed to some of the
principles above, once we add propositional quantifiers into our language?

Let us focus on the first principle, which we call Immod: “one believes that
everything one believes is true.” Even for idealized agents or idealized beliefs, as
axiomatized by KD45, it seems that Immod should not be included in a logic of
belief. After all, the idealizations we are granting here are only about logic and
introspection and do not warrant the truth of the uncertain beliefs that we choose to
believe. Immod should be distinguished from “for every proposition p, one believes
that if she believes that p then p” (with the “if ... then ...” here being the material
implication). This principle, when formalized as ∀p(B(Bp → p)), is merely the
universalization of a simple consequence of the negative introspection axiom. The
crucial difference between this principle and Immod is that Immod says that one
believes the totality of one’s belief to be true, while ∀pB(Bp→ p) says only that for
every proposition p, when considered individually, one believes that if p is believed,
then p is true.

More concretely, we can take an agent who has credences about a real number x

randomly generated (perhaps by an unending sequence of fair coin flips) from the
interval [0, 1]. For all measurable X ⊆ [0, 1], the agent’s credence that x ∈ X is
just the measure of X. In addition, in this simple example, it seems not against our
intuitive understanding of the concept of outright belief that the agent can simply
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believe precisely those propositions with credence 1.1 Then, for all a ∈ [0, 1], the
agent believes that x ∈ [0, 1] \ {a} since [0, 1] \ {a} is measure 1. However, the agent
does not believe that for all a ∈ [0, 1], x ∈ [0, 1]\{a} since⋂

a∈[0,1]([0, 1]\{a}) = ∅,
which is not measure 1. Hence the agent in this situation does not believe that all her
beliefs are true.

The above of course does not constitute a decisive argument that Immod is not
valid for ideal agents or ideal beliefs axiomatized by KD45. But we hope that at least
we have demonstrated some interest that people might have in considering a logic
without Immod. On the semantic side, though, as we will show in Section 2, if we
adopt the standard possible-world semantics, Immod as formalized by B∀p(Bp →
p) is valid on any Kripke frame that validates KD45. Indeed, it is valid so long as the
accessibility relation is shift-reflexive,2 regardless of which domain of propositions
(as represented by subsets of possible-worlds) we choose for the propositional quan-
tifiers to range over and regardless of whether the domain varies from world to world.
In other words, if we constrain ourselves with the standard possible-world semantics,
the space of logics between KD45 and KD45 plus Immod is closed to us.

To allow for modesty above KD45, we will turn to algebraic semantics. In alge-
braic semantics, propositions, instead of possible worlds, are first-class citizens that
naturally form Boolean algebras when ordered by logical strength. Then, propo-
sitional quantifiers are interpreted in these algebras of propositions by the meet
operation since, intuitively, for example, “everything I believe is true” is the conjunc-
tion of all instances of “if I believe that p then p.” Specifically, we will use what
were used in the first algebraic semantics for a KD45 belief operator in [14]: proper
filter algebras, except that we will consider only those whose underlying Boolean
algebra is complete3 in the sense that arbitrary, not just finite, meets and joins exist.
We believe there can be an independent metaphysical argument for why the Boolean
algebra of propositions should at least be complete, but such an argument falls out-
side the scope of this paper. For our purposes, the completeness condition is merely a
condition with which we can show, in a way that does not use any special property of
the belief operator B, that all formulas, including those like ∀pϕ, have well-defined
semantic values. In other words, lattice completeness is a language-and-logic-blind
condition guaranteeing that our algebraic semantics works.

While proper filter algebras allow modesty, they are not completely conceptu-
ally innocent beyond KD45 though. A strengthened introspection axiom, which we
call 4∀, is valid on these algebras. This new axiom 4∀ intuitively reads: if the agent
believes every instance of ϕ, then the agent believes that she believes every instance
of ϕ. In the formal language to be introduced in full later, 4∀ is ∀pBϕ → B∀pBϕ.
However, unlike Immod, we find 4∀ well-motivated, especially when we are con-
sidering extending KD45. Typically, and especially under idealization, we take our
judgment about our internal state, like believing ϕ or not, as infallible. If so, it is not

1Note that this does not rely on the agent’s belief being reduced to credence in any way. However, see [13].
2A binary relation R is shift-reflexive if and only if for all x and y, xRy implies yRy. Shift-reflexivity
follows from Euclidicity, the first-order correspondence of the axiom 5.
3Since the word “complete” is also used for saying that a logic is complete, we sometimes use “lattice
complete” to express this idea.
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just that we are in a position to believe that we believe ϕ when we do believe ϕ. The
aggregation of arbitrarily many such infallible judgments is still infallible (contrary
to a large aggregation of credence 1 yet fallible propositions) and to be believed by
us (or idealized versions of us). The formula 4∀ precisely formalizes this reasoning
step.

Corresponding to this idea is the fact that a proper filter algebra works by keep-
ing a proper filter of propositions in the underlying Boolean algebra as the filter of
“believed propositions” and interprets Bϕ to either the top element or the bottom ele-
ment depending on whether ϕ is interpreted as a “believed proposition” or not. If the
proposition expressed by ϕ is “believed”, then Bϕ is interpreted as the top element
and otherwise the bottom element. More technically, proper filter algebras can be
understood as Boolean algebras with an operator that validate KD45 and also has the
special property that the operator sends propositions to either the top element or the
bottom element. Intuitively, then, from the agent’s perspective, a formula Bϕ is as true
as tautologies are once true and is as false as contradictions are once false.4 Hence,
it is not hard to check that 4∀ is valid, since we are essentially only considering the
two-element Boolean algebra once we treat Bϕ as a whole.

But will this class of complete proper filter algebras validate any other formu-
las whose interpretation might be unwelcome? Our axiomatization suggests that the
answer is no. We will show that the logic of complete proper filter algebras is axiom-
atized by KD4∀5�, obtained by adding to KD45 the usual �-principles, namely
those axioms about propositional quantifiers that are analogous to the axioms about
first-order quantifiers, and then strengthening 4 to 4∀. Since the �-principles encode
only the quantificational axioms, like instantiation and universalization, the only
conceptual leap in this axiomatization is from 4 to 4∀.

1.2 Axiomatizability for Modal Logics with Propositional Quantifiers

Now we turn to a more technical side and connect our work to the literature on
modal logics with propositional quantifiers. The systematic technical study of propo-
sitional quantifiers is arguably initiated in Fine’s dissertation [15], though already
in Kripke’s [16], propositional quantifiers are discussed. Also around the same time
as Fine’s dissertation were Bull’s [17] and Gabbay’s [18]. Soon after his disserta-
tion, Fine summarized and extended his results in [19]. From these early papers, we
can already see a wide range of semantic choices, especially about the domain of

4Of course a tautology like p → p and a formula like Bp have different truth conditions, regardless
of whether Bp is true or not. So the proper filter algebras we consider are not representing propositions
obtained by way of metaphysical (or a priori) equivalence where two sentences ϕ and ψ express the same
proposition iff necessarily (or a priori) ϕ and ψ are either both true or both false. The proper filter algebras
represent algebras of propositions obtained for a particular agent in a particular situation by stipulating
that two sentences ϕ and ψ express the same proposition iff the agent is certain in that situation that either
ϕ and ψ are both true or both false. For those who are unsatisfied with the restrictedness of proper filter
algebras, we will show that we can, without changing the logic, consider all complete Boolean algebras
with an operator validating KD45. In this way, we can be more neutral on what count as “propositions”.
However, it is non-trivial to see that 4∀ is valid on all such algebras, and we devote the whole of Section 3
to this issue.
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propositions that ∀p can quantify over (which is naturally encoded in general
frames). Bull and Gabbay in the above-cited papers also identified two ways to
refute Barcan’s schema ∀p�ϕ → �∀pϕ through varying the domain of proposi-
tions for quantifiers across possible-worlds and through generalizing accessibility
relations to neighborhood functions. In a completely non-technical paper [20], we
also saw perhaps the earliest proposal of treating ∀p as quantifying directly over
objects in a lattice of propositions, a proposal perhaps inspired by the philosophical
stance defended in that paper. Since then, there has been a steady stream of interest
devoted to this topic, with general theoretical results focusing on expressive power
under the standard possible-world semantics ([21–24]), specific results mostly estab-
lishing non-axiomatizability ([25–33]) with the exception of [31] and [33], and more
application-oriented works: [1, 34–39].

A remarkable phenomenon when studying unimodal logic with propositional
quantifiers on Kripke frames, where every set of possible-worlds counts as a propo-
sition that ∀p can quantify over, is the seeming existence of what we call an
“axiomatizability boundary”: there seems to be a line in the order structure of classes
of Kripke frames of usual normal modal logics such that, below this line, the log-
ics of those classes of frames with propositional quantifiers are extremely complex
(often recursively equivalent to full second-order logic) and non-axiomatizable, while
above this line, the logics with propositional quantifiers are suddenly decidable. Of
course, we need to define what is “usual” for this “axiomatizability boundary” con-
cept to make sense. A very preliminary step is to consider first the lattice of Kripke
frame classes corresponding to the logics in the modal logic cube (Fig. 1). We see
that Fine’s 1970 paper [19] sets the boundary between S4 and S5 and between B and
S5. Kaminski’s result [21] pushes the boundary further from S4 to S4.2. However,
where the boundary lies in the direction from S5 to KD45 and KB5 remained open.
In this paper, we will show that the boundary can be pushed from the decidable side
to KD45: the logic with propositional quantifiers of Kripke frames validating KD45
is decidable.

Fig. 1 The frame classes cube.
Darker shade means the
corresponding logic with
propositional quantifiers is
non-axiomatizable. No shade
means decidability established,
and light shade means
decidability unknown
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We may just focus on Kripke frames if we are only aiming at pushing the axiom-
atizability boundary. But also hard to ignore in this literature is a severe lack of
an algebraic approach (until very recently; [40, 41], and [42]). In particular, when
propositional quantifiers are added to a modal logic L in the basic language, this
is usually done by considering some class of Kripke frames on which L is valid
and then generating the logic with propositional quantifiers of this class of Kirpke
frames. The main variability is in changing the domain of propositions for the propo-
sitional quantifiers to quantify over, and this is often achieved by considering general
frames whose underlying Kripke frames are frames of L. Then in a general frame, the
domain for interpreting propositional variables and for propositional quantifiers is
naturally the set of admissible propositions. A problem with this approach, however,
is that when we take ∀p to mean “no matter what p stands for,” which is the inter-
pretation we are interested in here, the semantics must validate the full instantiation
axiom ∀pϕ → ϕ[ψ/p] where ϕ[ψ/p] is the result of substituting p with ψ (with
necessary renaming of bound propositional variables). In general frames, validating
the full instantiation axiom often involves putting a so-called “closed under formula”
condition, which seems to be dependent on the choice of L.

In the algebraic semantics for propositional quantifiers, the lattice completeness
of an algebra of propositions ensures the well definedness of the semantic value of
all formulas and the validity of the full instantiation axioms. While the lattice com-
pleteness condition is usually not necessary for this purpose, it is blind to the choice
of language and logic. The semantics also directly models the intended interpreta-
tion of ∀p: the semantic value of ∀pϕ on an algebra is the meet of all the possible
semantic values of ϕ as we reevaluate p to all elements in the algebra. Hence, the
algebraic method, in contrast to the above possible-world-based method, of adding
propositional quantifiers to L is to take the logic, in the language extended with
propositional quantifiers, of the complete Boolean algebras with operators validating
L. One can then investigate the result of imposing atomicity and/or complete mul-
tiplicativity. In particular, if both conditions are imposed, we recover the version of
possible-world-based method of extension where all subsets count as propositions.

The algebraic approach poses also a series of natural open questions, and we
will list some in the concluding section of this paper. An example, relating to the
above phenomenon of the “axiomatizability boundary”, is this: how would a shift
from Kripke frames to complete BAOs affect the boundary? Will the boundary move
or even blur in the sense that we will see logics undecidable yet not as complex
as theories like the second-order theory of arithmetic? In all the proofs of non-
axiomatizability, atomicity is at least implicit in the set-up, if not directly used. It is
not our ambition in this paper to settle questions at this level of generality though.
Our aim is merely to initiate this program by focusing on a very special case: the
case of extending KD45 with propositional quantifiers in an algebraic way. And we
obtain the following results from a few more general theorems that we will establish
along the way:

– If we consider all complete BAOs validating KD45, the resulting logic is
KD4∀5�. Note that in principle we can consider the wider class of BAOs which
happen to make the semantics well-defined and also validate KD45. In particular,
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the Lindenbaum algebra of KD45� is such an algebra. So if we drop the lattice
completeness condition, we get KD45�. Conditioning on KD45� � KD4∀5�,
this means that lattice completeness is not inert: it strengthens 4 into 4∀.

– Imposing complete multiplicativity of B amounts to adding Immod (or Barcan’s
schema) to KD4∀5�.

– Imposing atomicity amounts to adding a much more complicated formula, which
we will call At, to KD4∀5�.

– Hence, if both conditions are imposed, the resulting logic is KD4∀5�ImmodAt.
By duality theory, then, this is the logic of serial, transitive, and Euclidean Kripke
frames.

– Finally, all the logics above are decidable. Hence the “axiomatizability bound-
ary” is pushed to KD45 and does not change when we switch from Kripke frame
to complete BAOs.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we formally define the
language and algebraic semantics, and then introduce the necessary axioms and sys-
tems with some of their logical relations; we then show how the algebraic semantics
can invalidate Immod while to a certain extent frame-based semantics cannot. In
Section 3, we show that 4∀, and hence the logic KD4∀5�, is valid on all complete
KD45 algebras. In Section 4, we show that KD4∀5� is complete with respect to
the class of all complete proper filter algebras. Since complete proper filter algebras
are also complete KD45 algebras, KD4∀5� axiomatizes the logic of both complete
KD45 algebras and complete proper filter algebras and also any class of algebras in
between. This is the longest section of the paper, in which we need to prove two
technical lemmas. The first lemma is an analog of the quantifier elimination used
to show the completeness of S5� by Fine. While we do not need a full quantifier
elimination, we need to show that the quantifiers can be separated from unmodalized
propositional variables and pulled out from the scopes of modal operators so that we
can translate formulas into a first-order language about Boolean algebras with two
named elements. The second lemma at its core says that the first-order logic of the
quotients of complete Boolean algebras is just the first-order logic of Boolean alge-
bras. While this seems to be a natural proposition of independent interest, to the best
of our knowledge, it has not been shown previously. In Section 5, we extract more
results from the proofs in Section 4 and establish two general completeness theorems.
From them, the logics resulting from imposing atomicity and complete multiplicativ-
ity to algebras naturally follow. We then show a general decidability theorem, from
which the decidability of all the particular logics discussed follows. In the last section,
Section 6, we conclude with directions of future research.

2 Syntax, Semantics, Logics, and the Problem of Immod

The propositional language with a belief operator and propositional quantifiers is
defined as follows.
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Definition 2.1 Define the language L � by the following grammar:

ϕ ::= p | 	 | ¬ϕ | (ϕ ∧ ϕ) | Bϕ | ∀pϕ

where p ∈ Prop, a set of propositional variables.5 We adopt the usual abbreviations,
and in particular we frequently write ⊥ for ¬	, ̂B for ¬B¬, and ∃p for ¬∀p¬. The
free and bound occurrences of propositional variables are defined as in first-order
logic. As is common in first-order logic, we write ϕ(p) to note that ϕ(ψ) is then the
result of replacing the free occurrences of p in ϕ by ψ with necessary renaming of
bound variables.

Now we turn to semantics. Algebraic semantics starts with a Boolean algebra of
propositions, and every formula will be evaluated to one of the propositions in it. If
we define Boolean algebras simply by the laws of conjunction and negation, then the
semantics seems to lack motivation independent of the logic we want it to generate.
However, it is also well known (see Chap. 4 of [43]) that they can be equivalently
defined as partial orders with greatest lower bounds (meets), least upper bounds
(joins), and complements, or more specifically, complemented distributive lattices.
Thus, a Boolean algebra can be seen as representing propositions that form a com-
plemented distributive lattice once ordered by their strength. Then 	, ∧, ∨, and ¬
are interpreted uncontroversially as the top element, the meet (greatest lower bound)
operation, the join (least upper bound) operation, and the complementation operation,
respectively.

In the same fashion, ∀pϕ should express the proposition that is the meet of all
propositions expressible as ϕ while the proposition expressed by p ranges over all
propositions in the algebra. Since there are possibly infinitely many such proposi-
tions expressible by ϕ, we make a further assumption about the Boolean algebra of
propositions we study in this paper: they must be complete in the sense that every set
of elements has a meet. As for the belief operator, the most general representation
we can have is to use an arbitrary function on each algebra of propositions. But since
our concern in this paper is to study the logics of belief at least as strong as KD45,
we need to make corresponding assumptions on this function representing the belief
operator. The following definition summarizes the assumptions we make.

Definition 2.2 A KD45 algebra is a pair B = 〈B,�〉 where
– B is a non-trivial Boolean algebra with 	 being its top element, ¬ its comple-

mentation operation, and ∧ its meet relation, and
– � is a unary function on B such that for all a, b ∈ B,

�	=	, �(a ∧ b)=�a ∧�b, ¬�¬	=	, �a=��a, and ¬�a=�¬�a.

When we need to distinguish the operations from different algebras, we will subscript
the operations by the algebra they are from. For example, we may write ∧B for the
meet operation of the Boolean algebra part of B or write ∧B for the meet operation
of B. We also write ≤, possibly with subscripts, for Boolean lattice orderings. We

5In contrast, 	 can be viewed as a propositional constant.
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will frequently write x ∈ B instead of x ∈ B, which is already an abbreviation of x

being in the carrier set of B. The usual abbreviations for ∨,→,↔,⊕, \,⊥, and ♦
apply too.

A complete KD45 algebra is a KD45 algebra whose Boolean algebra part is a
complete Boolean algebra. We use

∧

and
∨

for arbitrary meets and joins in complete
Boolean algebras. Again, subscripts are added and dropped as needed.

Then the language L � can be interpreted on any complete KD45 algebra. To
express semantic substitution, for any function f : X→ Y and any x ∈ X and y ∈ Y ,
we write f [y/x] for the function that is identical to f except that f [y/x](x) = y.
This notation will be used by all the semantics we define in this paper.

Definition 2.3 For any complete KD45 algebra B, a valuation θ on B is a function
from Prop to B. Then a valuation θ on B can be uniquely extended to θ̃ : L �→ B
recursively by the following clauses:

– θ̃ (p) = θ(p);
– θ̃ (¬ϕ) = ¬θ̃ (ϕ), θ̃ (ϕ ∧ ψ) = θ̃ (ϕ) ∧ θ̃ (ψ), and θ̃ (	) = 	;
– θ̃ (Bϕ) = �θ̃ (ϕ);
– θ̃ (∀pϕ) =∧

a∈B θ̃ [a/p](ϕ).

A formula ϕ ∈ L � is valid in a complete KD45 algebra B if for all valuations θ on
B, θ̃ (ϕ) = 	; otherwise we call it refutable in B. A formula ϕ is valid on a class
of complete KD45 algebras if ϕ is valid on each member of that class, and a set of
formulas is valid on a class whenever every formula in the set is valid on the class.
As usual, validity is denoted by �.

One problem with the Definition 2.3 is that it is very general, and little structure of
these complete KD45 algebras is revealed in the definition. While we will study them
in detail in Section 3, we now introduce a very concrete semantics whose structures
in which we evaluate formulas can be seen as directly modeling doxastic scenarios
of ideal agents.

Definition 2.4 A proper filter algebra B is a pair 〈B, F 〉 where B is a Boolean
algebra and F is a proper filter of that Boolean algebra. A complete proper filter
algebra is a proper filter algebra whose Boolean algebra part is a complete Boolean
algebra. We will write FB if the context is not clear enough.

Definition 2.5 For any complete proper filter algebra B = 〈B, F 〉, a valuation θ

is a function from Prop to B. Any valuation θ on B extends to a L �−valuation
θ̃ : L �→ B given by:

– the same clauses for propositional variables p ∈ Prop, connectives 	,¬,∧, and
∀p as in Definition 2.3, and

– θ̃ (Bϕ) = 	 when θ̃ (ϕ) ∈ F and otherwise θ̃ (Bϕ) = ⊥.
The concept of validity is defined as in Definition 2.3.
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Aswe have discussed, a proper filter algebra can be seen as representing the propo-
sitions individuated by equivalence up to subjective certainty in a concrete doxastic
scenario, with the proper filter representing the believed propositions in the scenario.
That the believed propositions should form a proper filter comes from the assumption
that the agent is logically competent and never believes in blatantly false proposi-
tions. That θ̃ (Bϕ) is always either	 or⊥ depending on whether θ̃ (ϕ) is in the filter of
believed propositions or not comes from the assumption that the agent is sufficiently
introspective. Proper filter algebras were first seen in [14] as models for beliefs.

The connection between proper filter algebras and KD45 algebras is this: proper
filter algebras naturally correspond to those KD45 algebras whose� operator’s range
is {	,⊥}. In [44], KD45 algebras are called pseudo-monadic algebras, and those with
the said property are called well-connected ones, so here we call the above property
well-connectedness too.

The correspondence can be easily specified. For any proper filter algebra 〈B, F 〉,
we can define a �F by �F a = 	 if a ∈ F and ⊥ otherwise. Then 〈B,�F 〉 is the
well-connected KD45 algebra corresponding to 〈B, F 〉. Conversely, given a well-
connected KD45 algebra 〈B,�〉, we can define F� = {a ∈ B | �a = 	}. Then,
〈B, F�〉 is the corresponding proper filter algebra. It is easy to verify that these two
constructions are both bijections and are inverse of each other. Moreover, the seman-
tic value of every formula is preserved for any valuation θ when we replace either a
� operator by the corresponding filter F� or vice versa. We can also show that the
correspondence is a natural isomorphism between the category of proper filter alge-
bras and the category of well-connected KD45 algebras. But for our purposes in this
paper, this step is unnecessary.

With the semantics of interest defined, we now move on to define logics. The
interpretation of ∀pϕ above in the algebraic semantics is informed by its intended
reading: “for all proposition p, ϕ.” Given this reading, even without formal semantics,
the following axiom schemas and rules for propositional quantifiers, which we call
the �-principles, should be most certain:

– Dist : ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ),

– Inst : ∀pϕ → ϕ[ψ/p], where ψ is subtitutable for p in ϕ and ϕ[ψ/p] is the
result of replacing all free occurrences of p in ϕ by ψ ,

– Vacu : ϕ→ ∀pϕ, if p is not free in ϕ,
– Univ : whenever ϕ is a theorem, ∀pϕ is also a theorem.

Just like a normal modal logic in full generality is defined as a set of formulas
that contains all instances of propositional tautologies and the K axiom schema and
is closed under the necessitation and modus ponens rules, we can similarly define
normal �-logics.

Definition 2.6 A normal �-logic in a language L ⊇ L � is a set of formulas in L
that contains all instances of propositional tautologies, K for B, and the �-principles,
and is closed under the necessitation rule Nec for B, the universalization rule Univ
for ∀p for all p ∈ Prop, and modus ponens.
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In this paper, we only consider normal �-logics. When we put names of axiom
schemas with K and � together, we always mean the smallest normal �-logic con-
taining all instances of those axiom schemas. The ambient language should be clear
from the context. For example, in this section we can write K� for the smallest nor-
mal �-logic and write KD45� for the smallest normal �-logic in L � containing
all instances of D, 4, and 5. In a later section where we prove the main completeness
theorem, we will consider extended languages.

Now that the syntax, semantics, and �-logics are all formally defined, recall the
three principles about belief we have seen in Section 1:

Immod : B∀p(Bp→ p), Bc : ∀pBϕ→ B∀pϕ, 4∀ : ∀pBϕ→ B∀pBϕ.

Now we may have 8 normal �-logics extending KD45� by choosing which ones of
the above three axiom schemas to add. But the following observation is immediate.

Proposition 2.1 KD45�4∀ = KD4∀5� and KD45�Bc = KD4∀5�Immod.

Proof For the first equality, it is enough to show that we can prove all instances of
4 in KD4∀5�. But for any ϕ, letting p be a propositional variable not free in ϕ, we
have the following derivation:

– Bϕ→ ∀pBϕ [Vacu]
– ∀pBϕ→ B∀pBϕ [4∀]
– B∀pBϕ→ BBϕ [Inst, K, modus ponens]
– Bϕ→ BBϕ [modus ponens]

To show that KD45�Bc = KD4∀5�Immod, it is enough to notice that KD45�

easily derives the following implications:

– (∀pBBϕ→ B∀pBϕ)→ (∀pBϕ→ B∀pBϕ),
– (∀pB(Bp→ p)→ B∀p(Bp→ p))→ B∀p(Bp→ p),
– ((∀pBϕ→ B∀pBϕ) ∧ B∀p(Bp→ p))→ (∀pBϕ→ B∀pϕ).

This proposition shows that there can be at most 4 different normal �-logics
extending KD45�: KD45� itself, KD4∀5�, KD45�Immod, and KD45�Bc. If they
are all different, then we will have the simple 4-element Boolean algebra as shown
in Figure 2. But are they all different?

With the algebraic semantics above, we can easily show that KD4∀5� �� Immod,
matching our intuition in the introduction that Immod is refutable even for ideally
introspective agents. Then we see that KD4∀5� is strictly below KD45�Bc, and

Fig. 2 Normal �-logics extending KD45� generated by 4∀, Immod, and Bc
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consequently KD45� must also be strictly below KD45�Immod by some simple
Boolean reasoning. Thus with algebraic semantics, we can at least distinguish the
lower left part from the upper right part. To show that KD4∀5� �� Immod, we only
need a soundness theorem and countermodel. The soundness theorem is easy.

Theorem 2.1 For any ϕ ∈ KD4∀5�, ϕ is valid on all complete proper filter
algebras.

Proof The only interesting axiom here is 4∀. Pick an arbitrary complete proper filter

algebra B and a valuation θ on it. Now for any a ∈ B, θ̃ [a/p](Bϕ) is either 	 or

⊥. If there is an a ∈ B such that θ̃ [a/p](Bϕ) = ⊥, then θ̃ (∀pBϕ) = ⊥. Then
trivially θ̃ (∀pBϕ → B∀pBϕ) = 	. On the other hand, if no such a exists, then
θ̃ (∀pBϕ) = 	, and hence θ̃ (B∀pBϕ) = 	. Then trivially θ̃ (∀pBϕ → B∀pBϕ) =
	. So θ̃ (∀pBϕ→ B∀pBϕ) = 	 is valid either way.

To refute Immod in a countermodel, we first make the following useful and intu-
itive observation. It is intuitive because ∀p(Bp→ p) says that “everything the agent
believes is true,” and the filter FB of a proper filter algebra represents the set of
propositions the agent believes.

Proposition 2.2 For any complete proper filter algebra B and any valuation θ on
it, θ̃ (∀p(Bp→ p)) =∧

FB .

Proof If θ̃ (p) ∈ FB , then θ̃ (Bp) = 	, and hence θ̃ (Bp → p) = θ̃ (p) = θ(p). If

θ̃ (p) �∈ FB , then θ̃ (Bp) = ⊥, and hence θ̃ (Bp → p) = 	. Thus {θ̃ [a/p](Bp →
p) | a ∈ B} is precisely FB (note that 	 must be in FB). Then θ̃ (∀p(Bp → p)) is
the meet of this set, i.e.,

∧

FB .

Given this observation, to refute Immod = B∀p(Bp → p), we only need to find
a complete proper filter algebra B such that the meet of FB is not in FB: it is a
non-principal filter.

Proposition 2.3 Immod is not valid on all complete proper filter algebras.

Proof Let B be a complete proper filter algebra where its Boolean algebra is ℘(N),
and its filter FB is the set of all cofinite sets. Fix an arbitrary valuation θ . Clearly
∧

FB = ∅, the bottom element. Using the previous proposition, θ̃ (∀p(Bp→ p)) =
⊥, but ⊥ �∈ FB . Thus θ̃ (Immod) = ⊥.

In fact, in this algebra, θ̃ (∃p(Bp ∧ ¬p)) = 	 ∈ FB , so θ̃ (B∃p(Bp ∧ ¬p)) = 	.
In other words, this agent believes that there is a proposition she falsely believes.

Now we show the difficulty of invalidating Immod using possible-world-based
semantics. In full generality, allowing propositional contingency in the sense that
the domain of propositions for each possible-world may vary, a frame is a tuple
F = 〈W, R, P 〉 where W is a set (of possible worlds), R is a binary relation
(representing doxastic accessibility among worlds), and P is a function from W to
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℘(℘(W)) so that P(w) represents the propositions that “exist” at w. To be fully gen-
eral, we disregard any notion of “coherence” one might want to impose on F (see
[45] for some natural restrictions for F ). A model is a tuple M = 〈F, w, V 〉 where
w is in the W of F and V is a function from Prop to V (w). To maintain that the range
of V is always in P(w) as we evaluate formulas with modalities, we add it to the def-
inition of a frame that P is non-decreasing: if wRw′ then P(w) ⊆ P(w′). Then the
truth clauses can be defined as usual:

〈F, w, V 〉 � p ⇐⇒ w ∈ V (p);
〈F, w, V 〉 � ¬ϕ ⇐⇒ 〈F, w, V 〉 �� ϕ;
〈F, w, V 〉 � ϕ ∧ ψ ⇐⇒ 〈F, w, V 〉 � ϕ and 〈F, w, V 〉 � ψ;
〈F, w, V 〉 � Bϕ ⇐⇒ for all w′ ∈ R(w), 〈F, w′, V 〉 � ϕ;
〈F, w, V 〉 � ∀pϕ ⇐⇒ for all X ∈ P(w), 〈F, w, V [X/p]〉 � ϕ.

Here R(w) = {w′ ∈ W | wRw′}. Then ϕ being valid on a frame F is defined as
〈F, w, V 〉 making ϕ true for all suitable w and V .

A lot of standard questions can be asked about this semantics. But for now, observe
that for any frame F = 〈W, R, P 〉, ifR is shift-reflexive, meaning that every world in
R(w) is reflexive for all w ∈ W , then F validates Immod. To see this, first note that
for every w in W such that wRw and any suitable valuation V , 〈F, w, V 〉 � Bp→ p

simply by the truth clause of B. Hence ∀p(Bp→ p) is also always true on reflexive
points by the truth clause of ∀p. Then, it is clear again from the truth clause of B that
for any w ∈ W such that every w′ ∈ R(w) is reflexive, 〈F, w, V 〉 � B∀p(Bp→ p).
Thus, if R is shift-reflexive, Immod is validated. And in showing this, P is totally
unused.

Does the above argument show that possible-world semantics is totally unusable
if we want to model scenarios where Immod is false? If one is looking for intuitive
and “clean” models, then the argument does suggest that possible-world semantics
is not useful. The success of possible-world semantics is partly due to the easy first-
order conditions corresponding to natural axioms. For the doxastic logic case, D,4,
and 5 correspond to seriality, transitivity, and Euclidicity, respectively. And from
Euclidicity alone, shift-reflexivity follows. The above argument shows that if we want
to model failure of Immod while validating KD45, we need to give up the appeal-
ing correspondence theory in the standard possible-world semantics. Nevertheless,
it remains open what this semantics is capable of. We conjecture that with carefully
chosen P and R, we can refute Immod and even 4∀ while validating KD45�. How-
ever, we are less confident that the R relation in that frame can be interpreted in a
meaningful way.

3 Soundness of 4∀ on Complete KD45 Algebras

In the last section, we have seen how complete proper filter algebras can be used to
separate Immod from KD4∀5� and hence separate KD45�Immod and KD45�Bc
from KD45� and KD4∀5�. We have also seen that complete proper filter algebras
validate 4∀ using the special property that the B operator always brings semantic
values to either the top element or the bottom element.
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A natural question then is whether we can separate 4∀ from KD45� using alge-
braic semantics based on complete Boolean algebras at all. That is, whether we can
refute 4∀ if we do not assume the above special property about B. In this section, we
show that we cannot. In fact, 4∀, and hence KD4∀5�, are valid on all complete KD45
algebras. For this, we need to extract more structure from complete KD45 algebras
and view the algebraic semantics from a different perspective.

Definition 3.1 For any KD45 algebra B, let fp(B) be the set {a ∈ B | a = �a}.

Lemma 3.1 For any KD45 algebra B, fp(B) has the following properties.

– First, fp(B) = {�a | a ∈ B} = {♦a | a ∈ B}.
– Second, fp(B) is a subalgebra of B. That is, fp(B) is closed under the

complementation, the meet operation, and trivially the � operator of B.
– Third, while 〈fp(B),	B,¬B,∧B〉 is a complete Boolean algebra, it is not

always a regular Boolean sublagebra of B. In other words, when ordered as in
B by ≤B , fp(B) form a complete Boolean lattice whose complementation oper-
ation and finite meet operation are the same as in B. However, it is not always
the case that fp(B) is closed under arbitrary meets in B.

Proof The first two points follow directly from the definition of KD45 algebras. For
the third point, one can easily verify that the join of X ⊆ fp(B) within fp(B) is
�

∨

B X. To see that for every x ∈ X, x ≤ �
∨

B X, note that sinceX ⊆ fp(B), x =
�x. Note also that � is monotone. Hence, given that x ≤ ∨

B X, �x ≤ �
∨

B X.
Thus, x ≤ �

∨

B X. Now suppose y ∈ fp(B) and for all x ∈ X, y ≥ x. Then
y ≥∨

B X. And then y = �y ≥ �
∨

B X. Hence �
∨

B X is the least upper bound
of X in fp(B).

An example where the join of a subset of fp(B) in B is not in fp(B) is given
below.

Definition 3.2 Let N be the set of non-principal ultrafilters in ℘(N) and W =
N � N . For any A ⊆ N, define N (A) = {f ∈ N | A ∈ f }. Then for any
subset X ⊆ W , define �X by: �X = (X ∩ N) ∪ N (X ∩ N). Finally, let BN =
〈〈℘(W), W, W \ ·,∩〉,�〉.

Proposition 3.1 BN is a complete KD45 algebra. Moreover, fp(BN) is not closed
under arbitrary join in BN.

Proof Clearly BN is complete since the Boolean algebra base is a powerset algebra.
Now we show that � satisfies all the relevant properties. Pick arbitrary X, Y ∈ BN,
and let X0 = X ∩ N, X1 = X ∩N , Y0 = Y ∩ N, Y1 = Y ∩N .

– �X∩�Y = (X0∪N (X0))∩(Y0∪N (Y0)) = (X0∩Y0)∪(X0∩N (Y0))∪(Y0∩
N (X0))∪ (N (X0)∩N (Y0)) = (X0∩Y0)∪N (X0∩Y0) = �(X0∩Y0). Here
we used the fact that an ultrafilter contains X0 and Y0 iff it contains X0 ∩ Y0.

– �∅ = ∅ ∪N (∅) = ∅.
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– ��X = �(X0∪N (X0)) = ((X0∪N (X0))∩N)∪N ((X0∪N (X0))∩N) =
X0 ∪N (X0) = �X.

– ¬�X = ¬(X0∪N (X0)) = (N\X0)∪(N \N (X0)) = (N\X0)∪N (N\X0) =
(¬X ∩ N) ∪ N (¬X ∩ N) = �¬X. Hence by the previous part �¬�X =
��¬X = �¬X = ¬�X.

Thus, BN is a complete KD45 algebra. Note also that for every n ∈ N, {n} ∈ fp(BN).
However, N =⋃

n∈N{n} is not in fp(BN).

Semantically, every formula obtained by combining propositional variables with
propositional operators (Boolean or modal) and propositional quantifiers defines a
function from valuations in BProp to B. Now we study these functions.

For simplicity and clarity, we fix an arbitrary complete KD45 algebra B and
define V = BProp. Greek letters “θ” and “γ ” are used to denote valuations in V and
“f ” and “g” are used to denote functions from valuations in V to B. We also use the
notations from lambda calculus to define functions.

The following definition then defines the meaning of the operators in terms of how
they generate functions from BProp to B.

Definition 3.3 First, for every p ∈ Prop, define [p] = λθ ∈ V, θ(p). Then, for any
f, g : V → B and p ∈ Prop, define:

f ∧ g = λθ ∈ V, f (θ) ∧ g(θ);
¬f = λθ ∈ V,¬f (θ);
�f = λθ ∈ V,�f (θ);
∀pf = λθ ∈ V,

∧

{f (θ[a/p]) | a ∈ B}.
Then f ∨ g, f → g, f ↔ g, f ⊕ g, ♦f , and ∃pf are defined in the obvious way.
We call the set of functions generated by ¬, ∧, �, and ∀p for all p ∈ Prop from
{[p] | p ∈ Prop} the set of definable functions on B.

The above definition also gives us an alternative way to define the semantics for
L �.

Definition 3.4 Recall that we have defined [p] = λθ ∈ V, θ(p). We can then extend
this notation to all formulas in L � inductively in the obvious way:

[¬ϕ] = ¬ [ϕ] ;
[ϕ ∧ ψ] = [ϕ] ∧ [ψ] ;

[Bϕ] = � [ϕ] ;
[∀pϕ] = ∀p [ϕ] .

Proposition 3.2 For any ϕ ∈ L �, θ̃ (ϕ) = [ϕ](θ) for all θ ∈ V .

Now we identify two properties of these functions from V to B that are important
to us.
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Definition 3.5 For any f : V → B, we say that f is fixed if its range is in fp(B)

(that is, �f = f ); and we say that f is local if for any p ∈ Prop and θ ∈ V ,

if b ≤ a1 ↔ a2, then b ≤ f (θ[a1/p])↔ f (θ[a2/p]),
for all b ∈ fp(B) and a1, a2 ∈ B.

The intuition behind locality is that for f to be local, what f is below a fixpoint
b ∈ fp(B) (namely what f ∧ b is) should only depend on what the arguments are
below b (namely what θ(p)∧ b is for all p ∈ Prop). The above definition formalizes
this intuition because in Boolean algebras, x ≤ y ↔ z iff x ∧ y = x ∧ z.

But why are these two properties important to us? Recall that what we are trying
to show here is that ∀pBϕ → B∀pBϕ is valid on B. If we can show that [∀pBϕ]
is fixed, which means that [∀pBϕ] = �[∀pBϕ], then we are done. This is because,
with [∀pBϕ] being fixed, for any θ ∈ V ,

θ̃ (∀pBϕ) = [∀pBϕ](θ) = (�[∀pBϕ])(θ) = [B∀pBϕ](θ) = θ̃ (B∀pBϕ).

Obviously, then, θ̃ (∀pBϕ → B∀pBϕ) = 	. So our goal is now reduced to showing
that [∀pBϕ] is fixed. Note that [∀pBϕ] = ∀p�[ϕ]. It is trivial to see that �[ϕ] is
fixed. So one might hope that we can show that whenever f is fixed, ∀pf is also
fixed, and then claim victory. However, this is in general false, given the example we
produced in Definition 3.2 above showing that the set of fixpoints fp(B) is in general
not closed under arbitrary meets. One can construct an f whose range (when we
vary the p coordinate of the input valuation) is precisely a set of fixpoints in fp(B)

whose meet is not in fp(B). Then ∀pf is not fixed. What is missing in this strategy
of showing that ∀pf is fixed whenever f is fixed is precisely locality. We will show
first that [Bϕ] must be local in addition to being fixed. We will then show that if f is
fixed and local, then ∀pf is fixed and local.

To show that [Bϕ] is local, the following lemma, showing in fact that all definable
functions are local, suffices.

Lemma 3.2 We have the following closure properties for local functions.

– Projection functions of the form [p] for some p ∈ Prop are local.
– Local functions are closed under Boolean combinations: if f, g : V → B are

local, then f ∧ g and ¬f are both local.
– Local functions are closed under �.
– Local functions are closed under ∀p for all p ∈ Prop.

Hence, all definable functions are local.

Proof The first two points are easy. For the third, consider �f where f is local.
Then for a b ∈ fp(B), we need to show that

if b ≤ a1 ↔ a2, then b ≤ �f (θ[a1/p])↔ �f (θ[a2/p]).
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Given that f is local, when b ≤ a1 ↔ a2, b ≤ f (θ[a1/p]) ↔ f (θ[a2/p]). Box
both sides (using that � is monotone), and we see that

b = �b ≤ �(f (θ [a1/p])↔ f (θ[a2/p])) ≤ �f (θ[a1/p])↔ �f (θ[a2/p]).
The first equality is due to that b ∈ fp(B), and the last inequality is by the normality
of �: it commutes with finite meets, and �(x → y) ≤ �x → �y.

Now, for the fourth point, consider ∀pf where f is local. In this case, we need to
work with an arbitrary q ∈ Prop, an arbitrary b ∈ fp(B), and arbitrary a1, a2 ∈ B
such that b ≤ a1 ↔ a2, and show that

b ≤
∧

{f (θ[a1/q][c/p]) | c ∈ B} ↔
∧

{f (θ [a2/q][c/p]) | c ∈ B}.
If q = p, then this is trivially true (the right-hand-side of the inequality is 	). So we
now consider the case when q �= p, in which case θ [a1/q][c/p] = θ [c/p][a1/q] and
θ [a2/q][c/p] = θ [c/p][a2/q]. For simplicity, let θc = θ [c/p]. Since we assumed
that f is local, by definition, we have the following for all c ∈ B:

b ≤ f (θc[a1/q])↔ f (θc[a2/q]).
Thus, b ≤ ∧{f (θc[a1/q])↔ f (θc[a2/q]) | c ∈ B}. Hence, all we need now is the
following simple principle on complete Boolean algebras:

∧

{f (θc[a1/q])↔ f (θc[a2/q]) | c ∈ B} ≤
∧

{f (θc[a1/q]) | c ∈ B} ↔
∧

{f (θc[a2/q]) | c ∈ B}.
To see that in general,

∧

i∈I (xi ↔ yi) ≤ ∧

i∈I xi ↔ ∧

i∈I yi , note that it is
enough to show that

∧

i∈I (xi ↔ yi) ∧∧

i∈I xi ≤ ∧

i∈I yi and symmetrically that
∧

i∈I xi ↔ yi ∧∧

i∈I yi ≤∧

i∈I xi . Both of them are easy.

That [Bϕ] is fixed is immediate from the following lemma.

Lemma 3.3 We have the following closure properties for fixed functions.

– For any f : V → B, �f is fixed.
– Fixed functions are closed under Boolean combinations.
– Not all fixed functions are closed under ∀p.

Proof Immediate from Lemma 3.1.

The only missing piece then is the following lemma.

Lemma 3.4 Fixed local functions are closed under ∀p. That is, if f is fixed and
local, then ∀pf is also fixed and local, for any p ∈ Prop.

Proof Pick an arbitrary fixed and local f : V → B. Since fixed local functions are
closed under Boolean combinations and local functions are closed under ∀p, without
loss of generality, we only need to show that ∃pf is also fixed.

The idea is the following. Pick an arbitrary θ ∈ V . Then we show that (∃pf )(θ)

in fact has a witness: there exists c ∈ B such that (∃pf )(θ) = f (θ[c/p]). Since f is
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fixed, f (θ[c/p]) ∈ fp(B). So, (∃pf )(θ), being just f (θ[c/p]), is in fp(B). Since θ

is arbitrarily chosen, this shows that ∃pf is fixed. As a consequence, �∃pf = ∃pf .
Hence, let us fix an arbitrary θ ∈ V and from now on write f (a) for f (θ[a/p]).

Since f is fixed and local, we know that:

– For any a ∈ B, f (a) ∈ fp(B).
– For any b ∈ fp(B) and any a, a′ ∈ B such that b ≤ a ↔ a′, b ≤ f (a)↔ f (a′).

Our goal, then, is to show that there is a c ∈ B such that f (c) =∨{f (a) | a ∈ B}.
To this end, let F = {f (a) | a ∈ B}. We will show soon that F as a poset (with

≤ inherited from B) has the following two properties:

– (Directed) For any a, b ∈ F , there is a c ∈ F such that a, b ≤ c.
– (Chain) For any ascending chain 〈ai〉i≤κ in F , there is t ∈ F such that for all

i < κ , ai ≤ t .

From these two conditions, it is easy to see that F has an x that is the greatest in F .
By Zorn’s lemma, F has a maximal element. By (Directed), the maximal element
given by Zorn’s lemma must also be the greatest element of F . Hence, the join of F

is in F . Then, anything in f−1(
∨

F) can serve as the witness for (∃pf )(θ) =∨

F .
Now we show the two properties. For (Directed), note that F ⊆ fp(B) since f is

fixed. Thus, if we pick b1, b2 ∈ F and a1, a2 ∈ B such that f (a1) = b1 and f (a2) =
b2, we can apply locality here. Indeed, let a = (a1 ∧ b1)∨ (a2 ∧ (b2 \ b1)). Note that
b2 \ b1 ∈ fp(B). It is also easy to see that b1 ≤ a ↔ a1 and b2 \ b1 ≤ a ↔ a2. Then,
b1 ≤ f (a)↔ f (a1) and b2 \ b1 ≤ f (a)↔ f (a2). However, by the way we picked
a1 and a2, b1 ≤ f (a1) and b2 \ b1 ≤ f (a2). Thus, b1 ≤ f (a), and b2 \ b1 ≤ f (a),
and b1 ∨ b2 ≤ f (a) ∈ F .

For (Chain), we can use the same strategy. Pick an ascending chain 〈bi〉i≤κ in F

for some cardinal κ with a corresponding sequence 〈ai〉i<κ such that f (ai) = bi for
all i < κ . Then inductively define 〈ci〉i<κ by

c0 = a0 ∧ b0;
ci+1 = ci ∨ (ai+1 ∧ (bi+1 \ bi));

cλ =
(

∨

i<λ

ci

)

∨
(

aλ ∧
(

bλ \ f

(

∨

i<λ

ci

)))

.

By an easy induction, we can see that for all i < κ , ci ≤ bi , (note that (aλ ∧ (bλ \ f

(
∨

i<λ ci))) ≤ bλ) and that 〈ci〉i<k is an ascending chain). Less easy is the following:

1. For all λ ≤ κ ,
∨

i<λ bi ≤ f (
∨

i<λ ci).

We use strong induction here, and the base case is trivial. Now suppose as (IH) that for all
δ<λ,

∨

i<δ bi≤f (
∨

i<δ ci). Then our only goal is to show that
∨

i<λ bi≤f (
∨

i<λ ci).

– Say λ = α + 1. Then
∨

i<λ bi = bα and
∨

i<λ ci = cα since 〈bi〉i<κ and 〈ci〉i<κ

are both ascending chains. Hence we are just showing that bα ≤ f (cα). Now
there are two cases.

– Say α = β + 1. Then cα = cβ ∨ (aα ∧ (bα \ bβ)). By (IH) applied to α,
bβ = ∨

i<α bi ≤ f (
∨

i<α ci) = f (cβ). Note also that bβ ≤ cβ ↔ cα
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and bα \ bβ ≤ aα ↔ cα . By locality, then, bβ ≤ f (cβ) ↔ f (cα) and
bα \ bβ ≤ f (aα) ↔ f (cα). However, by (IH) and the way we picked
aα , bβ ≤ f (cβ) and bα \ bβ ≤ bα ≤ f (aα). Thus bβ ≤ f (cα) and
bα \ bβ ≤ f (cα). Thus bα ≤ f (cα).

– Say α is a limit ordinal. For convenience let cβ = ∨

i<α ci and bβ =
f (cβ). Here bβ ∈ fp(B) since f is fixed. By definition, cα = cβ ∨
(aα∧ (bα \bβ)). Now we can apply the same strategy again to show that
bα ≤ f (cα).

– Then we consider the interesting case where λ is a limit ordinal. What we need
to show here is that

∨

i<λ bi ≤ f (
∨

i<λ ci), which means for all j < λ, bj ≤
f (

∨

i<λ ci). To show this, pick an arbitrary j < λ. Then consider bj ∧∨

i<λ ci .
Here we claim that this is just cj . First, bj ∧∨

i<λ ci = ∨

i<λ(bj ∧ ci). (This
distributivity law holds on any complete Boolean algebra.) Also, for i ≤ j , bj ∧
ci = ci since ci ≤ bi for all i < κ . Since 〈ci〉i<κ is ascending,

∨

i≤j (bj ∧ ci) =
cj . Thus we only need to show that for all i such that j ≤ i < λ, bj ∧ ci = cj .
Obviously we need to do this by induction. The base case where i = j is trivial
(again, by ci ≤ bi). For the inductive step:

– bj∧ci+1 = (bj∧ci)∨(bj∧ai+1∧(bi+1\bi)) = (bj∧ci)∨(ai+1∧bi+1∧
¬bi ∧ bj ) = bj ∧ ci = cj . Here the first equality is by distributivity,
the second by simple Boolean reasoning, the third by the fact that j < i

and hence bj ≤ bi and bj ∧ ¬bi = ⊥, and the fourth by the induction
hypothesis.

– For a limit ordinal k between j and λ, bj ∧ ck = (bj ∧∨

i<k ci)∨ (bj ∧
ak ∧ (bk \ f (

∨

i<k ci))). Now, by the induction hypothesis that for all i
such that j ≤ i < k, bj ∧ci = cj , we get that bj ∧∨

i<k ci = cj . Recall
that we are inside another induction with (IH) assumed. Applying (IH)
to k, we get that bj ≤ ∨

i<k bi ≤ f (
∨

i<k ci). Hence, bj ∧ ak ∧ (bk \
f (

∨

i<k ci)) = ⊥, and bj ∧ ck = cj .

So, we have shown that bj ∧∨

i<λ ci = cj . Adding this to the fact that cj ≤ bj ,
bj ≤ ∨

i<λ ci ↔ cj . By locality, bj ≤ f (
∨

i<λ ci) ↔ f (cj ). But bj ≤ f (cj )

since we can apply (IH) to j + 1. Thus, bj ≤ f (
∨

i<λ ci), and we are done
here.

Now we put the three lemmas together to prove the main theorem of this section.

Theorem 3.1 For any ϕ ∈ L � and any complete KD45 algebraB, 4∀ = ∀pBϕ→
B∀p�ϕ is valid on B.

Proof Let B be an arbitrary complete KD45 algebra. Then all the definitions,
propositions, and lemmas in this section apply to B. A straightforward induction
shows that [Bϕ] as defined in Definition 3.4 is a definable function from V to B
according to Definition 3.3. By Lemma 3.2, it is local. Since [Bϕ] = �[ϕ], by
Lemma 3.3, it is fixed. Thus, by Lemma 3.4, [∀pBϕ] = ∀p[Bϕ] is also fixed as
[Bϕ] is both fixed and local. Thus, [∀pBϕ] = �[∀pBϕ] = [B∀pBϕ], and hence
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[∀pBϕ → B∀pBϕ] = [∀pBϕ] → [B∀pBϕ] = [∀pBϕ] → [∀pBϕ], which is
constantly 	 since in any Boolean algebra and for any element x in it, x → x

is the top element. Then, according to Proposition 3.2, for any valuation θ on B,
θ̃ (4∀) = θ̃ (∀pBϕ→ B∀pBϕ) = [4∀](θ) = 	. Hence, 4∀ is valid on B.

Before we move on to the next section, let us briefly reflect on what this theorem
tells us. First, we see that to separate 4∀ from KD45� using algebraic semantics, we
need to drop the completeness assumption. The difficulty here is that it is not known
which meets and joins we need to make the semantics for all formulas with propo-
sitional quantifiers well defined. One trivial way to get a KD45 algebra on which
the semantics is well defined is to use the Lindenbaum algebra of KD45�. How-
ever, showing that 4∀ in this algebra does not evaluate to 	 is plainly equivalent to
showing that KD45� does not prove 4∀, so this is hardly making any progress. What
we need here is a less abstract way to build KD45 algebras on which the semantics
is well defined, and this seems to require a less abstract sufficient condition for the
well-definedness of the semantics that is strictly weaker than lattice completeness.
Another way is to use the semantics with propositional contingency as we sketched
at the end of Section 2. The difficulty there seems to be validating the �-principles.

Second, we mentioned in Lemma 3.1s that there is a complete KD45 algebra B
such that fp(B) is not closed under arbitrary meets in B. If we examine the syntac-
tical structure of 4∀ = ∀pBϕ → B∀pBϕ, it seems that 4∀ is a candidate formula
whose validity on a KD45 algebra B would correspond to the condition that fp(B)

is closed under arbitrary meets. After all, as we vary the valuation of p, Bϕ picks up
a subset of fp(B). Then the validity of 4∀ says that this meet is below6 the � of this
meet, which then implies, with a bit of manipulation like what we did in Lemma 3.1,
that this meet is also a fixpoint. Of course, this is not to be: while the validity of 4∀
entails that some meets of fixpoints are still fixpoints, it does not correspond to the
condition that the set of fixpoints is closed under arbitrary meets. What is at work
here is that the expressivity constraint of the language is also a constraint on which
sets of fixpoints Bϕ can pick up.

Can there be a way to syntactically capture the condition that the set of fix-
points is closed under arbitrary meets? One way is to add uninterpreted propositional
operators. For example, let L �O be the language extending L � with a unary
operator O. Then, a valuation θ assigns not only an element in B to each proposi-
tional variable, but also a unary function on B to O. The semantics of the formulas
in L �O under valuation θ can be defined in the obvious way. Then, the validity
of ∀pBOp → B∀pBOp on B corresponds to fp(B) being closed under arbitrary
meets. We leave further investigation of this formalism as future work.

4 Completeness of KD4∀5�with Respect to Complete Proper Filter
Algebras

In this section, we show the following completeness theorem.

6Through out this paper, we use “below” in the weak sense when talking about elements in lattices.
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Theorem 4.1 For any ϕ ∈ L �, if ϕ is valid on all complete proper filter algebras,
then ϕ ∈ KD4∀5�.

Like most completeness proofs, we can show instead that any non-theorem ϕ

of KD4∀5� is refuted by a complete proper filter algebra. Then, one strategy
particularly suitable for algebraic semantics, also used in [40], is the following:

– Construct the Lindenbaum-Tarski algebra B of KD4∀5�. Automatically, B is
a KD45 algebra, and ϕ is evaluated to a non-top element in B by a naturally
defined valuation.

– Transform B into a complete proper filter algebra C while keeping ϕ evaluated
to a non-top element. The transformation is typically by first turning B into a
proper filter algebra and then using a construction like MacNeille completion.

The problem with this approach is that neither of the standard methods of construct-
ing MacNeille completions of Boolean algebra with operators, namely the lower and
upper MacNeille completions (see [46] or [47]), can be used here. Since proper fil-
ter algebras correspond to well-connected KD45 algebras, we can directly use the
definition of lower or upper MacNeille completion. However, the upper MacNeille
completion of a well-connected KD45 algebra is not necessarily a KD45 algebra (we
leave this to the reader; the proper filter agebra based on the finite-cofinite algebra in
the proof of Proposition 4.1 below can be used to show this as well). The lower Mac-
Neille completion construction does preserve the property of being well-connected
and KD45. When translated to proper filter algebras, we get the following definition.

Definition 4.1 The lower MacNeille completion B of a proper filter algebra B =
〈B, F 〉 is 〈B,↑F 〉 where B is the MacNeille completion of B (which can be assumed
to have B as a subalgebra) and ↑F = {a ∈ B | ∃b ∈ F, b ≤B a}.

Intuitively, the lower MacNeille completion of a proper filter algebra is obtained
by first completing the Boolean algebra part and then extending the original filter
minimally to be a filter in the completed Boolean algebra. The problem with the
lower MacNeille completion construction is that it may change the semantic value of
a sentence from a non-top element to the top element. This means that invalidity, or
equivalently refutability, is not preserved.

Proposition 4.1 There is a sentence ϕ ∈ L � and a proper filter algebra B such
that ϕ is invalid in B but is valid in the lower MacNeille completion B.

Proof Let B be the Boolean algebra of finite or cofinite subsets of N and F the set of
cofinite sets of N. Then B = 〈B, F 〉 is a proper filter algebra. The lower MacNeille
completion B is then 〈℘(N), F 〉where ℘(N) is the powerset algebra ofN. Note that,
importantly, the lower MacNeille completion does not change F .

Let ϕ be ∃p(¬Bp∧¬B¬p). For any valuation θ on B, θ̃ (ϕ) is⊥, since θ̃ (p) ∈ B

is either finite or cofinite, and thus either θ̃ (p) or θ̃ (¬p) is cofinite. Then either
θ̃ (¬Bp) or θ̃ (¬B¬p) is ⊥. This means that θ̃ (ϕ) = ⊥. Now, let θ be a valuation
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on B such that θ(p) is the set of even numbers. Then θ(p) is infinite and coinfinite.
Hence θ̃ (¬Bp ∧ ¬B¬p) is 	, and so θ̃ (ϕ) = 	. Since ϕ is a sentence with no free
variables, this means that ϕ is valid on B.

The lesson from the above example is that, to preserve the invalidity of ∃p(¬Bp∧
¬B¬p), we need to extend F , the filter of cofinite sets, into an ultrafilter. However,
there seems to be no canonical way to do this: every ultrafilter seems as good as any
other. It seems that to prove the completeness of KD4∀5�, we need a more detailed
analysis of both the algebras and the system itself.

Our approach is based on the following observation: every complete proper fil-
ter algebra B = 〈B, F 〉 has a natural quotient Boolean algebra B/F , and a belief
formula in the form of Bϕ, where ϕ contains only Boolean connectives, is asserting
that ϕ evaluates to the top element in the quotient B/F . Hence, Bϕ is talking about
the quotient algebra B/F . With propositional quantifiers, L � can in fact talk about
B/F in a first-order way.

Given this observation, we have the following strategy, where we focus on just
the sentences since for any formula, it is valid if and only if its universal closure, the
result of bounding all free variables with universal quantifiers, is valid:

– For a sentence ϕ in L � that is valid in all complete proper filter algebras, find
a corresponding ψ in a first-order language for Boolean algebras. This ψ will
be valid on all natural quotient Boolean algebras of all complete proper filter
algebras.

– Show that if a first-order sentence is valid on all natural quotient Boolean alge-
bras of complete proper filter algebras, then it is in fact valid on all non-trivial
Boolean algerbas. Consequently,ψ will have a proof in the usual first-order logic
for all non-trivial Boolean algebras.

– Translate the first-order proof of ψ into a proof of ϕ in KD4∀5�.

The main difficulties of implementing this strategy lie in the first two steps. First, in
fact, not every sentence ϕ ∈ L � can be translated into a first-order sentence to be
evaluated on the natural quotient Boolean algebras. The reason is that a sentence in
L � can be evaluated to a proposition that is neither top nor bottom, yet a first-order
sentence can only be true or false. To cope with this, several auxiliary languages will
be introduced, so that we can separate the translatable part and the non-translatable
part of a sentence in L �. It turns out that the non-translatable part is well behaved,
so we can proceed with them.

In the second step, a theorem about the natural quotients of complete proper fil-
ter algebras is needed. Essentially, it has to be shown that the non-trivial quotients of
complete Boolean algebras are general enough to validate only those first-order for-
mulas that are valid in all non-trivial Boolean algebras. In other words, the first-order
logic of the non-trivial quotients of complete Boolean algebras is precisely the first-
order logic of all non-trivial Boolean algebras. While the first-order logic remains
the same, it should be mentioned here that there are interesting special properties of
quotients of complete Boolean algebras, e.g., countable separation property (see [48],
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Lemma 5.27). Previous results about the quotients of complete Boolean algebras
include [49, 50], and [51]. We will extend the result in [51] to fulfill our purpose.

The rest of this section is split into four subsections. In Section 4.1, we define
a number of auxiliary languages, their semantics, and translations between some
of them. In Section 4.2, we show how the completeness of KD4∀5� follows from
two lemmas resolving the two difficulties mentioned above. Then, the next two
subsections, Sections 4.3 and 4.4, are devoted to the two lemmas, respectively.

4.1 Auxiliary languages, semantics, and translations

Definition 4.2 Let L �zg denote the language extending L � with two new propo-
sitional constants z and g. For more readability, we sometimes use overline instead
¬ for the negation of formulas and omit the ∧ in a conjunction of literals. Now we
define the following languages:

LBool : t ::= p | 	 | ¬t | (t ∧ t) where p ∈ Prop;
LBoolzg : ϕ ::= z | g | p | 	 | ¬ϕ | (ϕ ∧ ϕ) where p ∈ Prop;
LB�zg : ϕ ::= Bt | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ where t ∈ LBoolzg, p ∈ Prop.

Very roughly speaking, z and g will be used to capture the non-translatable part,
and LB�zg will be the translatable part. Recall that the main difficulty of translat-
ing L � to a first-order logic is that there are sentences in L � that evaluate to some
intermediate proposition in some complete proper filter algebra. We will effectively
show later that the Boolean combinations of z and g exhaust all possible semantic
values that a sentence in L � can take, and eventually every formula in L � is prov-
ably equivalent to a Boolean combination of z, g, and formulas in LB�zg. It will be
shown later in this section that LB�zg is translatable to a first-order language.

The next definition fixes the interpretation of the new constants z and g.

Definition 4.3 For any complete proper filter algebra B = 〈B, F 〉, define zB, gB
by

zB =
∧

F,

gB =
∨

{a ∈ B | a is an atom and a ≤ zB}.
The subscripts of zB and gB may be dropped if the context of which algebra we are
talking about is clear.

For any valuation θ on B, we then extend it uniquely to a L �zg-valuation θ̃ :
L �zg → B, using the definition in Definition 2.5 plus two more clauses for z and
g: θ̃ (z) = z and θ̃ (g) = g.

Under this semantics, g and zg are semantically equivalent, but g and zg are not.
For symmetry, we will mostly use zg instead of g to contrast zg.

It is important to see that for every complete proper filter algebra B, zB and gB
are expressible in L �. For this, we introduce a few more abbreviations.
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Definition 4.4 Define the following abbreviations:

〈z〉ϕ = ̂B(z ∧ ϕ);
[z]ϕ = B(z→ ϕ);

at (ϕ) = 〈z〉ϕ ∧ ∀q([z](ϕ→ q) ∨ [z](ϕ→ ¬q)).

Here q is some variable not free in ϕ.

Proposition 4.2 For any complete proper filter algebra B and valuation θ :

1. θ̃ (〈z〉ϕ) = θ̃ (¬[z]¬ϕ).
2. θ̃ (〈z〉ϕ) and θ̃ ([z]ϕ) are either 	 or ⊥.
3. θ̃ (〈z〉ϕ) = 	 if and only if z ∧ θ̃ (ϕ) is not ⊥.
4. θ̃ ([z]ϕ) = 	 if and only if θ̃ (ϕ) ≥ z. In other words, θ̃ ([z]ϕ) = 	 if and only if

θ̃ (ϕ) ∧ z = z.
5. θ̃ (at (ϕ)) = θ̃ (〈z〉ϕ ∧ ¬∃q(〈z〉(ϕ ∧ q) ∧ 〈z〉(ϕ ∧ ¬q))) where q is not free in ϕ.
6. θ̃ (at (ϕ)) is either 	 or ⊥. It is the former if and only if z ∧ θ̃ (ϕ) is an atom in

(the Boolean algebra part of) B.
7. z = θ̃ (∀p(Bp→ p)).
8. g = θ̃ (∀p(Bp→ p) ∧ ∃p(p ∧ at (p)).

Proof The last item may need some explanation. The rest are straightforward. To
start, unpack the semantics of θ̃ (∀p(Bp→ p)∧∃p(p∧at (p))), and we see that it is

θ̃ (∀p(Bp→ p)) ∧∨{θ̃ [a/p](p ∧ at (p)) | a ∈ B}
= z ∧∨{a ∧ θ̃ [a/p](at (p)) | a ∈ B}
=∨{z ∧ a ∧ θ̃ [a/p](at (p)) | a ∈ B}.

Now if a is an atom below z, then z ∧ a = a, which is still an atom. Then, given

that θ̃ [a/p] = a and hence z ∧ θ̃ [a/p] = z ∧ a, θ̃ [a/p](at (p)) = 	 according to

item 6 above. Then z ∧ a ∧ θ̃ [a/p](at (p)) = a. This means that all atoms below z

are included in the join. On the other hand, if a is not an atom below z, then z ∧ a ∧
θ̃ [a/p](at (p)) = ⊥ since θ̃ [a/p](at (p)) is ⊥, again by item 6 above. Thus the join
is precisely the join of atoms below z.

It can also be shown that ∃p(p ∧ at (p)) expresses the join of those elements
whose meet with z is an atom. However, taking this as a primitive seems to be less
convenient for later work.

Now we focus on the fragment LB�zg and show in what sense it can be seen as
talking about the natural quotients of complete proper filter algebras in a first-order
way. To this end, we first define precisely what we mean by the natural quotient of a
complete proper filter algebra B.

Definition 4.5 For any complete proper filter algebraB = 〈B, F 〉, define its natural
quotient B/F as the tuple 〈B/F, πB(z), πB(g)〉, where πB is the quotient map
from B to B/F . We may drop the subscript of πB when its context is clear.
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When viewed as a first-order structure, natural quotients of complete proper filter
algebras are in the type of Boolean algebras augmented with two constants. Hence
we define the following first-order language.

Definition 4.6 Let FOL be the first-order language defined as below.

Terms : t ::= p | 	 | ¬t | (t ∧ t) where p ∈ Prop,

FOL : ϕ ::= (t = t ′) | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ where t, t ′ ∈ Terms.

Let FOL zg be the first-order language extending FOL by adding z and g as two
constants.

Note that here we are intentionally reusing the symbols in L �, so that the trans-
lation between FOL zg and LB�zg can be defined more directly. Note also that
because we use the same symbols for meet in terms and conjunction in formulas,
we need to bracket atomic formulas to avoid ambiguity. Now we define the standard
first-order semantics for FOL zg.

Definition 4.7 For any triple 〈B, z, g〉 where B is a Boolean algebra and z, g ∈ B,
a variable assignment θ : Prop → B can be extended uniquely to θ̃ on the terms of
FOL zg by the following inductive clauses:

θ̃ (p) = θ(p), θ̃(g) = g, θ̃(z) = z, θ̃(	) = 	,

θ̃ (¬t) = ¬Bθ̃(t), θ̃ ((t ∧ s)) = θ̃ (t) ∧B θ̃(s).

Then the semantics of FOL zg is defined by

〈B, z, g〉, θ � (t = s) ⇐⇒ θ̃ (t) = θ̃ (s)

〈B, z, g〉, θ � ¬ϕ ⇐⇒ 〈B, z, g〉, θ �� ϕ

〈B, z, g〉, θ � (ϕ ∧ ψ) ⇐⇒ 〈B, z, g〉, θ � ϕ and 〈B, z, g〉, θ � ψ

〈B, z, g〉, θ � ∀pϕ ⇐⇒ 〈B, z, g〉, θ [a/p] � ϕ for all a ∈ B.

Syntactically, LB�zg and FOL zg are almost identical. This can be seen from
how simply the translations between them can be defined.

Definition 4.8 Let T be the function from LB�zg to FOL zg such that T (ϕ)

is the result of replacing all occurrences in ϕ of formulas of the form Bψ where
ψ ∈ LBoolzg by (ψ = 	).

Let T ′ be the function from FOL zg to LB�zg such that T ′(ϕ) is the result of
replacing all atomic formulas (s = t) by B(s ↔ t).

For example, recall the sentence ∃p(¬Bp ∧ ¬B¬p) we used in Proposition 4.1
where we showed that lower MacNeille completion does not preserve its semantic
value. It is not hard to see that T (∃p(¬Bp ∧ ¬B¬p)) = ∃p(¬(p = 	) ∧ ¬(¬p =
	)). Then T (∃p(¬Bp ∧ ¬B¬p)) is false on a 〈B, z, g〉 iff B is the 2-element
Boolean algebra. This matches our observation there that ∃p(¬Bp∧¬B¬p) is false
(evaluates to ⊥) on a complete proper filter algebra B = 〈B, F 〉 iff the filter F is an
ultrafilter, or equivalently iff the quotient B/F is the 2-element Boolean algebra.
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To make the intuition that LB�zg talks about natural quotients in the first-order
way precise, we use the following lemma.

Lemma 4.1 For any ϕ ∈ LB�zg, any complete proper filter algebra B = 〈B, F 〉,
and any valuation θ on B, θ̃ (ϕ) is either 	 or ⊥, and θ̃ (ϕ) = 	 if and only if
〈B/F, π(z), π(g)〉, π ◦ θ � T (ϕ). As a corollary, when ϕ is a sentence, B � ϕ iff
B/FB � T (ϕ).

Proof To avoid clutter, we omit the pair of parentheses immediately after π and also
the circle for composing π with θ . Hence πp = π(p) and πθ(p) = π(θ(p)) =
(π ◦ θ)(p). Now obviously we need an induction on LB�zg.

For any ψ ∈ LBoolzg, a simple induction shows that πθ̃(ψ) = ˜πθ(ψ), since π

is a quotient map and hence a homomorphism. By our algebraic semantics defined
in Definition 2.5, θ̃ (Bψ) is either 	B or ⊥B according to whether θ̃ (ψ) is in the
filter F or not. Also, since F = π−1(	B/F ) by the definition of π in Definition 4.5,
πθ̃(ψ) = 	B/F if and only if θ̃ (ψ) ∈ F . Then

θ̃ (Bψ) = 	B ⇐⇒ θ̃ (ψ) ∈ F ⇐⇒ πθ̃(ψ) = 	B/F ⇐⇒ ˜πθ(ψ) = 	B/F

⇐⇒ 〈B/F, πz, πg〉, πθ � ψ = 	
⇐⇒ 〈B/F, πz, πg〉, πθ � T (Bψ).

For formulas in LB�zg of the form ¬ϕ where ϕ ∈ LB�zg, note first that
T (¬ϕ) = ¬T (ϕ). Also, θ̃ (¬ϕ) must be either 	B or ⊥B , given the induction
hypothesis that θ̃ (ϕ) is either 	B or ⊥B . Then, with the induction hypothesis that
θ̃ (ϕ) = 	B iff 〈B/F, πg, πz〉 � T (ϕ), we have

θ̃ (¬ϕ) = 	B ⇐⇒ θ̃ (ϕ) = ⊥B ⇐⇒ θ̃ (ϕ) �= 	B

⇐⇒ 〈B/F, πg, πz〉 �� T (ϕ)

⇐⇒ 〈B/F, πg, πz〉 � ¬T (ϕ)

⇐⇒ 〈B/F, πg, πz〉 � T (¬ϕ).

For formulas in LB�zg of the form ϕ1 ∧ ϕ2, the situation is completely similar. We
only need to do more replacements of equivalent claims coming from the induction
hypothesis in this case.

Now consider ∀qϕ. Note first that for all a ∈ B, by induction hypothesis we

know that θ̃ [a/q](ϕ) is either 	B or ⊥B , since the proof works for all valuations.

Then, θ̃ (∀qϕ) = ∧{θ̃ [a/q](ϕ)} must be either 	B or ⊥B . Moreover, being a meet

of elements that are either 	B or ⊥B , it is 	B iff for all a ∈ B, θ̃ [a/q](ϕ) = 	B ,
which, using induction hypothesis, is equivalent to

for all a ∈ B, 〈B/F, πg, πz〉, π ◦ (θ [a/q]) � T (ϕ). (1)

On the other hand, according to the semantics, 〈B/F, πg, πz〉, πθ � T (∀qϕ) iff

for all a ∈ B/F, 〈B/F, πg, πz〉, (π ◦ θ)[a/q] � T (ϕ). (2)
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Hence, all we need to show now is that Eqs. 1 and 2 are equivalent. Too see that
they are equivalent, note that for any a ∈ B, π ◦ (θ [a/q]) is the same function as
(π ◦ θ)[π(a)/q]. Then, given that π is surjective, we are done.

4.2 Logics in Auxiliary Languages and Completeness Proof

In the last subsection, we introduced a number of fragments of L �zg, including
LB�zg, which can be translated to the first-order language FOL zg in a semanti-
cally meaningful way: a formula ϕ ∈ LB�zg evaluates to 	 in a complete proper
filter algebra B iff its translation T (ϕ) is true on the natural quotient B/FB .
From this we see that semantically, LB�zg is talking about the natural quotients of
complete proper filter algebras in a first-order way.

In this subsection, we move to the logical side of this translation. We will first
augment KD4∀5� with two definitional axioms for the two new constants z and g
and obtain KD4∀5�zg. Then we provide a first-order logic FOLzg that is sound and
complete with respect to a class of Boolean algebras with two extra named elements,
which we call the class of zg-algebras. This class of zg-algebras is bigger than the
class of natural quotients of complete proper filter algebras. However, we can show
in a later section that the first-order logics of them are the same. In this section, the
main task is to show that reasoning in FOLzg can be carried out in KD4∀5�zg
by the reverse translation T ′. Then, assuming that we can separate the translatable
part LB�zg and the non-translatable part and that FOLzg is not only the first-order
logic of zg-algebras but also the first-order logic of the class of natural quotients
of complete proper filter algebras, we show in this subsection that KD4∀5�zg is
complete with respect to all complete proper filter algebras. Given that KD4∀5�zg
is a definitional extension of KD4∀5�, the completeness of KD4∀5� follows.

To start, we define the system KD4∀5�zg.

Definition 4.9 Define logic KD4∀5�zg by extending KD4∀5� with the following
two axioms for z and g:

z : z ↔ ∀p(Bp→ p),

g : g ↔ (∀p(Bp→ p) ∧ ∃p(p ∧ at (p))).

The new axioms state the semantic definition of z and g, as shown in Propo-
sition 4.2. Moreover, the right-hand side of these two axioms are in L �. Hence
KD4∀5�zg is a conservative extension of KD4∀5�, and henceforth we only need
to prove that KD4∀5�zg is the complete logic of complete proper filter algebras in
L �zg according to the semantics defined in Definition 4.3.

Notation 1 In this and the next subsection, we will state many provability claims in
the system KD4∀5�zg. We write � ϕ for ϕ being provable in KD4∀5�zg and write
ϕ �� ψ for � ϕ ↔ ψ . We treat �� as a kind of equality between formulas so that in
notation we chain them and use substitutions. We can do this because KD4∀5�zg is
a normal�-logic, and thus�� is a congruence relation with respect to all connectives
and quantifiers.
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Nowwe prove two lemmas that will be very useful. The first shows the importance
of having 4∀, and the second shows the use of the constant z. To state the first lemma,
we call a formula ϕ ∈ L �zg fully modalized when every propositional letter (those
in Prop ∪ {	, z, g}) is under the scope of some B. It is not hard to see that the fully
modalized formulas in L �zg can be characterized by the grammar ϕ ::= Bψ | ¬ϕ |
(ϕ ∧ ϕ) | ∀pϕ, where ψ ∈ L �zg.

Lemma 4.2 For every fully modalized formula ϕ ∈ L �zg, ϕ �� Bϕ �� ̂Bϕ.

Proof First we show ϕ �� Bϕ by induction.

– The case where ϕ = Bψ is trivial by KD45 since we are just showing that
Bψ �� BBψ .

– Suppose ϕ = ψ1 ∧ ψ2 where ψ1 and ψ are fully modalized. Then ψ1 �� Bψ1
and ψ2 �� Bψ2. Then ψ1 ∧ ψ2 �� Bψ1 ∧ Bψ2 �� B(ψ1 ∧ ψ2).

– Suppose ϕ = ¬ψ where ψ is fully modalized, and hence ψ �� Bψ . Then
again by KD45, we have a chain of provable equivalences: ¬ψ �� ¬Bψ ��
B¬Bψ �� B¬ψ . The last equivalence can be obtained by simply replacing Bψ

by ψ . Since KD4∀5�zg is normal, we can certainly do such replacements.
– Suppose ϕ = ∀pψ where ψ is fully modalized and thus ψ �� Bψ . Then
∀pψ �� ∀pBψ . By 4∀, ∀pψ �� B∀pBψ . Then we can replace Bψ by ψ

again, and hence ∀pψ �� B∀pϕ.

Then for any fully modalized formula ϕ, noting that we just proved that ϕ �� Bϕ,
ϕ �� Bϕ �� ̂BBϕ �� ̂Bϕ.

Lemma 4.3 For every ϕ, ψ ∈ L �zg, the following are theorems of KD4∀5�zg:

[z](ϕ→ ψ)→ ([z]ϕ→ [z]ψ),

z→ ([z]ϕ→ ϕ),

[z]ϕ→ [z][z]ϕ,

〈z〉ϕ→ [z]〈z〉ϕ.
Moreover, if � z → ϕ, then � z → [z]ϕ. This means that, assuming z, [z] is an S5
modality.

Proof The first, third, and last formulas are easy to derive in KD4∀5�zg. For the
second, recall that by the axiom z, � z↔ ∀p(Bp→ p). Hence, assuming z, we can
deduce B(z→ ϕ)→ (z→ ϕ). But we can also derive (z→ ϕ)→ ϕ as we have z
in hand. So we derive B(z→ ϕ)→ ϕ and thus [z]ϕ→ ϕ.

Finally, for the necessitation-like implication, suppose that � z → ϕ. Then by
necessitation, B(z → ϕ) is provable, but this is just [z]ϕ. So certainly z → [z]ϕ is
provable.

Moving to the FOL zg side, what we need is a first-order logic that is weak
enough to be embedded using T ′ in KD4∀5�zg, yet strong enough to include all
validities of the natural quotients of complete proper filter algebras. It turns out that
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this logic is the logic of the following very general class of Boolean algebras with
two named elements.

Definition 4.10 A zg-algebra A is a tuple 〈A0, zA, gA〉 such that A0 is a non-trivial
Boolean algebra and zA, gA ∈ A0, such that zAgA is atomic (it is the join of atoms
below it), zAgA is atomless (there are no atoms below it), and gA ≤ zA.

Note that according to the definition, for any zg-algebra A, gA is precisely the join
of the atoms below zA. Hence zg-algebras can alternatively be defined as Boolean
algebras with an element z such that the join of the atoms below it exists and is
denoted by g. It is not too hard to observe that all natural quotients of complete proper
filter algebras are zg-algebras. On the other hand, there are certainly zg-algebras that
are not isomorphic to the natural quotients of any complete proper filter algebra. An
obvious way to construct such zg-algebras is to take zg-algebras whose restriction
to z is not complete. By our definition, this is totally admissable for being a zg-
algebra: the existence of just the join of atoms below z suffices. However, for any zg-
algebra A = B/FB where B is some complete proper filter algebra, A|zA

must be
a complete Boolean algebra since first B is complete and second A|zA

is isomorphic
to B|zB . We will show that it is not a problem that zg-algebras forms a wider class
than the class of natural quotients of complete proper filter algebras. The motivation
of having a wider class is that this class of zg-algebras is first-order definable, and
thus we get a complete first-order logic for free. The logic is presented below, and
we omit the easy soundness and completeness proof since the class of zg-algebras is
obviously defined by the non-logical axioms.

Proposition 4.3 The validities of all zg-algebras in the language of FOL zg under
the semantics in Definition 4.7 is axiomatized by the logic FOLzg defined by the
axiom schemas below and the usual modus ponens and universalization rule. In the
group of logical axioms, ϕ, ψ are arbitrary formulas in FOL zg, t is an arbitrary
term, and p, q, r are arbitrary variables in Prop. In the second group of non-logical
axioms, p, q, r are three specific and distinct variables in Prop while s, t still stand
for arbitrary terms.

Logical axioms

All instances of propositional tautology schemas in FOL zg

∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ)

∀pϕ→ ϕ[t/p] when t is substitutable for p in ϕ

ϕ→ ∀pϕ when p is not free in ϕ

(p = p) ∧ ((p = q)→ (q = p))

((p = q) ∧ (q = r))→ (p = r)

(p = q)→ ((¬p = ¬q))

(p = q)→ ((r ∧ p = r ∧ q) ∧ (p ∧ r = q ∧ r))
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Non-logical axioms

¬(	 � ⊥) (3)

(s = t) when s ↔ t is a tautology (4)

(g � z) (5)

∀p(((p � zg) ∧ (p �= ⊥))→ ∃q((q � p) ∧ (q �= ⊥) ∧ ∀r((q � r) ∨ (q � r))))

(6)

∀p(((p � zg) ∧ (p �= ⊥))→ ∃q((q � p) ∧ (pq �= ⊥) ∧ (pq �= ⊥))) (7)

Note that we are not using the usual Leibniz’s law in this axiomatization. Instead, we
have a group of axioms saying that the equality relation is a congruence relation. The
usual Leibniz’s law can be derived from them together with other axioms and rules.
This is mainly for the ease of showing that the translations preserve theoremhood,
since KD4∀5�zg does not have Leibniz’s law as one of its axioms.

In the non-logical axioms above and also for the rest of the paper, we use the
following abbreviations in FOL zg: (s � t) := ((s → t) = 	) and (s �= t) :=
¬(s = t). Intuitively the abbreviation (s � t) says that s is below t in the Boolean
lattice order. Then the two axioms intuitively say that zg is atomic and zg is atomless
respectively. Obviously then the non-logical axioms define zg-algebras.

That FOLzg is weak enough to be embedded into KD4∀5�zg is shown by the
following three lemmas.

Lemma 4.4 For any ϕ ∈ LB�zg, ϕ ↔ T ′(T (ϕ)) is provable in KD4∀5�zg. For
any ϕ ∈ FOL zg, ϕ ↔ T (T ′(ϕ)) is provable in FOLzg

Proof T ′(T (ϕ)) turns every Bβ in ϕ first to β = 	 and then to B(β ↔ 	). But
Bβ ↔ B(β ↔ 	) is in KD4∀5�zg. Similarly, T (T ′(ϕ)) turns the s = t in ϕ first
to B(s ↔ t) and then to ((s ↔ t) = 	). But (s = t) ↔ ((s ↔ t) = 	) is in
FOLzg.

Lemma 4.5 For any axiom ϕ in Proposition 4.3 defining FOL zg, T ′(ϕ) is
provable in KD4∀5�zg.

Proof The translations of the logical axioms are easily provable in KD4∀5�zg since
it is a normal �-logic and, in particular it can do Boolean reasoning inside B. For
the rest, the only non-trivial axioms to be dealt with are Eqs. 6 and 7. To derive the
translation of Eq. 6 in KD4∀5�zg, we now work in L �zg. Let us first assume
pzg in system. Then we have p ∧ ∀p(Bp → p) ∧ ∃p(p ∧ at (p)). Instantiating
∃p(p ∧ at (p)) using x, we have x ∧ at (x) that just abbreviates

x ∧ 〈z〉x ∧ ∀r([z](x → r) ∨ [z](x → ¬r)).

Instantiating ∀r([z](x → r)∨[z](x → ¬r)) using p, we have [z](x → p)∨[z](x →
¬p). But the latter disjunct leads to contradiction since we have assumed z, which,
according to Lemma 4.3, allows us to remove [z] and obtain x → ¬p, contradicting
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the previously assumed pzg and x ∧ at (x). Hence, we reject the second disjunct and
derive [z](x → p). Summing everything, we now have:

[z](x → p) ∧ 〈z〉x ∧ ∀r([z](x → r) ∨ [z](x → ¬r)).

Writing this without any abbreviation and using ϕ1 → (ϕ2 → ϕ3) being provably
equivalent to (ϕ1 ∧ ϕ2)→ ϕ3, we then have

B((z ∧ x)→ p) ∧̂B(z ∧ x) ∧ ∀r(B((z ∧ x)→ r) ∨ B((z ∧ x)→ ¬r)).

Then we can existentially quantify back to obtain

ϕ(p) := ∃q(B(q → p) ∧̂Bq ∧ ∀r(B(q → r) ∨ B(q → ¬r))),

as z ∧ x is a witness. The above process shows that � pzg→ ϕ(p).

Now assume B(p → zg) ∧ ̂Bp in system. Then clearly we can deduce ̂B(pzg).
Since we have just shown that � pzg → ϕ(p), we also obtain B(pzg → ϕ(p)).
Thus ̂B(pzg) → ̂B(ϕ(p)) is provable. But ϕ(p) is fully modalized. So by Lemma
4.2, ̂B(ϕ(p)) �� ϕ(p). This means that (B(p → zg) ∧ ̂Bp) → ϕ(p) is provable,
and hence, after universalization, � ∀p((B(p→ zg) ∧̂Bp)→ ϕ(p)).

Note that for any s, t ∈ LBoolzg, T (B(s → t)) = (s � t) and T (̂Bs) = (¬s �=
⊥). The latter is easily seen to be provably equivalent to (s �= 	) in FOLzg. Thus,
T (∀p((B(p → zg) ∧̂Bp) → ϕ(p))) is obviously provably equivalent to Eq. 6 in
FOLzg. By Lemma 4.4, we are done in this case.

The translation of Eq. 7 can be derived in KD4∀5�zg similarly. The key again is
that once we assume z, [z] is an S5 modality.

Lemma 4.6 For any ϕ ∈ FOLzg, T ′(ϕ) ∈ KD4∀5�zg.

Proof We show that for any derivation 〈ϕ1, ϕ2, · · · , ϕn〉 of FOLzg, T ′(ϕi) is a the-
orem of KD4∀5�zg for all i from 1 to n by induction. For any i, if ϕi is an axiom
in FOLzg, then by the previous lemma, T ′(ϕ) ∈ KD4∀5�zg. If ϕi is obtained by
either modus ponens or universalization, notice that the same rule applies to the for-
mulas after translation as the translation does not change the sentential form or the
variables used. So T ′(ϕi) can also be obtained from the rules.

Now we can show the completeness of KD4∀5�zg from the following two
lemmas.

Lemma 4.7 Any sentence in L �zg is equivalent in KD4∀5�zg to a sentence in the
following form:

(z ∧ α) ∨ (zg ∧ β) ∨ (zg ∧ γ ),

where α, β, γ are all sentences in LB�zg.

Lemma 4.8 For any zg-algebra A, there is a complete proper filter algebra B
such that B/FB is elementarily equivalent to A (satisfying the same formulas in
FOL zg).

Moreover, zB is not ⊥B , zBgB is ⊥B if and only if zAgA is ⊥A, and zBgB is
⊥B if and only if zAgA is ⊥A.
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Theorem 4.2 Any sentence in L �zg that is valid on all complete proper filter
algebras is also in KD4∀5�zg.

Proof By Lemma 4.7, we can assume that we are dealing with a sentence ϕ = (z ∧
α) ∨ (zg ∧ β) ∨ (zg ∧ γ ) where α, β, γ are all sentences in LB�zg. To proceed,
assume that ϕ is valid on all complete proper filter algebras.

By Lemma 4.1, for any complete proper filter algebra B and any valuation θ on
B, θ̃ (α), θ̃ (β), θ̃ (γ ) are either 	 or ⊥. Also, z, zg, and zg disjointly decompose B.
This means that once θ̃ (z) �= ⊥, θ̃ (α) must be 	 since otherwise θ̃ (ϕ) will lose a
non-trivial θ̃ (z) and be strictly below 	. Similarly, θ̃ (zg) �= ⊥ implies θ̃ (β) = 	,
and θ̃ (zg) �= ⊥ implies θ̃ (γ ) = 	.

Focus on α first. Now we know that α is valid on all complete proper filter algebra
B where zB �= ⊥ since z always evaluates to zB . Then for any zg-algebra A, A �
T (α) since by Lemma 4.8, for any zg-algebra A there is a complete proper filter
algebra B with zB �= ⊥ such that B/FB is elementarily equivalent to A, and by
Lemma 4.1, B/FB � T (α) iff B � α. Now that T (α) is valid on all zg-algebras,
by Proposition 4.3, T (α) ∈ FOL zg. By Lemma 4.6 and 4.4, then, � α, and thus
� z→ α.

The method applies to the cases with β and γ too. Take β as an example. Now
β must be valid on all complete proper filter algebra B where zBgB is non-trivial.
If T (β) is refutable by some zg-algebra A with zAgA non-trivial, then β will also
be refutable by some complete proper filter algebra B with zBgB non-trivial, using
lemma 4.8 and 4.1. This means that T (β) is valid on any zg-algebra A with zAgA

non-trivial. In other words, ¬(zg = ⊥) → T (β) is valid and hence provable in
FOL zg. Translating back to L �zg, � ̂B(zg) → β. But � zg → ̂B(zg) since
z �� ∀p(p → ̂Bp), and then we can instantiate this with zg. So � zg → β. In the
same fashion, it can be shown that � zg→ γ .

Taking stock, we have shown that � (z → α), � (zg → β), and � (zg → γ ).
But obviously � z ∨ zg ∨ zg since trivially � g → z. With some basic Boolean
manipulation, � (z ∧ α) ∨ (zg ∧ β) ∨ (zg ∧ γ ).

Theorem 4.1 follows since KD4∀5�zg is a conservative extension of KD4∀5�,
and a formula is valid if and only if its universal closure, which is a sentence, is valid.

4.3 Syntactical Reduction

In this section, we prove Lemma 4.7. The main idea is relativizing formulas by zg, zg,
and z. We also use ideas from the quantifier elimination for S5�. See the appendix
of [40] and the original [15] for more about the quantifier elimination for S5�.

An important addition to the S5� case is the following lemma, where the intuition
is that if ¬̂Bb is true, then b is unimportant and does not affect the semantic value of
ϕ(p) where ϕ ∈ LB�zg, when we replace p by either p ∨ b or p ∧ ¬b.

Lemma 4.9 For any formula ϕ(p) ∈ LB�zg where p is free and any propositional
variable b not occuring in ϕ, the following are provable in KD4∀5�zg:

B¬b→ (ϕ(p)↔ ϕ(p ∨ b)), B¬b→ (ϕ(p)↔ ϕ(p ∧ ¬b)).
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Proof We only show the p ∨ b case here. The other case can be shown similarly.
First, a simple induction shows that for any Boolean formula β(p), (β(p) ∨ b) ��
(β(p∨b)∨b). The only non-trivial case is negation. If (β(p)∨b) �� (β(p∨b)∨b),
then¬(β(p)∨b) �� ¬(β(p∨b)∨b). Pushing¬ inside, (¬β(p)∧¬b) �� (¬β(p∨
b) ∧ ¬b). Joining a b on both side and performing some Boolean manipulation, we
see that (¬β(p) ∨ b) �� (¬β(p ∨ b) ∨ b).

Using the normality of B, it is not hard to see that � B¬b → (Bϕ ↔ B(ϕ ∨ b)):
assuming B¬b, B(ϕ ∨ b) implies B((ϕ ∨ b) ∧ ¬b), which then implies B(ϕ ∧ ¬b)

and hence also Bϕ. The other direction is trivial. Applying this to the case of ϕ being
β(p), we see then that � B¬b → (Bβ(p) ↔ B(β(p) ∨ b)). Using the claim we
proved in the last paragraph, � B¬b→ (Bβ(p)↔ Bβ(p∨b)). This forms the basis
of a trivial induction on the formulas in LB�zg.

Since our strategy is to relativize by zg, zg, and z, we first introduce the necessary
definitions and lemmas required for separating the zg and zg part. Then we move to
the necessary preparation for separating the z part. Then we show a simple lemma on
when we can push ∃p over conjunctions. After that, we combine everything together.

For the zg and zg part, we need the following abbreviations:

Miϕ := ∃p1 · · ·pi

⎛

⎝

∧

1≤i<j≤n

[z](pi → ¬pj ) ∧
∧

1≤i≤n

at (pi) ∧
∧

1≤i≤n

[z](pi → ϕ)

⎞

⎠

(for i ≥ 1) ,

M0ϕ := 	, Qiϕ := Miϕ ∧ ¬Mi+1ϕ (for i ∈ N), Nϕ := 〈z〉(g ∧ ϕ).

As usual, the auxiliary variables are chosen to be distinct and unused in ϕ. Here
Mi, Qi , and N come from the quantifier elimination proof of [15], which requires
the modality to be S5. But by Lemma 4.3, the modality [z] used here is really S5
if z is also present. Even if z is not assumed, KD4∀5�zg still proves many intuitive
principles. We summarize the results in the following lemma.

Lemma 4.10 KD4∀5�zg proves all instances of the following schemas. In the last
group, q is required to be not free in ϕ and ±q can be either q or ¬q. Moreover,
when ±q is taken to be q, m in the first four formulas is not 0, and when ±q is taken
to be ¬q, n is not 0.

〈z〉(g ∧ ϕ)↔ M1ϕ Miϕ ↔ Mi(g ∧ ϕ) Qiϕ ↔ Qi(g ∧ ϕ)

∃q[Qm(ϕ ∧ q) ∧Qn(ϕ ∧ q)] ↔ Qm+nϕ ∃q[N(ϕ ∧ q) ∧N(ϕ ∧ q)] ↔ Nϕ

∃q[Qm(ϕ ∧ q) ∧Mn(ϕ ∧ q)] ↔ Mm+nϕ ∃q[N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)] ↔ Nϕ

∃q[Mm(ϕ ∧ q) ∧Qn(ϕ ∧ q)] ↔ Mm+nϕ ∃q[¬N(ϕ ∧ q) ∧N(ϕ ∧ q)] ↔ Nϕ

∃q[Mm(ϕ ∧ q) ∧Mn(ϕ ∧ q)] ↔ Mm+nϕ ∃q[¬N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)] ↔ ¬Nϕ
∨n

i=0(Mi(ϕ ∧ ψ) ∧Mn−i (ϕ ∧ ψ)) ↔ Mnϕ ((N(ϕ ∧ ψ) ∨ (N(ϕ ∧ ψ))) ↔ Nϕ
∨n

i=0(Qi(ϕ ∧ ψ) ∧Qn−i (ϕ ∧ ψ)) ↔ Qnϕ ((¬N(ϕ ∧ ψ) ∧ ¬(N(ϕ ∧ ψ))) ↔ ¬Nϕ
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∃q[zg ∧ ϕ ∧ ±q ∧Qm(ϕ ∧ q) ∧Qn(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Qm+nϕ)

∃q[zg ∧ ϕ ∧±q ∧Mm(ϕ ∧ q) ∧Qn(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Mm+nϕ)

∃q[zg ∧ ϕ ∧±q ∧Qm(ϕ ∧ q) ∧Mn(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Mm+nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧Mm(ϕ ∧ q) ∧Mn(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Mm+nϕ)

∃q[zg ∧ ϕ ∧±q ∧N(ϕ ∧ q) ∧N(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧ ¬N(ϕ ∧ q) ∧N(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧Nϕ)

∃q[zg ∧ ϕ ∧ ±q ∧ ¬N(ϕ ∧ q) ∧ ¬N(ϕ ∧ q)] ↔ (zg ∧ ϕ ∧ ¬Nϕ)

Proof Syntactical proofs of them are not interesting, and here we only briefly explain
why they are valid, from which syntactical proofs can be extracted straightforwardly.
Using Proposition 4.2, Miϕ says that z∧ ϕ contains at least i atoms. More precisely,
for any complete proper filter algebra B and valuation θ on B, θ̃ (Miϕ) = 	 if and
only if zB ∧ θ̃ (ϕ) contains at least i atoms, and otherwise θ̃ (Miϕ) = ⊥. Similarly,
Qiϕ says that z ∧ ϕ contains exactly i atoms, and Nϕ says that z ∧ ϕ contains an
atomless part.

Note that θ̃ (g) = gB is the join of all atoms under zB and hence atomic. So if
gB∧zB∧ θ̃ (ϕ) is non-trivial, then zB∧ θ̃ (ϕ) must contain an atom, and the numbers
of atoms below zB ∧ θ̃ (ϕ) and gB ∧ zB ∧ θ̃ (ϕ) respectively are the same. These two
observations show the validity of the first group of three formulas.

The left six formulas in the second group are simply counting principles, and the
right six formulas state obvious properties of atomless elements. Hence they are all
valid. Note that they only consider the situation under z.

For the last group, note that by Boolean reasoning, (z ∧ α) ↔ (z ∧ β) �� z →
(α ↔ β). By Proposition 4.3, to prove the last group of formulas in KD4∀5�zg, we
only need to translate their proofs in S5� to proofs in KD4∀5�zg by replacing the
S5 modality � by [z].

For the z part, the only extra definition we need is the following.

Definition 4.11 Define the following abbreviations:

〈z̄〉ϕ := ̂B(z ∧ ϕ), [z]ϕ := B(z→ ϕ).

Then define the following restricted version of LB�zg:

L [z]� : ϕ ::= [z]t | ¬ϕ | (ϕ ∧ ϕ) | ∀pϕ

where t ∈ LBool, p ∈ Prop.

Now we introduce the concept of a propositional variable being restricted. This
helps us to distribute existential quantifiers over conjunctions in certain cases.

Definition 4.12 We say that p is restricted by a formula μ in ϕ just in case μ is
substitutable for p in ϕ and � ∀p(ϕ(p)↔ ϕ(p ∧ μ)).

1177On the Logic of Belief and Propositional Quantification



Lemma 4.11 ∃p(ϕ ∧ψ) is provably equivalent to ∃pϕ∧∃pψ , if there are formulas
μ, ν, such that

– p in ϕ is restricted by μ, p in ψ is restricted by ν, and
– ¬(μ ∧ ν) is provable.

Proof One direction of the equivalence is trivial. For the other, the strategy is rela-
tivization. Suppose ∃pϕ(p) ∧ ∃pψ(p) in system. Then we have ϕ(p1) and ψ(p2).
By the assumption that p in ϕ is restricted by μ and that p in ψ is restricted by ν,
we can derive ϕ(p1 ∧ μ) and ψ(p2 ∧ ν). Now we see that ¬(μ ∧ ν) is provable. So,
using Boolean reasoning and letting χ = (p1 ∧ μ) ∨ (p2 ∧ ν), χ ∧ μ �� p1 ∧ μ

and χ ∧ ν �� p2 ∧ ν. Hence we now have a chain of provable equivalence:
ϕ(χ) �� ϕ(χ ∧ μ) �� ϕ(p1 ∧ μ) �� ϕ(p1). Similarly ψ(χ) �� ψ(p2). Thus χ

witness ∃p(ϕ(p) ∧ ψ(p)).

Now we start to combine everything together. A few extra notations are used. We
fix an enumeration 〈pi〉i<|Prop| of Prop and write p or in general use vector notation
for a finite subset of Prop. Then for p = {pi1 , pi2 , . . . , pin} with i1 < i2 < · · · < in,
2p is the set of formulas in the form of ±pi1 ∧ ±pi2 ∧ · · · ∧ ±pin . We call elements
in 2p cells.

And as usual, a conjunction of no formulas is 	, and a disjunction of no formulas
is ⊥.

Definition 4.13 A state description over p with degree l ∈ N is a conjunction of the
following components:

– (choice of zg) one of z, zg, zg,
– (propositional truth) one cell c ∈ 2p,
– (z part) one L [z]� formula δ whose free variables are all in p,
– (zg part) for each cell c ∈ 2p, a formula Mlc or Qic for some 0 ≤ i < l,
– (zg part) for each cell c ∈ 2p, a formula Nc or ¬Nc.

We call the first two parts the propositional part and the rest the modal part of a state
description. A partial state description over p of degree l is a formula missing one
or more components above. If the only missing part is the propositional part, we also
call it a modal state description.

Lemma 4.12 Every free variable in a z (respectively zg, zg) part is restricted by z
(respectively zg, zg).

Proof For the z part, note that in any formula ϕ ∈ L [z]�, every free variable appears
in a Boolean term which is then in a conjunction with z. We can distribute this z
into the Boolean term, assuming that Boolean term is already in negation normal
form. Then every free variable appears either in the form of z ∧ p or z ∧ ¬p. But
z ∧ p �� z ∧ (p ∧ z) and z ∧ ¬p �� z ∧ ¬(p ∧ z).

For the zg part, take Mic for some c ∈ 2p and p ∈ p for example. First note that
by definition of Mi , c in Mic appears in a Boolean term directly following [z]. So
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using a similar proof as in the previous case, p in Mic is restricted to z. Then note
that in Lemma 4.10, Mic is provably equivalent to Mi(g∧ c). So obviously p in Mic

is restricted to g as well. Finally, it is not hard to see that in general if p in ϕ(p)

is restricted to both μ and ν, then it is also restricted to μ ∧ ν. Indeed, ϕ(p) will
first be equivalent to ϕ(p ∧ μ) and then to ϕ((p ∧ μ) ∧ ν), but this is equivalent to
ϕ(p ∧ (μ ∧ ν)). Thus p in Mic is restricted to zg.

The case for the zg part is similar.

Lemma 4.13 For every partial state description ϕ over p with degree l, and for
every finite set of variables p′ ⊇ p and every natural number l′ ≥ l, ϕ is provably
equivalent in KD4∀5�zg to a disjunction of state descriptions over p′ with degree l′.

Proof Let ϕ, p, l, p′, and l′ be arbitrarily given as above. Without loss of generality,
we assume that p′ = p ∪ {p′} since we can repeat the following process many times
if necessary. Now, let ψ be the conjunction of the following ψ1, ψ2, ψ3, ψ4, and ψ5:

– If ϕ has a choice of zg, let ψ1 be this choice. Otherwise let ψ1 be z ∨ zg ∨ zg.
– If ϕ has a propositional truth c ∈ 2p, let ψ2 be (c∧p′)∨ (c∧p′). Otherwise, let

ψ2 be
∨

2p
′
.

– If ϕ has a z part, let ψ3 be the z part. Otherwise, let ψ3 be [z]	.
– If ϕ has no zg part, let ψ4 be the disjunctive normal form of

∧

c∈2p′ (Q0c∨Q1c∨
· · · ∨Ql′−1c ∨Ml′c) with Qic and Ml′c seen as atomic formulas.

Otherwise, say ϕ has a zg part δzg = ∧

c∈2p Xcc with Xc being either Qi for
some i < l or Ml . If �p′ is just �p (that is, p′ ∈ �p), let ψ4 be δzg. If p′ �∈ p,
construct ψ4 by first replacing each Mlc in δzg with

∨l
i=0(Mi(cp

′)∧Ml−i (cp′))
and each Qjc with

∨j

i=0(Qi(cp
′) ∧Qj−i (cp′)). Then replace each Mic with c

now being in 2p
′
and with i < l′ by (Qic∨Qi+1c∨· · ·∨Ql′−1c∨Ml′c). Finally,

take its disjunctive normal form with Qic and Ml′c for all c ∈ 2p
′
seen as atomic

formulas.
– If ϕ has no zg part, let ψ5 be the disjunctive normal form of

∧

c∈2p′ (Nc ∨¬Nc)

with Nc and ¬Nc seen as atomic formulas.
Otherwise, say ϕ has a zg part δzg =

∧

c∈2p Xcc where Xc is either N or
¬N . If p = p′ (that is, p′ ∈ p), let ψ5 be δzg. If not, let ψ5 be constructed by
first replacing each Nc in δzg by (N(cp′) ∧ N(cp′)) ∨ (N(cp′) ∧ ¬N(cp′)) ∨
(¬N(cp′) ∧ N(cp′)) and replacing each ¬Nc in δzg by ¬N(cp′) ∧ ¬N(cp′).
Then take its disjunctive normal form with Nc and ¬Nc as atomic formulas.

Now it should not be too hard to see that ψ is provably equivalent to ϕ as each of
ψi is provably equivalent to the respective part of ϕ if it exists, or to 	 otherwise.
In particular, to see that ψ4 �� δzg and ψ5 �� δzg, use Lemma 4.10. Then, let ϕ′
be the result of distributing the outermost conjunction over ψ1 through ψ5 over the
disjunctions in them. Clearly ϕ′ is now a disjunction of state descriptions over p′ with
degree l′, and ϕ′ is provably equivalent to ϕ.

Lemma 4.14 Any formula ϕ ∈ L �zg with p being its set of free variables is
provably equivalent in KD4∀5�zg to a disjunction of state descriptions over p.
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Proof By induction. Since we are only after provable equivalence, we can pretend
that our language has ∨, ̂B, and ∃ as primitives. For the base cases, note that:

– every propositional variable p in Prop is a partial state description in {p} with
degree 0;

– 	 is a partial state description in {} with degree 0;
– since z �� (zg ∨ zg), z is equivalent to a disjunction of two partial state

descriptions over {} with degree 0;
– since � g → z and g �� zg, g is also provably equivalent to a disjunction of

partial state descriptions over {} with degree 0.
Hence we can apply the previous lemma to clear the base cases.

Now suppose ϕ = ϕ1 ∨ ϕ2, and let p1 and p2 be the set of free variables in ϕ1 and
ϕ2, respectively. Then p = p1 ∪ p2 is the set of free variables of ϕ. By the induction
hypothesis, there is a disjunction ψ1 of state descriptions over p1 with some degree
l1 provably equivalent to ϕ1 and a disjunction ψ2 of state descriptions over p2 with
some degree l2 provably equivalent to ϕ2. Without loss of generality, we can assume
that l1 ≥ l2. Now we first use the previous Lemma 4.13 to turn ψ1 and ψ2 into
disjunctions of state descriptions over �p with degree l1 and obtain α and β. Then
α ∨ β is the formula we need in this case.

For the negation case, suppose ϕ = ¬ψ with p being the set of free variables in
ψ . Then p is also the set of free variables in ϕ. Using the induction hypothesis, let
α be a disjunction of state descriptions over p with some degree l that is provably
equivalent to ψ . Then using Lemma 4.13, let β be a disjunction of state descriptions
over p with degree l that is provably equivalent to 	. Then let γ be the disjunction
of the state descriptions over p with degree l that are in β but not in α. Then γ is a
disjunction of state descriptions over p with degree l that is provably equivalent to ϕ.

Now suppose ϕ = ̂Bψ with p being the set of free variables in ψ and hence
also ϕ. By the induction hypothesis, ψ is provably equivalent to a disjunction of
state descriptions

∨

i∈I ψi . Then ̂Bψ �� ̂B
∨

i∈I ψi �� ∨

i∈I ̂Bψi . Hence, we only
need to show that for each state description ψi , ̂Bψi is equivalent to a partial state
description, which can then be turned to a disjunction of state descriptions. Let ψi =
b ∧ c ∧ d so that b ∈ {z, zg, zg}, c ∈ 2p, and d is the modal part of ψi . By Lemma
4.2, ψi �� (b ∧ c ∧ Bd) since d is fully modalized. Then it is a standard exercise of
modal logic to show that ̂Bψi �� ̂B(b ∧ c) ∧ Bd, which is then provably equivalent
to ̂B(b ∧ c) ∧ d. Now there are three cases:

– if b = z, then̂B(b∧ c) is just 〈z̄〉c. But then 〈z̄〉c∧d is a partial state description,
as 〈z̄〉c is a L [z]� formula and can be included in the z part.

– if b = zg, then ̂B(b ∧ c) �� 〈z〉(g ∧ c). But 〈z〉(g ∧ c) �� M1c, and M1c ∧ d

can be turned into a partial state description, as there is a Qic/Mlc formula in d,
and M1c can be merged in to that formula, resulting in ⊥ or the original d.

– if b = zg, then̂B(b ∧ c) �� 〈z〉(g∧ c). But 〈z〉(g ∧ c) �� Nc and hence can be
merged into d.

In sum, ̂Bψi is provably equivalent to a partial state description missing a choice of
a zg part and a propositional truth part.
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For ∃, like ̂B, we only need to show that ∃qψi is provably equivalent to a partial
state description over p \ {q} where ψi is a state description over p. The case where
q �∈ �p is trivial so we assume here that q ∈ p. Let ψi be b∧ c∧ δz ∧ δzg ∧ δzg, where
b ∈ {z, zg, zg}, c ∈ 2p, δz is the z part of ψi (a L [z]� formula), δzg is the zg part,
and δzg is the zg part. As noted in Lemma 4.12, δz, δzg, and δzg are restricted by z,
zg, and zg respectively. Then by repeated use of Lemma 4.11, we have the following
cases:

– If b = z, then ∃qψi �� ∃q(z ∧ c ∧ δz) ∧ ∃qδzg ∧ ∃qδzg.
– If b = zg, then ∃qψi �� ∃qδz ∧ ∃q(zg ∧ c ∧ δzg) ∧ ∃qδzg.
– If b = zg, then ∃qψi �� ∃qδz ∧ ∃qδzg ∧ ∃q(zg ∧ c ∧ δzg).

Hence what remains to be shown is that in each of these three cases, the three con-
juncts on the right-hand side of the �� claim are provably equivalent to a z part, a
zg part, and a zg part, possibly with a corresponding choice of zg and a propositional
truth c, respectively.

First consider the two possibilities ∃qδz and ∃q(z∧ c ∧ δz). We need to show that
they are provably equivalent to some z part. Now ∃qδz is already a L [z]� formula
and thus a z part, so there is nothing further to show. For ∃q(z ∧ c ∧ δz), depending
on whether q appears in c positively or negatively, we have two cases (the f below
is the result of excluding the literal of q in c).

– If q appears positively, we have ∃q(z ∧ f ∧ q ∧ δz). This is provably equivalent
to z∧ f ∧∃qδz. The direction from left to right is trivial. For the other direction,
if q is not free in δz, it is also trivial. So assume now that q is free in δz(q). First
instantiate ∃qδz(q) with a fresh a and obtain δz(a). Now recall that z �� ∃r(r ∧
B¬r). Since we already have z, we can now instantiate with a fresh propositional
variable b and get b∧B¬b. By Lemma 4.9, we derive δz(a)↔ δz(a ∨ b) (recall
that δz(a) is in LB�zg), and hence also δz(a ∨ b). But � b → (a ∨ b), so we
also obtain a ∨ b. Then a ∨ b witnesses ∃q(q ∧ δz(q)). Summing up the process,
we have shown that � (z ∧ ∃qδz) → ∃q(q ∧ δz). Then it is easy to see that
� (z ∧ f ∧ ∃qδz)→ ∃q(z ∧ f ∧ q ∧ δz) since q does not appear in z and f .

– ∃q(z ∧ f ∧ ¬q ∧ δz). This is very similar to the previous case. We only need to
prove the direction from z ∧ f ∧ ∃δz to ∃q(z ∧ f ∧ ¬q ∧ δz) and in fact only
that � (z ∧ ∃qδz) → ∃q(¬q ∧ δz). We can also assume that q is free in δz(q).
Instantiating ∃qδz and ∃r(r ∧ B¬r) (equivalent to z) with fresh a and b, we get
δz(a) and b∧B¬b. By Lemma 4.9, we get δz(a∧¬b). Also, � b→ ¬(a∧¬b).
Hence a ∧ ¬b witnesses ∃q(¬q ∧ δz(q)), and we are done in this case.

So, the two formulas involving δz are indeed provably equivalent to formulas that can
serve as the z part of some state description over p \ {q}.

For the cases involving δzg and δzg, note that both of them are conjunctions of
formulas that are restricted to one of c ∈ 2p. Considering this, we can push ∃q further
down, with results in the following cases where again f is the result of restricting c

to literals using only things in p \ {q}:
– ∃q(Qi/Ml(f q) ∧Qj/Ml(f q)),
– ∃q(zg ∧ f ∧±q ∧Qi/Ml(f q) ∧Qj/Ml(f q)),
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– ∃q(±N(f q) ∧ ±N(f q)),
– ∃q(zg ∧ f ∧±q ∧ ±N(f q) ∧±N(f q)).

They are all addressed in Lemma 4.10.

Now Lemma 4.7 follows from the previous lemma. Too see this, observe first that
the modal parts of any state description are LB�zg formulas. Further, when there
are no free variables, the propositional truth part will be	 in any state description. So
a state description over {} can be seen as simply a conjunction of one of z, zg, zg, and
a LB�zg formula. Then for any sentence ϕ in L �, since it has no free variables, it
is provably equivalent in KD4∀5�zg to a disjunction

∨

i∈I (ai ∧ bi) such that for all
i ∈ I , ai ∈ {z, zg, zg} and bi ∈ LB�zg. But then we only need to extract the ai’s
according to what they are. Formally, letting Iz = {i ∈ I | ai = z}, Izg = {i ∈ I |
ai = zg}, and Izg = {i ∈ I | ai = zg}, ϕ �� (z ∧∨

i∈Iz
bi) ∨ (zg ∧∨

i∈Izg
bi) ∨

(zg ∧∨

i∈Izg
bi). This formula is in the required form in Lemma 4.7.

4.4 Quotients of Complete Boolean Algebras

In this subsection we prove Lemma 4.8. The main idea is to show that every Boolean
algebra is elementarily equivalent to a κ-field-of-sets for a large enough cardinal κ

to be speficied later and then invoke a theorem saying that every κ-field-of-sets can
be realized as a quotient of a complete Boolean algebra for large enough κ . To show
that every Boolean algebra is elementarily equivalent to a κ-field-of-sets, we show
that every Tarski invariant, which fully describes the first-order properties of Boolean
algebras, is realized by a κ-field-of-sets.

First we define κ-regular subalgebras and κ-field-of-sets.

Definition 4.14 A Boolean algebra B is a κ-regular subalgebra of C if B is a subal-
gebra of C and for any X ⊆ B with |X| < κ , whenever

∧

C X exists, it is also in B.
We write B �κ C for B being a κ-regular subalgebra of C.

We say an embedding f : B ↪→ C is κ-regular if for every X ⊆ B such that
|X| < κ , whenever

∧

C f [X] exists, ∧

B X also exists and f (
∧

B X) = ∧

C f [X].
Or equivalently, f is κ-regular if the image of f is a κ-regular subalgebra of C.
We write f : B ↪→κ C when f is a κ-regular embedding from B to C and write
B ↪→κ C when there is such a κ-regular embedding.

Definition 4.15 A Boolean algebra B is a κ-field-of-sets if there is a set D such that
B ↪→κ ℘ (D). Here ℘(D) is the powerset algebra of D.

Proposition 4.4 For any cardinal κ , the property of being a κ-field-of-sets is closed
taking κ-regular subalgebras and is closed under taking arbitrary direct product.

Proof First, clearly, if A ↪→κ B and B ↪→κ C, then A ↪→κ C. Hence if A �κ B

and B ↪→κ ℘ (D), then A ↪→κ ℘ (D). Thus κ-field-of-sets is closed under taking
κ-regular subalgebras.
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Now consider an indexed set {Bi}i∈I of κ-field-of-sets with fi : Bi ↪→κ ℘ (Di) for
each i ∈ I . Then it is not hard to see that �i∈IBi ↪→κ �i∈I℘ (Di). This is because,
letting πi be the natural projection map from �iBi to Bi , for every X ⊆ �iBi ,
∧

X = 〈∧πi[X]〉i∈I , if any side of this equation exists. In other words, meets can be
computed componentwisely. But �i∈I℘ (Di) is isomorphic to ℘(

⋃

i∈I ({i} × Di)).
Hence �i∈IBi is also a κ-field-of-sets.

Due to the fact that we need to deal with zg-algebras instead of just Boolean
algebras, sometimes we need to make sure that the cokernels of the quotient maps we
use have a trivial meet. We now introduce notations for this and prove two lemmas
about it.

Definition 4.16 We say a surjective homomorphism f : A � B is meet-trivial if
its cokernel f−1(	B) has a trivial meet:

∧

f−1(	B) is ⊥A. We write f : A ◦� B

when f : A � B and f is meet-trivial, and we write A◦� B when there is a meet-
trivial surjective homomorphism from A to B. In the later case, we also say that B is
a meet-trivial homomorphic image of A.

Proposition 4.5 For any Boolean algebras A, B, and C, if f : A � B and g : B ◦�
C, then (g ◦ f ) : A◦� C.

Proof Let f : A � B and g : B ◦� C be given. To show that g ◦ f : A ◦� C,
by definition, we only need to show that

∧

F = ⊥A where F = (g ◦ f )−1(	C).
Suppose not and let a be a non-trivial lower bound of F in A. Then first we can
show that f (a) �= ⊥B since if otherwise f (a) = ⊥B , then f (¬a) = 	B , meaning
that g(f (¬a)) = 	C and that ¬a ∈ F , which obviously contradicts the assump-
tion that a is below everything, in particular ¬a, in F and that a �= ⊥A. Since f

is a homomorphism, f (a) is a lower bound of f [F ]. Then we only need to note
that g−1(	C) = f [F ], and hence f (a) is a non-trivial lower bound of g−1(	C),
contradicting g : B ◦� C.

Proposition 4.6 For any κ-field-of-sets B where κ is a regular cardinal, meaning
that the cofinality cf(κ) = κ , there is a κ-field-of-sets C such that C ◦� B.

Proof Let κ and B be given as above. Then consider the following subset of Bκ =
�i<κB:

C = {f ∈ Bκ | ∃α ∈ κ,∀β ∈ κ, if β ≥ α then f (β) = f (α)}.
The set C colletcs what we may call the eventually constant elements in Bκ . For
every f ∈ C, let lim f be the limit of f defined in the obvious way. Now we show
that C with operations inherited from Bκ is a κ-regular subalgebra of Bκ .

1. C is closed under negation. This is trivial.
2. C is closed under taking meets of sets of cardinality smaller than κ . Take any
{fi}i∈I ⊆ C with |I | < κ . Let αi for each i ∈ I be the smallest ordinal in κ

such that for any β such that κ > β ≥ αi , fi(β) = fi(αi). Then let f = ∧

fi
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in Bκ . Now because cf(κ) = κ , α = supi∈I αi < κ . Thus for any β such that
κ > β ≥ α and any i ∈ I , fi(β) = fi(αi) = fi(α). Hence for any κ > β ≥ α,

f (β) =
∧

i∈I
fi(β) =

∧

i∈I
fi(α) = f (α).

Then we know that f ∈ C.

This also shows that for any set {fi}i∈I ⊆ C with |I | < κ , lim
∧

i∈I fi =
∧

i∈I lim fi .
Using Proposition 4.4, C is now also a κ-field-of-sets since C �κ Bκ and B is a

κ-field-of-sets. Now consider the set F = {f ∈ C | lim f = 	B}. Observe that F is
a filter in C. Also,

∧

F = ⊥C . To see this, consider the sequence 〈fi〉i∈κ defined by

fi(α) =
{

⊥B α < i

	B α ≥ i.

Each fi is in F , yet the only f ∈ C that is below all the fi’s is the constantly 0B

function, which is ⊥C .
Now note that lim as a function from C to B is a surjective homomorphism and

lim−1(	B) = F . Hence lim : C ◦� B.

Now we start to show that for every non-trivial Boolean algebra A, there is a
(2ω0)+-field-of-sets B which is elementarily equivalent to A. To this end, we first
recall the Tarski invariants.

Definition 4.17 For any Boolean algebra B, call an element b ∈ B atomic if b is the
join of the atoms below it, and atomless if there are no atoms below it. If an element
is the join of an atomic element and an atomless element, we call it separable. Denote
the set of separable element in B by S(B). It is easy to see that S(B) is an ideal,
which is generated by the atomic and atomless elements.

Then for any non-trivial Boolean algebra B, we can define a sequence of Boolean
algebras:

B(0) = B, B(i+1) = B(i)/S(B(i)).

With the above sequence, define Inv(B) for every non-trivial Boolean algebra B as
follows:

m(B) =
{

k if B(k) is non-trivial and B(k+1) is trivial
∞ if for all k ∈ ω, B(k) is non-trivial.

n0(B) =
{

∞ if m(B) ∈ N and B(m(B)) has infinitely many atoms

l if m(B) ∈ N and B(m(B)) has l ∈ N many atoms.

n(B) =

⎧

⎪

⎨

⎪

⎩

0 if m(B) �∈ N

n0(B) if m(B) ∈ N and B(m(B)) is atomic

−n0(B) if m(B) ∈ N and B(m(B)) is not atomic.

Inv(B) = 〈m(B), n(B)〉.
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We also define Inv(B) = 〈−1, 0〉 when B is trivial. Finally let Inv be the set of all
possible invariant, i.e., Inv = {Inv(B) | B a Boolean algebra}.

Proposition 4.7 For any two Boolean algebrasA andB, they are elementarily equiv-
alent if and only if Inv(A) = Inv(B). In fact, for any two Boolean algebras with extra
distinguished elements, 〈A, a1, a2, · · · an〉, 〈B, b1, b2, · · · bn〉, they are elementarily
equivalent in the first-order language of Boolean algebras extended with n constants
to be interpreted by the corresponding distinguished elements if and only if for each
f ∈ 2n, Inv(A|f [a]) = Inv(B|f [b]). Here for any f ∈ 2n, f [a] is defined as the
element

∧

i∈f−1(1) ai ∧∧

i∈f−1(0) ¬ai and f [b] is defined similarly.

Proof See Chap.5.5 of [52].

Hence our goal now is to construct a (2ω0)+-field-of-sets B for each invariant
c ∈ Inv such that Inv(B) = c. To start, we need at least an atomic and an atomless
κ-field-of-sets. An atomic κ-field of sets can be easily found, such as the Boolean
algebra of two elements. Now we construct an atomless κ-field-of-sets.

Proposition 4.8 For each regular infinite cardinal κ , there exists an atomless κ-
field-of-sets L.

Proof We construct a κ-field-of-sets in the powerset algebra of {0, 1}κ . For any
f, g ∈ {0, 1}κ and i ∈ κ , write f =i g when f (j) = g(j) for all j < i. Also let [f ]i
be the equivalence class that f is in under =i , i.e. {g ∈ {0, 1}κ | g =i f }.

Then it is not hard to see that the set of all subsets of {0, 1}κ that are closed
under =i for some i ∈ κ forms an atomless κ-field-of-sets under the inherited
complementation and intersection.

– Both empty set and {0, 1}κ are closed under =1.
– Clearly if X is closed under =i , then {0, 1}κ \X is also closed under =i .
– For any family of κ0 < κ many sets {Xi}i∈κ0 such that each Xi is closed under
=λi

where λi ∈ κ , consider their intersection. Let μ = supi∈κ0 λi . By the reg-
ularity of κ , μ ∈ κ , and obviously each Xi is also closed under =μ since =α

refines =β if α ≥ β. Then the intersection
⋂{Xi | i ∈ κ0} is also closed under

=μ.
– For any non empty X ⊆ {0, 1}κ that is closed under=λ, pick f ∈ X and then we

can easily split [f ]λ ⊆ X into two non-empty parts: {g ∈ [f ]λ | g(λ + 1) = 0}
and {g ∈ [f ]λ | g(λ + 1) = 1}. Both parts are non-empty subsets of X and are
closed under =λ+1. So X is not an atom in the Boolean algebra we construct.

Now fix κ as an infinite regular cardinal, 2 a two-element Boolean algebra, and
L the atomless κ-field-of-sets constructed above. The next step is to show that for
every κ-field-of-sets B, there is a U(B) which is also a κ-field-of-sets, and moreover
U(B)/S(U(B)) ∼= B. Since we are constructing a κ-field-of-sets that has B as a
homomorphic image with some requirement on the kernel of the homomorphism, the
construction here is very similar to the one we did in Proposition 4.6.
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For a κ-field-of-sets B, we construct U(B) as follows. First, since B is a κ-field-
of-sets, without loss of generality, we can assume that B �κ ℘ (ρ) with ρ a large
enough cardinal. Then we have e : B ↪→κ (2×L)ρ where e is such that for all b ∈ B

and λ < ρ, e(b)(λ) = 	2×L if and only if λ ∈ b, and otherwise e(b)(λ) = ⊥2×L.
In other words, e(b) is the characteristic function of b using {⊥2×L,	2×L} instead
of {0, 1} as the codomain. By Proposition 4.4, (2 × L)ρ is a κ-field-of-sets. Now,
as in the proof of Proposition 4.6, we can now define the set of eventually constant
functions C = {f ∈ ((2 × L)ρ)κ | ∃α < κ∀β < κ, β > α ⇒ f (β) = f (α)}.
Then we know that C �κ ((2× L)ρ)κ and hence is a κ-field-of-sets, and in addition
lim : C ◦� (2×L)ρ . However, since we need a κ-field-of-sets with B, not (2×L)ρ ,
as its homomorphic image, we need to take a κ-regular subalgebra of C. Indeed, we
only need to take U(B) = lim−1(e[B]). Essentially, U(B) is the pullback of e and
lim. This is illustrated by the following commutative diagram:

B (2× L)ρ

U(B) C.

e

id

lim

Lemma 4.15 For any κ-field-of-sets B, U(B) as defined above is also a κ-field-of-
sets, and U(B)/S(U(B)) ∼= B.

Proof To show that U(B) is a κ-field-of-sets, it is enough to show that U(B) �κ

((2×L)ρ)κ . That is, we only need to show that for all X ⊆ U(B) such that |X| < κ ,
∧

((2×L)ρ)κ X is also in U(B) (it always exists as ((2 × L)ρ)κ is a κ-field-of-sets).
To show that

∧

((2×L)ρ)κ X ∈ U(B), we only need to show that lim
∧

((2×L)ρ)κ X ∈
e[B]. Since κ is regular, lim

∧

((2×L)ρ)κ X = ∧

(2×L)ρ lim[X]. Since X ⊆ U(B),
lim[X] ⊆ e[B]. Since |X| < κ , |lim[X]| < κ . Then indeed

∧

(2×L)ρ lim[X] ∈ e[B]
since e is a κ-regular embedding, and hence e[B] �κ (2× L)ρ .

To show that U(B)/S(U(B)) ∼= B, it is enough to show that the kernel of lim,
lim−1(⊥(2×L)ρ ), is precisely S(U(B)), the set of separable elements in U(B). To this
end, note first that in both (2 × L)ρ and ((2 × L)ρ)κ , the join of atoms exists and
can be easily described. Let a be the constantly 〈	2,⊥L〉 function in (2 × L)ρ and
fa be the constantly a function in ((2× L)ρ)κ . Then clearly a is the join of atoms in
(2×L)ρ , and fa is the join of atoms in ((2×L)ρ)κ . Similarly, let l be the constantly
〈⊥2,	L〉 function in (2 × L)ρ and fl be the constantly l function in ((2 × L)ρ)κ .
Then l is the join of atomless elements in (2 × L)ρ , and fl is the join of atomless
elements in ((2× L)ρ)κ .

Now, to show that S(U(B)) ⊆ lim−1(⊥(2×L)ρ ), it is enough to show that
every atomic and every atomless elements in U(B) are in lim−1(⊥(2×L)ρ ) since the
S(U(B)) is the ideal generated by those elements and a kernel is always an ideal. Let
f be an atomic element in U(B). First, we claim that f ≤ fa. Suppose not. Then
there would be i < κ, j < ρ such that f (i)(j) ∧ 	L is non-trivial. Let g be the
function in ((2 × L)ρ)κ such that g(i′)(j ′) = ⊥2×L unless i′ = i and j ′ = j , in
which case g(i′)(j ′) = f (i)(j) ∧ 	L. Then g ≤ f , lim g = ⊥(2×L)ρ , and hence
g ∈ U(B). But obviously g is atomless in U(B) since we can simply keep decreas-
ing g(i)(j) using the fact that L is atomless, and the resulting function’s limit is still
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⊥(2×L)ρ , meaning that the function itself is still in U(B). This contradicts that f is
atomic. So f ≤ fa, and hence lim f ≤ a. But recall that f is from U(B) and hence
lim f ∈ e[B], which means that for each i < ρ, (lim f )(i) ∈ {	2×L,⊥2×L}. Now
for each i < ρ, a(i) < 	2×L. Obviously then, the only element in e[B] that is below
a is⊥(2×L)ρ , and hence lim f = ⊥(2×L)ρ . So we are done showing that every atomic
element in U(B) is in the kernel of lim. To show that every atomless element inU(B)

is in the kernel of lim the strategy is exactly the same. If f ∈ U(B) is atomless, then
we can show similarly that f ≤ fl. Then lim f , being both below l and also inside
e[B], must be ⊥(2×L)ρ . So this f is also in the kernel of lim.

To show that lim−1(⊥(2×L)ρ ) ⊆ S(U(B)), pick an arbitrary f ∈ U(B) such that
lim f = ⊥(2×L)ρ . Then f ∧ fa is also in U(B) as lim(f ∧ fa) must also be ⊥(2×L)ρ .
For similar reasons, f ∧ fl ∈ U(B) too. Now clearly f ∧ fa is atomic in U(B)

since it is the join of {gi,j | (f ∧ fa)(i)(j) = 〈	2,⊥L〉} where gi,j is the function
that always returns ⊥2×L expect that gi,j (i)(j) = 〈	2,⊥L〉. Each gi,j is obviously
in U(B) and is atomic. Hence f ∧ fa is a join of atoms in U(B) and hence atomic.
Similarly f ∧ fl is atomless in U(B) as it is the join of the elements of the form hi,j

below it where hi,j always returns ⊥2×L except that hi,j (i)(j) = 〈⊥2,	L〉. Each
hi,j is in U(B) and is atomless. Hence f ∧ fl is atomless. But then, f is separable
by definition since f = (f ∧ fa) ∨ (f ∧ fl).

Now we can sum the above up and obtain the following proposition.

Proposition 4.9 For every Boolean algebra A, there is a (2ω0)+-field-of-sets B

which is elementarily equivalent to A.

Proof Let κ be (2ω0)+. It is a successor cardinal, so it is regular. By Proposition 4.7,
it is enough to show that for every c ∈ Inv, there is a (2ω0)+-field-of-sets B such that
Inv(B) = c. Now Inv can be partitioned into three parts: {〈−1, 0〉}, {〈m, n〉 | m ∈
N, n ∈ Z

∞}, and {〈∞, 0〉}. For 〈−1, 0〉, we use ℘(∅). For the second part, we use a
simple induction on the first coordinate.

1. For non-zero n ∈ N, Inv(℘ (n)) = 〈0, n〉, and Inv(℘ (N)) = 〈0,∞〉. For
〈0, 0〉, use the L from Proposition 4.8, which is an atomless κ-field-of sets.
For invariants 〈0,−n〉 (n > 0) and 〈0,−∞〉, use ℘(n) × L and ℘(N) × L,
respectively.

2. Suppose for any n ∈ Z
∞, there is a κ-field-of-sets Bn such that Inv(Bn) =

〈m, n〉. Then for 〈m+ 1, n〉 for any n ∈ Z
∞, use U(Bn), since by Lemma 4.15,

U(Bn) is a κ-field-of-sets, U(Bn)/S(U(Bn)) ∼= Bn, and thus Inv(U(Bn)) =
Inv(Bn)+ 〈1, 0〉 = 〈m+ 1, n〉.

For the invariant 〈∞, 0〉, take the product B = �i∈NUi(2) = 2×U(2)×U(U(2))×
U(U(U(2))) · · · . ThatB is a κ-field-of-sets follows from Proposition 4.4. Also, since
B/S(B) = �i∈NUi(2)/S(Ui(2)) = 1 × �i∈N,i>0U

i−1(2), B/S(B) is isomorphic
to B. (1 is the trivial algebra, and it appears here as the result of 2/S(2).) This means
that for any n ∈ N, B(n) is isomorphic to B, which means that Inv(B) = 〈∞, 0〉.

The only missing link now is the following proposition, shown in [51].
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Proposition 4.10 (Vermeer 1996) Every (2ω0)+-field-of-sets is a quotient of a
complete Boolean algebra.

With this, we can prove the following lemma, which leads to a proof of Lemma
4.8 that also takes care of the requirements for the distinguished elements z and g.

Lemma 4.16 For every Boolean algebra A there is a non-trivial complete Boolean
algebra C with a filter H ⊆ C such that

∧

H = ⊥, and that A is elementarily
equivalent to C/H .

Proof If A is trivial, let D be the two-element Boolean algebra and H the improper
filter in D. Now pick an arbitrary non-trivial Boolean algebra A. By Proposition 4.9,
there is a (2ω0)+-field-of-sets B that is elementarily equivalent to A. Then we only
need to find a complete Boolean algebra C such that C ◦� B.

Notice that (2ω0)+ is a successor cardinal, so it is regular. Then, by Proposition
4.6, there is a (2ω0)+-field-of-sets B ′ such that B ′ ◦� B. By Proposition 4.10, then,
there is a complete Boolean algebra C such that C � B ′. But then, by Proposition
4.5, C ◦� B. Since A is non-trivial, B and hence C must also be non-trivial.

Proof for Lemma 4.8 Pick an arbitrary zg-algebra 〈A, z, g〉. We decompose A as
A|z × A|zg × A|zg since g ≤ z. Since we are only after elementary equivalence,
by Proposition 4.7, it is enough to find 〈A′, z′, g′〉 such that Inv(A′|

z′) = Inv(A|z),
Inv(A′|z′g′) = Inv(A|zg), and Inv(A′|

z′g′) = Inv(A|zg), and that 〈A′, z′, g′〉 is the
natural quotient of a complete proper filter algebra.

By the definition of zg-algebra, A|zg is atomic and A|zg is atomless. Let A′2 and
A′3 be the MacNeille completion of A|zg and A|zg , respectively. Note that MacNeille
completion does not change the number of atoms. Thus Inv(A′2) = Inv(A|zg), and
Inv(A′3) = Inv(A|zg).

To figure out A′|z, we invoke Lemma 4.16. By that lemma, there is a non-trivial
complete Boolean algebraC with a filterH , such thatC/H is elementarily equivalent
to A|z, and that ∧ H = ⊥C . Let A′1 = C/H .

Now let 〈A′, z′, g′〉 = 〈A′1 × A′2 × A′3, 〈⊥,	,	〉, 〈⊥,⊥,	〉〉. Then by construc-
tion, 〈A′, z′, g′〉 is also a zg-algebra and is elementarily equivalent to 〈A, z, g〉.

Then let B = 〈B, F 〉 where B = C×A′2×A′3 and F = H ×{	}× {	}. For this
B, we need to establish two points.

– First,B is a complete proper filter algebra. To see this, note first thatC×A′2×A′3
is a complete Boolean algebra as each of the three components are. Then note
that F is a proper filter. It is obviously a filter. It is proper because if not, A′1,
A′2, and A′3 are all trivial, and hence A′ and A are trivial since A′ and A are
elementarily equivalent. But A is a zg-algebra and zg-algebras are non-trivial.
Note though that any two of A′1, A′2, and A′3 can be trivial together.

– Also, the natural quotient of B, B/F , is precisely 〈A′, z′, g′〉. That A′ = B/F

is a simple Boolean algebra exercise. The next thing to note is that zB =
∧

F =
〈⊥,	,	〉 ∈ B since

∧

H = ⊥C . Hence πF (zB) = 〈⊥,	,	〉 ∈ A′, which is
precisely z′. Also, the join of atoms below zB in B is precisely 〈⊥,	,⊥〉 as A′2
by construction is atomic and A′3 is atomless.
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The extra constraints in Lemma 4.8 are also satisfied. B|zB
∼= C is always non-

trivial by construction. B|zBgB
∼= A′2 is trivial if and only if A|zg is trivial since the

construction method is MacNeille completion. By the same reason, B|zBgB
∼= A′3

is trivial if and only if A|zg is trivial.

5 Stronger Logics and Decidability

In the previous section, our only goal was the completeness theorems Theorem 4.1
and Theorem 4.2. However, the method we used to show them in fact supports a full
analysis of the expressivity of L � on complete proper filter algebras and the normal
�-extension of KD4∀5�, similar to the one in [42]. In light of the space such a
general analysis would take, in this section we focus only on several natural concrete
cases in which we only add one formula, or equivalently finitely many formulas, to
KD4∀5�. Since KD4∀5�zg is a definitional extension of KD4∀5�, in this section
we move between KD4∀5� and KD4∀5�zg freely in stating the results, noting that
to obtain the results in L �, one only needs to replace z and g by their definitions in
the axioms z and g in Definition 4.9.

Before we start, let us introduce a bit of notation. For any X ⊆ L �zg, let
CPFA(Γ ) be the class of complete proper filter algebras validating every formula in
Γ . As usual we write CPFA(ϕ) for CPFA({ϕ}) and write CPFA for CPFA(∅), the
class of all complete proper filter algebras. Then for any class K of complete proper
filter algebras, we write Log(K) for the set of formulas in L �zg that are valid in
all complete proper filter algebras in K. Finally, as usual, for any ϕ ∈ L �zg, we
write KD4∀5�zgϕ for the smallest normal �-logic extending KD4∀5�zg with ϕ.
Then, we first define the following semantics-preserving mapping between complete
proper filter algebras.

Definition 5.1 For any complete proper filter algebras B and B′ and any function
f from B to B′, we say f is a complete homomorphism if

– f is a complete Boolean homomorphism: f (¬a) = ¬f (a) and f (
∧

X) =
∧

f [X];
– for any a ∈ B, a ∈ FB iff f (a) ∈ FB′ .

Proposition 5.1 If f : B → B′ is a complete homomorphism, then for any
valuation θ on B and ϕ ∈ L �zg, f (θ̃(ϕ)) = f̃ ◦ θ(ϕ).

Proof If ϕ ∈ L �, a simple induction suffices. For ϕ ∈ L �zg, note that we have
the definitional axioms z and g that are sound.

Now we prove the following general completeness theorem.

Theorem 5.1 For any ϕ ∈ L �zg, KD4∀5�zgϕ = Log(CPFA(ϕ)).
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Proof That KD4∀5�zgϕ ⊆ Log(CPFA(ϕ)) is trivial by soundness. Now pick an
arbitrary ψ ∈ Log(CPFA(ϕ)). Without loss of generality we assume that both ϕ and
ψ are sentences. Since we will only be dealing with sentences whose semantic values
do not depend on particular valuations, we use the notation B(χ) for the semantic
value of any sentence χ in B. By necessitation and modus ponens in KD4∀5�zg, it
is enough to show that � (ϕ ∧ Bϕ) → ψ . By the completeness theorem, then, it is
enough to show that for every B ∈ CPFA, B � (ϕ ∧ Bϕ)→ ψ .

Pick an arbitrary complete proper filter algebra B. If B(ϕ) �∈ FB , then we are
done since B(Bϕ) and hence B(ϕ ∧ Bϕ) in this case is ⊥. So now we focus on
the case where B(ϕ) ∈ FB and let v = B(ϕ). Consider B′ defined by restricting
B to v: B′ = 〈B|v, {a ∧ v | a ∈ FB}〉. It is not hard to see that h : B → B′
defined by h(a) = a ∧ v is a complete homomorphism. By Proposition 5.1, we see
that (1) B′(ϕ) = h(B(ϕ)) = v = 	B′ and also that (2) B′(ψ) = h(B(ψ)). From
(1), it follows that B′ � ϕ. By assumption, B′ � ψ . Hence, by (2), h(B(ψ)) =
B(ψ) ∧ v = v and thus B(ψ) ≥ v. This means that B(ψ) ≥ B(ϕ ∧ Bϕ) and that
B � (ϕ ∧ Bϕ)→ ψ .

While of course there is a limit to the expressivity of L �zg, many natural classes
of complete proper filter algebras corresponds to the validity of sentences in L �zg.
We give some examples below.

Corollary 5.1 – CPFA(z) is the class of complete proper filter algebras
with trivial filters. Hence its logic is KD4∀5�zgz. In L �, the logic is
KD4∀5�∀p(Bp→ p).

– CPFA(Bz) is the class of complete proper filter algebras with principal filters.
Hence its logic is KD4∀5�zgBz. In L �, the logic is KD4∀5�Immod.

– The class of complete proper filter algebras with ultrafilters is defined by
∀p(Bp ∨ B¬p). Hence its logic in L � is KD4∀5�∀p(Bp ∨ B¬p).

Now we consider an undefinable property: atomicity. To see that it is not definable
by the validity of any formula in L �zg, we first establish a general proposition.

Proposition 5.2 For any complete proper filter algebras B and B′, if zB and zB′
are non-trivial and B/FB and B′/FB′ are elementarily equivalent, then Log(B) =
Log(B′).

Proof Let B and B′ with the suppositions above be given. Observe first that when
passing from B to B/FB , the Boolean structure of B below zB and the Boolean
structure of B/FB below zB/FB

are the same. In fact, if B is a complete Boolean
algebra, F a filter in B, and z the meet of F , then B/F is isomorphic to (B|z/F |z)×
B|z where F |z = {a ∧ ¬z | a ∈ F }. Thus, the zg in B is trivial iff the zg in
B/FB is trivial, and the same goes for zg and for B′. Since B/FB and B′/FB′
are elementarily equivalent, zg (resp. zg) in B is non-trivial iff zg (resp. zg) in B′
is non-trivial. Since we also assumed that the z in both B and B′ are non-trivial, in
sum, the triviality of z, zg, and zg in B and B′ are the same, respectively.
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Now, recall that by Lemma 4.7, for any sentence ϕ ∈ L �zg, we can assume that
ϕ = (z∧ϕz)∨ (zg∧ϕzg)∨ (zg∧ϕzg) where ϕz, ϕzg, and ϕzg are all in LB�zg. This
means, given Lemma 4.1 and that the natural quotients of B and B′ are elementarily
equivalent, B � χ iff B′ � χ for all χ ∈ {ϕz, ϕzg, ϕzg}. By the simple reasoning we
have used in the beginning of the proof of Theorem 4.2, B � ϕ iff B′ � ϕ. To show
the same for formulas with free variables, take the universal closure of them.

Proposition 5.3 There are no Γ ⊆ L �zg such that CPFA(Γ ) is precisely the class
of atomic complete proper filter algebras.

Proof Let B0 = 〈℘(N), F0〉 where F0 is a non-principal ultrafilter of ℘(N). Then
let B1 = 〈L, F1〉 where L is a complete atomless Boolean algebra and F1 is an
ultrafilter in L. Note that for both i ∈ {0, 1}, zBi

is⊥ and the natural quotient Bi/Fi

is isomorphic to 〈2,⊥,⊥〉 where 2 is a two-element Boolean algebra. By Proposition
5.2, for any ϕ ∈ L �zg, B0 � ϕ if and only if B1 � ϕ. But B0 is atomic yet B1 is
not.

However, the undefinability of atomicity in complete proper filter algebras does
not preclude axiomatization. An obvious validity on atomic complete proper filter
algebras is z → g since z must be below the join of atoms below z. It turns out that
we can just append this to KD4∀5�zgϕ to obtain the logic of the atomic algebras in
CPFA(ϕ). To show this, first note that we can strengthen Lemma 4.16 so that the non-
trivial complete Boolean algebra C is also atomic. This can be done simply by using
the canonical extension Cδ , the powerset algebra of the set of ultrafilters of C, rather
than C as the final result of that lemma, since by Sikorski’s extension lemma and C

being complete, Cδ � C (for a proof, see [53], Theorem 5, Chapter 13). We can
then chain the surjective morphisms and see that Cδ ◦� B where B is elementarily
equivalent to an arbitrarily given Boolean algebra. But then, the Lemma 4.8 is also
strengthened so that besides all other requirements, zB can be atomic. In sum, the
completeness theorem is now strengthened into the following: if ϕ ∈ L �zg is valid
on all complete proper filter algebras B such that zB is atomic, then ϕ is already in
KD4∀5�zg. To formulate results below, let us use CPFAzat(Γ ) to denote the class
of complete proper filter algebras such that z is atomic and every formula in Γ is
validated and use CPFAat(Γ ) for the class of complete proper filter algebras that are
atomic and validates everything in Γ .

Theorem 5.2 For every formula ϕ ∈ L �zg, KD4∀5�zgϕ = Log(CPFAzat(ϕ)).
For CPFAat, we have that KD4∀5�zg((z→ g) ∧ ϕ) = Log(CPFAat(ϕ)).

Proof To show that KD4∀5�zgϕ = Log(CPFAzat(ϕ)), using Theorem 5.1, we only
need to show that Log(CPFAzat(ϕ)) ⊆ Log(CPFA(ϕ)). This clearly follows from the
fact that for every B ∈ CPFA there is a B′ ∈ CPFAzat such that Log(B) = Log(B′).
If B is such that zB is trivial, then B itself is in CPFAzat and we are done. If zB
is not trivial, then apply the strengthend Lemma 4.8 to B/FB and obtain B′. By
the strengthening, B′ ∈ CPFAzat. Moreover, Lemma 4.8 states that the zg (resp. zg)
in B′ is non-trivial iff the zg (resp. zg) in B/FB is non-trivial. This means that
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Proposition 5.2 can be applied to B and B′, and from it we have that Log(B) =
Log(B′).

To show that KD4∀5�zg((z → g) ∧ ϕ) = Log(CPFAat(ϕ)), note that
CPFAzat(z→ g) = CPFAat and thus CPFAat(ϕ) = CPFAzat((z→ g) ∧ ϕ), since for
any B ∈ CPFA, zBgB is already atomic.

With the above general completeness, we have the following corollary collecting
a few special cases. To state results in language L �, let At stand for ∀p(Bp →
p) → ∃p(p ∧ at (p)) where at (p) is defined as in Definition 4.4 except that all z
used in at (p) is replaced by ∀p(Bp→ p).

Corollary 5.2 – The logic of the class of atomic complete proper filter algebras
with trivial filters in language L � is KD4∀5�At∀p(Bp→ p).

– The logic of the class of atomic complete proper filter algebras with principal
filters in language L � is KD4∀5�AtImmod.

– The logic of the class of atomic complete proper filter algebras with ultrafilters
in language L � is KD4∀5�At∀p(Bp ∨ B¬p).

Before we move on to decidability, note that since KD4∀5� is sound on the class
of all complete KD45 algebras, the above general completeness theorems, when
phrased in L � (since we didn’t define the semantics of z and g on those algebras),
hold for complete KD45 algebras too.

For decidability, the situation is simple: all the logics mentioned above are decid-
able. To see this, we first state a general theorem linking the decidability of logics in
the form of Log(K) to the decidability of the first-order theories of some classes of
zg-algebras coming from K.

Theorem 5.3 For any K ⊆ CPFA, Let QK0 = {B/FB | B ∈ K and zB = ⊥} and
QK1 = {B/FB | B ∈ K and zB �= ⊥}. Then, if QK0 and QK1 have a decidable
first-order theory in FOL zg, then Log(K) is decidable.

Proof For any ϕ ∈ L �zg, to decide whether ϕ ∈ Log(K), we can first take its
universal closure and then turn it into a sentence of the form

(z ∧ α) ∨ (zg ∧ β) ∨ (zg ∧ γ )

with α, β, γ ∈ LB�zg. Obviously this process is decidable. Then, following similar
reasoning done in the proof of Theorem 4.2, ϕ ∈ Log(K) if and only if for all B ∈ K,
the following hold.

– Either zBgB = ⊥ or B/FB � T (β).
– Either zBgB = ⊥ or B/FB � T (γ ).
– Either zB = ⊥ or B/FB � T (α).

It is not hard to see that zBgB = ⊥ if and only if B/FB � ((z ∧ g) = ⊥), and
similarly zBgB = ⊥ if and only if B/FB � ((z ∧ ¬g) = ⊥). This is because
zB =

∧

FB , so all distinctions below zB are preserved under quotienting through
FB . However, there is no analog for zB . It may well be that B/FB � ¬z = ⊥ while
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zB > ⊥. This happens whenever FB is principal, and this is why we need to take
care of two classes of natural quotients. Using the observations we collected, now
ϕ ∈ Log(K) if and only if the following hold.

– For all B ∈ K such that zB = ⊥, B/FB � ((zg = ⊥) ∨ T (β)) ∧ ((zg =
⊥) ∨T (γ )).

– For all B ∈ K such that zB �= ⊥, B/FB � T (α)∧((zg = ⊥)∨T (β))∧((zg =
⊥) ∨T (γ )).

Thus we are now deciding if two formulas, obtained effectively from ϕ, are in the
first-order theories of QK0 and QK1 respectively. By assumption the two theories are
decidable. Hence whether ϕ ∈ Log(K) is decidable.

Theorem 5.4 The following logics are decidable:

– KD4∀5�, – KD4∀5�At,
– KD4∀5�∀p(Bp→ p), – KD4∀5�At∀p(Bp→ p),
– KD4∀5�B∀p(Bp→ p), – KD4∀5�AtB∀p(Bp→ p),
– KD4∀5�∀p(Bp ∨ B¬p), – KD4∀5�At∀p(Bp ∨ B¬p).

Proof As is argued above, each of them comes from a well-behaved class of complete
proper filter algebras. Take KD4∀5� for example. It is the logic of CPFA. Using the
notation above in Theorem 5.3, we only need to argue that QCPFA0 and QCPFA1
have decidable theories in FOL zg.

– QCPFA0 is just the class of complete zg-algebras with z being the top element.
This is because that ifB = 〈B, F 〉 is such that zB = ⊥, then zB = 	, and hence
F is the trivial filter. Thus B/F = 〈B,	, g〉 where g is the join of atoms. It is
well known that the first-order theory of non-trivial complete Boolean algebras
is decidable. To decide whether ϕ ∈ FOL zg is valid in QCPFA0, we only need
to test whether the formula (x = 	∧ at (y))→ ϕ[x/z, y/g] in FOL is valid in
all non-trival complete Boolean algebras, where x and y are two fresh variables
and at (y) states that y is the join of all atoms (which is expressible in FOL ).

– By Lemma 4.8, we see that the theory of QCPFA1 is precisely the theory of all
zg-algebras: FOLzg. This theory is decidable since the theory of all non-trivial
Boolean algebras is well kown to be decidable, and to test whether ϕ ∈ FOL zg
is in FOLzg, we only need to test whether the formula at (x, y)→ ϕ[x/z, y/g]
is valid in all non-trivial Boolean algebras, where x and y are fresh variables and
at (x, y) states that y is the join of the atoms below x.

The argument above clearly generalizes to all other cases, noting also that the first-
order theory of atomic Boolean algebras, the first-order theory of complete and
atomic Boolean algebras, and the first-order theory of two-element Boolean algebras
are all decidable. We briefly sketch theFOL zg theories we need for the other logics.

– KD4∀5�∀p(Bp → p) is the logic of complete proper filter algebras with the
trivial filter. Calling this class K, the theory of QK0 is the theory of complete zg-
algebras with z being 	, and the theory of QK1 is the inconsistent theory since
QK1 is empty.
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– KD4∀5�B∀p(Bp → p) is the logic of complete proper filter algebras with a
principal filter. Calling this class K, the theory of QK0 is the theory of complete
zg-algebras with z being	, and the theory of QK1 is also the theory of complete
zg-algebras with z being 	.

– KD4∀5�B∀p(Bp∨B¬p) is the logic of complete proper filter algebras with an
ultrafilter. Calling this class K, the theory of QK0 is the theory of two-element
zg-algebras with z being 	, and the theory of QK1 is the theory of two-element
zg-algebras.

– For KD4∀5�At, the relevant FOL zg-theories are the theory of atomic and
complete zg-algebras with z being 	 and the theory of zg-algebras with g being
equal to z.

– For KD4∀5�At∀p(Bp → p), the relevant FOL zg-theories are the theory of
atomic and complete zg-algebras and the inconsistent theory.

– For KD4∀5�AtB∀p(Bp → p), the relevant FOL zg-theory is the theory of
atomic and complete zg-algebras with z being 	.

– For KD4∀5�At∀p(Bp ∨ B¬p), the relevant FOL zg-theories are the theory
of two-element zg-algebras with z being 	 and the theory of two-element zg-
algebras.

6 Conclusion

In the previous sections, we have studied complete KD45 algebras, complete proper
filter algebras, and logics in L � extending KD45 based on these algebras. It turns
out that KD4∀5� is the weakest logic we can have if we use algebraic semantics
based on complete Boolean algebras of propositions to extend KD45 with proposi-
tional quantifiers. Beyond KD4∀5�, the semantics based on complete proper filter
algebras is adequate for many logics, and we can even show some general complete-
ness theorems. Moreover, the semantics is arguably intuitive for the language L �

as many properties of the algebras can be easily defined by the language, with atom-
icity being an exception, and we can determine decidability easily in many cases if
the logic is coming from a class of complete proper filter algebras.

To conclude, we mention some directions of future research. First, noting that the
set of measure 1 set in any probability space is always a proper filter in the algebra of
events and that probability spaces are commonly used to model subjective credences,
we may consider interpreting L � on probability spaces and obtain a logic of “cre-
dence 1”. The first difficulty for this is that in a probability space 〈X, B, μ〉 with B

the algebra of events, in most realistc cases, B is not lattice complete. To overcome
this, it would be good to pin down exactly what is required for the well-definedness
of the semantics of L � and see how widely applicable the requirement is. Once this
is done, to obtain the logic, our strategy above suggests that we need to study the
natural quotient of 〈B, F 〉 by F , the filter of measure 1 sets. It is well known that if
B is a σ -algebra and μ is countably additive, then B/F is lattice complete. Roughly
speaking, then, the first-order theory of the natural quotients of countably additive
probability spaces by their filter of measure 1 sets is at least the first-order theory of
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complete Boolean algebras. On the other hand, if we do not assume countable addi-
tivity, then there seems to be little constraint on what the quotient could be. These two
observations suggest that L � is able to distinguish countably additive probability
spaces from merely finitely additive probability spaces.

Second, we can include more modal operators in the language, each of which is
interpreted by a proper filter. This is of course not the most general way to extend
our language with multiple modalities. But if not careful, we may suddenly find our-
selves on the other side of the axiomatizability boundary. Also, some special cases
of this semantics may be of conceptual significance. For example, there can be two
modal operators, one for “necessarily”, which is interpreted using the trivial filter
containing only the top element, and the other for “actually”, interpreted by a com-
plete ultrafilter, which is necessarily generated by an atom, or just an ultrafilter, if
one would like to drop the assumption that there is an “actual world”. Without the
modality for necessity, the logic would be extending KD4∀5� with both Immod
and ∀p(Bp ∨ ¬Bp) or just ∀p(Bp ∨ ¬Bp), depending on whether the ultrafilter
is principal or not, as we have shown above. Another example is when the modal
operators are belief operators of different agents, where the beliefs of all agents are
publicly known to all agents, so that one agent believes that p if and only if any other
agent believes that the former agent believes that p. We conjecture that the general
idea of relativization to z, zg, and zg on both the logic and the algebra sides can be
generalized to deal with multiple filters too.

Third, recall that algebraic semantics based on complete algebras cannot distin-
guish KD4∀5� from KD45�. In Section 2, we introduced semantics for L � based
on frames with propositional contingency. While it is true that to separate logics
above KD45 using this semantics, we need drop the usual first-order correspondences
of KD45 such as shift-reflexivity, this is not an insurmountable difficulty. We believe
that indeed 4∀ is not already in KD45�, and this can be shown by using seman-
tics with propositional contingency. But a full proof of this shall be left for an other
occasion. It is also hopeful that we can have a semantics based on propositional
contingency that is adequate for KD45�.

Let us now consider the general method of extending normal modal logics with
propositional quantifiers through complete algebras and raise some natural questions
here. Let L be the quantifier free fragment L �, and let CAlg(Γ ) be the class of
lattice complete BAOs validating all formulas in Γ , with CAlg(ϕ) and CAlg abbrevi-
ating CAlg({ϕ}) and CAlg(∅), respectively. Then, let Log(K) be the set of sentences
in L � validated by every member of K. Once these two operators are defined, a
series of standard questions can be asked. Most notably is the question of character-
izing the fixed points of this Galois connection, namely the classes of algebras of the
form CAlg(Γ ) and the sets of sentences of the form Log(K). But from the perspective
of extending normal modal logics with propositional quantifiers, the natural object of
study is Log ◦ CAlg, an operator from ℘(L ) to ℘(L �). A theorem we have shown
in this paper is that Log(CAlg(KD45)) = KD4∀5�, where we see that axiom 4 is
strengthened into 4∀ (we assume that 4∀ is not in KD45� below). Note, however,
that Log(CAlg(S5)) = S5�, in which case there is no strengthening of the axioms in
S5. In other words, for S5, the syntactic way of extending it with propositional quan-
tifiers by adding �-principles and the semantic way of extending it by going through
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complete BAOs result in the same logic, while for KD45 this is not so. In general, let
us call a normal modal logic L in L C �-complete if Log(CAlg(L)) = L�; that is, the
syntactic way and the semantic way of extending L to a �-logic in L � are the same
judging from the final result. Then, we can ask what accounts for the distinction that
KD45 is C �-incomplete yet S5 is C �-complete, and more generally we can ask
whether there is a more logical or intrinsic way to characterizeC �-(in)completeness.

The name “C �-completeness” we chose for the property is inspired by the well-
studied property of C -completeness of normal modal logics in L . Recall that by
definition, using our notation, a normal modal logic L ⊆ L is C -complete if and
only if Log(CAlg(L)) ∩ L = L. Given that the definitions of these two properties
are similar in form, one might hope that there are some logical relations between
them. However, if 4∀ is not in KD45�, as we believe, then C -completeness does
not imply C �-completeness since KD45 is well known to be C -complete (in fact
Kripke complete or more algebraically C A V -complete). The other direction is also
not obvious. Suppose L is C -incomplete. Then there is a ϕ ∈ (Log(CAlg(L))∩L )\L.
If we can show that ϕ �∈ L� then we will be done. However, this is not obvious as
while ϕ ∈ L , it may well be that L� is not conservative over L and L� ∩L � L
with ϕ witnessing the inequality. In general, we can call a normal modal logic L in
L �-conservative if L�∩L = L. Then, it is easy to observe that C -incompleteness
plus�-conservativity implyC �-incompleteness. However, it seems unlikely thatC -
incompleteness and �-conservativity can coexist, since the �-principles intuitively
should help derive validities in complete BAOs that normal modal logics cannot. At
any rate, the logical relations among the above three properties about normal modal
logics regarding how they can be extended (with or without propositional quantifiers)
using complete BAOs seem intricate and may be worthy of future research.

Finally, we would like to point out that our proof of the completeness theorem
relies heavily on a syntactic reduction that can hardly be generalized below KD45
since once we introduced z and g, by the end of the process, we see that all quantifiers
are outside the scope of the modal operators, and moreover there is only one layer of
modal operators. Once we let go of the 4 and 5 axioms, we can hardly achieve this
result. Our strategy may still work when we study Log(CAlg(K45)), but a method
more generalizable is clearly needed if we want to venture further.
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