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Abstract
We show how to correct the analytic tableaux system from the paper Olkhovikov and
Wansing (Journal of Philosophical Logic, 47(2), 259–279, 2018).
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In [1] a tableau calculus for STIT imagination logic is presented. If formulas Ia A
and ¬Ia B, saying that agent a imagines that A and that a does not imagine that
B, are true at a moment/history-pair (m, h) from a model M, then there must be a
moment/history pair that witnesses the non-equivalence of A and B in M. As stated
in [1], the tableau rule for pairs Ia A and ¬Ia B locates such witnessing pairs in the
future of the moment m, but for the soundness and completeness proofs this causes
problems, which were overlooked in [1]. In the present paper we simplify the calculus
and present a detailed soundness and completeness proof that includes proofs of some
assumptions tacitly made in [1]. The soundness proof refers to the canonical model
construction from the completeness proof for the axiom system given in [1]. In order
to keep this paper reasonably self-contained, we here include not only the syntax and
semantics of STIT imagination logic but also the definition of the canonical model
and two truth lemmas from [1].
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1 STIT Imagination Logic

The language of STIT imagination logic consists of a countably infinite set Var
of propositional variables, with typical element denoted p. Moreover, we assume a
given finite non-empty set Ag of agents, and use indices a, a1, a2, etc., to stand for
pairwise distinct agents. The set Form of all formulas (or sentences) generated from
Var and Ag has elements denoted A, B, etc. The syntax of STIT imagination logic
is then defined in BNF as follows:

Propositional variables: p ∈ Var
Agents: a ∈ Ag
Formulas: A ∈ Form
A := p | ¬A | A ∧ A | SA | [c]a A | Ia A
Here ¬ and ∧ stand for classical negation and conjunction, the other Boolean

connectives are defined as usual. Moreover, SA is to be read as “A is settled true”,
[c]a A as “agent a c-stit realizes A”, and Ia A as “agent a imagines that A”. We will
also use PA as a shorthand for ¬S¬A.

Formulas are evaluated in imagination models at moment/history-pairs. An
imagination model is a tupleM= 〈Tree, ≤, Ag,Choice, {Na | a ∈ Ag}, V 〉, where:
• Tree is a non-empty set of moments, and ≤ is a partial order on Tree satisfying

the conditions ∀m1,m2∃m(m ≤ m1 ∧ m ≤ m2) (historical connection), and
∀m1,m2,m((m1 ≤ m ∧ m2 ≤ m) → (m1 ≤ m2 ∨ m2 ≤ m1)) (no backward
branching).

• The set Hist (M) of all histories of M is then just the set of all maximal ≤-
chains in Tree. A history h is said to pass through a moment m iff m ∈ h. The
set of all histories passing through m ∈ Tree is denoted by Hm .

• Ag is the assumed finite set of all agents acting in Tree and is assumed to be
disjoint from all the other items in M.

• Choice is a function defined on the set Tree × Ag, such that for an arbitrary
(m, a) ∈ Tree × Ag, the value of this function, that is to say Choice(m, a)

(more commonly denoted Choicema ) is a partition of Hm . If h ∈ Hm , then
Choicema (h) denotes the element of Choicema , to which h belongs. In the special
case when we have Choicema = {Hm}, it is said that the agent a has a vacu-
ous choice at the moment m. Choice is assumed to satisfy the following two
restrictions:

– “No choice between undivided histories”: for arbitrary m ∈ Tree, a ∈
Ag, e ∈ Choicema , and h, h′ ∈ Hm : (h ∈ e ∧ ∃m′(m < m′ ∧ m′ ∈
h ∩ h′)) → h′ ∈ e.

– “Independence of agents”. If f is a function defined on Ag such that
∀a ∈ Ag ( f (a) ∈ Choicema ), then

⋂
a∈Ag f (a) = ∅.

• The set of moment/history-pairs of M is defined as MH(M) := {(m, h) | m ∈
Tree, h ∈ Hm}.

• For every a ∈ Ag, we have Na : MH(M) −→ 2(2MH(M)).
• V is an evaluation function for atomic sentences, i.e., V :Var −→ 2MH(M).
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Definition 1 The satisfaction relation between formulas and moment/history-pairs
in an imagination modelM is then defined inductively as follows:

M, (m, h) |= p ⇔ (m, h) ∈ V (p), for atomic p;

M, (m, h) |= (A ∧ B) ⇔ M, (m, h) |= A and M, (m, h) |= B;
M, (m, h) |= ¬A ⇔ M, (m, h) |= A;
M, (m, h) |= SA ⇔ ∀h′ ∈ Hm(M, (m, h′) |= A);
M, (m, h) |= [c]a A ⇔ ∀h′ ∈ Choicema (h)(M, (m, h′) |= A);
M, (m, h) |= Ia A ⇔ (i) ∀h′ ∈ Choicema (h) (‖A‖M ∈ Na((m, h′)))

and (i i) ∃h′′ ∈ Hm (‖A‖M /∈ Na((m, h′′))),
where ‖A‖M := {(m, h) ∈ MH(M) | M, (m, h) |= A}.

In what follows, we use “positive condition” and “negative condition” to refer to the
first and second conjunct in the semantic clause for Ia A, respectively.

The axiom system L for STIT imagination logic is given as follows:

(A0) Propositional tautologies.
(A1) S is an S5 modality.
(A2) For every a ∈ Ag, [c]a is an S5 modality.
(A3) SA → [c]a A for every a ∈ Ag.
(A4) (P[c]a1 A1 ∧ . . . ∧ P[c]an An) → P([c]a1 A1 ∧ . . . ∧ [c]an An), provided that

all the
a1, . . . , an are pairwise different.

(A5) Ia A → ([c]a Ia A ∧ ¬SIa A) for every a ∈ Ag.

Rules of inference:

(R1) Modus ponens.
(R2) From A infer SA.
(R3) From A ↔ B infer Ia A ↔ Ia B for every a ∈ Ag.

Remark 1 Observe that (A5) can be equivalently replaced in this system by the two
axiomatic schemes (A5.1) Ia A → [c]a Ia A and (A5.2) ¬SIa A for every a ∈ Ag.

In [1], the technique of canonical models is used to prove that L is strongly com-
plete with respect to the class of all imagination models. It is shown that if � is an
L-consistent set of sentences, then there exists an imagination model that at some
moment/history pair satisfies every formula from �.

In order to define the canonical L-model, let W be the set of all L-maxiconsistent
sets of sentences and denote the members of W as w, w′, w1 etc. Set wRw′ iff
{A | SA ∈ w} ⊆ w′, and set w �a w′ iff {A | [c]a A ∈ w} ⊆ w′. Then (A1) and
(A2) ensure that all these relations are equivalence relations; moreover, (A3) ensures
that �a⊆ R for every a ∈ Ag.

We denote equivalence classes ofW with respect to R by X , X ′, X1, etc. The set of
all such equivalence classes is denoted by �. When restricted to an arbitrary X ∈ �,
the relation R turns into the universal relation, but relations of the form�a can remain
non-trivial equivalence relations breaking X up into several equivalence classes. We
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denote the family of equivalence classes corresponding to �a� X by E(X, a). In the
canonical model, a special role is played by the following set: � = {¬p | p ∈ Var}
∪ {SA ↔ A | for arbitrary A} ∪ {[c]a A ↔ A | for arbitrary A}.

The following facts about � were noted and discussed in [1]:

(F1) There exists exactly one element in W , which extends �. We denote this
element by w.

(F2) It follows from the definitions of � and R that the R-equivalence set
containing w, contains w only.

The canonical model is based on a tree of depth 2. First, we choose an element
0 /∈ � ∪ W and define our set of moments: Tree = {0} ∪ � ∪ W . Then, for arbitrary
x, y ∈ Tree we define x ≤ y iff x = y, or y ∈ x or x = 0. This allows for a
simple description of the set of histories. Every history has the form hw = 〈0, X, w〉,
where X ∈ � and w ∈ X . Thus, the set of histories is in one-to-one correspondence
with W .

Thirdly, we define the choice function. It assigns a vacuous choice to every agent
at every moment m, if m /∈ �. That is to say, the only choice of every agent at every
such moment will be just the set of all histories passing through this moment. Other-
wise, i.e., for the case when m = X ∈ �, we define the choice function as follows:
ChoiceXa = {H | ∃e ∈ E(X, a)(H = {hw | w ∈ e})}.

Next, we define the imagination neighbourhoods: Na((m, h)) = ∅ for every
a ∈ Ag and every m /∈ �. For the case when m = X ∈ �, we need one further
auxiliary notion. For every sentence A we set Ext (A) (read: extension of A) to be
{(X, hw) | A ∈ w ∈ X} if A /∈ w; otherwise we set Ext (A) = {(X, hw) | A ∈
w ∈ X} ∪ {(m, hw) | m /∈ � and m ∈ hw}. Having defined the extensions, we set
Na((X, hw)) = {Ext (A) | Ia A ∈ w} for arbitrary w ∈ X ∈ �. Finally, we define
the evaluation function for variables in the following way: V (p) = {(X, hw) | p ∈
w ∈ X ∈ �}.

It is shown in [1] that the so defined structure, call itM, is indeed an imagination
model. Moreover, the following truth lemmas are shown.

Lemma 1 (Truth Lemma 1) Let m /∈ � and m ∈ h. Then, for any sentence A, the
following holds:M, (m, h) |= A ⇔ A ∈ w.

Lemma 2 (Truth Lemma 2) Let X ∈ � and w ∈ X. Then, for any sentence A, the
following holds:M, (X, hw) |= A ⇔ A ∈ w.

2 A Tableau Calculus

One variant of a correct system of analytic tableaux rules for stit imagination logic
can be given by the sets of structural rules and decomposition rules as presented
below in Tables 1 and 2, respectively. Direct comparison between these tables and
Tables 1 and 2 of [1] shows that in the new rules the expressions of the form m ∈ h
and m ≺ m1 are deleted altogether, sometimes to be replaced with expressions of the
form h�m

a h. We also introduce a new structural rule, REF0, and the structural rule
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Table 1 New structural tableau rules

REF0 REF SYM TRAN IND

A, (m, h) hi �m
a hk hi �m

a hk hi �m
a hk hl1 �m

a1 hl1
↓ ↓ ↓ hk �m

a hl . . . hlk �m
ak hlk

h �m
a h hi �m

a1 hi hk �m
a hi ↓ ↓

a ∈ Ag a1 ∈ Ag hi �m
a hl hl1 �m

a1 hn . . . hlk �m
ak hn

where hn is new, k > 1, and a1, . . . , ak are pairwise distinct

REF is modified so as to allow for switching between agent indices. Finally, the rule
for Ia A and ¬Ia B is replaced by a similar, but simpler, rule for ‖A‖ ∈ Na((m, hi ))
and ‖B‖ /∈ Na((m, hi )).

Table 2 New decomposition rules for STIT imagination logic

¬¬A, (m, h) (A ∧ B), (m, h) ¬(A ∧ B), (m, h)

↓ ↓ ↙ ↘
A, (m, h) A, (m, h), B, (m, h) ¬A, (m, h) ¬B, (m, h)

SA, (m, hi ), ¬SA, (m, hi )

hk�m
a hk ↓

↓ ¬A, (m, hk)

A, (m, hk) where hk is new

[c]a A, (m, hi ), ¬[c]a A, (m, hi )

hi�m
a hk ↓
↓ ¬A, (m, hk),

A, (m, hk) hi�m
a hk

where hk is new

Ia A, (m, hi ), ¬Ia A, (m, hi ), hl�m
a hl

hi�m
a hk ↙ ↘
↓ ‖A‖ ∈ Na((m, hl )) ‖A‖ ∈ Na((m, hk)),

‖A‖ ∈ Na((m, hk)), hi�m
a hk

hl�m
a hl , where hk is new

‖A‖ ∈ Na((m, hl )) where hl is new

‖A‖ ∈ Na((m, hi )),

‖B‖ /∈ Na((m, hi ))

↙ ↘
A, (mk , hk1 ), ¬B, (mk , hk1 ) ¬A, (ml , hl1 ), B, (ml , hl1 )

where mk , hk1 are new where ml , hl1 are new
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The tableau rules are utilized to process semantic information about imagination
models, and we will use (i) expressions hi�m

a hl to indicate that the histories hi and hl
are both in Hm and are choice-equivalent for agent a at momentm, and (ii) statements
‖A‖ ∈ Na((m, h)) (‖A‖ ∈ Na((m, h))) to express that the truth set of A belongs
(does not belong) to Na((m, h)).

The resulting system of analytic tableaux is designed to work with finite sets of
signed formulas of the form �(m,h), where � is a set of imagination stit formulas, m
a moment name, and h a history name. We define that �(m,h) = {A, (m, h) | A ∈ �},
and say that �(m,h) is signed with the moment-history name pair (m, h).

A tableau is a tree which has a finite set of signed formulas as its root; its nodes
are finite sets of certain expressions. To finite sets of signed formulas, decomposition
rules and structural tableau rules can be applied to complete the tableau. A tableau is
said to be complete iff each of its branches is complete. A branch is complete if there
is no possibility to apply one more rule to expand this branch. A tableau branch is
said to be closed iff there are expressions of the form A, (m, h) and ¬A, (m, h) on
the branch.1 A closed branch is considered complete. A tableau is called closed iff
all of its branches are closed, and it is called open if it is not closed.

The indices i, k, l, . . . used in the tableau rules are natural numbers, and a new
index is the smallest natural number not already used in the tableau. In models con-
structed from open tableau branches, we shall interpret an agent index a by a itself.
Note that it may happen that a rule is applied to an expression from a tableau node
more than once if the rule requires additional input and some suitable additional
input is introduced at later nodes. If, for instance, the decomposition rule for formu-
las SA is applied to the expressions SA, (m, hi ), hk �m

a hk , and later on the branch
a new expression hl �m

a hl is introduced, then the rule has to be applied also to
SA, (m, hi ), hl�m

a hl .

Definition 2 Let � ∪ {A} be a finite set of formulas.2 � � A (“A is derivable from
�”) iff there exists a closed and complete tableau for �(m,h0) ∪ {¬A, (m, h0)}.

Since we have simplified the calculus, we here reconsider the examples of tableaux
from [1] (Tables 3 and 4). In these tables, we assume that Ag = {a}.

In what follows we letM = 〈Tree, ≤, Ag,Choice, {Na | a ∈ Ag}, V 〉 stand for
the canonical stit imagination model as defined in Section 1.

Definition 3 Let b be a tableau branch. The pair of functions (M,H) such that M :
{mk | mk occurs on b} −→ Tree and H : {hk | hk occurs on b} −→ Hist (M) is
said to be faithful to b iff the following conditions hold:

1. Whenever A, (mk, hl) occurs on b, there exist w ∈ X ∈ � such that A ∈ w,
M(mk) = X and H(hl) = hw = (0, X, w) (so that by Truth Lemma 2, we will
also haveM, (M(mk),H(hl)) |= A).

1This definition of closed branch is simpler than the one used in [1] (and also more standard).
2The difference from the derivability definition given in [1] is that in Definition 2 we demand the finiteness
of the set of premises.
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Table 3 Examples of open
tableaux ∅ � ¬Ia(p → p), (m, h0) :

¬¬Ia(p → p), (m, h0)

↓
Ia(p → p), (m, h0)

↓
h0�m

a h0

↓
‖p → p‖ ∈ Na((m, h0)),

h1�m
a h1,

‖p → p‖ ∈ Na((m, h1))

∅ � ¬Ia Ia p, (m, h0) :

¬¬Ia Ia p, (m, h0)

↓
Ia Ia p, (m, h0)

↓
h0�m

a h0

↓
‖Ia p‖ ∈ Na((m, h0)),

h1�m
a h1,

‖Ia p‖ ∈ Na((m, h1))

2. Whenever hi�m
a hk occurs on b, then H(hk) ∈ ChoiceM(m)

a (H(hi )), and, more-
over, there exist w, u ∈ X ∈ � such that M(m) = X , H(hi ) = hw = (0, X, w),
and H(hk) = hu = (0, X, u).

3. Whenever ‖A‖ ∈ Na((m, h)) occurs on b, then ‖A‖M ∈ Na((M(m),H(h))).
4. Whenever ‖A‖ /∈ Na((m, h)) occurs on b, then ‖A‖M /∈ Na((M(m),H(h))).

Lemma 3 Let b be a tableau branch. If (M,H) is faithful to b and a tableau rule is
applied to b, then the application produces at least one extension b′ of b, such that
some (not necessarily proper) extension (M′,H′) of (M,H) is faithful to b′.

Proof Assume the hypothesis of the lemma. We have to consider every tableau rule.
If extended branches are obtained by applying one of the rules for ¬¬A, (A ∧ B) or
¬(A ∧ B), then obviously (M,H) is faithful to at least one extension b′ of b.

Suppose the rule for formulas SA is applied to SA, (m, hi ). Then branch b′
extends branch b by A, (m, hk) for an arbitrary hk�m

a hk on b such that a ∈ Ag.
Since (M,H) is faithful to b, we have, by Definition 3.1, that, for some w ∈ X ∈ �

such that SA ∈ w, M(m) = X and H(hi ) = hw = (0, X, w), whence, by Truth
Lemma 2, also M, (M(m),H(hi )) |= SA. By the definition of satisfaction, it holds
that M, (M(m), h̄) |= A for all h̄ ∈ HM(m) = HX = {hu | u ∈ X}. By Defini-

tion 3.2, H(hk) must be in ChoiceM(m)
a (H(hk)) ⊆ HM(m), therefore, we must have

H(hk) = hu for some u ∈ X . On the other hand, we must haveM, (M(m), hu) |= A
so that, by Truth Lemma 2, A ∈ u. Summing this up, we see that (M,H) is faithful
to b′.

Suppose now that the rule for ¬SA is applied to ¬SA, (m, hi ), so that b is
extended by ¬A, (m, hk), for a new history name hk . Since (M,H) is faithful to
b, we have, by Definition 3.1, that, for some w ∈ X ∈ � such that ¬SA ∈ w,
M(m) = X and H(hi ) = hw = (0, X, w), whence, by Truth Lemma 2, also
M, (M(m),H(hi )) |= ¬SA. Thus, there is an h̄ ∈ HM(m) = HX = {hu | u ∈ X}
such thatM, (M(m), h̄) |= ¬A. But then, take an u ∈ X such that h̄ = hu . By Truth
Lemma 2, we must have ¬A ∈ u, therefore, (M,H∪{(hk, hu)}) is seen to be faithful
to b′.
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Table 4 Examples of closed tableaux (some Boolean steps skipped)

∅ � Ia¬(p ∧ q) → Ia(¬p ∨ ¬q) :

¬(Ia¬(p ∧ q) → Ia(¬p ∨ ¬q)), (m, h0)

↓
Ia¬(p ∧ q), (m, h0),

¬Ia(¬p ∨ ¬q), (m, h0)

↓
h0�m

a h0
↓

‖¬(p ∧ q)‖ ∈ Na((m, h0)),

‖¬(p ∧ q)‖ /∈ Na((m, h1)),

h1�m
a h1

↙ ↘
‖¬p ∨ ¬q‖ ∈ Na((m, h1)) ‖¬p ∨ ¬q‖ /∈ Na((m, h2)), h0�m

a h2
↙ ↘ ↓

¬¬(p ∧ q), (m1, h3), ¬(p ∧ q), (m2, h4), ‖¬(p ∧ q)‖ ∈ Na((m, h2)),

(¬p ∨ ¬q), (m1, h3) ¬(¬p ∨ ¬q), (m2, h4) h5�m
a h5, ‖¬(p ∧ q)‖ /∈ Na((m, h5))

↙ ↓
¬(p ∧ q), (m3, h6), ¬¬(p ∧ q), (m4, h7),

¬(¬p ∨ ¬q), (m3, h6) (¬p ∨ ¬q), (m4, h7)

∅ � Ia p → ([c]a Ia p ∧ ¬SIa p) :

¬(Ia p → ([c]a Ia p ∧ ¬SIa p)), (m, h0)

↓
Ia p, (m, h0),

¬([c]a Ia p ∧ ¬SIa p), (m, h0)

↙ ↘
¬[c]a Ia p, (m, h0) ¬¬SIa p, (m, h0)

↓ ↓
¬Ia p, (m, h1), SIa p, (m, h0)

h0�m
a h1 ↓

↓ h0�m
a h0

h1�m
a h1 ↓

↓ ‖p‖ ∈ Na((m, h0)),

‖p‖ ∈ Na((m, h1)), h4�m
a h4,

h2�m
a h2, ‖p‖ ∈ Na((m, h4))

‖p‖ ∈ Na((m, h2)) ↓
↙ ↘ Ia p, (m, h4)

‖p‖ ∈ Na((m, h2)) ‖p‖ ∈ Na((m, h3)), ↓
↙ ↓ h1�m

a h3 ‖p‖ ∈ Na((m, h4))

p, (m2, h5), p, (m3, h6), ↓ ↓ ↘
¬p, (m2, h5) ¬p, (m3, h6) h0�m

a h3 p, (m4, h7), p, (m5, h8),

↓ ¬p, (m4, h7) ¬p, (m5, h8)

‖p‖ ∈ Na((m, h3))

↙ ↘
p, (m6, h9), p, (m7, h10),

¬p, (m6, h9) ¬p, (m7, h10)
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Next, suppose the rule for [ca]A is applied to [ca]A, (m, hi ). Then we obtain b′
as an extension of b by A, (m, hk) for an arbitrary hi�m

a hk on b. Since (M,H) is
faithful to b, we have, by Definition 3.1, that, for some w ∈ X ∈ � such that
[ca]A ∈ w, M(m) = X and H(hi ) = hw = (0, X, w), whence, by Truth Lemma 2,
alsoM, (M(m),H(hi )) |= [ca]A. Then, by the definition of satisfaction, it holds that
M, (M(m), h̄) |= A for all h̄ ∈ ChoiceM(m)

a (H(hi )) ⊆ HM(m) = HX . By Definition

3.2, H(hk) ∈ ChoiceM(m)
a (H(hi )) ⊆ HM(m) = HX . Therefore, for some u ∈ X , we

must have bothH(hk) = hu andM, (M(m),H(hk)) |= A, whence, by Truth Lemma
2, we get A ∈ u. Therefore, (M,H) is also faithful to b′.

Assume that the rule for ¬[ca]A is applied to ¬[ca]A, (m, hi ), so that b is
extended by hi�m

a hk and ¬A, (m, hk), for a new history name hk . Since (M,H)

is faithful to b, we have, by Definition 3.1, that, for some w ∈ X ∈ � such
that ¬[ca]A ∈ w, M(m) = X and H(hi ) = hw = (0, X, w), whence, by
Truth Lemma 2, also M, (M(m),H(hi )) |= ¬[ca]A. Therefore, there is an h̄ ∈
ChoiceM(m)

a (H(hi )) ⊆ HM(m) = HX = {hu | u ∈ X} such that M, (M(m), h̄) |=
¬A. But then, take an u ∈ X such that h̄ = hu . By Truth Lemma 2, we must have
¬A ∈ u. Therefore, (M,H ∪ {(hk, hu)}) is seen to be faithful to b′.

Suppose that the rule for Ia A is applied to Ia A, (m, hi ). Then the branch b′ is
obtained as an extension of b by ‖A‖ ∈ Na((m, hk)) for an arbitrary hi �m

a hk
occurring on b and by hl�m

a hl and ‖A‖ ∈ Na((m, hl)) for a new history name hl .
Since (M,H) is faithful to b, we have, by Definition 3.1, that, for some w ∈ X ∈ �

such that Ia A ∈ w, M(m) = X and H(hi ) = hw = (0, X, w), whence, by Truth
Lemma 2,M, (M(m),H(hi )) |= Ia A. This further means that:

∀h̄ ∈ ChoiceM(m)
a (H(hi ))(‖A‖M ∈ Na((M(m), h̄))) (1)

and

∃h̄′ ∈ HM(m)(‖A‖M ∈ Na((M(m), h̄′))) (2)

We first consider Eq. 2 and note that HM(m) = HX = {hu | u ∈ X}. Therefore,
we can choose an u ∈ X such that ‖A‖M ∈ Na((M(m), hu)). Of course, we will
also have hu ∈ ChoiceM(m)

a (hu), since ChoiceM(m)
a is a partition of HM(m). Turning

to Eq. 1, by Definition 3.2, we know that H(hk) ∈ ChoiceM(m)
a (H(hi )). Therefore,

we must have that ‖A‖M ∈ Na((M(m),H(hk))). Summing this up, we see that
(M,H ∪ {(hl , hu)}) must be faithful to b′.

Next, assume that the rule for ¬Ia A is applied to ¬Ia A, (m, hi ). Then there are
two extended branches. The branch b′ extends b by ‖A‖ ∈ Na((m, hl)) for an arbi-
trary hl with hl�m

a hl on b. The branch b′′ extends branch b by ‖A‖ ∈ Na((m, hk))
and hi�m

a hk for some new history name hk . Since (M,H) is faithful to b, we have,
by Definition 3.1, that, for some w ∈ X ∈ � such that ¬Ia A ∈ w, M(m) = X
and H(hi ) = hw = (0, X, w), whence, by Truth Lemma 2, M, (M(m),H(hi )) |=
¬Ia A. The latter means that one of the following two alternatives hold: either (a)
∀h̄ ∈ HM(m) (‖A‖M ∈ Na((M(m), h̄)), or (b) ∃h̄′ ∈ ChoiceM(m)

a (H(hi )) with
‖A‖M ∈ Na((M(m), h̄′)).

In case (a), by Definition 3.2, we know that H(hl) ∈ ChoiceM(m)
a (H(hl)) ⊆

HM(m) so that ‖A‖M ∈ Na((M(m),H(hl))). Therefore, (M,H) is faithful to b′.

989



G.K. Olkhovikov, H. Wansing

In case (b), given that ChoiceM(m)
a (H(hi )) ⊆ HM(m) = HX = {hu | u ∈ X},

we can choose a v ∈ X such that both hv ∈ ChoiceM(m)
a (H(hi )) and ‖A‖M ∈

Na((M(m), hv)). But then (M,H ∪ {(hk, hv)}) must be faithful to b′′.
Suppose that the rule for ‖A‖ ∈ Na((m, hi )) and ‖B‖ /∈ Na((m, hi )) is applied to

the respective configurations on our branch. Again there are two extended branches.
The branch b′ extends branch b by A, (mk, hk1) and¬B, (mk, hk1) for a new moment
name mk and a new history name hk1 . The branch b

′′ extends b by ¬A, (ml , hl1) and
B, (ml , hl1) for a new moment name ml and a new history name hl1 . Since (M,H) is
faithful to b, we have, by Definition 3.3–4, that both ‖A‖M ∈ Na((M(m),H(hi )))
and ‖B‖M /∈ Na((M(m),H(hi ))). Therefore, ‖A‖M = ‖B‖M, whence it is easily
seen that A cannot be logically equivalent to B. Therefore, either (a) {A, ¬B} is
L-consistent or (b) {¬A, B} is L-consistent. Case (a): we extend {A, ¬B} to an L-
maxiconsistent set u and we let Y be the element of � containing u. It follows from
Truth Lemma 2 that (M ∪ {(mk, Y )},H ∪ {(hk1 , hu)}) must be faithful to b′. Case
(b): analogous to the previous case. Finally, we consider the structural tableau rules.
If (M,H) is faithful to b, and one of the rules REF0, REF, SYM, or TRAN is applied
to obtain a branch b′, then (M,H) is also faithful to b′, and Definition 3.2 is satisfied
in virtue of Definition 3.1 and by the fact that for every agent a ∈ Ag and every
m∈Tree, the relation {(h, h′) | h′ ∈ Choicema (h)} is an equivalence relation on Hm .

For IND, assume that (M,H) is faithful to b. Then, by Definition 3.2, for some
u1, . . . , uk ∈ X ∈ � we have M(m) = X and H(hl1) = hu1 , . . . ,H(hlk ) = huk .

By the independence of agents condition, the set
⋂

1≤ j≤k ChoiceM(m)
a j (H(hl j )) ⊆

HM(m) = HX = {hu | u ∈ X} must be non-empty. Therefore, choose an arbitrary
h̄ in this set. For some u ∈ X we must have h̄ = hu so that Definition 3.2 and
(M,H ∪ {(hn, hu)}) is faithful to b′.

Theorem 1 (Soundness) Assume that�(m,h) is a finite non-empty set of signed imag-
ination stit formulas such that � is satisfiable in an imagination stit model. Then
�(m,h) does not have a closed tableau.

Proof Assume the conditions of the theorem. Then � is L-consistent, and hence can
be extended to an L-maxiconsistent set u. We let X be the element of � containing
u. Then the pair of functions {(m, X), (h, hu)} is clearly faithful to the only branch
of the tableau {�(m,h)}. Assume that we can unfold this tableau to a closed one. Then
it follows, by an obvious induction on the maximal length of branches in this tableau,
that at least for one branch b in this closed tableau there is an extension (M,H) of
{(m, X), (h, hu)} which is faithful to b.

But, given that b is closed, there must be an imagination stit formula C and a
moment-history name pair (m′, h′) such that both C, (m′, h′) and ¬C, (m′, h′) occur
on b. It follows then, by Definition 3.1, that both M, (M(m′),H(h′)) |= C and
M, (M(m′),H(h′)) |= ¬C , which is a contradiction. Hence, there is no complete
closed tableau for �(m,h)

Corollary 1 Let � ∪ {A} be a finite set of imagination stit formulas. If � ∪ {¬A} is
satisfiable in an imagination stit model, then � � A.
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Proof Immediately by Theorem 1 and Definition 2

We now turn to proving completeness.

Lemma 4 Let b be a tableau branch. Then all of the following conditions hold for
every a, a′ ∈ Ag, all moment names m, m′, all history names hi , h j , hk , hl , and all
imagination stit formulas A, B:

1. If A, (m, hi ) and B, (m′, hi ) occur on b, then m = m′.
2. If A, (m, hi ) and hk �m′

a hl occur on b, then either m = m′ or hi /∈ {hk, hl}.
3. If hi�m

a h j and hk �m′
a′ hl occur on b, then either m = m′ or {hi , h j } ∩ {hk, hl}

= ∅.

Proof By induction on the construction of b. If b consists of a set of formulas signed
by a single moment-history pair (m, h), then the satisfaction of the Lemma is imme-
diate. Assume that b′ is obtained from a branch b satisfying the Lemma by applying
one of the rules. We will refer to the fact that the i-th part of the Lemma is satisfied
by b′ (resp. b) as ib′ (resp. ib). We have to consider the following cases:

Case 1. Suppose that one of the rules for ¬¬A, (A ∧ B) or ¬(A ∧ B) is applied
to b. Then no new configurations of the forms (m, hi ) and hi�m

a h j are created,
therefore b′ still satisfies the Lemma.
Case 2. Assume the rule for SA is applied to SA, (m, hi ). Then we obtain b′ as
an extension of b by A, (m, hk) for an arbitrary hk�m

a hk on b, where a ∈ Ag. We
show the three parts of the Lemma for b′ as follows:

1b′ : Given that hk�m
a hk occurs on b, it follows from 2b that for every m′ = m

and every formula B, B, (m′, hk) does not occur on b′. Since the only possibly
new element of b is A, (m, hk), we can infer 1b′ .
2b′ : Given that hk�m

a hk occurs on b
′, it follows from 3b that for every m′ = m,

every a′ ∈ Ag, and every pair of history names hl , hl1 such that hk ∈ {hl , hl1},
the element hl�m′

a′ hl1 does not occur on b. Since the only possibly new element
of b is A, (m, hk), we can infer 2b′ .
3b′ : Given that b′ does not contain any new elements of the form hl �m′

a′ hl1 , 3b′
follows from 3b.

Case 3. Assume the rule for ¬SA is applied to ¬SA, (m, hi ). Then b is extended
by ¬A, (m, hk), for a new history name hk so that no violations of the Lemma are
created.
Case 4. Next, suppose the rule for [ca]A is applied to [ca]A, (m, hi ). Then we
obtain b′ as an extension of b by A, (m, hk) for an arbitrary hi�m

a hk on b. We
show the three parts of the Lemma for b′ as follows:

1b′ : Given that hi�m
a hk occurs on b, it follows from 2b that for every m′ = m

and every formula B, B, (m′, hk) does not occur on b. Since the only possibly
new element of b′ is A, (m, hk), we can infer 1b′ .
2b′ : Given that hi�m

a hk occurs on b, it follows from 3b that for every m′ = m,
every a′ ∈ Ag, and every pair of history names hl , hl1 such that hk ∈ {hl , hl1},
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the element hl�m′
a′ hl1 does not occur on b. Since the only possibly new element

of b′ is A, (m, hk), we can infer 2b′ .
3b′ : Given that the rule for [ca]A does not generate any new elements of the
form hl �m′

a′ hl1 , 3b′ follows from 3b.

Case 5. Assume that the rule for ¬[ca]A is applied to ¬[ca]A, (m, hi ), so that b is
extended by hi�m

a hk and ¬A, (m, hk), for a new history name hk . It is clear that
the addition of ¬A, (m, hk) cannot lead to any violations of the Lemma, since hk
is new. We have to consider then the consequences of adding hi�m

a hk :

1b′ : It is clear that the addition of hi�m
a hk cannot lead to violations of 1b′ .

2b′ : Given that ¬[ca]A, (m, hi ) occurs on b, it follows from 1b that for every
m′ = m and every formula B, B, (m′, hi ) does not occur on b. Moreover, hk is
new so that we cannot have any occurrences of the form B, (m′, hk) on b either.
Therefore, 2b′ holds.
3b′ : Given that ¬[ca]A, (m, hi ) occurs on b, it follows from 2b that for every
m′ = m, every a′ ∈ Ag, and every pair of history names hl , hl1 such that
hi ∈ {hl , hl1}, the element hl �m′

a′ hl1 does not occur on b. Moreover, hk is new
and cannot coincide with one of hl , hl1 . Therefore, 3b′ holds.

Case 6. Suppose that the rule for Ia A is applied to Ia A, (m, hi ). Then the branch
b′ is obtained as an extension of b by ‖A‖ ∈ Na((m, hk)) for an arbitrary hi�m

a hk
occurring on b and by hl�m

a hl and ‖A‖ ∈ Na((m, hl)) for a new history name hl .
The only element that can lead to violations of the Lemma is hl�m

a hl , but, given
that hl is new, such violations are clearly excluded.
Case 7. Next, assume that the rule for ¬Ia A is applied to ¬Ia A, (m, hi ). Then
there are two further options.
Case 7a.The branch b′ extends b by ‖A‖ ∈ Na((m, hl)) for an arbitrary hl with
hl�m

a hl on b. Addition of this element can lead to no further violations of the
Lemma.
Case 7b. The branch b′ extends branch b by ‖A‖ ∈ Na((m, hk)) and hi�m

a hk for
some new history name hk . The only significant addition in this case is hi�m

a hk .
We show the three parts of the Lemma for b′ as follows:

1b′ : An immediate consequence of 1b.
2b′ : Given that ¬Ia A, (m, hi ) occurs on b, it follows from 1b that for every
m′ = m and every formula B, B, (m′, hi ) does not occur on b. Moreover, hk is
new so that we cannot have any occurrences of the form B, (m′, hk) on b either.
Therefore, 2b′ holds.
3b′ : Given that ¬Ia A, (m, hi ) occurs on b, it follows from 2b that for every
m′ = m, every a′ ∈ Ag, and every pair of history names hl , hl1 such that
hi ∈ {hl , hl1}, the element hl �m′

a′ hl1 does not occur on b. Moreover, hk is new
and cannot coincide with one of hl , hl1 . Therefore, 3b′ holds.

Case 8. Suppose that the rule for ‖A‖ ∈ Na((m, hi )) and ‖B‖ /∈ Na((m, hi )) is
applied to the respective configurations on our branch. Again there are two further
options.
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Case 8a. The branch b′ extends branch b by A, (mk, hk1) and ¬B, (mk, hk1) for
a new moment name mk and a new history name hk1 . Since all the additions only
involve new moment and history names, the satisfaction of the Lemma by b′ is an
immediate consequence of its satisfaction by b.
Case 8b. The branch b′ extends b by A, (ml , hl1) and ¬B, (ml , hl1) for a new
moment name ml and a new history name hl1 . This case is symmetric to Case 8a.
Case 9. Suppose that the rule REF0 is applied to A, (m, h). Then the branch b′ is
obtained as an extension of b by h�m

a h for an arbitrary a ∈ Ag. We show the three
parts of the Lemma for b′ as follows:

1b′ : An immediate consequence of 1b.
2b′ : Given that A, (m, h) occurs on b, it follows from 1b that for every m′ = m
and every formula B, B, (m′, h) does not occur on b. Therefore, 2b′ holds.
3b′ : Given that A, (m, h) occurs on b, it follows from 2b that for every m′ = m,
every a′ ∈ Ag, and every pair of history names hl , hl1 such that h ∈ {hl , hl1},
the element hl �m′

a′ hl1 does not occur on b. Therefore, 3b′ holds.

Case 10. Assume that one of the rules REF, SYM is applied to hi�m
a hk . Then the

branch b′ is obtained as an extension of b by either hi�m
a hi or hk�m

a hi . Observe
that, by the inclusions {hi } ⊆ {hk, hi } ⊆ {hi , hk}, the satisfaction of the Lemma
by b′ is an immediate consequence of its satisfaction by b.
Case 11. Assume that the rule TRAN is applied to hi�m

a hk and hk�m
a hl . Then the

branch b′ is obtained as an extension of b by hi�m
a hl . We show the three parts of

the Lemma for b′ as follows:
1b′ : An immediate consequence of 1b.
2b′ : Given that hi�m

a hk occurs on b, it follows from 2b that for every m′ =
m and every formula B, B, (m′, hi ) does not occur on b. Given that hk�m

a hl
occurs on b, it follows from 2b that for every m′ = m and every formula B,
B, (m′, hl) does not occur on b. Therefore, 2b′ holds.
3b′ : Given that hi�m

a hk occurs on b, it follows from 3b that for every m′ = m,
every a′ ∈ Ag, and every pair of history names hk1 , hl1 such that hi ∈ {hk1 , hl1},
the element hk1 �m′

a′ hl1 does not occur on b. Given that hk�m
a hl occurs on b, it

follows from 3b that for every m′ = m, every a′ ∈ Ag, and every pair of history
names hk1 , hl1 such that hk ∈ {hk1 , hl1}, the element hk1 �m′

a′ hl1 does not occur
on b. Therefore, 3b′ holds.

Case 12. Assume that the rule IND is applied to hl1 �m
a1 hl1 , . . . , hlk �

m
ak hlk . Then

the branch b′ is obtained as an extension of b by hl1 �m
a1 hn, . . . , hlk �

m
ak hn for a

new history name hn . We show the three parts of the Lemma for b′ as follows:
1b′ : An immediate consequence of 1b.
2b′ : Let 1 ≤ j ≤ k. Then, given that hl j �m

a j
hl j occurs on b, it follows from 2b

that for every m′ = m and every formula B, B, (m′, hl j ) does not occur on b.
Moreover, since hn is new, it follows that for every m′ = m and every formula
B, B, (m′, hn) does not occur on b. Therefore, 2b′ holds.
3b′ : Let 1 ≤ j ≤ k. Then, given that hl j �m

a j
hl j occurs on b, it follows from

3b that for every m′ = m, every a′ ∈ Ag, and every pair of history names hk1 ,
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hk2 such that hl j ∈ {hk1 , hk2}, the element hk1 �m′
a′ hk2 does not occur on b.

Moreover, since hn is new, it follows that for every m′ = m, every a′ ∈ Ag,
and every pair of history names hk1 , hk2 such that hn ∈ {hk1, hk2}, the element
hk1 �m′

a′ hk2 does not occur on b. Therefore, 3b′ holds.

Lemma 5 Let b be an open branch of a complete tableau. Then the following state-
ments hold for every imagination stit formula A, every moment name m, all history
names hi , hk , and every a, a1 ∈ Ag:

1. If A, (m, hi ) occurs on b, then hi�m
a hi occurs on b.

2. If hi�m
a hk occurs on b, then both hi �m

a1 hi and hk �m
a1 hk occur on b.

3. If one of ‖A‖ ∈ Na((m, hk)), ‖A‖ ∈ Na((m, hk)) occurs on b, then hk �m
a1 hk

occurs on b.

Proof (Part 1). By completeness of b and rule REF0.
(Part 2). By completeness of b and rules REF, SYM.
(Part 3). Since the occurrences of the forms ‖A‖ ∈ Na((m, hk)), ‖A‖ ∈
Na((m, hk)) are never present in the sets of signed formulas, they can only appear
as a product of some rule application. We have to consider the following cases:

Case 1. The occurrence is of the form ‖A‖ ∈ Na((m, hk)). Two further options
are possible:
Case 1a. The occurrence was generated by an application of the rule for Ia A to
Ia A, (m, hi ) and hi�m

a hk . Then hi�m
a hk must also occur on b and we are done

by Part 2.
Case 1b. The occurrence was generated by an application of the rule for ¬Ia A
to ¬Ia A, (m, hi ) and hk�m

a hk . Then hk�m
a hk must also occur on b and we are

done by Part 2.
Case 2. The occurrence is of the form ‖A‖ ∈ Na((m, hk)). Again, two further
options are possible:
Case 2a. The occurrence of ‖A‖ ∈ Na((m, hk)) was generated by an applica-
tion of the rule for Ia A to Ia A, (m, hi ) and hi�m

a hl . Then this same application
also generated an occurrence of hk�m

a hk , and we are done by Part 2.
Case 2b. The occurrence of ‖A‖ ∈ Na((m, hk)) was generated by an appli-
cation of the rule for ¬Ia A to ¬Ia A, (m, hi ) and hl�m

a hl . Then this same
application also generated an occurrence of hi�m

a hk , and we are done by
Part 2.

Corollary 2 Let b be an open branch of a complete tableau. If a moment name m
occurs on b then some history name h is such that for an arbitrary a ∈ Ag h�m

a h
occurs on b.

Proof If m occurs on b then the following cases are possible: (a) for some history
name h and some formula A, A, (m, h) occurs on b; (b) for some history names h,
hi and some a1 ∈ Ag, the element h �m

a1 hi occurs on b; (c) for some history name
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h, some a1 ∈ Ag and some formula A, one of the elements ‖A‖ ∈ Na1((m, h)),
‖A‖ ∈ Na1((m, h)) occurs on b.

These cases are disposed of by Parts 1, 2, and 3 of Lemma 5, respectively.

Definition 4 Let b be an open branch of a complete tableau. Then the structure
T empb = (Treeb, ≤b) induced by b is defined as follows:

1. Treeb : = {†} ∪ { μm, μh | (∃a ∈ Ag)(h�m
a h occurs on b) }.

2. ≤b : = the reflexive closure of { (†, μm), (†, μh), (μm, μh) | (∃a ∈
Ag)(h�m

a h occurs on b) }.

Lemma 6 Let b be an open branch of a complete tableau. Then:

1. In the structure T empb = (Treeb, ≤b) induced by b, ≤b is a partial order on
Treeb satisfying the absence of backward branching and historical connection.

2. The set of histories induced by T empb is exactly the set:

{χ(m,h) | (∃a ∈ Ag)(h�m
a h occurs on b) },

where χ(m,h) = (†, μm, μh), and this set is non-empty.

Proof (Part 1). Reflexivity and transitivity we have by definition of ≤b. Antisym-
metry follows from the fact that the sets of moment and history names are disjoint
and that † is different from any moment indexed by either a moment name or a
history name.
As for the absence of backward branching, assume that m1,m2,m3 ∈ Treeb

are pairwise different and that we have both m1 <b m3 and m2 <b m3. Then m3
cannot be †, since † has no <b-predecessors. Also, m3 cannot be μm for some
moment name m since in this case † will be the only <b-predecessor of m3, hence
we must have m1 = † = m2, contrary to our assumption. Therefore, m3 must be
of the form μh for some history name h. Then μh is not ≤b-comparable to any
μh1 for h1 = h. The following cases are then possible:

Case 1. {m1,m2} = {†, μm} for some moment name. Then we have † <b μm
and the absence of backward branching is satisfied.
Case 2. m1 = μm , m2 = μm0 for some moment names m = m0. Then, by
definition of ≤b, there must be a1, a2 ∈ Ag such that both h�m

a1 h and h�m0
a2 h

occur on b, which is in contradiction with Lemma 4.3.

Finally, the historical connection is satisfied since † is the ≤b-least element
of Treeb.
(Part 2). Whenever h�m

a h occurs on b for some a ∈ Ag, χ(m,h) is clearly a
≤b-chain. Furthermore, this chain cannot be extended by any moment μh1 such
that h1 = h, since μh1 is ≤b-incomparable to μh , and it cannot be extended
by any moment μm1 such that m1 = m, since μm1 is ≤b-incomparable to μm .
Therefore, any such χ(m,h) is also a maximal ≤b-chain and hence a history.
Also, we must have at least one chain of the form χ(m,h) ∈ Hist (T empb),
since b contains at least the initial set of formulas signed by a pair of
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moment-history names and hence, by Lemma 5.1, must contain at least one
element of the form h�m

a h.
Now let χ be a maximal ≤b-chain in Treeb. Then clearly † ∈ χ since † is the

≤b-least element of Treeb. But we cannot have χ = {†}, since there is at least one
χ(m,h) ∈ Hist (T empb), and we clearly have χ = {†} ⊂ χ(m,h) which contradicts
the maximality of χ . Therefore, one of the following two cases obtains:

Case 1. For some moment name m, μm ∈ χ . Then all the other moments of the
form μm1 must be outside χ since all these moments are ≤b-incomparable to
μm . Since μm ∈ Treeb, then, by definition of Treeb, there must be a history
name h and an a ∈ Ag such that h�m

a h occurs on b. But then also μh ∈ Treeb
and hence χ(m,h) ∈ Hist (T empb). Therefore, we cannot have χ = {†, μm} ⊂
χ(m,h) since this is in contradiction with the maximality of χ . Thus, there must
be a history name h1 such that μh1 ∈ χ , and we can only have one moment
indexed with a history name in χ since all such moments are pairwise ≤b-
incomparable. Also, since χ is a ≤b-chain, we must have either μm ≤b μh1
or μh1 ≤b μm , but the definition of ≤b is incompatible with the latter option.
Therefore, we must have μm ≤b μh1 , whence, by definition of ≤b, h1�m

a h1
must occur on b for some a ∈ Ag. The latter means that χ = χ(m,h1).
Case 2. For some history name h, μh ∈ χ . This case is similar to Case 1.
Again, all the other moments of the form μh1 must be outside χ since all these
moments are ≤b-incomparable to μh . Since μh ∈ Treeb, then, by definition of
Treeb, there must be a moment name m and an a ∈ Ag such that h�m

a h occurs
on b. But then also μm ∈ Treeb and hence χ(m,h) ∈ Hist (T empb). Therefore,
we cannot have χ = {†, μh} ⊂ χ(m,h) since this is in contradiction with the
maximality of χ . Moreover, Lemma 4.3 implies that for no m1 = m and no
a1 ∈ Ag with a1 = a, h �m1

a1 h can occur on b. Therefore, χ(m,h) is the only
maximal ≤b-chain extending {†, μh}, which means that χ = χ(m,h).

Part 2 of the Lemma is thereby proven.

Corollary 3 Let b be an open branch of a complete tableau and T empb =
(Treeb, ≤b) be the structure induced by b. Let m be a moment name, hi , hk his-
tory names, a ∈ Ag, and let A be an imagination stit formula. Then the following
statements are true:

1. If m occurs on b, then μm ∈ Treeb and Hμm = {χ(m,h) | (∃a ∈
Ag)(h�m

a h occurs on b) } = ∅.
2. If hi�m

a hk occurs on b, then (μm, χ(m,hi )), (μm, χ(m,hk )) ∈ MH(T empb).
3. If one of A, (m, hi ), ‖A‖ ∈ Na((m, hi )), ‖A‖ /∈ Na((m, hi )) occurs on b, then

(μm, χ(m,hi )) ∈ MH(T empb).

Proof (Part 2). By Lemma 5.2 and Lemma 6.2.

(Part 3). By Lemma 5.1, Lemma 5.3, Lemma 6.2.
(Part 1).Note thatm can only occur on b in one of the contexts of the form hi�m

a hk ,
A, (m, hi ), ‖A‖ ∈ Na((m, hi )) or ‖A‖ /∈ Na((m, hi )). It follows from Part 2
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and Part 3 of the corollary that in all of these cases μm ∈ Treeb. Therefore, for
some history name h and some a ∈ Ag, we must have h�m

a h on b. The latter
means that χ(m,h) ∈ Hist (T empb) and, of course, μm ∈ χ(m,h). Therefore, the set
{χ(m,h) | (∃a ∈ Ag)(h�m

a h occurs on b) } must be non-empty. The fact that this
set is exactly Hμm follows from Lemma 6.2.

Definition 5 Let b be an open branch of a complete tableau. Then the structure Mb
= (Treeb, ≤b,Choiceb, {Nba | a ∈ Ag}, Vb) induced by b is defined as follows:

1. Treeb and ≤b are defined according to Definition 4.
2. (Choiceb)

μm
a = {h�m

a
| h�m

a h occurs on b}.
3. (Choiceb)αa = {Hα}, if α = μm for any moment name m.
4. Nba((μm, χ(m,h))) = {‖A‖Mb | ‖A‖ ∈ Na((m, h)) occurs on b}
5. Nba((α, χ(m,h))) = ∅, if α = μm for any moment name m.
6. Vb(p) = {(μm, χ(m,h)) | p, (m, h) occurs on b}.

In the above definition we assume that h�m
a

= {χ(m,hi ) | h�m
a hi occurs on b}.

Remark 2 Contrary to first appearance, the neighbourhood functions Nba are well-
defined. We can define the depth of I -nesting of a formula A, d I (A). If A contains no
imagination operator Ia , then d I (A) = 0. If A has the form ¬B, SB, or [ca]B, then
d I (A) = d I (B). If A is a conjunction (B ∧ C), then d I (A) is max(d I (B), d I (C)).
If A has the shape Ia B, then d I (A) = d I (B) + 1. We can show that Nba((m, h))

is well-defined by a double induction first on the depth of I -nesting and then on the
construction of A. If d I (A) = 0, then the truth set ‖A‖Mb is well-defined because it
is defined independently of neighbourhood functions, and thus Nba((m, h)) is well-
defined. Suppose that d I (A) = n + 1, and Nba((m, h)) is well-defined for formulas
B with d I (B) ≤ n, i.e. ‖B‖Mb is well-defined. Then (i) A has the shape Ia B or (ii) A
has the form (B∧C) with d I (B) ≤ n+1 and d I (C) ≤ n+1. In case (i), we may use
the induction hypothesis to conclude that ‖A‖Mb is well-defined. In case (ii), we may
note that ‖(B ∧ C)‖Mb = ‖B‖Mb ∩ ‖C‖Mb . By induction on the construction of
A, ‖B‖Mb and ‖C‖Mb are well-defined, and thus their intersection is well-defined.
But then Nba((m, h)) is well-defined. Hence, Nba((m, h)) is well-defined for every
formula A.

Remark 3 It is clear that we have Hist (Mb) = Hist (T empb) and MH(Mb) =
MH(T empb) for every complete and open branch b. Therefore, in what follows,
we will use Lemma 6 and Corollary 3 also in application to the structures of the
form Mb.

Lemma 7 Let b be an open branch of a complete tableau. Then the structureMb =
(Treeb, ≤b,Choiceb, {Nba | a ∈ Ag}, Vb) induced by b, as given in Definition 5, is
an imagination stit model.

Proof It follows from Corollary 3 that the clauses of Definition 5 are indeed mean-
ingful. Moreover, it follows from Lemma 6.1 that the constraints on imagination stit
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models which are only relevant to Treeb and ≤b are satisfied by Mb. As for the no
choice between undivided histories constraint, it follows from Lemma 6.2 that Mb
only has undivided histories at †. In this latter moment every agent has the unique
(and vacuous) choice so that the constraint is satisfied trivially. We check the other
constraints.

Claim 1. (Choiceb)αa induces a partition on the set Hα for α ∈ Treeb and a ∈ Ag.
This is obvious if α = μm for any moment name m. On the other hand, if

α = μm for some moment name m, then consider the set h�m
a
for some h�m

a h
occurring on b. The latter occurrence means, by definition of h�m

a
, that we have

χ(m,h) ∈ h�m
a
. Therefore, all the elements of (Choiceb)

μm
a are non-empty. Next, if

χ ∈ Hμm , then, by Corollary 3.1, χ = χ(m,hi ) for some history name hi such that,
for some a1 ∈ Ag, hi �m

a1 hi occurs on b. But then, by Lemma 5.2, also hi�m
a hi

must occur on b, whence, further, χ = χ(m,hi ) ∈ hi�m
a
. Since χ was chosen in

Hμm arbitrarily, it follows that the union of the sets of the form h�m
a
makes up

Hμm .
Now, assume that hl�m

a
and hn�m

a
are two different elements of (Choiceb)

μm
a .

We will show that hl�m
a

∩ hn�m
a

= ∅. Indeed, assume, for reductio, that χ ∈
hl�m

a
∩ hn�m

a
. Then there must be a history name hk such that χ = χ(m,hk ) and

both hl�m
a hk and hn�m

a hk occur on b. But then by the rules SYM and TRAN
and completeness of b, both hl�m

a hn and hn�m
a hl must occur on b as well. Now

choose an arbitrary χ ′ ∈ hl�m
a
. We must have χ ′ = χ(m,hi ) for some history

name such that hl�m
a hi occurs on b. But then, by the rule TRAN, the occurrence

of hn�m
a hl on b, and the completeness of b, hn�m

a hi occurs on b as well so that
χ ′ = χ(m,hi ) ∈ hn�m

a
. Since χ ′ ∈ hl�m

a
was chosen arbitrarily, this shows that

hl�m
a

⊆ hn�m
a
. In a symmetric fashion, one can also show that hn�m

a
⊆ hl�m

a
,

whence hl�m
a

= hn�m
a
contrary to our assumption. Therefore, any two different

elements of (Choiceb)
μm
a are disjoint. Claim 1 is thus proven.

Claim 2. Mb satisfies independence of agents.
Let f : Ag −→ 22

Hist (Mb)
be such that for a givenμ ∈ Treeb and every a ∈ Ag

it is true that f (a) ∈ (Choiceb)
μ
a . Then, if μ = μm for any moment name m, we

must have
⋂

a∈Ag f (a) = Hμ = ∅.
On the other hand, if for some moment name m we have μ = μm , we may

assume wlog that Ag = {a1, . . . , ak}. Then for some history names hl1 , . . . , hlk
such that for some al1, . . . , alk the elements hl1 �m

al1
hl1, . . . , hlk �m

alk
hlk occur on

b, we must have:

f = {(a1, hl1�m
a1

), . . . , (ak, hlk�m
ak

)}. (3)

But then, by Lemma 5.2, the elements hl1 �m
a1 hl1 , . . . , hlk �

m
ak hlk must also occur

on b. Therefore, by IND and the completeness of b there must be a history name
hn such that all of hl1 �m

a1 hn, . . . , hlk �
m
ak hn must also occur on b. By Corollary

3.2, the latter means that χ(m,hn) ∈ Hμm . By Eq. 3 and Definition 5, we also know
that χ(m,hn) ∈ ⋂

a∈Ag f (a), so that the independence of agents is satisfied.
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Lemma 8 (Truth Lemma 3) Let b be an open branch of a complete tableau. Con-
sider the structure Mb =(Treeb, ≤b,Choiceb, {Nba | a ∈ Ag}, Vb) induced by b.
Let A, (m, h) occur on b. Then Mb, (μm, χ(m,h)) |= A.

Proof The proof proceeds by induction on the construction of A.

Basis. Case 1. Assume that A = p ∈ Var . Then, if p, (m, h) occurs on b, we
have, by Corollary 3.3, that (μm, χ(m,h)) ∈ MH(Mb), and, by Definition 5, that
(μm, χ(m,h)) ∈ Vb(p). Therefore,Mb, (μm, χ(m,h)) |= p = A.
Case 2. Assume that A = ¬p for some p ∈ Var . Then, if ¬p, (m, h) occurs
on b, we have, by Corollary 3.3, that (μm, χ(m,h)) ∈ MH(Mb). Furthermore,
since b is open, p, (m, h) cannot occur on b, hence, by Definition 5, we get that
(μm, χ(m,h)) /∈ Vb(p). Therefore,Mb, (μm, χ(m,h)) |= ¬p = A.
Induction step. The cases when A is of the form ¬¬B, B ∧ C , or ¬(B ∧ C) are
trivially solved by a reference to the respective rule plus induction hypothesis, so
we omit them. We consider the modal cases in some detail:

Case 1. A is of the form SB. If SB, (m, h) occurs on b, then, by Corollary
3.3, (μm, χ(m,h)) ∈ MH(Mb) so that μm ∈ Treeb. Moreover, by Corollary
3.1, Hμm = {χ(m,h) | (∃a ∈ Ag)(h�m

a h occurs on b) } = ∅. Now assume that
χ ′ ∈ Hμm . Then χ ′ = χ(m,hi ) for some history name hi such that, for some
a ∈ Ag, hi�m

a hi occurs on b. But then, by the rule for SB and the completeness
of b, also B, (m, hi ) must occur on b. Therefore, by induction hypothesis, we
must have Mb, (μm, χ(m,hi )) |= B. Since χ ′ = χ(m,hi ) was chosen in Hμm

arbitrarily, this means that Mb, (μm, χ(m,h)) |= SB = A.
Case 2. A is of the form ¬SB. If ¬SB, (m, h) occurs on b, then, by Corol-
lary 3.3, (μm, χ(m,h)) ∈ MH(Mb) so that μm ∈ Treeb. By the rule for ¬SB
and the completeness of b, also ¬B, (m, hi ) must occur on b for some his-
tory name hi . By Corollary 3.3, χ(m,hi ) ∈ Hμm , and, by induction hypothesis,
Mb, (μm, χ(m,hi )) |= ¬B, which means that Mb, (μm, χ(m,h)) |= ¬SB = A.
Case 3. A is of the form [ca]B for some a ∈ Ag. If [ca]B, (m, h) occurs on
b, then, by Corollary 3.3, (μm, χ(m,h)) ∈ MH(Mb) so that μm ∈ Treeb.
Therefore, for some a1 ∈ Ag, h �m

a1 h occurs on b. By Lemma 5.2, also
h�m

a h occurs on b. Therefore, by Definition 5, we must have χ(m,h) ∈ h�m
a

so that (Choiceb)
μm
a (χ(m,h)) = h�m

a
= {χ(m,hi ) | h�m

a hi occurs on b}. Now,
let χ(m,hi ) ∈ (Choiceb)

μm
a (χ(m,h)) be arbitrary. Then h�m

a hi occurs on b and
hence, by the rule for [ca]B and the completeness of b, also B, (m, hi ) occurs on
b. Therefore, by induction hypothesis, we must have Mb, (μm, χ(m,hi )) |= B.
Since χ(m,hi ) was chosen in (Choiceb)

μm
a (χ(m,h)) arbitrarily, this means that

Mb, (μm, χ(m,h)) |= [ca]B = A.
Case 4. A is of the form ¬[ca]B for some a ∈ Ag. If ¬[ca]B, (m, h) occurs
on b, then, by Corollary 3.3, (μm, χ(m,h)) ∈ MH(Mb) so that μm ∈ Treeb.
By the rule for ¬[ca]B and the completeness of b, also ¬B, (m, hi ) and h�m

a hi
must occur on b for some history name hi . But then, χ(m,hi ) ∈ h�m

a
=

(Choiceb)
μm
a (χ(m,h)), and, by induction hypothesis,Mb, (μm, χ(m,hi )) |= ¬B,

which means thatMb, (μm, χ(m,h)) |= ¬[ca]B = A.
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Case 5. A is of the form Ia B for some a ∈ Ag. If Ia B, (m, h) occurs on b,
then, by Corollary 3.3, (μm, χ(m,h)) ∈ MH(Mb) so that μm ∈ Treeb. There-
fore, by Corollary 3.1, for some a1 ∈ Ag, h �m

a1 h occurs on b. By Lemma
5.2, also h�m

a h occurs on b. Therefore, by Definition 5, we must have χ(m,h)

∈ h�m
a
so that (Choiceb)

μm
a (χ(m,h)) = h�m

a
= {χ(m,hi ) | h�m

a hi occurs on b},
and, by Corollary 3.1, Hμm = {χ(m,h) | (∃a ∈ Ag)(h�m

a h occurs on b) } = ∅.
Therefore, in the first place, if χ(m,hi ) ∈ (Choiceb)

μm
a (χ(m,h)) is arbitrary,

then h�m
a hi occurs on b and hence, by the rule for Ia B and the complete-

ness of b, also ‖B‖ ∈ Na((m, hi )) occurs on b. By definition of Nba ,
this implies that ‖B‖Mb ∈ Nba((μm, χ(m,hi ))). Since χ(m,hi ) was chosen in
(Choiceb)

μm
a (χ(m,h)) arbitrarily, this means that the positive condition for the

truth of Ia B at (μm, χ(m,h)) is satisfied. Moreover, in the second place, since b
is complete, and we have shown above that h�m

a h occurs on b, the rule for Ia B
gets applied on b at least once, which means that, for some history name hl ,
both hl�m

a hl and ‖B‖ /∈ Na((m, hl)) occur on b. Therefore, we must have that
χ(m,hl ) ∈ Hμm . We show that in this case also ‖B‖Mb /∈ Nba((μm, χ(m,hl ))).
Indeed, if ‖B‖Mb ∈ Nba((μm, χ(m,hl ))), then, by definition of Nba , there
must be an imagination stit formula C such that both ‖C‖Mb = ‖B‖Mb and
‖C‖ ∈ Na((m, hl)) occurs on b. But then, by its completeness, b must con-
tain at least one application of the rule for ‖C‖ ∈ Na((m, hl)) and ‖B‖ /∈
Na((m, hl)). Therefore, one of the two following options will hold: (a) b con-
tains C, (mk1 , hk2) and ¬B, (mk1 , hk2) for some mk1 and hk2 or (b) b contains
¬C, (ml1, hl2) and B, (ml1 , hl2) for some ml1 and hl2 . In case (a), it fol-
lows from the induction hypothesis that both Mb, (μmk1

χ(mk1 ,hk2 )) |= C and
Mb, (μmk1

χ(mk1 ,hk2 )) |= ¬B, which is in contradiction with our assumption
that ‖C‖Mb = ‖B‖Mb ; in case (b), the contradiction to the assumption that
‖C‖Mb = ‖B‖Mb can be derived in a symmetric way. This latter contradiction
shows that the configuration ‖C‖ ∈ Na((m, hl)) can occur on b for no imag-
ination stit formula C such that ‖C‖Mb = ‖B‖Mb . Therefore, we must have
‖B‖Mb /∈ Nba((μm, χ(m,hl ))) so that the negative condition for the truth of
Ia B at (μm, χ(m,h)) is also satisfied.
Summing this up, we must haveMb, (μm, χ(m,h)) |= Ia B = A.

Case 6. A is of the form ¬Ia B for some a ∈ Ag. If ¬Ia B, (m, h) occurs on b,
then, by Corollary 3.3, (μm, χ(m,h)) ∈ MH(Mb) so that μm ∈ Treeb. There-
fore, for some a1 ∈ Ag, h �m

a1 h occurs on b. By Lemma 5.2, also h�m
a h

occurs on b. Therefore, by Definition 5, we must have χ(m,h) ∈ h�m
a
so that

(Choiceb)
μm
a (χ(m,h)) = h�m

a
= {χ(m,hi ) | h�m

a hi occurs on b}, and, by Corol-
lary 3.1, Hμm = {χ(m,h) | (∃a ∈ Ag)(h�m

a h occurs on b) } = ∅. There are
two further subcases, according to the branching of the decomposition rule for
negated imagination ascriptions.
Case 6.1. ‖B‖ ∈ Na((m, hl)) occurs on b for every history name hl with
hl�m

a hl on b. Now, assume that χ(m,hi ) ∈ Hμm be arbitrary. Then there exists
an a1 ∈ Ag such that hi �m

a1 hi occurs on b. By Lemma 5.2 and the complete-
ness of b, this also means that hi�m

a hi occurs on b, whence, by our assumption,
also ‖B‖ ∈ Na((m, hi )) must occur on b. By Definition 5, the latter means
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that ‖B‖Mb ∈ Nba((μm, χ(m,hi ))). Since χ(m,hi ) ∈ Hμm was chosen arbitrar-
ily, this means that the negative condition for Ia B is violated at (μm, χ(m,h)),
so that we must haveMb, (μm, χ(m,h)) |= ¬Ia B = A.
Case 6.2. For some history name hk it is true that both h�m

a hk and ‖B‖ ∈
Na((m, hk)) occur on b. Then χ(m,hk ) ∈ (Choiceb)

μm
a (χ(m,h)). We show

that in this case also ‖B‖Mb /∈ Nba((μm, χ(m,hk ))). Indeed, if ‖B‖Mb ∈
Nba((μm, χ(m,hk ))), then, by definition of Nba , there must be an imagination
stit formula C such that both ‖C‖Mb = ‖B‖Mb and ‖C‖ ∈ Na((m, hk))
occurs on b. But then, by its completeness, b must contain at least one appli-
cation of the rule for ‖C‖ ∈ Na((m, hk)) and ‖B‖ /∈ Na((m, hk)). Therefore,
one of the two following options will hold: (a) b contains C, (mk1, hk2) and
¬B, (mk1 , hk2) for some mk1 and hk2 or (b) b contains ¬C, (ml1 , hl2) and
B, (ml1, hl2) for some ml1 and hl2 . In case (a), it follows from the induction
hypothesis that both Mb, (μmk1

χ(mk1 ,hk2 )) |= C and Mb, (μmk1
χ(mk1 ,hk2 )) |=

¬B, which is in contradiction with our assumption that ‖C‖Mb = ‖B‖Mb ;
in case (b), the contradiction to the assumption that ‖C‖Mb = ‖B‖Mb

can be derived in a symmetric way. This latter contradiction shows that the
configuration ‖C‖ ∈ Na((m, hk)) can occur on b for no imagination stit for-
mula C such that ‖C‖Mb = ‖B‖Mb . Therefore, we must have ‖B‖Mb /∈
Nba((μm, χ(m,hk ))), and, summing this up with the earlier established fact that
χ(m,hk ) ∈ (Choiceb)

μm
a (χ(m,h)), we see that the positive condition for Ia B is

violated at (μm, χ(m,h)). Therefore, we, again, must have Mb, (μm, χ(m,h)) |=
¬Ia B = A.

Theorem 2 (Completeness) Let �∪{A} be a finite set of imagination stit formulas.
If � � A, then � ∪ {¬A} is satisfiable in an imagination stit model.

Proof Suppose that � � A. Then there is no complete and closed tableau for
�(m,h0) ∪ {¬A, (m, h0)}. Let b be an open branch of a complete tableau for this
set and let Mb be the model induced by b. By the previous lemma, it follows that
Mb, (μm, χ(m,h0)) |= B for every B ∈ � and Mb, (μm, χ(m,h0)) |= ¬A, thus
Mb, (μm, χ(m,h0)) |= A.
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