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Abstract
Building on recent work by Yale Weiss, we study conditional logics in the intuition-
istic setting. We consider a number of semantic conditions which give rise, among
others, to intuitionistic counterparts of Lewis’s logic VC and Stalnaker’s C2. We
show how to obtain a sound and complete axiomatization of each logic arising from
a combination of these conditions. On the way, we remark how, in the intuitionistic
setting, certain classically equivalent principles of conditional logic come apart, and
how certain logical connections between different principles no longer hold.

Keywords Conditional logic · Intuitionistic logic · Variably strict conditionals ·
Modal logic · Non-monotonic reasoning

1 Introduction

Conditional logics arose from the work of Adams [1], Stalnaker [20] and Lewis [14]
on the semantics of conditionals, and their study soon grew into an active area of
research in logic (see [16], for an overview) with tight connections to modal logic [8,
18] and non-monotonic reasoning [13, 22]. In this area, scholars have studied exten-
sions of propositional logic with a conditional operator > and classified a number
of systems which result from imposing natural constraints on the associated models.
Among these, a prominent place is occupied by the logics V, VW and VC, stemming
from Lewis’s interpretation of conditionals in terms of minimal change. These log-
ics arise from the idea that ϕ > ψ is true in a world w if among the worlds where
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ϕ is true, the ones which are most similar to w are ψ-worlds. Another logic that
plays an important role is Stalnaker’s system C2, which results from the idea that
the truth-value of ϕ > ψ in a world w depends on the truth-value of ψ in a single
ϕ-world—intuitively, the ϕ-world which differs minimally from w.

In the literature, conditional logics are studied as conservative extensions of clas-
sical logic. However, there seems to be no reason why the enterprise of modeling
conditional reasoning should be confined to the classical setting. It seems quite inter-
esting to consider how non-classical logics can be equipped with the tools to model
conditional reasoning. Among non-classical logics, a prominent place is occupied by
intuitionistic logic, where only constructive forms of reasoning are allowed. A natu-
ral question is, then: what do the intuitionistic counterparts of prominent conditional
logics look like?

Recently, Weiss [23, 24] took a first step in this direction, showing how to extend
intuitionistic Kripke semantics with the structure needed to interpret a conditional
operator >, and studying the intuitionistic counterparts of some weak conditional
logics, including the minimal conditional logic CK of Chellas [8]. In this paper,
we follow up on his work, and study the intuitionistic counterparts of some of the
most important conditional logics, including V, VW, VC, and C2. In fact, we will do
something more general: we will consider a range of semantic conditions, and a cor-
responding range of axioms, and we will show that any combination of those axioms
gives rise to a conditional logic which is sound and complete for the class of models
satisfying the associated conditions. In order to achieve this goal, we will propose
a small modification of the semantics given by Weiss [23, 24]. This modification
does not affect the generality of the semantics: every Weiss model can be turned
into one of our models without affecting the satisfaction of formulas, and vice versa.
However, the modified notion of models will facilitate a simple and elegant corre-
spondence between semantic conditions and syntactic axioms, which seems hard to
obtain otherwise.

Before getting down to business, let us mention two reasons why studying the
logic of conditionals in an intuitionistic setting is an interesting enterprise.

First, intuitionistic logic is already equipped with its own conditional operator
→. Unlike the material conditional of classical logic, which is truth-functional, the
conditional of intuitionistic logic is an intensional operator, and it is semantically very
close to the operator > in conditional logics: both conditionals check whether the
consequent is satisfied everywhere within a certain set of possible worlds determined
by the antecedent. The difference is which set of worlds is picked out by each of
them. Crucially, → is constrained to quantify over states of affairs which are possible
from the perspective of the evaluation world, while > is allowed to quantify over
counterfactual states of affairs as well. Thus, a natural interpretation is to view p → q

as standing for an epistemic conditional like (1-a), and to view p > q as standing for
an ontic conditional like (1-b).

(1) a. If the butler didn’t do it, the gardener did.
b. If the butler had not done it, the gardener would have.

In this sense, the logics that we will look at can be seen as logics in which two
different kinds of conditionals, epistemic and ontic, interact with each other.
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Second, studying the principles of conditional logic from the perspective of intu-
itionistic logic allows us to ask which of these principles only stem from assumptions
about the semantics of conditionals, and which stem partly from the classicality of
the underlying logic. For a concrete example, consider Stalnaker’s logic C2. Usu-
ally, this logic is characterized by the conditional excluded middle axiom, (ϕ >

ψ)∨(ϕ > ¬ψ), which says that every antecedent yields either a sentence or its nega-
tion. Classically, this principle is equivalent to a determinacy principle stating that,
whenever an antecedent yields a disjunction, it yields a specific one of the disjuncts:
(ϕ > ψ ∨χ) → (ϕ > ψ)∨(ϕ > χ). It turns out that, intuitionistically, the latter, and
not the former, is the appropriate way to capture Stalnaker’s constraint—the unique-
ness assumption. Conditional excluded middle is a consequence of the uniqueness
assumption—a proper conditional principle—paired with the bivalence of classical
logic.1

The paper is structured as follows. In Section 2 we define a semantics for intu-
itionistic logic extended with the operator >. In Section 3 we discuss the relations
between this semantics and the ones of Weiss [23, 24]. In Section 4 we define a gen-
eral notion of an intuitionistic conditional logic. In Section 5 we describe how to
construct a canonical model for a given intuitionistic conditional logic L, in which
all L-invalid entailments can be falsified. In Section 6 we define a number of seman-
tic conditions on intuitionistic conditional models, and discuss their significance. In
Section 7 we introduce axioms corresponding to these conditions, and show that each
of these axioms is valid on models satisfying the corresponding condition. Finally,
in Section 8 we show that these axioms are canonical for the semantic conditions, in
the following sense: if L contains one of these axioms, then the canonical model for
L satisfies the corresponding semantic condition. Using this fact, we get a soundness
and completeness result for a variety of intuitionistic conditional logics, including the
intuitionistic counterparts of V, VW, VC, and C2. Section 9 summarizes our findings
and outlines some directions for further work.

2 Intuitionistic Conditional Semantics

In this section we describe our semantics for intuitionistic propositional logic
equipped with an extra conditional operator >. First, let us specify the language that
we will work with.

Definition 1 (Language)
The language L> of intuitionistic propositional conditional logic based on a set P of
atoms is given by the following BNF definition, where p ∈ P:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ϕ > ϕ

1Weiss [23, 24] ties Stalnaker’s logic to conditional excluded middle, and goes on to claim that there
is no intuitionistic counterpart of C2, since he shows that any intuitionistic conditional logic containing
conditional excluded middle is actually classical. In fact, as we will see, there is a natural intuitionistic
counterpart of C2: its axiomatization, however, does not involve conditional excluded middle.
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As usual in intuitionistic logic, negation, the tautology symbol �, and the
bi-conditional are defined as follows:

– ¬ϕ := ϕ → ⊥
– � := ¬⊥
– ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)

We will interpret our language with respect to models that extend intuitionistic
Kripke models with the structure needed to interpret the operator>. First, let us recall
the standard notion of an intuitionistic Kripke frame.

Definition 2 (Intuitionistic Kripke frames)
An intuitionistic Kripke frame is a pair F = 〈W, ≤〉, where:
– W is a set, whose elements are called worlds;
– ≤ is a partial order on W , the refinement ordering.

Given a frame 〈W, ≤〉, we denote by Up≤(W) denotes the set of up-sets of W :

Up≤(W) = {X ⊆ W | ∀w, v : w ∈ X and w ≤ v implies v ∈ X}
Moreover, if w ∈ W , we denote by w↑ the set of ≤-successors of w:

w↑ := {v ∈ W | w ≤ v}
We are now ready to define our intuitionistic conditional models. These are struc-
tures which enrich an intuitionistic Kripke model with a family RX of binary relation
indexed by propositions, where propositions are designated sets of possible worlds.

Definition 3 (Intuitionistic conditional models)
An intuitionistic conditional model, abbreviated as ICM, is a structure M = 〈W, ≤,

A, {RX | X ∈ A}, V 〉 where:
– 〈W, ≤〉 is an intuitionistic Kripke frame;
– A ⊆ Up≤(W) is a set of up-sets called propositions.
– For each X ∈ A, RX is a binary relation on W ; the set of RX-successors of a

world w is denoted by RX[w]:
RX[w] := {v ∈ W | wRXv}

– V : P → A is a valuation function, assigning to each atom a proposition.

We require the components of an ICM to satisfy certain conditions:

– Closure of A under logic: A contains ∅, it is closed under intersection, union,
and the following operations:

– X, Y �→ {w ∈ W | X ∩ w↑ ⊆ Y }
– X, Y �→ {w ∈ W | RX[w] ⊆ Y }

– Upwards-closure of RX[w]: for any w ∈ W , RX[w] ∈ Up≤(W).
– Monotonicity of RX[ · ]: if w ≤ v then RX[w] ⊇ RX[v].
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One may think of worlds as partial states in a process of inquiry. In each world, a
sentence ϕ may or may not have been established. The relation w ≤ v means that v

is a refinement of w: that is, v establishes anything that w establishes, and possibly
more. Alternatively, one may think of a world v ≥ w as one of the ways in which the
process of inquiry may develop further from w. The function V maps p to the set of
those worlds where it is established that p.

The intended interpretation of RX is that the elements v ∈ RX[w] are those worlds
which, from the standpoint of w, may have obtained if the proposition X had been
established. We will refer to RX[w] as the hypothetical context generated at w by the
making the ontic assumption that X.

The closure conditions onA are needed to ensure that, given the semantics below,
the object |ϕ| expressed by each sentence is always a proposition, and therefore that
a corresponding relation R|ϕ| is available in the model.

The second condition requires RX[w] to be upwards-closed.2 Conceptually, it can
be motivated as follows: if v ∈ RX[w], that means that at w we consider it possible
that, had X been the case, v may have obtained. Since v may evolve into any of its
successors, each successor of v may have obtained if X had been the case. Therefore,
each successor of v should be in RX[w].

Finally, the monotonicity condition says that, if w ≤ v, then the hypothetical
context RX[v] that we get at v is stronger than the context RX[w] that we get at w.
This is a natural constraint: w ≤ v means that all the information available at w is
also available at v; this includes conditional information about how the world would
be like if X were the case; this means that any counterfactual possibility u which can
be ruled out at w (u �∈ RX[w]) can also be ruled out at v (u �∈ RX[v]). This means
that RX[v] ⊆ RX[w].

Next, let us define a notion of satisfaction, capturing when a formula ϕ is
established in a world w in an intuitionistic conditional model M .

Definition 4 (Semantics)

1. M, w |= p ⇐⇒ w ∈ V (p)
2. M, w �|= ⊥
3. M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ and M, w |= ψ
4. M, w |= ϕ ∨ ψ ⇐⇒ M, w |= ϕ or M, w |= ψ
5. M, w |= ϕ → ψ ⇐⇒ ∀v ≥ w : M, v |= ϕ implies M, v |= ψ
6. M, w |= ϕ > ψ ⇐⇒ ∀v ∈ R|ϕ|[w] : M, v |= ψ

Where the set |ϕ|, called the proposition expressed by of ϕ in M , is defined as:

– |ϕ| := {w ∈ W | M, w |= ϕ}
To simplyfy notation, in the following we will usually write Rϕ instead of R|ϕ|.

Clauses 1-5 are just the standard clauses of intuitionistic Kripke semantics.
Clause 6 is the standard clause for the operator > in a relational semantics for con-
ditional logic: ϕ > ψ is satisfied at w if ψ is satisfied at all the Rϕ-successors of w;

2This is the main difference between our semantics and the ones of Weiss [23, 24], who does not impose
this constraint. We will discuss this in more detail in the next section.
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i.e., ϕ > ψ is satisfied at w iff ψ holds throughout the hypothetical context which
results from making the ontic assumption that ϕ at w.

It is interesting to note that, although this is not obvious from the previous defini-
tion, the two conditionals can be seen as having essentially the same semantic clause.
To see this, notice that we can think of those ≤-successors of w which satisfy ϕ as
those states which may be the actual state if ϕ becomes established. We can then
think that making the epistemic assumption that ϕ amounts to imagining that we are
in one of these worlds. More technically, let us define a family {SX | X ∈ A} as
follows:

– SX[w] := X ∩ w↑

Let us write Sϕ for S|ϕ|. We can think of Sϕ[w] as the hypothetical context gener-
ated at w by supposing ϕ as an epistemic, rather than ontic, assumption. Then the
semantics for the two conditionals can be made exactly parallel:

– M, w |= ϕ → ψ ⇐⇒ Sϕ[w] ⊆ |ψ |
– M, w |= ϕ > ψ ⇐⇒ Rϕ[w] ⊆ |ψ |

The difference between the two conditionals lies in the fact that we have two
modes of making an assumption ϕ: the epistemic mode, corresponding to Sϕ[·], and
the ontic mode, corresponding to Rϕ[·].

As in standard intuitionistic Kripke semantics, the satisfaction relation is persis-
tent: anything which is established in a worldw remains established at any refinement
of w.

Proposition 1 (Persistency)
For every ICM M , if w ≤ v then M, w |= ϕ implies M, v |= ϕ.

Proof The proof is by induction on ϕ. We prove the case in which ϕ = ψ > χ ; the
remaining cases are familiar from intuitionistic logic.

Suppose w ≤ v and M, w |= ψ > χ . This means that Rψ [w] ⊆ |χ |. By the
monotonicity of Rϕ[·] we have Rψ [v] ⊆ Rψ [w]. Therefore also Rψ [v] ⊆ |χ |, which
means that M, v |= ψ > χ .

It is interesting to note that, given an intuitionistic Kripke model, there are always
two canonical ways to equip it with a family {RX | X ∈ Up≤(W)} so that the result
is an ICM: one consists in taking RX[w] to be X; the other consists in taking RX[w]
to be the set of refinements of w which are in X.

Definition 5 Let M = 〈W, ≤, V 〉 be a standard intuitionistic Kripke model. We
define two corresponding ICMs, Mu and Mi , by expanding M with the set of propo-
sitions A := Up≤(W) and with the family {RX | X ∈ Up≤(W)}, where the relations
Rϕ are defined as follows:

– for Mu, define RX[w] := X

– for Mi , define RX[w] := SX[w] = X ∩ w↑
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It is easy to see that both Mu and Mi are proper ICMs, that is, the conditions of
Definition 3 are satisfied. As the following observation brings out, the model Mu

yields a universal strict account of >, which looks at all possible worlds in the model,
while Mi renders the operator > identical to the intuitionistic conditional →.

Observation 1 For any intuitionistic Kripke model M we have:

– Mu, w |= ϕ > ψ ⇐⇒ ∀v ∈ W : Mu, v |= ϕ → ψ ⇐⇒ |ϕ| ⊆ |ψ |
– Mi , w |= ϕ > ψ ⇐⇒ Mi, w |= ϕ → ψ

It is also worth pointing out that the semantics for classical conditional logic can
be retrieved as a special case. Indeed, the classical conditional models studied, e.g.,
by Segerberg [18] correspond one-to-one to ICMs where the refinement relation ≤ is
the identity relation; moreover, restricted to these models, our semantic clauses boil
down to the classical ones. So, from a semantic perspective intuitionistic conditional
logic is a generalization of classical conditional logic.

The notions of validity and entailment over a class of models are defined as usual.

Definition 6 (Validity, entailment)

– We say that ϕ is valid in a model M if it is satisfied at every world in M .
– We say that ϕ is valid over a class of models C, written |=C ϕ, if it is valid in

every model M ∈ C.
– We say that a set of formulas Φ entails a formula ψ over a class of models C,

notation Φ |=C ψ , if for every M ∈ C and every w in M: if M, w |= ϕ for all
ϕ ∈ Φ then M, w |= ψ .

3 Comparison withWeiss’s Semantics

The semantics in the previous section is very close to, and directly inspired by,
the one recently proposed by Weiss [24] (§6). However, it differs from it in one
respect: unlike Weiss, we require RX[w] to be an up-set. Other than the lack of this
requirement, Weiss’s notion of a model is exactly the same as ours, and formulas are
interpreted by the same semantic clauses.3

In a sense, the difference is superficial: on the one hand, every model in our sense
is also a model in the sense of [24], and in this class of models, the two semantics
coincide. Conversely, there is a straightforward way of translating every Weiss model
to a model in the sense of Definition 3, without affecting the semantics of sentences.

3There is an additional difference between our semantics and the one in Weiss [23]. Namely, in [23], it
is required that a model provide relations RX for every set of possible worlds X ⊆ W . This requirement,
however, creates some unpleasant complications when constructing canonical models. Therefore, follow-
ing Segerberg [18], we take our models to come with a designated sub-algebraA ⊆ ℘(W) of propositions,
and take our relations RX to be indexed by elements X ∈ A. Weiss’ own more recent work [24], which
we take as our point of departure here, makes the same assumption.
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Proposition 2 (Translating Weiss models to our models)
Let M = 〈W, ≤,A, {RX | X ∈ A}, V 〉 be a model in the sense of Weiss [24] (i.e.,
a structure defined as in Definition 3, but without the requirement that RX[w] is an
up-set). Let M� := 〈W, ≤,A, {R↑

X | X ⊆ W }, V 〉, where:
R

↑
X[w] = (RX[w])↑ := {v ∈ W | ∃u ∈ RX[w] such that u ≤ v}

Then M� is a model in the sense of Definition 3. Moreover, for any w ∈ W and
ϕ ∈ L> we have:

M, w |= ϕ ⇐⇒ M�, w |= ϕ

Proof We leave it to the reader to verify that M� satisfies all the conditions of Def-
inition 3. The semantic preservation result is proved by induction on ϕ. The only
interesting case is the inductive step for ϕ = ψ > χ . We have:

M, w |= ϕ > ψ ⇐⇒ ∀v ∈ Rϕ[w] : M, v |= ψ

⇐⇒ ∀v ∈ Rϕ[w] : M�, v |= ψ

⇐⇒ ∀v ∈ R↑
ϕ [w] : M�, v |= ψ

⇐⇒ M�, w |= ϕ > ψ

where the second equivalence is given by the induction hypothesis, and the third by
the persistency of the semantics (Proposition 1).

The main reason for working with a more demanding notion of models than used
byWeiss is that this notion will allow for a smooth correspondence between semantic
conditions on RX and syntactic axioms on >. It is quite possible that similar results
could be obtained for Weiss’ original semantics as well, but it seems that the relevant
conditions would have to be formulated in a more complex and less transparent way.4

4 Intuitionistic Conditional Logics

In this section we introduce a class of intuitionistic conditional logics, defined proof-
theoretically. In the next section we will see that ICK, the least logic in this class, is
exactly the logic of the class of all intuitionistic conditional models—a result essen-
tially due to Weiss [23]. In the following sections we will then be concerned with
stronger intuitionistic conditional logics, including the intuitionistic counterparts of
Lewis’s and Stalnaker’s conditional logics.

Definition 7 An intuitionistic conditional logic (abbreviated as ICL) is a set L ⊆ L>

which includes all instances of the following schemata:

4In fact, the canonical model construction described in [24]—essentially the same we will use in this
paper—delivers models where RX[w] is always upwards closed. Therefore, the upwards closure require-
ment does not make it more difficult to prove completeness for intuitionistic conditional logics. As we
will discuss, the role of the requirement is, rather, to guarantee the soundness of certain axioms for certain
natural frame conditions.
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– Intuitionistic schemata:

– ϕ → (ψ → ϕ)

– (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))

– ϕ → (ψ → ϕ ∧ ψ)

– ϕ ∧ ψ → ϕ

– ϕ ∧ ψ → ψ

– ϕ → ϕ ∨ ψ

– ψ → ϕ ∨ ψ

– (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))

– ⊥ → ϕ

– Conditional schemata

– ϕ > �
– (ϕ > ψ ∧ χ) ↔ ((ϕ > ψ) ∧ (ϕ > χ))

and which is closed under the rules of modus ponens, replacement of equivalent
antecedents, and replacement of equivalent consequents:

ϕ ϕ → ψ

ψ
(MP)

ϕ ↔ ψ

(ϕ > χ) ↔ (ψ > χ)
(RCEA)

ϕ ↔ ψ

(χ > ϕ) ↔ (χ > ψ)
(RCEC)

The minimal ICL, defined as the least set of formulas containing all instances of
the above schemata and closed under the rules, is called ICK.

As in standard modal logic, some care must be taken in defining the relation of
consequence �L that the logic gives rise to. We define this as follows.

Definition 8 (Derivability in a logic)
Let L be an ICL and let Φ ∪ {ψ} ⊆ L>. We write Φ �L ψ to mean that there exist
ϕ1, . . . , ϕn ∈ Φ such that ϕ1 ∧ · · · ∧ ϕn → ψ ∈ L.

The following proposition states that in any ICL, conditionals are monotonic in
the right component—a fact that will be useful in the following.

Proposition 3 (Right monotonicity) (see Weiss, [23], Prop. 3)
Let L be an ICL and ϕ, ψ, χ ∈ L>. If ψ �L χ then ϕ > ψ �L ϕ > χ .

Proof If ψ �L χ then ψ → χ ∈ L, and therefore by intuitionistic reasoning,
ψ ↔ ψ ∧ χ ∈ L. By closure under replacement of equivalent consequents, L

contains the formula (ϕ > ψ) ↔ (ϕ > ψ ∧ χ). But L also contains the axiom
(ϕ > ψ ∧ χ) ↔ (ϕ > ψ) ∧ (ϕ > χ). By intuitionistic reasoning it follows that
L contains the implication (ϕ > ψ) → (ϕ > χ), which by definition means that
ϕ > ψ �L ϕ > χ .

The notions of a logic L being sound and strongly complete with respect to a class
of models C are defined in the standard way.
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Definition 9 (Soundness, strong completeness)
Let L be an ICL and C be a class of ICMs. We say that:

– L is sound for C if Φ �L ψ implies Φ |=C ψ ;
– L is strongly complete for C if Φ |=C ψ implies Φ �L ψ .

5 Canonical Model Construction

In this section we describe how to get, for any intuitionistic conditional logic L, a
canonical model Mc

L where any non-entailment Φ ��L ψ is falsified at some world.
This construction will be crucial to establishing completeness for the ICLs that we
will study below. As usual in intuitionistic logic, the model is based on consistent
theories with the disjunction property.

Definition 10 Let Γ ⊆ L> and let L be an ICL. We say that:

– Γ is an L-theory if for all ϕ ∈ L>: Γ �L ϕ implies ϕ ∈ Γ ;
– Γ is a consistent L-theory if Γ is an L-theory and ⊥ �∈ Γ ;
– Γ has the disjunction property if for all ϕ, ψ ∈ L>: ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ

or ψ ∈ Γ .

The following lemma, familiar from intuitionistic logic, says that there are enough
consistent L-theories with the disjunction property to witness all the non-entailments
in L. The proof of the lemma is completely standard and therefore omitted (see, e.g.,
Lemma 11 in [6]).

Lemma 1 If Φ ��L ψ then there exists a consistent L-theory with the disjunction
property Γ such that Φ ⊆ Γ and ψ �∈ Γ .

In the canonical model, a theory Γ ′ will be considered a refinement of another
theory Γ if Γ ′ ⊇ Γ ; moreover, Γ ′ will be considered a Rc

ϕ-successor of Γ if Γ ′
contains all formulas that are ontic consequences of ϕ according to Γ , that is, in case
Cnϕ(Γ ) ⊆ Γ ′, where the set Cnϕ(Γ ) is defined as follows:

– Cnϕ(Γ ) := {ψ ∈ L> | ϕ > ψ ∈ Γ }
The following feature of Cnϕ(Γ ) will play an important role below.

Lemma 2 If Γ is an L-theory, then so is Cnϕ(Γ ).

Proof Let Γ be an L-theory and suppose Cnϕ(Γ ) �L χ . Then there are formu-
las ψ1, . . . , ψn ∈ Cnϕ(Γ ) such that ψ1 ∧ · · · ∧ ψn �L χ . By right monotonicity
(Proposition 3) it follows that (ϕ > ψ1 ∧ · · · ∧ ψn) �L (ϕ > χ).

Since ψ1, . . . , ψn ∈ Cnϕ(Γ ) we have ϕ > ψ1, . . . , ϕ > ψn ∈ Γ , and so also
(ϕ > ψ1) ∧ · · · ∧ (ϕ > ψn) ∈ Γ . Since any conditional logic contains the axiom
(ϕ > ψ1) ∧ · · · ∧ (ϕ > ψn) ↔ (ϕ > (ψ1 ∧ · · · ∧ ψn)), it follows that ϕ >
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(ψ1 ∧ · · · ∧ ψn) ∈ Γ . Since ϕ > (ψ1 ∧ · · · ∧ ψn) �L ϕ > χ and Γ is an L-theory,
also ϕ > χ ∈ Γ . Therefore, χ ∈ Cnϕ(Γ ).

As usual, the canonical valuation function makes p satisfied at Γ in case p ∈ Γ .
Summing up, then, the canonical model is defined as follows.

Definition 11 (Canonical model)
The canonical model for an intuitionistic conditional logic L is the structure Mc

L =
〈Wc

L, ≤c,Ac, {Rc
ϕ | ϕ ∈ L>}, V c〉, where:5

– Wc
L is the set of consistent L-theories with the disjunction property;

– Γ ≤c Γ ′ ⇐⇒ Γ ⊆ Γ ′
– Ac = {ϕ̂ | ϕ ∈ L>} where ϕ̂ := {Γ ∈ Wc

L | ϕ ∈ Γ }
– Γ Rc

ϕ̂Γ ′ ⇐⇒ Cnϕ(Γ ) ⊆ Γ ′6
– V c(p) = p̂

We need to make sure that Rc
ϕ̂ is well-defined, i.e., that if ϕ̂ = χ̂ then Rc

ϕ̂ = Rc
χ̂ .

This is guaranteed by the following proposition.

Proposition 4 If ϕ̂ = χ̂ , then for all Γ ∈ Wc
L: Cnϕ(Γ ) = Cnχ (Γ ).

Proof Suppose ϕ̂ = χ̂ . First, we claim that this implies ϕ ↔ χ ∈ L. For suppose
not: then either ϕ ��L χ or χ ��L ϕ. Without loss of generality, suppose the former.
By Lemma 1 there exists a theory Γ with ϕ ∈ Γ and χ �∈ Γ , which means that
Γ ∈ ϕ̂ but Γ �∈ χ̂ , contrary to ϕ̂ = χ̂ .

So, ϕ ↔ χ ∈ L. By replacement of equivalent antecedents, it follows that for any
ψ , (ϕ > ψ) ↔ (χ > ψ) ∈ L. Now consider any Γ ∈ Wc

L. Since Γ is an L-theory,
for any ψ we have ϕ > ψ ∈ Γ ⇐⇒ χ > ψ ∈ Γ . Since this holds for all ψ , it
follows that Cnϕ(Γ ) = Cnχ (Γ ).

Moreover, the following proposition ensures that we have constructed an object of
the right kind.

Proposition 5 Mc
L is an intuitionistic conditional model.

Proof Clearly, the relation ⊆ is a partial order on Wc
L. Every element of Ac is

upwards closed, and V (p) = p̂ ∈ Ac. Three conditions remains to be shown:

– Closure of Ac under logic. We show only one case, namely, closure of Ac under
the operation corresponding to >. Suppose ϕ̂, χ̂ ∈ Ac.

5Although all components of the model depend on L, in the case of the accessibility relations and the
valuation function we omit the subscript L to improve readability.
6For this definition, it is crucial that we need to specify Rc

X only for X ∈ Ac . If we had followed [23] in
assuming that a model includes relations RX for every X ⊆ Wc

L, we would have to define Rc
X even when

X is not of the form ϕ̂. It is not clear how to do that in a principled way.
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We claim that {Γ | Rc
ϕ̂[Γ ] ⊆ χ̂} = ϕ̂ > χ ∈ Ac. This amounts to the claim

that, for Γ ∈ Wc
L: R

c
ϕ̂[Γ ] ⊆ χ̂ ⇐⇒ ϕ > χ ∈ Γ .

Suppose ϕ > χ ∈ Γ . Then χ ∈ Cnϕ(Γ ), therefore any Rc
ϕ̂-successor of Γ

must contain χ , which means that Rc
ϕ̂[Γ ] ⊆ χ̂ .

Conversely, suppose ϕ > χ �∈ Γ . Then χ �∈ Cnϕ(Γ ). By Lemma 2,
Cnϕ(Γ ) ��L χ . Therefore, by Lemma 1 there is Γ ′ ∈ Wc

L with Cnϕ(Γ ) ⊆ Γ ′
and χ �∈ Γ ′. Thus, Γ ′ ∈ Rc

ϕ̂[Γ ] but Γ ′ �∈ χ̂ , witnessing that Rc
ϕ̂[Γ ] �⊆ χ̂ .

– Rc
ϕ̂[Γ ] is upwards closed. This is clear since, if Γ ′ ⊆ Γ ′′:

Γ ′ ∈ Rc
ϕ̂[Γ ] ⇐⇒ Cnϕ(Γ ) ⊆ Γ ′ =⇒ Cnϕ(Γ ) ⊆ Γ ′′ ⇐⇒ Γ ′′ ∈ Rc

ϕ̂[Γ ]
– Rc

ϕ̂[ · ] is monotonic. This is also clear: if Γ ⊆ Γ ′ then Cnϕ(Γ ) ⊆ Cnϕ(Γ ′), and
therefore:

Γ ′′ ∈ Rc
ϕ̂[Γ ′] ⇐⇒ Cnϕ(Γ ′) ⊆ Γ ′′ ⇒ Cnϕ(Γ ) ⊆ Γ ′′ ⇐⇒ Γ ′′ ∈ Rc

ϕ̂[Γ ]

Finally, we can prove that Mc
L behaves like a canonical model: satisfaction in a

theory Γ amounts to membership in Γ .

Lemma 3 (Truth Lemma)
For any Γ ∈ Wc

L and any ϕ ∈ L>: Mc
L, Γ |= ϕ ⇐⇒ ϕ ∈ Γ .

Proof The proof is by induction on ϕ. We only give the inductive step for ϕ =
χ > ψ , since the other steps are exactly the same as in the completeness proof
for intuitionistic logic. Recall that in the first item of the proof of Proposition 5 we
proved that

{Γ | Rc
χ̂ [Γ ] ⊆ ̂ψ} = ̂χ > ψ

By induction hypothesis, χ̂ = |χ | and ̂ψ = |ψ |. Using these facts, we have:

Mc
L, Γ |= χ > ψ ⇐⇒ Rc

χ [Γ ] ⊆ |ψ |
⇐⇒ Rc

χ̂ [Γ ] ⊆ ̂ψ

⇐⇒ Γ ∈ ̂χ > ψ

⇐⇒ (χ > ψ) ∈ Γ

Notice that the Truth Lemma can also be stated as follows: for all ϕ ∈ L>, in Mc
L we

have |ϕ| = ϕ̂. Therefore, we also have Rc
ϕ = Rc

ϕ̂ , which means that we can safely
use the notation Rc

ϕ instead of the more cumbersome Rc
ϕ̂ .

Using the Truth Lemma we can show that any entailment which is not valid in L

can be falsified in the canonical model for L.
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Proposition 6 If Φ ��L ψ , then there exists a world Γ ∈ Wc
L such that Mc

L, Γ |= ϕ

for all ϕ ∈ Φ but Mc
L, Γ �|= ψ .

Proof Suppose Φ ��L ψ . By Lemma 1 there exists Γ ∈ Wc
L such that Φ ⊆ Γ but

ψ �∈ Γ . By the Truth Lemma, in the canonical model Γ satisfies all formulas in Φ

and does not satisfy ψ .

6 Semantic Constraints

In this section we introduce the intuitionistic counterpart of several well-known con-
straints on the accessibility relations Rϕ , and the impact that these constraints have
on the resulting conditional logic. The constraints that we will consider are listed in
the following definition, where in each case the variables ϕ, ψ and w are understood
to be universally quantified.7, 8

Definition 12 (Semantic conditions)

C1. Rϕ[w] ⊆ |ϕ|
C2. if w ∈ |ϕ| then w ∈ Rϕ[w]9
C3. if Rϕ[w] = ∅ then Rϕ∧ψ [w] = ∅
C4. if Rϕ[w] ∩ |ψ | �= ∅ then Rϕ∧ψ [w] ⊆ Rϕ[w]
C5. Rϕ[w] ∩ |ψ | ⊆ Rϕ∧ψ [w]
C6. if w ∈ |ϕ| then Rϕ[w] ⊆ w↑
C7. if Rϕ[w] �= ∅ then Rϕ[w] = v↑ for some v

Let us briefly discuss the conceptual significance and the logical repercussions of
each condition.

7We formulate the relevant constraints for relations of the form Rϕ , i.e., relations RX where X = |ϕ| for
some ϕ ∈ L>. It would be more natural to formulate these constraints for all RX , regardless of whether X

is definable by a formula or not. However, we prefer to use formulas as indices, since then the significance
of the constraints becomes easier to grasp. Which of the two formulations we choose does not make a big
difference, since relations RX where X is not definable are immaterial to the semantics. Thus, e.g., even
though requiring Rϕ [w] ⊆ |ϕ| for all ϕ ∈ L> is strictly weaker than requiring RX[w] ⊆ X for all X ∈ A,
the two requirements lead to classes of models which validate exactly the same logic.
8These conditions are natural generalizations to the intuitionistic setting of conditions which are standard
in the field of conditional logics. In the classical setting, conditions C1—C5 would look exactly the same,
while conditions C6 and C7 would be stated by replacing w↑ and v↑ by {w} and {v} (as would result from
taking ≤ to be the identity relation). These conditions go back to the work of Lewis [14], where they are
stated as constraints on a selection function f mapping a world w and a sentence ϕ to a set f (ϕ,w) ⊆ W .
For a presentation in terms of relations, see Segerberg [18]. Both Lewis and Segerberg do not exactly
divide labor between the different constraints in the way we do. Here we have chosen the division of labor
that seemed more natural to us, both to isolate the conceptual significance of each constraint, and to obtain
a smooth correspondence with axiom schemata.
9The reader should not confuse condition C2 with Stalnaker’s conditional logic, C2. Throughout the paper
we use sans-serif fonts for semantic conditions and the corresponding axioms, and we use typewriter fonts
for specific conditional logics.
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Condition C1 is a success constraint: it says that making the assumption that
ϕ should lead to a hypothetical context Rϕ[w] containing only ϕ-worlds. In other
words, to judge a conditional ϕ > ψ is to judge whether ψ holds in certain ϕ-worlds.
This condition ensures that ϕ > ψ is implied by the universal strict conditional, in
the following sense.

Observation 2 Suppose C1 holds in M . If |ϕ| ⊆ |ψ |, then M, w |= ϕ > ψ for all
w ∈ W .

Condition C2 is known as the weak centering condition: it says that if ϕ is actually
true w, then w is one of the worlds which might have been the case if ϕ had been the
case. That is, if the antecedent is true, then the actual world is relevant to determining
the truth of the conditional. In our intuitionistic setting, C2 implies another interesting
property: in every world w, any refinement of w which satisfies ϕ is relevant to the
truth of a conditional ϕ > ψ . To state this precisely, recall that we used the notation
Sϕ[w] for the set of refinements of w which satisfy ϕ, that is, Sϕ[w] = {v ≥ w |
M, v |= ϕ}. We have the following.

Proposition 7 Suppose C2 holds in M . Then for any w and any ϕ: Sϕ[w] ⊆ Rϕ[w].

Proof Suppose v ∈ Sϕ[w]. This means that v ≥ w and v ∈ |ϕ|. By C2, v ∈ Rϕ[v].
By the monotonicity of Rϕ , Rϕ[v] ⊆ Rϕ[w]. Therefore, v ∈ Rϕ[w].

Since Sϕ[w] and Rϕ[w] provide, respectively, the domains of quantifications used
to assess ϕ → ψ and ϕ > ψ , this proposition implies that, given C2, ϕ > ψ is at
least as strong as the intuitionistic conditional.

Corollary 1 Suppose C2 holds in M . Then M, w |= ϕ > ψ implies
M, w |= ϕ → ψ .

Thus, conditions C1 and C2 together imply that the conditional > in intermediate
in strength between the universal strict conditional and the intuitionistic conditional.
So, the two interpretations of > considered in Definition 5 are, respectively, the
weakest and the strongest interpretation of > compatible with C1 and C2.

Condition C3 simply says that if ϕ cannot be consistently supposed, then anything
that implies ϕ cannot be consistently supposed either.

Condition C4 is a cautious monotonicity constraint. It says that, when we
strengthen an antecedent from ϕ to ϕ ∧ ψ , we must get a stronger hypothetical con-
text Rϕ∧ψ [w] ⊆ Rϕ[w], as long as the stronger antecedent is still compatible with
the hypothetical context determined by the weaker antecedent.

Condition C5 is also about the effect of strengthening an antecedent. It says that if
v is one of the ways in which things might be if ϕ were the case, and if v also satisfies
ψ , then v is one of the ways in which things might be if ϕ ∧ ψ were the case.

Notice that C1, C4, and C5 together completely determine the effect of strength-
ening an antecedent in those cases where the stronger antecedent is consistent with
the hypothetical context for the weak one.
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Proposition 8 Let M obey C1, C4, and C5. If Rϕ[w] ∩ |ψ | �= ∅, then Rϕ∧ψ [w] =
Rϕ[w] ∩ |ψ |.

Proof C1 gives the inclusion Rϕ∧ψ [w] ⊆ |ψ |, and C4 the inclusion Rϕ∧ψ [w] ⊆
Rϕ[w]. Thus, together these conditions implyRϕ∧ψ [w] ⊆ Rϕ[w]∩|ψ |. The converse
inclusion is given by C5.

Condition C6 says that, if ϕ is true at w, then no counterfactual world—i.e., no
world which is not a refinement of w—is relevant to determining the truth of ϕ > ψ

at w. In combination with C2, this gives the strong centering condition, which in our
setting is formulated as follows.

Proposition 9 Suppose C2 and C6 hold in M . If w ∈ |ϕ|, then Rϕ[w] = w↑.

This condition looks a bit different than the classical strong centering condition,
which requires that, if w ∈ |ϕ| then Rϕ[w] = {w}. However, note that the classical
formulation of strong centering would not be compatible with the upwards-closure
requirement on ICMs, since the set {w} is not upwards-closed if w is not an endpoint
(i.e., if there are proper extensions v > w). If Rϕ[w] includes w, then by upwards
closure it must contain all the set w↑. Thus, Rϕ[w] = w↑ is the smallest hypothetical
context which includes w.

Conceptually, the point can be put as follows. Suppose ϕ is actually true. Then
the worlds that might be the case if ϕ were the case are just those worlds which
might in fact be the case, and these are exactly the refinements of the actual state of
affairs.

Note that if we look at the special case of classical conditional models, i.e.,
models where where the relation ≤ is the identity (see the discussion under Observa-
tion 1), then we retrieve the standard formulation of strong centering, as in that case
w↑ = {w}.

Finally, and most importantly, in our setting the condition Rϕ[w] = w↑ captures
exactly the idea of strong centering: if ϕ is true at w, then the only world which is
relevant to assessing the truth of a conditional ϕ > ψ is w itself. This is brought out
most clearly by the following proposition.

Proposition 10 Suppose C2 and C6 hold in M . Then if w ∈ |ϕ|, for every ψ we have
M, w |= ϕ > ψ ⇐⇒ M, w |= ψ .

Proof If C2 and C6 hold and w ∈ |ϕ|, then by the previous proposition we have
Rϕ[w] = w↑. Now suppose M, w |= ϕ > ψ . Then Rϕ[w] ⊆ |ψ |, and since w ∈
w↑ = Rϕ[w] it follows that M, w |= ψ . Conversely, suppose M, w |= ψ . Then by
persistency (Proposition 1), every v ≥ w satisfies ψ as well, so we have w↑ ⊆ |ψ |.
Since Rϕ[w] = w↑, it follows that M, w |= ϕ > ψ .

Finally, C7 is the intuitionistic counterpart of Stalnaker’s uniqueness assump-
tion. Again, in order to obey upwards-closure, the formulation of the assumption is
slightly different than in the classical case, where Rϕ[w] = v↑ would be replaced
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by Rϕ[w] = {v}. However, again the classical formulation is retrieved when we
restrict to classical models, where ≤ is the identity. Moreover, the fundamental idea
of Stalnaker’s assumption is precisely retained: in order to assess conditionals with
antecedent ϕ we just need to consider what is the case in a single possible world.
This is formalized by the following proposition.

Proposition 11 Suppose C7 holds in M . If Rϕ[w] �= ∅, then there exists a world v

such that for every ψ ∈ L>: M, w |= ϕ > ψ ⇐⇒ M, v |= ψ .

Proof Suppose Rϕ[w] �= ∅. By C7 there exists a world v such that Rϕ[w] = v↑.
Then for every ψ ∈ L> we have: M, w |= ϕ > ψ ⇐⇒ Rϕ[w] ⊆ |ψ | ⇐⇒ v↑ ⊆
|ψ | ⇐⇒ M, v |= ψ , where the last bi-conditional uses the persistency property of
the semantics.

In the classical setting, weak centering and the uniqueness assumption jointly
imply strong centering. Suppose w ∈ |ϕ|, by weak centering w ∈ Rϕ[w], and by the
uniqueness assumption Rϕ[w] is a singleton. Therefore we must have Rϕ[w] = {w}.
The same is not true in the intuitionistic setting. Suppose w ∈ |ϕ|, then by weak
centering w ∈ Rϕ[w], and by the uniqueness assumption Rϕ[w] = v↑ for some v.
And yet this is perfectly compatible with w being a proper refinement of v, contrary
to strong centering. Thus, strong centering and the uniqueness assumptions are, even
given weak centering, independent requirements in the intuitionistic setting.

Finally, it is interesting to remark which of the conditions above are satisfied by
the models Mu and Mi of Definition 5 which yield, respectively, the universal strict
conditional and the intuitionistic conditional.

Observation 3 Let M be an intuitionistic Kripke model. Then:

– Mu satisfies conditions C1–C5 but, in general, not C6 and C7.10

– Mi satisfies conditions C1–C6 but, in general, not C7.11

7 Conditional Axioms

In the previous section, we considered several semantic constraints on the conditional
accessibility relations Rϕ . In this section we will introduce corresponding axioms for
the conditional operator >, and show that each of them is valid in the class of models
where the corresponding condition holds. In the next section we will extend this to

10To see that Mu does not generally satisfy C6 and C7, consider an intuitionistic Kripke model M with
three worlds w, v, u, where w is the root and v, u are endpoints. Suppose V (p) = {v, u}. Then in Mu we
have Rp[w] = |p| = {v, u}, which is not a rooted set, violating C7. Moreover we have R�[v] = |�| =
W �⊆ v↑, violating C6.
11To see that Mi does not generally satisfy C7, take the model M of the previous footnote. In Mi we have
Rp[w] = |p| ∩ w↑ = {v, u}, which is not a rooted set, violating C7.
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a general soundness and completeness result for logics obtained by expanding ICK
with one or more of our axioms.12

Definition 13 (Conditional axiom schemata)
We will be concerned with the following schemata, where ϕ, ψ, χ range over L>.

A1. ϕ > ϕ

A2. (ϕ > ψ) → (ϕ → ψ)

A3. (ϕ > ⊥) → (ϕ ∧ ψ > ⊥)

A4. (ϕ > χ) → ((ϕ > ¬ψ) ∨ ((ϕ ∧ ψ) > χ))

A5. (ϕ ∧ ψ > χ) → (ϕ > (ψ → χ))

A6. ϕ ∧ ψ → (ϕ > ψ)

A7. (ϕ > ψ ∨ χ) → (ϕ > ψ) ∨ (ϕ > χ)

In the next proposition we show that each of these axioms is valid on models
satisfying the corresponding semantic condition.

Theorem 4 (Soundness) For 1 ≤ i ≤ 7, every instance of the schema Ai is valid
with respect to the class of models satisfying condition Ci.

Proof

1. Suppose M satisfies C1. Then for any world w we have Rϕ[w] ⊆ |ϕ|, which
means that M, w |= ϕ > ϕ. So Axiom 1 is valid.

2. Suppose M satisfies C2. To show that the implication (ϕ > ψ) → (ϕ → ψ) is
valid in the model we just need to show that in all worlds where the antecedent
is true, the consequent is true. So, take a world w and suppose M, w |= ϕ > ψ .
We want to show that M, w |= ϕ → ψ . Take a successor v ≥ w and suppose
M, v |= ϕ. By persistency, also M, v |= ϕ > ψ , which means that Rϕ[v] ⊆ |ψ |.
By C2, v ∈ Rϕ[v]. Therefore, M, v |= ψ . This shows that M, w |= ϕ → ψ , as
we wanted.

3. Suppose M satisfies C3. Suppose that M, w |= ϕ > ⊥. Then Rϕ[w] = ∅. By C3
we have Rϕ∧ψ [w] = ∅, and therefore M, w |= ϕ ∧ ψ > ⊥.

4. Suppose M satisfies C4. Suppose that M, w |= ϕ > χ , i.e., Rϕ[w] ⊆ |χ |. We
want to show that M, w |= (ϕ > ¬ψ)∨ (ϕ ∧ψ > χ). We distinguish two cases:

– Case 1: Rϕ[w] ∩ |ψ | = ∅. Take any v ∈ Rϕ[w]. Since Rϕ[w] is upwards
closed, for any successor u ≥ v we have u ∈ Rϕ[w], and therefore u �∈ |ψ |.
This means that M, v |= ¬ψ . Therefore, M, w |= ϕ > ¬ψ .

– Case 2: Rϕ[w] ∩ |ψ | �= ∅. In this case, C4 implies Rϕ∧ψ [w] ⊆ Rϕ[w], and
since Rϕ[w] ⊆ |χ | we have M, w |= ϕ ∧ ψ > χ .

12These axioms are standard in the area of conditional logic (see, e.g., [3, 14, 15, 18, 21]); however, as
we will discuss below, in our setting one must choose carefully among classically equivalent formulations
of the relevant principles. The formulations given here are chosen in such a way as to correspond to the
frame conditions in Definition 12.
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In both cases, M, w |= (ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ).
5. Suppose M satisfies C5. Take a world w with M, w |= ϕ ∧ ψ > χ . Then

Rϕ∧ψ [w] ⊆ |χ |. Take any v ∈ Rϕ[w]. We want to show v |= ψ → χ .
So, consider any u ≥ v with M, u |= ψ . Since Rϕ[w] is upwards closed, u ∈

Rϕ[w]; and since M, u |= ψ , u ∈ |ψ |. Thus, u ∈ Rϕ[w] ∩ |ψ | ⊆ Rϕ∧ψ [w] ⊆
|χ |, where the first inclusion is given by C5. Hence, M, u |= χ .

This shows that M, v |= ψ → χ . Since v was any world in Rϕ[w], it follows
that M, w |= ϕ > (ψ → χ).

6. Suppose M satisfies C6. Take a world w with M, w |= ϕ ∧ψ . Since w ∈ |ϕ|, by
C6 we have Rϕ[w] ⊆ w↑. Since w ∈ |ψ |, by the persistency of the semantics we
have w↑ ⊆ |ψ |. Therefore, Rϕ[w] ⊆ |ψ |, which means that M, w |= ϕ > ψ .

7. Suppose M satisfies C7. Take a world w with M, w |= ϕ > ψ ∨ χ . This means
that Rϕ[w] ⊆ |ψ ∨ χ |. We want to show M, w |= (ϕ > ψ) ∨ (ϕ > χ).

If Rϕ[w] = ∅ the conclusion follows trivially, so we may assume Rϕ[w] �= ∅.
Then, by C7 there is a world v such that Rϕ[w] = v↑. Since v ∈ Rϕ[w] ⊆
|ψ ∨ χ |, M, v |= ψ ∨ χ , so either M, v |= ψ , or M, v |= χ .

Suppose the former. Then by persistency, every successor of v validates ψ as
well, which means that Rϕ[w] = v↑ ⊆ |ψ |, which implies M, w |= ϕ > ψ .

Reasoning analogously, if M, v |= χ we conclude M, w |= ϕ > χ . In either
case, it follows that M, w |= (ϕ > ψ) ∨ (ϕ > χ).

Notice that, in order to show that all instances A4 and A5 are valid on the corre-
sponding class of models, we made crucial use of the upwards closure condition of
Rϕ[w], which is required by our notion of models, but not by Weiss [23, 24]. It is
not hard to show that, if Rϕ[w] is not required to be upwards closed, then not all
instances of A4 and A5 are valid with respect to the classes of models defined by the
corresponding conditions.13 If one does not wish to make the assumption that Rϕ[w]
is upwards closed, one may look for ways to strengthen the semantic conditions C4
and C5 in such a way as to render the corresponding schemata valid. However, since
the assumption that Rϕ[w] is upwards-closed seems natural in the intuitionistic set-
ting, and does not make the semantics less general, as shown in Section 3, we prefer
to make this assumption and keep the semantic conditions as simple as possible.

13For a counterexample to the soundness of A4 with respect to C4 in a context where upwards-closure is
not required, consider a model M with three worlds w, v, u such that w < v and no other strict refinement
relations hold. Let the set of propositions contain all up-sets, and let V (p) = {v, u}, V (q) = {w, v}.
Finally, let R� = {〈w,w〉}, Rp = {〈w, u〉}, and RX = ∅ for X �= |�|, |p|. One can check that this
model satisfies C4. However, it does not validate all instances of A4. Indeed, we have M,w |= � > q but
M,w �|= � > ¬p and M,w �|= (�∧p) > q, thereforeM,w �|= (� > q) → ((� > ¬p)∨((�∧p) > q)).
For a counterexample to the soundness of A5 with respect to C5, consider a model M with two worlds,
w and v, with w < v. Again, let the set of proposition consists of all up-sets and let V (p) = {v} and
V (q) = ∅. Finally, let R� = {〈w,w〉} and RX = ∅ for X �= |�|. One can check that this model satisfies
C5. However, we have M,w |= (�∧ p) > q (since R�∧p[w] = Rp[w] = ∅) but M,w �|= � > (p → q)

(since wR�w and w �|= p → q). Therefore, M,w �|= ((�∧ p) > q) → (� > (p → q)). Notice that
both countermodels crucially violate our upwards closure requirement, since in both cases R�[w] is not
an up-set.
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8 Canonicity and Completeness

In this section, we prove a general completeness result for logics obtained by extend-
ing ICK with any combination of the above axiom schemata. The crucial part of the
proof is to show that each schema is canonical for the corresponding semantic prop-
erty: that is, if a logic L includes all instances of the schema, then the canonical
model for L has the relevant property.

Proposition 12 (Canonicity)
For 1 ≤ i ≤ 7, if an intuitionistic conditional logic L includes all instances of Ai,
then Mc

L satisfies condition Ci.

Proof

1. Suppose L contains all instances of A1. We want to show that, for all worlds
Γ ∈ Wc

L and formulas ϕ we have Rc
ϕ[Γ ] ⊆ |ϕ|.

Since ϕ > ϕ ∈ L and Γ is an L-theory, ϕ > ϕ ∈ Γ , therefore ϕ ∈ Cnϕ(Γ ).
Now take any Γ ′ ∈ Rc

ϕ[Γ ] we have ϕ ∈ Cnϕ(Γ ) ⊆ Γ ′. By the Truth Lemma,
this implies Mc

L, Γ ′ |= ϕ. This shows that Rc
ϕ[Γ ] ⊆ |ϕ|.

2. Suppose L contains all instances of A2. Suppose Γ ∈ |ϕ|, which by the Truth
Lemma means that ϕ ∈ Γ . We want to show that Γ ∈ Rc

ϕ[Γ ].
Consider any ψ ∈ Cnϕ(Γ ). This means that ϕ > ψ ∈ Γ . Since Γ is an L-

theory and L contains (ϕ > ψ) → (ϕ → ψ), also ϕ → ψ ∈ Γ . Since ϕ ∈ Γ , it
follows ψ ∈ Γ .

We have shown that Cnϕ(Γ ) ⊆ Γ , which by definition implies Γ ∈ Rc
ϕ[Γ ].

3. Suppose L contains all instances of A3. Suppose Rc
ϕ[Γ ] = ∅. We want to show

that also Rc
ϕ∧ψ [Γ ] = ∅.

First, notice that Rc
ϕ[Γ ] = ∅ implies that Cnϕ(Γ ) �L ⊥. For otherwise, by

Lemma 1, Cnϕ(Γ ) could be extended to a world Γ ′ ∈ Wc
L, and then we would

have Γ ′ ∈ Rc
ϕ[Γ ].

By Lemma 2, Cnϕ(Γ ) �L ⊥ implies ⊥ ∈ Cnϕ(Γ ), that is, ϕ > ⊥ ∈ Γ .
Since Γ is an L-theory and L contains (ϕ > ⊥) → (ϕ ∧ ψ > ⊥), we have
ϕ ∧ ψ > ⊥ ∈ Γ , that is, ⊥ ∈ Cnϕ∧ψ(Γ ). Now for every Γ ′ ∈ Wc

L we have
⊥ �∈ Γ ′, and therefore Cnϕ∧ψ(Γ ) �⊆ Γ ′. This shows that Rc

ϕ∧ψ [Γ ′] = ∅.
4. Suppose L contains all instances of A4. Suppose Rc

ϕ[Γ ] ∩ |ψ | �= ∅. This means
that there exists Γ ′ such that Γ ′ ∈ Rc

ϕ[Γ ] and Γ ′ ∈ |ψ |. By definition of the
canonical accessibility relation Rc

ϕ , Γ
′ ∈ Rc

ϕ[Γ ] implies Cnϕ(Γ ) ⊆ Γ ′. By the
Truth Lemma, Γ ′ ∈ |ψ | implies ψ ∈ Γ ′. Thus, Cnϕ(Γ ) ∪ {ψ} ⊆ Γ ′. This
implies that ¬ψ �∈ Cnϕ(Γ ), since otherwise Γ ′ would include both ψ and ¬ψ ,
and could not be a consistent theory. Hence, ϕ > ¬ψ �∈ Γ .

We want to show that Rc
ϕ∧ψ [Γ ] ⊆ Rc

ϕ[Γ ]. This will follow if we can show
that Cnϕ∧ψ(Γ ) ⊇ Cnϕ(Γ ), since then we have:

Γ ′ ∈ Rc
ϕ∧ψ [Γ ] ⇐⇒ Cnϕ∧ψ(Γ ) ⊆ Γ ′ =⇒ Cnϕ(Γ ) ⊆ Γ ′ ⇐⇒ Γ ′ ∈ Rc

ϕ[Γ ]
So, take χ ∈ Cnϕ(Γ ). This means that ϕ > χ ∈ Γ . Since Γ is an L-theory
and L includes (ϕ > χ) → ((ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ)), it follows that
(ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ) ∈ Γ . Since Γ has the disjunction property, one of
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the disjuncts is in Γ . Since we already know that ϕ > ¬ψ �∈ Γ , it follows that
ϕ ∧ ψ > χ ∈ Γ . Therefore, χ ∈ Cnϕ∧ψ(Γ ), as we wanted.

5. Suppose L contains all instances of A5. We want to show that Rc
ϕ[Γ ] ∩ |ψ | ⊆

Rc
ϕ∧ψ [Γ ].
Take any Γ ′ ∈ Rc

ϕ[Γ ] ∩ |ψ |: by the Truth Lemma, this means that Cnϕ(Γ ) ⊆
Γ ′ and ψ ∈ Γ ′. We need to prove that Γ ′ ∈ Rc

ϕ∧ψ [Γ ], which amounts to
showing that Cnϕ∧ψ(Γ ) ⊆ Γ ′.

Suppose χ ∈ Cnϕ∧ψ(Γ ). This means that ϕ ∧ ψ > χ ∈ Γ . Since Γ is an
L-theory and L contains (ϕ ∧ ψ > χ) → (ϕ > (ψ → χ)), it follows that
ϕ > (ψ → χ) ∈ Γ . Thus, ψ → χ ∈ Cnϕ(Γ ) ⊆ Γ ′. Finally, since ψ ∈ Γ ′ and
ψ → χ ∈ Γ ′, it follows that χ ∈ Γ ′.

Therefore, we have shown that Cnϕ∧ψ(Γ ) ⊆ Γ ′, as we wanted.
6. Suppose L contains all instances of A6. Take a world Γ ∈ |ϕ|, which by the

Truth Lemma means that ϕ ∈ Γ . We want to show that Rc
ϕ[Γ ] ⊆ Γ ↑.

Take any Γ ′ ∈ Rc
ϕ[Γ ], which means that Cnϕ(Γ ) ⊆ Γ ′. We need to show

that Γ ′ ∈ Γ ↑, which amounts to Γ ⊆ Γ ′. This will follow if we can show that
Γ ⊆ Cnϕ(Γ ).

Take any ψ ∈ Γ . Since ϕ, ψ ∈ Γ , also ϕ ∧ ψ ∈ Γ . Since Γ is an L-theory
and L includes ϕ ∧ ψ → (ϕ > ψ), it follows that ϕ > ψ ∈ Γ , so ψ ∈ Cnϕ(Γ ).
Therefore, Γ ⊆ Cnϕ(Γ ), as we wanted.

7. Suppose L contains all instances of A7. Suppose Rc
ϕ[Γ ] �= ∅. We need to show

that Rc
ϕ[Γ ] is rooted, i.e., there exists a Γ ′ ∈ Wc

L s.t. Rc
ϕ[Γ ] = (Γ ′)↑.

If we can show that Cnϕ(Γ ) ∈ Wc
L, then we are done, since then we have that

Rc
ϕ[Γ ] = {Γ ′ ∈ Wc

L | Cnϕ(Γ ) ⊆ Γ ′} = Cnϕ(Γ )↑.
So, we need to show that Cnϕ(Γ ) is a consistent L-theory with the disjunction

property. By Lemma 2, Cnϕ(Γ ) is an L-theory. Moreover, Cnϕ(Γ ) is consis-
tent, since if ⊥ ∈ Cnϕ(Γ ) then no consistent theory could include Cnϕ(Γ ), and
therefore Rc

ϕ[Γ ] = ∅, contrary to assumption.
It remains to be shown that Cnϕ(Γ ) has the disjunction property. Let

ψ ∨ χ ∈ Cnϕ(Γ ). This means that (ϕ > ψ ∨ χ) ∈ Γ . Since Γ is an
L-theory and L includes (ϕ > ψ ∨ χ) → (ϕ > ψ) ∨ (ϕ > χ), it follows that
(ϕ > ψ) ∨ (ϕ > χ) ∈ Γ . Since Γ has the disjunction property, it follows that
ϕ > ψ ∈ Γ or ϕ > χ ∈ Γ . Therefore, ψ ∈ Cnϕ(Γ ) or χ ∈ Cnϕ(Γ ). Thus,
Cnϕ(Γ ) has the disjunction property, which completes the proof.

Using this fact, we are now ready to show our main result: any subset of the
schemata A1–A7 gives rise to a logic which is sound and complete with respect to
the associated class of models. In order to state it precisely, let us introduce some
notation.

Definition 14 Given any subset {i1, . . . , in} ⊆ {1, . . . , 7}:
– L(i1, . . . , in) is the least ICL containing all instances of schemata Ai1, . . . ,Ain;
– C(i1, . . . , in) is the set of ICMs satisfying conditions Ci1, . . . ,Cin.

Then our main result can be stated precisely as follows.
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Theorem 5 (Soundness and completeness)
Let {i1, . . . , in} ⊆ {1, . . . , 7}. The logic L(i1, . . . , in) is sound and strongly complete
for the class C(i1, . . . , in).

Proof The soundness direction follows from the fact that each axiom is valid on mod-
els having the corresponding property (Theorem 4). For the completeness direction,
suppose Φ ��L(i1,...,in) ψ . By Proposition 6 there exists a world Γ in the canonical
model Mc

L(i1,...,in) such that Mc
L(i1,...,in), Γ |= ϕ for all ϕ ∈ Φ, but Mc

L(i1,...,in), Γ �|=
ψ . By Proposition 12, Mc

L(i1,...,in) ∈ C(i1, . . . , in). Therefore, Φ �|=C(i1,...,in) ψ .

As a particular case of this general theorem, we get soundness and complete-
ness theorems for some natural intuitionistic counterparts of the classical conditional
logics V,VW,VC, and C2.14

Definition 15 We define the following logics:

– IV := L(1, 3, 4, 5)

– IVW := L(1, 2, 3, 4, 5)

– IVC := L(1, 2, 3, 4, 5, 6)

– IC2 := L(1, 2, 3, 4, 5, 6, 7)

In the classical setting, axiom A6 is derivable from the remaining axioms, and
therefore not strictly needed to axiomatize the logic C2. Interestingly, this is not the
case in the intuitionistic setting.

Proposition 13 ��L(1,2,3,4,5,7) (p ∧ q) → (p > q)

Proof Consider an intuitionistic Kripke model M with two worlds w and v, where
w < v. Suppose V (p) = {w, v} and V (q) = {v}. Now consider the model Mu

obtained by letting RX[w] := X, as in Definition 5. By Observation 3, this model
satisfies conditions C1–C5. Moreover, condition C7 is satisfied as well, since Mu

is finite and linear. It follows from Proposition 4 that axioms A1–A5 and A7 are
valid in this model. Yet, we have Mu, w �|= p ∧ q → (p > q). To see this, notice
that Mu, v |= p ∧ q, but Mu, v �|= p > q, because Rp[v] = |p| = {w, v} and
Mu, w �|= q.

The completeness results for IV, IVW, IVC, and IC2 are special cases of
Theorem 5.

14Notice that, from a formal point of view, a classical conditional logic Lc will, in general, have many
intuitionistic counterparts; that is, there will be multiple intuitionistic conditional logics Li with the prop-
erty that Li augmented with excluded middle is Lc . However, the logics IV, IVW, IVC, and IC2 do not
just correspond to V, VW, VC, and C2 in this weak sense, but also in a stronger sense. Namely, as we will
show momentarily, they arise from semantic conditions which are the natural intuitionistic generalizations
of those conditions which, in the classical case, give rise to the logics V, VW, VC, and C2.
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Corollary 2 (Soundness and completeness for IVW,IVC,IC2)

– IV is sound and complete for the class of models satisfying C1 and C3-C5.
– IVW is sound and complete for the class of models satisfying C1-C5.
– IVC is sound and complete for the class of models satisfying C1-C6.
– IC2 is sound and complete for the class of models satisfying C1-C7.

9 Conclusion

In this paper we studied logics for conditionals built on an intuitionistic basis.
Following Weiss [23, 24], we have extended intuitionistic Kripke semantics by
equipping models with a family of relations RX, indexed by propositions, and inter-
preting a conditional ϕ > ψ as claiming that ψ holds at all the Rϕ-successors
of the evaluation world. However, we departed slightly from Weiss’s proposal.
In particular, we restricted to models where the set RX[w] of successors of a
world is upwards-closed with respect to the intuitionistic refinement ordering ≤.
Technically, this assumption leads to a better-behaved semantics. Conceptually, it
can be motivated by the idea that, if a partial state of affairs is considered pos-
sible conditionally on ϕ, then any refinement of it must be considered possible
conditionally on ϕ as well. We have given a general notion of an intuitionistic con-
ditional logic and showed how to build, for each such logic, a suitable canonical
model.

We then considered seven assumptions on the semantics of conditionals, formu-
lated as constraints on the accessibility relations Rϕ . These assumptions are familiar
from the literature on conditional logic. Nevertheless, in a couple of cases their spe-
cific formulation differs from the one used in the classical case, in order to take into
account the upwards-closure requirement on Rϕ[w] and the fact that, in the intuition-
istic setting, worlds are not to be regarded as complete states of affairs, but rather as
partial and extendible ones.

We identified conditional axioms corresponding to each condition.Again, these
axioms are standard in the conditional logics literature. However, their formulation
must be chosen carefully. Two axioms which are equivalent in the classical setting
might no longer be equivalent in the intuitionistic setting, and it could be that one,
but not the other, captures a certain semantic constraint. As an example, Stalnaker’s
logic C2 is classically axiomatized by extending VC with either of the following two
schemata:

– Conditional excluded middle: (ϕ > ψ) ∨ (ϕ > ¬ψ)

– Conditional determinacy: (ϕ > ψ ∨ χ) → (ϕ > ψ) ∨ (ϕ > χ)

We saw that, in the intuitionistic setting, the conditional determinacy schema gives
a sound and complete axiomatization of the logic arising from Stalnaker’s uniqueness
assumption C7. By contrast, conditional excluded middle is invalid over this class:
even if the satisfaction of conditionals with antecedent ϕ is determined by looking
at a single possible world, it need not be the case that this world satisfies either
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ψ or ¬ψ .15 In fact, as pointed out by Weiss [23, 24], adding conditional excluded
middle to an ICL containing the schema A2 has dramatic consequences: the whole
logic becomes classical as a result. Since our goal is to equip intuitionistic logic
with a new conditional operator, this is undesirable: whatever our assumptions on >,
the resulting logic should be a conservative extension of intuitionistic propositional
logic.

For another salient example, consider the minimal change constraint C4. In the
classical case, this constraint is usually characterized by the following axiom [3, 15]:

– ((ϕ > χ) ∧ ¬(ϕ > ¬ψ)) → (ϕ ∧ ψ > χ)

This is classically equivalent to our schema A4, namely:

– (ϕ > χ) → ((ϕ > ¬ψ) ∨ (ϕ ∧ ψ > χ))

In the intuitionistic setting, however, the two axioms are no longer equivalent. As
we saw, the latter fully characterizes the logic which arises from C4. By contrast,
the former is sound with respect to models satisfying C4, but it does not yield a
complete axiomatization of the associated logic. This illustrates again the fact that
in the intuitionistic setting it is crucial to choose the right one among several classi-
cally equivalent formulations of a certain principle, i.e., the formulation that correctly
captures the intended assumption about the semantics of conditionals.

Similarly, certain connections between conditional axioms which hold in the clas-
sical case no longer hold in the intuitionistic case. For instance, while the strong
centering axiom A6 is provable from A2 and A7 classically, we saw that the same
is not true in the intuitionistic case. Therefore, strong centering must be taken as an
axiom in IC2, the intuitionistic version of Stalnaker’s C2.

Our main result was a general soundness and completeness theorem: any logic
axiomatized by a combination of the axioms we identified is sound and complete
for the class of models satisfying the corresponding conditions. As a special case,
we obtain a completeness result for the intuitionistic counterparts of the classical
conditional logics V, VW, VC, and C2.

Summing up, we have seen how intuitionistic logic can be equipped with a
Stalnaker-Lewis-style conditional operator, a task which had been left open by Weiss
[23, 24], and we axiomatized the resulting logics. On the way, we observed how some
classically equivalent principles of conditional logic come apart in the intuitionistic
setting, and how certain intertwined axioms become logically independent.

Several salient directions for further work suggest themselves. First, Lewis [14]
considered not only the operator >, which he denoted as �→ , but also its dual,
denoted as ♦→ : whereas ϕ �→ψ stands for “if ϕ were the case, ψ would be
the case”, ϕ ♦→ψ stands for “if ϕ were the case, ψ might be the case”. Just like
�→ can be seen as an antecedent-dependent version of the universal modality
�, ♦→ can be seen as an antecedent-dependent version of ♦. In Lewis’s theory,

15For a counterexample, consider the model M from the proof of Proposition 13. This model satisfies
condition C7, since it is finite and linear; therefore, by Theorem 4, it validates all instances of conditional
determinacy. However, it is immediate to check that neither world satisfies (p > q) ∨ (p > ¬q).
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these two operators are interdefinable via negation: ϕ ♦→ ψ ≡ ¬(ϕ �→ ¬ψ) and
ϕ �→ ψ ≡ ¬(ϕ ♦→¬ψ). Thus, the logic of �→ uniquely determines the logic of
♦→ , which means that any classical conditional logic given in terms of �→ extends
in a unique way to a logic where the language includes both operators. Things are
different in our intuitionistic setting. Just like ∀ and ∃ are not interdefinable in intu-
itionistic predicate logic, and � and ♦ are not interdefinable in intuitionistic modal
logic, also �→ and ♦→ will not be interdefinable in intuitionistic conditional logic.
In order to capture might-conditionals in the intuitionistic setting, we need to add
♦→ to the language as a new primitive. It is natural to suppose that the relation
between �→ and ♦→ will mirror the relation between � and ♦ in intuitionistic
modal logic (see Fischer-Servi [11], Simpson [19], Wolter and Zakharyaschev [25],
Bierman and de Paiva [7]). In this extended setting, the properties of �→ might not
uniquely determine the properties of ♦→ . Therefore, it becomes especially interest-
ing to look at the landscape of intuitionistic conditional logics in a setting where the
language comprises both operators.

Second, the properties of a conditional logic depend on two parameters: (i) the
underlying propositional logic and (ii) the properties of the operator >. The tra-
ditional literature fixes (i) to classical logic, and studies the logics that arise from
making different assumptions about (ii). In this paper we have done the same, but fix-
ing (i) to intuitionistic logic instead. Between intuitionistic and classical logic there
is a variety of interesting intermediate logics, each of which could provide the propo-
sitional basis for a family of conditional logics. A generalization of our enterprise
in this paper would be to study the general class of intermediate conditional logics,
where both parameters (i) and (ii) can take a range of different values. For instance,
one could consider the behavior of > in the context of the Gödel-Dummett logic LC:
this would amount essentially to restricting our semantics to models M where ≤ is a
linear ordering.

Third, intuitionistic logic can be studied not just by means of Kripke semantics,
but also by means of other semantics, including the algebraic semantics based on
Heyting algebras, the topological semantics, and the proof-theoretic semantics based
on typed λ-calculi. An interesting question is how to extend such alternative seman-
tics in order to interpret the language L>. In the case of algebraic semantics, such
an extension has been investigated by Weiss [23, 24], who provided an algebraic
characterization of various weak conditional logics; it would be interesting to extend
this work to the stronger logics considered in this paper. Another interesting case
is that of proof-theoretic semantics, which formalizes the BHK (Brouwer-Heyting-
Kolmogorov) interpretation of connectives. An extension of this semantics to the
operator > may cast some light on the following seemingly difficult question: what
does it take to constructively prove that, if ϕ were the case, ψ would be the case?16

Fourth, intuitionistic conditional logics have recently been advocated as useful
tools in the area of access control [12], a subfield of computer science which is

16A good starting point for this enterprise could be the existing work on extending the typed lambda-
calculus to intuitionistic modal logics. See Alechina et al. [2], Bellin et al. [4], Benton et al. [5], Bierman
et al. [7], de Paiva et al. [17].
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concerned with deciding whether an agent should be allowed to perform certain
operations. It would be interesting to ask whether the specific logics investigated here
are relevant to this kind of applications.

Finally, one may look at the relevance of intuitionistic conditional logics for the
analysis of conditionals in natural language. Recently, Ciardelli et al. [10] have pro-
vided experimental evidence for two kinds of violations of the predictions of classical
conditional logic in natural language. First, antecedents of the form ¬p ∨ ¬q and
¬(p∧q) do not make the same contribution. More precisely, conditionals of the form
(¬p ∨ ¬q) > r and ¬(p ∧ q) > r are not in general judged to have the same truth-
value. This might be taken to count against the principle of replacement of equivalent
antecedents. However, one may also retain substitution of equivalent antecedents and
base one’s theory of conditionals on a logic that invalidates the de Morgan equiva-
lence ¬p ∨ ¬q ≡ ¬(p ∧ q). Ciardelli et al. [10] go for the latter option, basing their
solution on inquisitive logic [9]. Intuitionistic logic is another natural candidate for
such a logic. Second, Ciardelli et al. [10] also provide evidence against the principle
(¬p > r) ∧ (¬q > r) |= ¬(p ∧ q) > r , which is valid in the classical conditional
logic V and its extensions. It is not hard to see that this entailment is not validated by
the intuitionistic conditional logic IV, or even by IVC.17 Thus, these logics avoid the
problematic empirical predictions of classical conditional logics pointed out in [10].
It remains to be seen, however, whether intuitionistic conditional logics also provide
a plausible diagnosis for why the relevant principles fail in the scenario described
in [10].
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3. Arlo-Costa, H., Egré, P., Rott, H. (2019). The logic of conditionals. In Zalta, E.N. (Ed.) The stanford
encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, summer 2019 edition.

4. Bellin, G., De Paiva, V., Ritter, E. (2001). Extended curry-howard correspondence for a basic
constructive modal logic. In Proceedings of methods for modalities, Vol. 2.

5. Benton, N., Bierman, G., De Paiva, V. (1998). Computational types from a logical perspective. Journal
of Functional Programming, 8, 177–193.

6. Bezhanishvili, N., & de Jongh, D. (2006). Intuitionistic logic. Lecture Notes. Institute for Logic
Language and Computation (ILLC), University of Amsterdam.

7. Bierman, G.M., & de Paiva, V. (2000). On an intuitionistic modal logic. Studia Logica, 65(3), 383–
416.

17For a countermodel, start with an intuitionistic Kripke model M with three worlds w, v, u where w < v,
w < u, and v, u are endpoints. Let V (p) = {v}, V (q) = {u}, V (r) = {v, u}. Consider then the ICM
Mi based on M (see Definition 5). We know from Observation 3 that Mi is a model of IVC, and one can
check that Mi,w |= (¬p > r) ∧ (¬q > r) but Mi,w �|= ¬(p ∧ q) > r .

8 13



I. Ciardelli, X. Liu

8. Chellas, B. (1975). Basic conditional logic. Journal of Philosophical Logic, 4(2), 133–153.
9. Ciardelli, I., & Roelofsen, F. (2011). Inquisitive logic. Journal of Philosophical Logic, 40(1), 55–94.

10. Ciardelli, I., Zhang, L., Champollion, L. (2018). Two switches in the theory of counterfactuals.
Linguistics and Philosophy, 41(6), 577–621.

11. Fischer-Servi, G. (1981). Semantics for a class of intuitionistic modal calculi. In Dalla Chiara,
M.L. (Ed.) Italian Studies in the Philosophy of Science. Studies in the Philosophy of Science, Vol. 47.
Dordrecht: Springer.

12. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L. (2014). Logics in access control: a conditional
approach. Journal of Logic and Computation, 24(4), 705–762.

13. Kraus, S., Lehmann, D., Magidor, M. (1990). Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence, 44(1-2), 167–207.

14. Lewis, D. (1973). Counterfactuals. Blackwell.
15. Nute, D. (1980). Conversational scorekeeping and conditionals. Journal of Philosophical Logic, 9(2),

153–166.
16. Nute, D. (1984). Conditional logic. In Handbook of philosophical logic (pp. 387–439): Springer.
17. de Paiva, V., & Ritter, E. (2011). Basic constructive modality. Logic without Frontiers: Festschrift for

Walter Alexandre Carnielli on the occasion of his 60th Birthday, pp. 411–428.
18. Segerberg, K. (1989). Notes on conditional logic. Studia Logica, 48(2), 157–168.
19. Simpson, A. (1994). The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis,

University of Edinburgh.
20. Stalnaker, R. (1968). A theory of conditionals. In Rescher, N. (Ed.) Studies in Logical Theory.

Blackwell, Oxford.
21. Stalnaker, R.C., & Thomason, R.H. (1970). A semantic analysis of conditional logic. Theoria, 36(1),

23–42.
22. Veltman, F. (1996). Defaults in update semantics. Journal of Philosophical Logic, 25(3), 221–261.
23. Weiss, Y. (2019a). Basic intuitionistic conditional logic. Journal of Philosophical Logic, 48(3), 447–

469.
24. Weiss, Y. (2019b). Frontiers of conditional logic. Ph.D. thesis, CUNY.
25. Wolter, F., & Zakharyaschev, M. (1999). Intuitionistic modal logic. In Cantini, A., Casari, E., Minari,

P. (Eds.) Logic and foundations of mathematics. Synthese library (Studies in epistemology, logic,
methodology, and philosophy of science), Vol. 280. Dordrecht: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

8 23


	Intuitionistic Conditional Logics
	Abstract
	Introduction
	Intuitionistic Conditional Semantics
	Comparison with Weiss's Semantics
	Intuitionistic Conditional Logics
	Canonical Model Construction
	Semantic Constraints
	Conditional Axioms
	Canonicity and Completeness
	Conclusion
	References




