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Abstract
Following Smiley’s (The Journal of Symbolic Logic, 28, 113–134 1963) influential
proposal, it has become standard practice to characterise notions of relative necessity
in terms of simple strict conditionals. However, Humberstone (Reports on Mathemat-
ical Logic, 13, 33–42 1981) and others have highlighted various flaws with Smiley’s
now standard account of relative necessity. In their recent article, Hale and Leech
(Journal of Philosophical Logic, 46, 1–26 2017) propose a novel account of relative
necessity designed to overcome the problems facing the standard account. Never-
theless, the current article argues that Hale & Leech’s account suffers from its own
defects, some of which Hale & Leech are aware of but underplay. To supplement
this criticism, the article offers an alternative account of relative necessity which
overcomes these defects. This alternative account is developed in a quantified modal
propositional logic and is shown model-theoretically to meet several desiderata of an
account of relative necessity.

Keywords Relative necessity · Absolute necessity · Logical necessity · Modal logic

There are many different notions of necessity. For example, it may well be practically
impossible for someone to run from London to Oxford in under three hours, but
surely it is physically possible for that person to do so. Similarly, it is physically
necessary that nothing goes faster than the speed of light, but many would claim that
it is metaphysically possible for something to do so.

Although there are various different kinds of necessity, it is commonly assumed
that there is an absolute notion of necessity which is broader than all other notions of
necessity. Moreover, given this notion of absolute necessity, it is also widely assumed
that all other kinds of necessity can be characterised in terms of it. Indeed, since Smi-
ley’s [15] influential proposal, it has become standard practice to characterise notions
of relative necessity in terms of certain absolutely strict conditionals. According to
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this proposal, the relative necessity of some proposition p can be characterised in terms
of the absolute strict implication of p by some suitable sentential constant. For ins-
tance, on this view, the physical necessity of a proposition p is equated with the abso-
lute strict implication of p by a sentential constant expressing the laws of physics.

Nevertheless, Humberstone [11] and others have highlighted various flaws with
Smiley’s now standard account of relative necessity. Aware of these flaws, in their
recent article Hale and Leech [10] propose a novel account of relative neces-
sity designed to overcome the problems facing the standard account. However,
although Hale & Leech’s account is an improvement on the standard account in
certain respects, it suffers from its own defects. The current article outlines these
defects, some of which Hale & Leech are aware of but underplay, and empha-
sises their seriousness. The article then defends an account of relative necessity
without these defects, to which the use of propositional quantification is key. It is
then shown model-theoretically that this new account meets several desiderata of an
account of relative necessity. The article concludes with a brief discussion of certain
complexities which arise if various background assumptions are lifted.

1 Absolute Necessity

On the prevailing conception, for a notion of necessity to be absolute is for it to be the
broadest necessity: that is, it is a matter of necessity that whatever is absolutely nec-
essary is necessary in any other sense. This conception is found in both McFetridge
[13] and Hale’s [9] classic discussions of absolute necessity. Moreover, in recent
work, Bacon [2] has shown how to formalise this conception in a typed quantified
modal language with quantification into operator position.

A slightly less formal version of Bacon’s official characterisation can be stated
with the aid of the following notion:1

ALAB �i is as broad as �j iff ∀p�k(�ip → �jp) is true, whenever �k is a
necessity operator

ALAB encodes the popular idea that one notion of necessity is as broad as another
just in case, as a matter of necessity (in every sense), the latter deems as necessary

1Bacon’s official working language is a functional type theory in which each type has a corresponding
universal quantifier used to generalise universally over things of that type. In Bacon’s [2] terms, ALAB
can be written as follows:

�i ≥ �j ↔ ∀�k(N�k → ∀p�k(�ip → �j p))

Here, the subscripted boxes are expressions which take formulas as arguments and result in another sen-
tence, ‘≥’ is an expression which takes expressions of the same type as subscripted boxes as arguments
and results in a sentence, and ‘N ’ is a predicate which takes as arguments expressions of the same type as
subscripted boxes to produce a sentence. On their intended interpretation, ‘≥’ denotes the relation of being-
as-broad-as and ‘N ’ denotes the property (of properties of propositions) of being-a-necessity-operator,
which is defined in Bacon [2, p. 735]. Although ALAB in the main body of text mixes object- and meta-
language, it should be understood as an informal statement of the above formalisation which does not.
Indeed, similar principles in the main body of text may always be understood as informal statements of
their formalisations in this typed formal language.
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every proposition which the former deems necessary; the broader a notion of neces-
sity, the more stringent it is. Put alternatively, a notion of necessity is as broad as
another just in case, as a matter of necessity (in every sense), any proposition which
is possible according to the latter is possible according to the former; the broader a
notion of necessity, the more inclusive its corresponding notion of possibility. To take
an example, it is plausible that physical necessity is as broad as practical necessity
since, as a matter of necessity (in every sense), anything which is practically possible
is physically possible too. Given ALAB, the claim that absolute necessity (�) is the
broadest necessity can be expressed as follows:2

Absolute ∀p�k(�p → �jp) is true, whenever �k and �j are necessity
operators

To reiterate, according to this characterisation, absolute necessity is as broad as any
notion of necessity: for any proposition, it is a necessary matter (in every sense) that
if that proposition is absolutely necessary it is necessary in every sense.

It bears emphasis that ALAB and Absolute function as intended only if propo-
sitional necessitism is assumed, here understood as the view that, in any sense of
necessity, it is necessary which propositions there are. Were propositional neces-
sitism rejected, the propositional quantifiers inALAB andAbsolutewould not range
over all absolutely possible propositions, depriving the principles of their intended
generality. As is typical in the literature, propositional necessitism will be a working
assumption in what follows.

According to one popular view, a natural candidate for absolute necessity is logical
necessity. However, it is often unclear how logical necessity—thought of as a propo-
sitional operator, not a predicate of expressions—is intended to be characterised.
Nevertheless, under the assumption of Booleanism, according to which propositions
form a Boolean algebra under the usual truth-functional operations, logical necessity
can be characterised quite naturally. In the Boolean setting, there is a unique tautol-
ogous proposition—the top element of the algebra—which may be thought of as the
logical truth. Thus, in that setting, it is highly natural to characterise logical necessity
as simply being identical with the tautologous proposition.3 Given such elegance, the
article will simply adopt the hypothesis of Booleanism to provide a stable background
to the discussion. To be more precise, the article will adopt the assumption that propo-
sitions form a complete Boolean algebra under the usual truth-functional operations,
an assumption which since Fine [5] is familiar to the study of propositionally quanti-
fied modal logics. As will be seen, Booleanism is an elegant working setting in which
to adjudicate competing accounts of relative necessity. Moreover, the final section
discusses how the arguments of the article may be adapted to non-Boolean settings.

2The assumption that there is a unique broadest necessity will be justified shortly.
3Bacon [2] investigates this characterisation of logical necessity (although Bacon uses the term ‘broad
necessity’ instead). See also Cresswell [3] and Suszko [17]. Dorr [4, p. 70] discusses how one might define
a similar notion of necessity in non-Boolean settings.
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Interestingly, given only the austere characterisation of absolute necessity inAbso-
lute, one should expect its logic to meet various conditions. To take a clear example,
notice that Absolute strongly suggests that � will conform to the 4 axiom:

4 �p → ��p

After all, it is highly plausible that concatenations of modal operators express notions
of necessity, and so �� will itself be a species of necessity. Thus, given ALAB,
� must be as broad as ��. Similarly, it is also plausible that � conforms to the T
axiom, since surely � is as broad as some alethic notion of necessity:

T �p → p

Finally, it is equally plausible that � conforms to the K axiom which is partly
characteristic of normal modal operators:

K �(p → q) → (�p → �q)

Given that it is natural to expect that the ultimate logic of � should be closed under
modus ponens, necessitation, and uniform substitution, S4 will be treated as a lower
bound on the logic of absolute necessity.4

As a final piece of set up, we make the working assumption that absolute necessity
is unique. This assumption is usually taken to be implicit, however we shall enforce
it explicitly by requiring notions of necessity to be individuated by a criterion of
intensional equivalence.5

Identity �i = �j iff ∀p�k(�ip ↔ �jp) is true, whenever �k is a necessity
operator

Informally, Identity states that notions of necessity are the same just in case it is
necessary (in all senses) that they apply to exactly the same propositions. This has the
consequence that absolute necessity is unique, for if � and �′ are absolute notions
of necessity, then by Absolute they are as broad as one another. However, by ALAB
and Identity it must be that � and �′ are one and the same.

4Indeed, Bacon [2] proves in his particular system of higher-order logic that absolute necessity meets all
the principles of S4 including a rule of necessitation.
5Identity will be rejected by those who think that intensional equivalence (according to every notion
of necessity) is too coarse-grained a criterion for individuating notions of necessity. According to that
conception, there may be several absolute notions of necessity, all of which are as broad as all other notions
of necessity. However, those who reject Identity may still wish to engage in the project of characterising
non-absolute notions of necessity in terms of the absolute necessities. See both Dorr [4, sect. 5] and
Bacon’s [2] discussion of his ‘modalized functionality’ principle for related details.
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2 Relative Necessities

2.1 Characterising Relative Necessities

Relative necessities contrast with absolute necessity. Broadly speaking, relative
necessities are types of parameterised modals. For example, one might think of phys-
ical necessity—a paradigm relative necessity—as necessity given the laws of physics.
Similarly, one might think of metaphysical necessity as necessity given some partic-
ular body of metaphysical truths. In light of these glosses, it is tempting to think that
in some sense all non-absolute, relative notions of necessity can be characterised in
terms of an absolute notion of necessity. For a given notion of relative i-necessity,
all that would be required is that one specifies ‘necessity given the i-laws’ purely in
terms of absolute necessity, some vocabulary ξi expressing the i-laws, and the logi-
cal symbols. More carefully, for each notion of relative necessity �i , there must be a
true claim of the following form:

�(�iφ ↔ ψ), where ψ contains φ (and no propositional variables free in φ are
bound in ψ), and φ otherwise may contain only �, ξi , and logical symbols

In this sense, each relative necessity could characterised in terms of an absolute
notion of necessity. Indeed, doing so is perhaps one way of making literal sense of
the popular metaphorical claim that absolute necessity is the source of all necessity.

Before considering different characterisations of relative necessity, three points
bear emphasis. First, it is helpful to clarify the target notion of relative necessity
itself. Thus, to make the target explicit, the class of necessities which will be of
interest to the current article are exactly those notions of necessity whose logic is
characterised by a Kripke frame: the Kripke necessities. The target therefore does not
include so-called ‘linguistic necessities’ like ‘logical truth’, which are expressed by
predicates of sentences as opposed to propositional operators. Moreover, the target
also excludes notions of necessity which are expressed by non-normal modal opera-
tors. Such non-normal notions of necessity may be rightfully classified as necessities
in some broader sense; for example, Bacon’s [2] notions of necessity are not required
to meet the K axiom. However, it is reasonable not to target the non-normal necessi-
ties for current purposes: the Kripke necessities themselves constitute an extremely
natural class of necessities which is highly non-trivial to characterise in terms of
absolute necessity. Furthermore, the Kripke necessities include the paradigm relative
necessities, such as physical and metaphysical necessity, which initially motivated
the characterisation project. In Section 4.2.3, it will be proven that there is a precise
sense in which the proposed definition of the relative necessities captures exactly the
Kripke necessities.

Second, to simplify the complexity of the official object-language, it will contain
� as its only necessity operator. The object-language will therefore not contain modal
operators corresponding to each notion of relative necessity. Instead, relative neces-
sities will be introduced as metalinguistic abbreviations for complex object-language
formulae. Due to this simplification, the use of ‘relative necessity operator’ through-
out should be understood as covering the object-language formulae corresponding to
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such metalinguistic abbreviations.6 However, to reiterate, when the article provides
its positive account of relative necessities, it will be shown that there is a precise
sense in which each target relative notion of necessity is expressed by some complex
formulae of the object-language.

Finally, the use of ‘i-laws’ should be understood very liberally. The ‘i-laws’ for a
given notion of relative i-necessity are just some body of propositions which serve
to relativise the notion of necessity, and need not have the status of scientific laws.
For example, in the case of necessity given Theresa May’s goals in March 2019,
the relevant body of propositions will comprise just those propositions which she
wished to realise (for instance, that Parliament passes her Withdrawal Agreement).
This liberal understanding of ‘i-laws’ is totally standard to the literature on relative
necessities.

2.2 Smiley’s Standard Account

Historically, the ‘necessity given the i-laws’ locution has been formalised in terms
of simple absolutely strict conditionals. According to the standard account, for a
proposition p to be i-necessary is for p to be absolutely strictly implied by some
sentential constant which expresses the i-laws. The idea is widespread and at least
dates back to Smiley’s [15] influential discussion:

If we define OA [�iA] as L(T → A) [�(T → A)] then to assert OA [�iA] is to
assert that T strictly impliesA or thatA is necessary relative to T . Since the pattern
of the definition is independent of the particular interpretation that may be put on
T we can say that to the extent that the standard alethic modal systems embody
the idea of absolute or logical necessity, the corresponding O-systems embody the
idea of relative necessity—necessity relative to an arbitrary proposition or body
of propositions. They should therefore be appropriate for the formalisation of any
modal notion that can be analysed in terms of relative necessity.

To take an example, according to Smiley’s account a proposition p is physically
necessary iff �(L → p) is true, where L is a sentential constant expressing the laws
of physics.7 Similarly, according to his account a proposition p is metaphysically
necessary iff �(M → p) is true, where M is some sentential constant expressing
the ‘laws’ of metaphysics (such as claims of identity and distinctness, and various
essentialist claims). Call this the standard account:

SA �iφ =df �(� → φ), where � is a sentential constant which expresses the
‘i-laws’

6Similarly, ‘necessity operator’ should be understood as meaning ‘relative necessity operator or the
absolute necessity operator’.
7Williamson [19, pp. 462–463] notes that various truths of metaphysics must either be expressed by L or
conjoined to it for reasons of adequacy.
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Despite the influence of Smiley’s standard account, Humberstone [11] and others
have highlighted various flaws with it.8 Moreover, in their recent article, Bob Hale
and Jessica Leech have carefully articulated and developed the problems facing the
standard account. They raise two central issues. First, given that S4 is a lower bound
on the logic of �, every notion of relative necessity will conform to its own version
of the 4 axiom. Second, for the same reason, any relative necessities �i and �j will
conform to a bizarre ‘mixed’ 4 axiom �ip → �j�ip. Although the former is a
special case of the latter, each problem shall be considered separately in order to
appreciate the nature of the issue.

To begin with the former, consider the following S4 valid schematic line of
reasoning:

(1) �φ → (ψ → �φ) PL Tautology

(2) �(�φ → (ψ → �φ)) Necessitation, (1)

(3) ��φ → �(ψ → �φ) K, MP, (2)

(4) �φ → ��φ 4

(5) �φ → �(ψ → �φ) PL, (3), (4)

Now consider any proposition p and sentential constant L expressing the laws of
physics. The following is an instance of (5):

�(L → p) → �(L → �(L → p))

Yet, by SA, this just abbreviates an instance of the 4 axiom for physical necessity.
And the argument generalises to every notion of relative necessity. But surely not all
notions of relative necessity in the target sense conform to a version of 4. To take an
example, consider the notion of practical necessity, of what is necessary given our
current practical means. At some point in recent history, it was practically impossi-
ble for us to engineer smartphones. However, at that point, surely it was within our
practical means to engineer technology which would provide us with the practical
means to engineer smartphones. Thus, although it was practically impossible for us
to engineer smartphones, it was still practically possibly possible for us to do so,
which constitutes a failure of 4 for practical necessity.

To see the second problem, consider the sentential constantL expressing the actual
laws of physics and the sentential constant M expressing the ‘laws’ of metaphysics.
The following is another instance of (5):

�(L → p) → �(M → �(L → p))

8Humberstone [11] attributes the problems for Smiley’s account to an observation made by Kit Fine in
conversation.
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Yet, by SA, this just abbreviates the claim that if a given proposition p is physi-
cally necessary then it is metaphysically necessary that p is physically necessary.
But for some propositions this is false: even though superluminal travel is physically
impossible, there are metaphysically possible worlds with different laws of physics
from which it is physically possible that bodies go faster than the actual speed of
light.

Given that the target notions of relative necessity are all the Kripke necessities, it
is simply a failure of SA that it is only able to characterise those Kripke necessities
whose logic includes the 4 axiom for the necessity operator in question. The issue is
that the standard account attempts to formalise the idea that i-necessity is absolute
necessity relative to the i-laws with the use of sentential constants which express the
i-laws of a specific world. However, this use of constants generates the 4 axiom and
mixed 4 axiom issues. What is needed is some means of formalising the variability of
the i-laws from absolutely possible world to world in the language of propositional
modal logic.

3 Hale & Leech’s Proposal

3.1 The Proposal

Hale & Leech clearly appreciate the force of the above concerns. After highlight-
ing the shortcomings of Humberstone’s [11, 12] two-dimensional solution, they offer
their own definition of relative necessity. According to Hale & Leech’s proposal, each
relative necessity operator �i is to be defined in terms of a corresponding proposi-
tional operator πi . In the case of, say, physical necessity, here denoted as �phys , the
claim πphys(p) expresses that p is a law of physics.

For their first attempt, Hale & Leech propose that i-necessity can be defined as
follows (where q is the first variable not free in φ under some fixed ordering):9

HL1 �iφ =df ∃q(πi(q) ∧ �(q → φ))

In other words, p is i-necessary iff there is some i-law which strictly implies p. An
instance of HL1 is the claim that p is physically necessary iff there is some law of
physics which strictly implies it.

One might immediately notice that this is somewhat weak. After all, surely the
physical necessities ought to be closed under conjunction. Indeed, all instances of the
following schema are valid in any normal modal logic:

K∧ (�iφ ∧ �iψ) → �i (φ ∧ ψ)

9Hale and Leech [10, p. 13] do not state their account schematically, but instead state it in terms of propo-
sitional variables. When stated in schematic form, one needs the condition that q is the first variable not
free in φ in order to avoid clash of variables.
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But HL1 does not guarantee closure under conjunction, and so would generate non-
valid instances of K∧.10 To see this informally, imagine there were only two laws r

and r ′ such that r strictly implies p and r ′ strictly implies q. Since neither r nor r ′
strictly implies p ∧ q, K∧ fails for physical necessity.

Hale & Leech are aware of this issue, and offer a more sophisticated definition
of relative necessity to handle the problem. In this definition, � is a finite set of
propositional variables q1, ..., qn, the first n variables (given some fixed order) not
free in φ, and πi(qj ) abbreviates the finitary conjunction πi(q1) ∧ ... ∧ πi(qn):

HL2 �iφ =df ∃q1 ... ∃qn(πi(qj ) ∧ �(
∧

qj ∈�

qj → φ))

According to this account, p is i-necessary iff there are some propositions, the i-
laws, the conjunction of which strictly implies p. An instance of HL2 is the claim
that p is physically necessary iff there are some propositions, the laws of physics, the
conjunction of which strictly implies p. As can be easily verified,HL2 validates K∧
for each relative necessity.

In HL2, Hale & Leech (p. 18, f.n. 23) ultimately want to treat n as variable.
They recognise that this requires a departure from the resources of ordinary quan-
tified modal propositional logic. For instance, they entertain the idea of introducing
explicit quantification over the natural numbers into the object-language in order to
permit variability. However, a more standard alternative would be to state their ulti-
mate account of relative necessity in terms of a countably infinite disjunction of finite
HL2 instances. Relatedly, Hale & Leech assume that n is finite. In principle, this fini-
tary simplification may ultimately have to be lifted in order to accommodate relative
necessities based on infinitely many ‘laws’. After all, it is surely absolutely possible
for there to be such notions of relative necessity. For example, it is absolutely pos-
sible that Theresa May had infinitely many different goals in March 2019, in which
case an infinite body of propositions would restrict necessity given Theresa May’s
goals in March 2019. As a result, the ultimate regimentation of HL2 may have to be
stated in a language with infinitary conjunction operator which binds arbitrary sets
of formulas. Although this creates additional technical complexity, there should be
no technical obstacle to introducing such infinitary resources to modal languages.
Indeed, some key invariance results in modal logic only hold in modal languages with
infinite conjunction binding arbitrary sets of formulae.11 Nevertheless, the focus of

10Officially, Hale & Leech do not provide a model-theoretic semantics or definition of validity for their
language, although they (p. 15) note that “the most obvious method” would be to follow Fine’s classic
[5] semantics. In Fine’s framework, propositions are interpreted as sets of worlds, propositional variables
and quantifiers range over the power set of worlds in a model, and validity in a model is defined as
usual. Hale & Leech (p. 16) emphasise that they are “reasonably confident that with further work, [their]
informal [proof] sketches can turned into rigorous model-theoretic [proofs]”. At points, their informal
presentation will be followed when discussing their view; however, the current paper’s positive proposal
will be developed explicitly in the setting of a model-theoretic framework similar to that of Fine [5]. Given
that similarity, all claims of validity regarding Hale & Leech’s proposal should be understood in terms of
the notion of validity defined in Def. 5 below.
11See Goranko and Otto [8, pp. 270–273]; see also van Benthem [1, pp. 30–31] for an accessible
explanation of the invariance results.
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what follows will be on the simple HL2 account, since it shares many features of
interest with these more sophisticated refinements.

Neatly,HL2 overcomes the two above problems with S4. To see this, consider the
4 axiom for �i according to HL2:

4′ ∃q1 ... ∃qn(πi(qj ) ∧ �(
∧

qj ∈�

qj → p)) → ∃q1 ... ∃qn (πi(qj )

∧ �(
∧

qj ∈�

qj → ∃q1 ... ∃qn(πi(qj ) ∧ �(
∧

qj ∈�

qj → p))))

This formula is not a theorem of S4 (or even S5): it is invalidated in models similar
to the one given in Section 4.2.1 below. Thus, the definition of relative necessity
does not force all notions of relative necessity to conform to the 4 axiom. A similar
argument shows that HL2 overcomes the ‘mixed’ 4 problem too.

To close the discussion of HL2, it may be assumed on behalf of Hale & Leech
that a given notion of relative necessity �i has a dual notion of possibility ♦i to be
understood as follows (where again q1, ..., qn are the first n variables, given some
fixed order, not free in φ):

HL2♦ ♦iφ =df ¬∃q1 ... ∃qn(πi(qj ) ∧ �(
∧

qj ∈�

qj → ¬φ))

Thus, in logically equivalent form, the formula ♦ip abbreviates the following
formula:

∀q1 ...∀qn(πi(qj ) → ♦(
∧

qj ∈�

qj ∧ φ))

That is to say, p is i-possible according to HL2 iff for all i-laws it is absolutely
possible that they are true along with p. If one endorses HL2, HL2♦ is an extremely
natural way to define relative notions of possibility; in what follows, talk of relative
possibility on Hale & Leech’s view should be understood in these terms.

3.2 Against HL2

Despite the advantages of HL2 over the standard account, it suffers from several
serious problems. The first is perhaps the most serious: HL2 fails to have the con-
sequence that logical necessity is as broad as any relative necessity. Since logical
necessity was considered as absolute because it was as broad as every notion of
necessity, this is a seriously worrying defect. Indeed, put alternatively, Hale and
Leech cannot even recognise a notion of necessity which is absolute in the required
sense, which is arguably a fatal consequence of an account of relative necessity.

To see how this issue arises, fix on a given merely relative necessity, say physical
necessity (�phys), and consider the following consequence of Absolute:

[1] �(�p → �phys p)
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Since � conforms to T, we may conclude the following:

[2] �p → �phys p

But one can see informally why Hale & Leech’s proposal does not validate [2]. Let

 be the tautology ∀p(p → p). Given the usual definition of validity as truth at
all worlds in all models, 
 will be true at all worlds in every model and therefore
valid. Since � has a normal modal logic, �
 will be valid too. But consider some
world w in some model where there are no physical laws. Straightforwardly, at w the
following would be false:

[3] ∃q1 ... ∃qn(πi(qj ) ∧ �(
∧

qj ∈�

qj → 
))

The reason is that there are no physical laws at w, and so no proposition will be in
the extension of πi there. But, by HL2, [3] is equivalent to �phys 
. Thus, [2] is not
valid according to HL2, and so Absolute will not be valid either. Put alternatively,
if there are i-lawless worlds for a given notion of i-necessity, absolute necessity will
not be as broad as that notion of necessity.

Overall, it is worrying even if there is a single notion of relative necessity which
absolute necessity is not as broad as. However, according to HL2 this phenomenon
is quite widespread. After all, for many notions of relative i-necessity it will be abso-
lutely possible that there are i-lawless worlds. For example, consider again necessity
given Theresa May’s goals in March 2019. Although May has various actual goals, it
is absolutely possible that her goals could have been different. Instead of aiming for
Parliament to pass her Withdrawal Agreement she might have desired for the United
Kingdom to retain full membership of the European Single Market. Likewise, there
is an absolute possibility in which May has no goals whatsoever, which would be a
lawless world in the relevant sense. Since it is plausible that the phenomenon of abso-
lutely possible i-lawless worlds arises for many notions of i-necessity, HL2 predicts
that absolute necessity is not as broad as myriad relative necessities.

Hale & Leech are aware of a version of the problem with Absolute but they
attempt to underplay it.12 They write (pp. 18-19; their emphasis):

That [Absolute] should be validated is, no doubt, just what one would think, if
one thinks about relative necessity in essentially world-terms: that is, so that what
is physically necessary, for instance, is essentially just what is true throughout a
restricted range of all logically possible worlds. For then, since anything logically
necessary (i.e. true throughout the whole unrestricted range) must be true through-
out any restriction of it, it must also be physically necessary. Our answer to this is
that it is just a mistake to think of forms of relative necessity as fundamentally to
be understood in world terms. If we drop that prejudice, then it can seem entirely

12They attribute the version of the problem they discuss to David Makinson; in their discussion, the
problem is presented under a guise which is much different to the current one.
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natural and correct to characterise or define a form of relative necessity in such a
way that logical necessity does not automatically ensure relative necessity.

Nonetheless, despite Hale & Leech’s insistence that Absolute should only be appeal-
ing to those in the grip of a worlds-based reduction of modality, it ought to be clear
from the initial set up that this is just not true. The reason why Absolute is so plau-
sible is because absolute necessity is characterised by the fact that it is as broad as
all other notions of necessity. Indeed, how else would it be characterised? Its abso-
luteness consists in this feature. Moreover, claims of comparative broadness can
be used to provide insight into the relations between different notions of necessity,
which is surely an ambition of our modal theorising.13 The capacity to express such
claims does not seem like an artefact of the worlds-based conception, but rather a
requirement of modal theory.

At the heart of the above problem is Hale & Leech’s treatment of relative i-
necessities at worlds at which there are no i-laws. According to HL2, at worlds with
no i-laws no proposition is i-necessary since claims of i-necessity involve existential
quantification over i-laws. But this is difficult to square with familiar glosses of rel-
ative necessities. For example, consider the following typical necessary condition on
physical possibility:

PP If a proposition is physically possible at world, it is logically consistent with
the world’s laws of physics.

Indeed, Hale & Leech (p. 2) appear to endorse this very condition:

Thus on one common view, physical necessity is a matter of following from the
laws of physics, and physical possibility is compatibility [i.e. logical consistency]
with them.

However, according to HL2/HL2♦, at worlds with no laws of physics it is vacu-
ously true that every proposition whatsoever (including contradictory propositions) is
physically possible. Yet this violates the highly plausible condition that, whatever the
circumstances, only logically possible propositions are physically possible. More-
over, as stressed above, since no proposition is physically necessary at lawless worlds
according to HL2, not even arbitrary tautologies will be physically necessary there
either. But on the typical definition of validity as truth at all worlds in all models,
it would follow that notions of relative necessity do not even have a normal modal
logic, since they would fail to conform to the rule of necessitation.

There are thus several concerns facing HL2. There are the minor issues that HL2
is too simple to handle cases in which there are infinitely many i-laws, and that

13For recent examples of such insight, see Williamson [19] and Bacon [2]. See also Hale’s [9] classic and
influential discussion of absolute necessity.
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HL2 must be modified to permit variability in the number of laws. However, more
worryingly, there are the major issues regarding the failure of Absolute, and the mis-
handling of lawless worlds, the latter of which is essentially responsible the former.
Finally, there is the subsidiary problem of the rule of necessitation failing for notions
of relative necessity, which again is an artefact of the mishandling of lawless worlds.
Together, these problems motivate the need for a new definition of relative necessity,
preferably in terms of absolute necessity.

Nevertheless, HL2 is clearly on the right track, as witnessed by its predictions
in cases with a non-zero finite number of i-laws. As a consequence, it might seem
that a slightly generalised version of HL2 fares much better. To see this, imagine
that the object-language is enriched with an infinitary conjunction operator which
binds arbitrary sets of formulas and equates empty conjunctions with the tautologous
proposition. In this infinitary setting, HL2 can be generalised to the claim that for
a proposition to be i-necessary is for it to be absolutely strictly implied by the arbi-
trary conjunction of the i-laws. Without formalising the proposal, one would expect
this generalised version of HL2 to avoid most of the problems which faced HL2.
For instance, clearly the generalised version would no longer incorporate the restric-
tion to finitely many laws. Moreover, at i-lawless worlds, the restricting proposition
for relative i-necessity would simply be the tautologous proposition. Consequently,
at such worlds relative i-necessity collapses into absolute necessity, thus ensuring
Absolute. Indeed, Strohminger and Yli-Vakkuri [16] sketch an analysis of relative
necessity similar to HL2 in terms of infinite conjunction of exactly this kind, and
suggest that they expect it to overcome the problems facing HL2. Arguably, the only
remaining issues are that the account requires it to be absolutely necessary that the
i-laws form a set, but this issue could perhaps be finessed with even more extreme
infinitary resources.

However, rather than complicate the propositional language by resorting to any
infinitary measures whatsoever, there is a much simpler option available. Put intu-
itively, the idea is to exploit the fact that, given our particular assumption of
Booleanism, the arbitrary conjunction of the i-laws will just be the weakest propo-
sition that strictly implies all i-laws. Yet, as will be shown, that proposition can be
characterised simply in terms of propositional quantification and the ‘i-law’ predi-
cate. Thus, the relative i-necessity of a given proposition can be characterised as that
proposition’s being strictly implied by the weakest proposition that strictly implies
all i-laws, which is statable without appeal to any infinitary resources.14 The next
section develops this simple idea carefully and shows that it overcomes all of the
problems facing HL2 in addition to the initial S4 problems.

14Indeed, Strohminger and Yli-Vakkuri [16, p. 6, n. 11; p. 7, n. 12] themselves suggest that a ‘higher-
order analysis’ of relative necessity is needed, which the following simpler proposal may be viewed as
providing.
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4 A New Proposal

4.1 Regimentation

The aim of this section is to develop the above characterisation carefully. On the
proposed way of developing this characterisation, Absolute will be validated and
the issue with lawless worlds will be rectified. Moreover, the proposal will ensure
a normal modal logic for each notion of relative necessity. Furthermore, due to the
similarities of the new proposal with HL2, the new proposal will also overcome the
S4-related problems that afflicted the standard account. Indeed, more generally, the
new proposal will yield the welcome result that its notions of relative necessity are
exactly the Kripke necessities, thus ensuring that it captures the initial target notion
of relative necessity.

The exact statement of the new proposal shall be postponed until some technical
resources have been introduced. The technical resources are to be introduced model-
theoretically, so we must first specify a language.

Def. 1 The language L is defined using: countably many propositional vari-
ables (p, q, ...); countably many monadic predicate constants (π1, π2, ...);
conjunction (∧) and negation (¬) as the only truth-functional connec-
tives; the unary modal operator � (absolute necessity), and a universal
quantifier binding propositional variables (∀).

The well-formed formulas of the language are given by the following
rule (where α is a propositional variable and ξ is a monadic predicate
constant):

φ := α | ξ(α) | ¬ψ | (ψ ∧ χ) | ∀α(ψ) | �ψ

We write ∃ as an abbreviation for the string ¬∀¬ and ♦ as an abbre-
viation for the string ¬�¬. We introduce →, ∨, and ↔ by the usual
abbreviations.

The class of models for this language shall not permit contingency in what proposi-
tions there are. Thus, to this end, we shall use constant domain models for quantified
propositional logics; the class of models is similar to that defined in the classic Fine
[5] which, in effect, employs a constant domain model theory.

Def. 2 A model M of the language is a pair 〈W , V 〉, where:
W is a non-empty set (‘the worlds’), and
V is a total function (‘the interpretation function’) from pairs 〈ξ, w〉 (for
ξ a predicate constant, and w ∈ W ) to subsets of P(W ).

Def. 3 A variable assignment g for the language is a total function from propo-
sitional variables to subsets of W . We write g(α/d) for a variable
assignment which differs from g at most in that it assigns d to α.
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The next step is to define a truth at a world on an assignment.

Def. 4 We define ‘(M, w) |=g φ’ (‘true at w on g’) for φ a well-formed for-
mula, M = 〈W , V 〉, and w ∈ W recursively in the following manner.
In this definition, α is propositional variable, ξ is a monadic predicate
constant, and φ and ψ are both well-formed formulae.

(M, w) |=g α iff w ∈ g(α)

(M, w) |=g ξ(α) iff g(α) ∈ V (ξ, w)

(M, w) |=g ¬φ iff (M, w) �|=g φ

(M, w) |=g φ ∧ ψ iff (M, w) |=g φ and (M, w) |=g ψ

(M, w) |=g �φ iff (M, u) |=g φ, for all u ∈ W

(M, w) |=g ∀α(φ) iff (M, w) |=g(α/p) φ, for all p ∈ P(W)

Def. 5 A formula φ is valid in M = 〈W , V 〉 iff (M, w) |=g φ for all w ∈ W ,
and all variable assignments g. A formula φ is valid iff it is valid in all
models.

Note that this semantics validates the Barcan formula and its converse for the
propositional quantifier, as is standard in necessitist logics which validate S5.15

With this technical apparatus, we are now in a position to state the new proposed
definition of relative necessity. Intuitively, the idea is that p is i-necessary at a world
iff it is strictly implied by the weakest proposition that strictly implies every i-law at
that world. For example, p is physically necessary at a world iff it is strictly implied
by the weakest proposition that strictly implies every physical law at that world. To
appreciate this idea, it may help to emphasise that in cases where there are finitely
many i-laws at a given world, the weakest proposition that strictly implies every i-
law at that world will just be the proposition expressed by the finite conjunction of
the i-laws. As a result of this, the new account of relative necessity will agree with
the welcome predictions of HL2 in cases of a non-zero finite number of i-laws. To
state the definition formally, we introduce two metalinguistic abbreviations:

Oπi p =df ∀q(πi(q) → �(p → q))

L πi p =df Oπi (p) ∧ ∀q(Oπi (q) → �(q → p))

15The opening section noted that S4 is a lower bound on the logic of absolute necessity; indeed, this is a
theorem of Bacon’s [2] characterisation of absolute necessity. To argue that S5 is an upper bound on the
logic of absolute necessity, Bacon adapts an informal argument due to Williamson [18, pp. 114] which
appeals to Scroggs’s [14] theorem that every proper extension of S5 is the logic of a single finite frame.
The current model theory validates S5 for absolute necessity as a simplifying working hypothesis.
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Put informally, Oπ
i p means that p strictly implies all propositions that are i-laws,

and L πi p means that p is the weakest such proposition with respect to strict impli-
cation. To aid one’s understanding of these notions, it may help to notice that since
propositions are modelled as sets of absolutely possible worlds, one proposition’s
strictly implying another is modelled as the former being a subset of the latter. Given
this equivalence, Oπi p can be understood as the claim that p is a subset of all i-
laws, and L πi p can be understood as the claim that p is the greatest lower bound
on the i-laws with respect to subset inclusion. When L πi p is true at a world on a
given assignment, whatever p is assigned will be referred to as the i-lawful propo-
sition of that world. Informally, one might wish to think of the i-lawful proposition
as the arbitrary conjunction the i-laws, where the empty conjunction is simply the
tautologous proposition. However, an advantage of the L πi characterisation is that
it defines the i-lawful proposition simply in terms of already available propositional
quantification.

It is important to stress that since propositions are treated as sets of worlds in
a given model, the domain of propositions (i.e. the power set of the worlds in the
model) will form a complete Boolean algebra under the usual set-theoretic operations
in the sense that every subset of propositions has a least upper bound and a greatest
lower bound with respect to subset inclusion. Thus, for any set of propositions there is
guaranteed to be a weakest proposition that strictly implies all its members. Helpfully,
this means that at each world exactly one proposition will satisfy L πi for a given
predicate πi .

The new definition of relative necessity can now be stated as follows (where q is
the first variable not free in φ):

RN �iφ =df ∃q(L πi (q) ∧ �(q → φ))

To restate the intuitive gloss: i-necessity at a world is a matter of being strictly
implied by the weakest proposition that strictly implies all i-laws at that world.

4.2 Results

In certain respects, RN is similar to both HL2 and SA. This section will highlight
these similarities, but also emphasise its crucial differences. These differences will
ensure that RN overcomes each of the problems which HL2 and SA faced.

4.2.1 4 Axiom Schema

Recall that one problem with SA is that it validated all instances of the 4 axiom
schema for every notion of relative necessity. It may be shown that RN does not have
this feature.

Consider a relative necessity operator �i . According to RN, the 4 axiom schema
for �i is stated as follows:

4i ∃q(L πi (q)∧�(q →φ)) → [∃q(L πi (q)∧�(q → ∃q(L πi (q)∧�(q → φ))]
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The following is a countermodel to an instance of 4i . Let M = 〈W , V 〉, such that:

W = {0, 1, 2}

V (πi, 0) = {{0, 1}, {0, 1, 2}}

V (πi, 1) = {{0, 1, 2}}

V (ξ, w) = ∅, for all w ∈ W and all ξ otherwise

0

L πi {0, 1}
1

L πi {0, 1, 2}
2

Let g be a variable assignment such that g(p) = {0, 1}. Say that 4i (p) is the instance
of 4i with p substituted for φ. With g as above, it can be checked that (M, 0) �|=g

4i (p).
The 4i axiom schema according to RN is a special case of the ‘mixed’ 4ij schema

according to RN, which is stated as follows:

4ij ∃q(L πi (q)∧�(q →φ))→[∃q(L πi (q)∧�(q →∃q(L πj (q)∧�(q → φ))]
As a consequence, instances of 4ij are invalidated by the model theory too.

4.2.2 Absolute

Next, it can be shown that ∀p�k(�p → �jp) is valid whenever �k and �j are
necessity operators. To this end, it is helpful to first establish that in a given model
each notion of relative necessity corresponds to an accessibility relation in that
model. To express this carefully, first say that for a set S and X a set of sets, the
intersection of X with respect to S (∩SX) is defined as follows.

∩SX = {y ∈ S : y ∈ x for all x ∈ X}

One can then define the accessibility relation which corresponds to a given notion of
relative necessity as follows.

Def. 6 For a predicate constant πi and modelM = 〈W , V 〉, Ri = {〈x, y〉 : y ∈
∩W V (πi, x)}

With this definition in mind, it is first helpful to observe that from a given world
w the worlds in which w’s i-lawful proposition is true are exactly those worlds in
the intersection of the extension of πi at w with respect to the background space of
worlds.

Theorem 1. For a model M = 〈W , V 〉 and a variable assignment g, (M, w) |=g

L πi (p) iff ∩W V (πi, w) = g(p).
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Proof sketch. As mentioned previously, (M, w) |=g L πi (p) equates to g(p)

being the greatest lower bound on V (πi, w) with respect to ⊆
in P(W ) (hereafter these qualifications are left implicit). It thus
suffices to show that ∩W V (πi, w) is also the greatest lower bound
on V (πi, w). It helps to separate the cases, so first assume that
V (πi, w) �= ∅. Clearly, for any s ∈ V (πi, w), ∩W V (πi, w) ⊆ s.
Moreover, ∩W V (πi, w) contains every u such that u ∈ s for all
s ∈ V (πi, w), so there is no lower bound
 on V (πi, w) such that
∩W V (πi, w) ⊂ 
. However, if V (πi, w) = ∅ then it is vacuously
true that ∩W V (πi, w) is a lower bound on V (πi, w). Moreover,
given that V (πi, w) = ∅, it follows that ∩W V (πi, w) = W and
is thus the greatest lower bound on V (πi, w).

�
Theorem 1 may then be employed to derive a semantic clause for a given notion of
i-necessity using Ri .

Theorem 2. (Accessibility) For a relative necessity�i , one may derive the following
semantic clause: (M, w) |=g �iφ iff for all u such that wRiu, (M, u) |=g φ.

Proof. All steps are given by either the semantic clauses, Def. 6, or Theorem 1.

(M, w) |=g ∃q(L πi (q) ∧ �(q → φ))

iff (M, w) |=g(q/p) L πi (q) ∧ �(q → φ) for some p ∈ P(W )

iff ∩W V (πi, w) = g(q/p)(q) and (M, w) |=g(q/p) �(q → φ)

iff (M, u) |=g φ for all u ∈ ∩W V (πi, w) = g(q/p)(q)

iff (M, u) |=g φ for all u such that vRiu. �

To return to the main thread, notice that for each πi and model M = 〈W , V 〉, Ri ⊆
W × W . Thus, Theorem 2 can be used to establish that �p → �ip is valid for �i

whenever �i is a relative necessity operator. However, as can easily be checked by
using the semantics and definition of validity, � obeys the rule of necessitation.

Necessitation If φ is valid, then �φ is valid.

Given the above, we may derive a generalised rule of necessitation for any given
notion of relative necessity �i .

Generalised Necessitation If φ is valid, then �iφ is valid.

As a consequence, �k(�p → �ip) is valid whenever �k and �i are neces-
sity operators. Using the semantics, one can easily verify that Absolute is valid as a
consequence.
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Theorem 3. (Absolute) ∀p�k(�p → �jp) is valid, whenever �k and �j are
necessity operators.

Relatedly, another advantage of RN is that there is a sense in which every accessibil-
ity relation in a given model generates a notion of relative necessity.

Theorem 4. (Generation) Let M = 〈W , V 〉 be a model such that R ⊆ W 2.
There is a modelMR = 〈W , VR〉 such that (MR , w) |=g �iφ iff for all u such
that wRu (MR , u) |=g φ.

Proof. For every w ∈ W , let R(w) = {v : wRv}. Let VR be the interpretation
function such that for every w ∈ W , p ∈ VR(πi, w) iff R(w) ⊆ p,
and VR(ξ, w) = V (ξ, w) otherwise. Observe that wRu iff u ∈ R(w)

iff u ∈ ∩W VR(πi, w). Hence (MR , w) |=g �iφ iff for all u such that
wRu (MR , u) |=g φ.

Both Theorem 4 and Theorem 2 are reasonable desiderata on an account of relative
necessity. If met, respectively they ensure that to each accessibility relation in a model
corresponds an in principle definable notion of relative necessity, and vice-versa.
However, notice that SA fails to meet an analogue of Theorem 4, since its notions
of relative necessity correspond only to transitive accessibility relations. Similarly,
HL2 fails to meet an analogue of Theorem 2. According to HL2, for a given notion
of relative i-necessity, at i-lawless worlds it is i-possible that contradictions are true,
but on standard model-theoretic treatments of normal modal logics, such notions of
relative necessity will not correspond to accessibility relations in models.

4.2.3 Kripke Necessities

Complementing the previous section, Theorem 2 and Theorem 4 can be used to
establish the neat result that the RN relative necessities are exactly the Kripke neces-
sities.16 To make this claim precise, a number of further definitions are required.
First, we define what it is for a modal logic to be the logic of a Kripke frame. The
result will then be stated as a correspondence between the logics of relative necessity
(according to RN) and the logics of Kripke frames.

Def. 7 The modal propositional language (MPL) is the fragment of L without
the universal quantifier and monadic predicate constants. A modal logic
is a set of MPL formulas.

Def. 8 An MPL frame is a pair 〈W , R〉 in which W is a non-empty set and
R ⊆ W 2.

16Thanks to an anonymous reviewer for conjecturing this theorem and encouraging me to explore it.
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Def. 9 An MPL model based on an MPL frame F = 〈W , R〉 is a triple
〈W , R, V 〉 in which V is a total function from propositional variables of
MPL to subsets of W .

It is helpful to note that for any MPL model 〈W , R, V 〉, V is just a vari-
able assignment for an L model based on the same set of worlds and
vice-versa.

Def. 10 ‘(M , w) |= φ’ is defined for φ a well-formed MPL formula,
M = 〈W , R, V 〉 an MPL model, and w ∈ W recursively in the fol-
lowing manner. In this definition, α is propositional variable, and φ and
ψ are both well-formed MPL formulae.

(M , w) |= α iff w ∈ V (α)

(M , w) |= ¬φ iff (M , w) �|= φ

(M , w) |= φ ∧ ψ iff (M , w) |= φ and (M , w) |= ψ

(M , w) |= �φ iff (M , u) |= φ, for all u such that wRu

Def. 11 A formula φ is valid in an MPL model M = 〈W , R, V 〉 iff (M , w) |=
φ, for all w ∈ W . A formula φ is valid on an MPL frame F = 〈W , R〉
iff it is valid in all MPL models based on F .

Def. 12 For an MPL frame F , the modal logic of F is �F = {φ ∈ MPL :
φ is valid on F }.

Def. 13 For φ a formula of MPL, φi is the formula whose metalinguistic abbre-
viation is given by the result of substituting each occurrence of � for an
occurrence of �i . (Given the abbreviation conventions for �i , φi will
abbreviate a formula of L but not of MPL.)

Def. 14 For a model M of L (as defined in Def. 2), the modal logic of M is
�MPL

M
= {φ ∈ MPL : φi is valid in M}. (Note the restriction to MPL

formulas.)

Def. 15 For a model M = 〈W , V 〉 of L , F i (M) is the MPL frame 〈W , Ri〉,
with Ri defined in terms of V as in Def. 6.

Def. 16 For an MPL frame F = 〈W , R〉, Mi (F ) is the L model
M = 〈W , VR〉, with VR defined in terms of R as in the proof of
Theorem 4.

Theorem 5. (Kripke Necessities) A modal logic is the logic of an L model iff it is
the logic of an MPL frame.
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Proof.We first establish two helpful lemmas.

Lemma 1. For any MPL frame F = 〈W , R〉 and any MPL model
M = 〈W , R, V 〉 based on F , for all w ∈ W , (M , w) |= φ iff
(Mi (F ), w) |=V φi .

Lemma 1 is established by induction on the complexity of φ. The base case
is immediate from the use of V as the variable assignment overMi (F ), and
the cases for the truth-functional connectives are routine. So assume that for
all w ∈ W , (M , w) |= ψ iff (Mi (F ), w) |=V ψi . Then reason as follows
to complete the proof of Lemma 1.

(M , w) |= �ψ iff (M , u) |= ψ for all u such that wRu Def. 10

iff (Mi (F ), u) |=V ψi for all u such that wRu IH

iff (Mi (F ), w) |=V �iψi Theorem 4

Lemma 1 has the following corollary.

Corollary 1. �F = �MPL
Mi (F )

for any MPL frame F = 〈W , R〉.

There is a similar lemma in the other direction.

Lemma 2. For any L model M = 〈W , V 〉 and all w ∈ W , (M, w) |=g φi

iff (M , w) |= φ, where M is the MPL model 〈F i (M), g〉.

Lemma 2 is also established by induction on the complexity of φ. As before,
we only consider the case for necessity claims. So assume that for allw ∈ W ,
(M, w) |=g ψi iff (M , w) |= ψ . Then reason as follows to complete the
proof of Lemma 2.

(M, w) |=g �iψi iff (M, u) |=g ψi for all u such that wRiu Theorem 2

iff (M , u) |= ψ for all u such that wRiu IH

iff (M , w) |= �ψ Def. 10

Lemma 2 has the following corollary.

Corollary 2. �MPL
M

= �F i (M) for any L modelM = 〈W , V 〉.

Theorem 5 then follows from Corollary 1 and Corollary 2.

Theorem 5 shows that RN meets the initial target of characterising all the relative
necessities of interest, the Kripke necessities. It is a significant advantage of RN that
it is able to yield such a result.
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4.2.4 Lawless Worlds

Recall that according to HL2 at worlds with no i-laws no proposition is i-necessary
and every proposition is i-possible. This was in tension with familiar glosses of i-
necessity. For example, if physical necessity is simply absolute necessity given the
laws of physics, then if there are no laws of physics, there are no propositions to
restrict what is physically necessary. Thus, one would expect that physical necessity
would collapse into absolute necessity. However, it can be shown that RN meets this
expectation and thus conforms with this familiar gloss of i-necessity.

Consider a model M1 = 〈W , V 1〉 just likeM in Section 4.2.1 except:

V 1(πi, w) = ∅, for all w ∈ W

We want to show that (M1, w) |=g �p iff (M1, w) |=g �ip for an arbitrary propo-
sitional variable p. Of course, the left-to-right direction is immediate from Absolute.
But notice that since V 1(πi, w) = ∅, ∩W V 1(πi, w) = W . Thus for all u ∈ W ,
wRiu. Hence, as intended, when there are no i-laws at a given world the i-possible
worlds from that world are all and only the absolutely possible worlds, which demon-
strates the collapse of i-necessity and absolute necessity at such i-lawless worlds.
This is preferable to the verdict of HL2 that even absolutely impossible propositions
are i-possible at i-lawless worlds.

Relatedly, we can note that if the i-laws are inconsistent at some world in some
model, in the sense that their intersection with respect to the set of all worlds in
that model is empty, then at that world everything is i-necessary but nothing is i-
possible. This is another welcome result, for such inconsistent sets of laws and their
corresponding relative necessities exhibit a certain degeneracy. To appreciate the
result, consider a modelM′ = 〈W , D, V ′〉 just likeM1 directly above, except:

V ′(πi, w) = {S, W −S}, for some S ⊆ W

Speaking informally, it follows that the only proposition (i.e. subset of W ) which
strictly implies all the i-laws at w is the impossible proposition, that is ∅. As a con-
sequence, wRiu iff u ∈ ∅. In other words, there is no u ∈ W such that wRiu.
Thus, given the derived semantic clause above, it is vacuously true that every φ is
i-necessary at w and no φ is i-possible at w.

5 Concluding Remarks

This article has criticised Hale-and-Leech’s [10] account of relative necessity, which
itself resulted from their criticisms of the standard account of relative necessity. The
paper then proposed a new account of relative necessity which met the criticisms of
both Hale & Leech’s account and the standard account.

To close the discussion, it is interesting to note that certain complications arise
once various working assumptions are lifted. To begin with, from the outset it was
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made explicit that propositional necessitism was a working assumption of the dis-
cussion. If this assumption is lifted, RN may be an inadequate definition of relative
necessity; in such a contingentist setting, the propositional quantifier in RN will
not range over all absolutely possible propositions, depriving RN of its intended
generality. This may come as no surprise: as is typical, non-modal quantificational
claims lose their intended generality when simply copied from a necessitist setting
and pasted into a contingentist one. When faced with such cases, a natural contin-
gentist reaction has been to offer certain modalised contingentist analogue principles
following the lead of Fine [6]. However, as Fine himself and recent commenta-
tors have recognised, this modalising strategy is difficult to execute in the case of
propositional quantification.17 Unfortunately, at the time of writing, such difficulties
make it unclear whether an adequate analogue of RN can be articulated in a con-
tingentist setting. Indeed, clarity on this issue is likely to be gained only if a more
general contingentist method of simulating higher-order necessitist discourse can be
established.

Finally, it was made explicit that the account relied on a conception of proposi-
tions according to which it is absolutely necessary that there is a weakest proposition
which strictly implies all i-laws. On alternative conceptions of propositions, how-
ever, there may be be no such unique proposition. In particular, on some conceptions
of propositions they may not form a complete Boolean algebra under the usual truth-
functional operations. For example, in certain cases, there may always be various
minimally weak propositions which strictly imply all i-laws, but no unique candi-
date. One would expect that RN could be adapted to such settings by identifying the
i-necessity of a proposition with that proposition’s being strictly implied by all of the
minimally weak propositions which strictly imply all i-laws. However, of course, the
specific details of the non-Boolean setting matter greatly, so questions regarding how
to define relative necessity in such settings are left for future work.
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