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Abstract
The standard natural deduction rules for the identity predicate have seemed to some
not to be harmonious. Stephen Read has suggested an alternative introduction rule
that restores harmony but presupposes second-order logic. Here it will be shown
that the standard rules are in fact harmonious. To this end, natural deduction will
be enriched with a theory of definitional identity. This leads to a novel conception
of canonical derivation, on the basis of which the identity elimination rule can be
justified in a proof-theoretical manner.
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1 Introduction

Identity, as is well-known, “gives rise to challenging questions which are not alto-
gether easy to answer.” One such question, discussed in some recent literature, is
how to provide the identity predicate, =, of predicate logic with harmonious natu-
ral deduction rules. Introduction and elimination rules for the identity predicate were
provided by logicians long ago, but it is not obvious that these rules are harmonious;
more precisely, it is not obvious that the introduction rule is strong enough to justify
the elimination rule. Stephen Read [16] proposed an alternative introduction rule that
he showed to justify the elimination rule. One may, however, ask whether Read’s rule
is not too strong, since—as we shall see below—it seems to require second-order
logic for its proper functioning. Here it will be shown that the standard rules for iden-
tity are in fact harmonious, hence that we do not need Read’s revised introduction
rule.

When justifying a rule from a proof-theoretical point of view, one must take cer-
tain rules or derivations as valid outright. Such rules or derivations are usually called
canonical. It is common to assign the office of canonical derivation to derivations
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that end in the application of an introduction rule. This stipulation is motivated by the
thought that introduction rules determine the meaning of the formula-forming oper-
ators (connectives, quantifiers, predicates). In showing the harmony of the standard
rules of identity I shall rely on a more general conception of canonical derivation:
it is a derivation that ends in the application of an introduction rule followed by any
number, possibly zero, of substitutions of terms or formulae for definitionally identi-
cal terms or formula. This is a reasonable generalization of the standard conception,
since such a sequence of substitutions is just a rewriting of the end formula of the
derivation.

The notion of definitional identity invoked here will be explained by laying down
certain principles it is taken to satisfy. More specifically, I shall describe a formal
system whose formulae are all of the form a ≡ b, expressing that a and b are defi-
nitionally identical. This formal system can be integrated into natural deduction via
a rule allowing the substitution of b for a definitionally identical a in a derived for-
mula A. There is in fact independent motivation for introducing definitional identity
into natural deduction once the identity predicate is present. Definitions form an
important source of theorems of the form t = u, for syntactically distinct t and u.
Hence, when identity is present, definitions should somehow be accounted for in the
formalism. Formulating definitions in terms of the ordinary identity predicate forces
one, however, to give up the topic-neutrality of identity. If definitions are formulated
in terms of a separate notion of definitional identity, by contrast, the topic-neutrality
of identity can be preserved. Once a theory of definitional identity is in place, more-
over, one can see that the relation of definitional identity is strictly finer than the
relation determined by the identity predicate. Definitional identity is thus not already
contained in the logic of ordinary identity formulae t = u. A subsidiary aim of what
follows is to draw attention to the importance to the logic of identity of the notion of
definitional identity.

In Section 2 the standard rules for the identity predicate are presented, and it
is explained precisely what is taken to be the problem with them. Read’s alterna-
tive introduction rule is discussed in Section 3. Definitional identity is introduced in
Section 4 and given a more formal treatment in Section 5. The new conception of
canonical derivation is presented in Section 6. Against this background it is shown in
the final Section 7 that the standard rules for identity are in fact in harmony.

2 The Problem

I shall assume the elegant set of natural deduction rules for identity formulated by
Martin-Löf [9, p. 190]:

t = t (=-INTRO)
t = u A[x, x]

A[t, u] (=-ELIM)

Here t and u are arbitrary terms of the language, and the formula A[x, x] arises
from A[y, z] by substituting the variable x for both of the free variables y and z.
An application of =-ELIM binds the variable x in the derivation above the conclusion
A[t, u]. A derivation ending in A[x, x] may be thought of as showing that A defines
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a reflexive relation on the underlying domain, D. The rule =-ELIM in effect says that
identity is the smallest reflexive relation on D. An alternative elimination rule for
identity [3, 8], a form of the indiscernibility of identicals,

t = u B[t]
B[u] (Ind-Id)

is equivalent to =-ELIM in the presence of the rules for implication and the universal
quantifier.

A derivation ending in an application of =-INTRO followed by =-ELIM can be
reduced as follows:

t = t

D[x]
A[x, x]

A[t, t]
� D[t]

A[t, t]

Indeed, a normalization theorem can be proved for first-order logic extended with a
general scheme of rules for so-called inductively defined predicates, of which identity
as captured by =-INTRO and =-ELIM is an instance [9].

In spite of this mathematical result, several authors have found that the proposed
rules are not in harmony [5, 12, 16, 17]. The cause of the felt disharmony is the
difference between the form of the conclusion of =-INTRO, viz. t = t , and the form
of the major premiss of =-ELIM, viz. t = u. This difference in form makes it unclear
how one should go about justifying =-ELIM on the basis of =-INTRO.

The justification of an elimination rule on the basis of introduction rules can
be carried out more or less formally. Let us first consider the less formal way. An
elimination rule for an operator � may be written schematically as follows:

B minor premisses
C

Here B is a formula whose outermost operator is �. The minor premisses may be
formulae or whole derivations. To justify the rule informally we may proceed as
follows:

1. Assume that the major premiss B is the conclusion of an application of �-INTRO.
2. Use the premisses of this application of �-INTRO together with the minor

premisses in order to justify the conclusion C.

The rationale behind this procedure is the stipulation—first made by Gentzen [4]—
that the �-INTRO rules determine the meaning of �. Given this stipulation, the
assumption that B is the conclusion of an application of �-INTRO amounts to the
assumption that we have analyzed the meaning of B. In step 2 we then use this
analysis together with the minor premisses in justifying the conclusion C.

As an example we may consider ⊃-ELIM:

A ⊃ C A

C
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Assume that the major premiss, A ⊃ C, is the conclusion of an application of ⊃-
INTRO:

[A]·····
C

A ⊃ C

Then we have a derivation D1 of C from A as open assumption. The minor premiss
of ⊃-ELIM gives a derivation D2 of A. But then we have a derivation of C as follows:

D2

A

D1

C

The same procedure can be carried out for the rest of the familiar logical connec-
tives and the quantifiers. It cannot, however, be used to justify =-ELIM on the basis
of =-INTRO, for at least two reasons. Firstly, owing to the difference in form between
the major premiss of =-ELIM and the conclusion of =-INTRO, we cannot assume
that such a major premiss is the conclusion of an application of =-INTRO. Secondly,
even in a case where the major premiss of =-ELIM has the form t = t and may be
assumed to be the conclusion of an application of =-INTRO, this introduction rule has
no premisses that can be used in step 2.

A more formal way of justifying an elimination rule on the basis of introduction
rules relies on Prawitz’s notion of the validity of a derivation [14, 15, 18]. Assume
that we have a notion of validity of derivations. For our purposes it is enough to
consider rules of the form

A1 . . . An

C

Such a rule can then be said to be justified if, whenever the derivations

D1

A1
. . .

Dn

An

are valid, then so is the derivation

D1

A1 . . .

Dn

An

C

A derivation is here understood as a tree of formulae together with information
regarding the discharging of open assumptions and the binding of free variables. That
a derivation D is closed means that all of its assumptions have been discharged and
all of its free variables have been bound.

Certain closed derivations are to be taken as valid outright (provided all immediate
sub-derivations are valid). These derivations are called canonical. That we recognize
a notion of canonical derivation is a reflection of the fact that certain rules are taken
to determine the meaning of the formula-forming operators. In particular, where—as
here—introduction rules are taken to be meaning-determining, a canonical derivation
is a derivation that ends in the application of an introduction rule. The term ‘canonical
derivation’ thus designates a certain office that (for the time being) we take to be filled
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by derivations ending in an introduction rule. And we say that a canonical derivation
is valid iff all its immediate sub-derivations are valid.

A closed derivation that is not canonical is valid iff it can be reduced to a
valid canonical derivation. The notion of reduction assumed here is to include the
reductions introduced by Prawitz [13], namely transformations of derivations such as

A

D1

C

A ⊃ C

D2

A

C

�

D2

A

D1

C

A first attempt at defining reduction in general is by saying that a reduction of a
derivation D is a transformation of D that preserves the conclusion of D and that
does not introduce any new open assumptions or free variables. It is, however, nat-
ural to require something much stronger of a reduction, namely that it preserves the
identity of derivations. Without this stronger requirement it is difficult to see the
motivation behind the stipulation that a closed non-canonical derivation is valid iff it
can be reduced to a valid canonical derivation. With the requirement, by contrast, the
stipulation says that a closed derivation is valid iff it is identical to a valid canonical
derivation, and that clearly seems like a reasonable stipulation. The reductions we
shall consider in this paper can all be seen to meet the stronger requirement.

The validity of an open derivation D is explained in terms of the validity of the
closed derivations that arise from D by substituting closed terms for variables free
in D and supplying the open assumptions in D with valid canonical derivations. The
motivation behind this stipulation is that an open assumption A in a derivation stands
for an arbitrary derivation of A and a free variable stands for an arbitrary term. More
precisely, we make the following stipulations.

Suppose the variable x is free in D . We may write the derivation as D[x]. This
derivation is defined to be valid iff D[t] is valid whenever t is a closed term.

Suppose the derivation D contains an open assumption A. We may write the
derivation as

A

D
This derivation is defined to be valid iff for any valid canonical derivation D ′ whose
end formula is A, the derivation

D ′
A

D
is valid.

Again we may consider the example of ⊃-ELIM. Assume that we have valid
derivations

D1

A ⊃ B

D2

A

We must show that the derivation
D1

A ⊃ B

D2

A

B

(⊃-ElimDer)
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is valid. If ⊃-ElimDer is open, then we substitute closed terms for free variables and
supply open assumptions with valid canonical derivations. The resulting immediate
subderivations D ′

1 and D ′
2 will then be closed, since ⊃-ELIM neither discharges any

open assumptions nor binds any variable. Hence we may assume that D1 and D2 are
already closed. Since they are also valid, they reduce to valid canonical derivations.
Carrying out these reductions on ⊃-ElimDer yields a derivation

A

D∗
1

C

A ⊃ C

D∗
2

A

C

(⊃-ElimDer*)

Here D∗
1 is a valid derivation whose only open assumption is A, and D∗

2 is a
valid canonical derivation. On ⊃-ElimDer* we may carry out ⊃-reduction to get a
derivation

D∗
2

A

D∗
1

C

Since D∗
1 is valid and its only open assumption is A, any result of supplying this

assumption with a valid canonical derivation of A is itself valid. But D∗
2 is a valid

canonical derivation, hence the displayed derivation is valid. Since it is also closed,
it reduces to a valid canonical derivation. By the transitivity of reduction, also ⊃-
ElimDer reduces to a valid canonical derivation, hence it is itself valid.

Again one can see that this mode of justification can be carried out for all the
connectives and quantifiers, but not for =-ELIM. Namely, let us assume that we have
valid derivations

D1
t = u

D2

A[x, x]
and try to show that the derivation

D1
t = u

D2

A[x, x]
A[t, u]

(=-ElimDer)

is valid. As in the case of ⊃-ELIM, we may assume that the derivation =-ElimDer is
closed. The subderivation D1 is therefore closed and valid, hence it reduces to a valid
canonical derivation

D ′
1

t = u
At this point, however, we have reached a dead end, since we have not specified
what a canonical derivation looks like for the formula t = u where t and u are
syntactically different terms. Our stipulation that a canonical derivation is one that
ends in an introduction rule together with the rule =-INTRO serve to specify only what
a canonical derivation of t = t looks like.

Since a closed valid derivation need not end in an introduction rule, we are not
entitled to conclude from this limitation of =-INTRO that there can be no closed valid
derivation of t = u for syntactically distinct t and u. Instead, we must conclude that
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we have not provided enough information as to what a canonical derivation of an
identity formula looks like. Lacking such information, we in effect do not know what
it means for the closed derivation D1 above to be valid. We are therefore stuck in our
attempt to justify =-ELIM, since we have reached a thesis the meaning of which we
have not specified fully.

3 Read’s Rule

In response to this problem, Read [16] has suggested that we change the introduction
rule for the identity predicate to the following:

[F(t)]·····
F(u)

t = u

(=-INTRO*)

Here F is a unary predicate variable that does not occur free in any assumption other
than F(t), which assumption is discharged by an application of =-INTRO*. Read’s
starting point is that the indiscernibility of identicals,

t = u B[t]
B[u] (Ind-Id)

should be captured by the elimination rule for identity. The introduction rule should,
accordingly, capture the identity of indiscernibles, as =-INTRO* indeed seems to do.
If we instead take the rule =-ELIM as our elimination rule, then the introduction rule
analogous to =-INTRO* is:

[R(x, x)]·····
R(t, u)

t = u

Here R is a binary predicate variable and x an individual variable, neither of which
occurs free in any assumption other than R(x, x). An application of the rule dis-
charges the assumption R(x, x) and binds the variable x above the conclusion t = u.
The remarks that follow pertaining to =-INTRO* apply equally well to this rule.

The elimination rule that Read takes to correspond to =-INTRO* is not the full
indiscernibility of identicals, Ind-Id, but rather the following restricted version of it:

t = u F(t)

F (u)
(=-ELIM*)

As before, F is a predicate variable, hence F(t) is not a schematic formula such as
the minor premiss and conclusion in Ind-Id are. It is, however, clear that in order
to have the right to call =-INTRO* and =-ELIM* rules of identity, we need to show
that Ind-Id follows from =-ELIM*. It is, moreover, clear that in order to show this,
we need rules governing the predicate variable F . Such rules are, however, available
only in second-order logic. Thus, Read [16, p. 117] invokes rules for the second-order
existential quantifier when showing that Ind-Id follows from =-ELIM*. An argument
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not invoking second-order logic is offered by Read [17, p. 416], but this argument
fails, it seems to me. It proceeds by induction on the complexity of the minor premiss
B[t] of Ind-Id. The induction steps as given by Read seem to be in order, but the base
case is dealt with too quickly. The base case, where B[t] is atomic, is said to follow
from =-ELIM*. But, in the absence of rules governing predicate variables, we can
apply =-ELIM* to get B[u] from B[t] and t = u only if B[t] is of the form F(t), for
a predicate variable F ; and there might well be atomic formulae that are not of this
form.

In order to apply =-INTRO* to get t = u, for syntactically distinct t and u, we
need a derivation of F(u) from F(t). Also such a derivation requires rules governing
predicate variables. For without any such rules, F(u) and F(t) are in effect just dis-
tinct propositional variables; and it is immediate from normalization that in this case
there is no derivation of F(u) from {F(t)} ∪ � unless F(u) ∈ �; but if F(u) ∈ �,
then =-INTRO* is not applicable owing to the restriction on occurrences of F in open
assumptions.1

The rule =-INTRO* does therefore not seem to be an option for those who want to
avoid second-order logic. For someone who is not averse to second-order logic, and
who may therefore be willing to accept =-INTRO* as the introduction rule for identity,
it is, however, not clear why separate rules should be given for the identity predi-
cate: in second-order logic the identity predicate can be explicitly defined, and an
expression that is so defined has its meaning completely determined by its definition.

4 A Role for Definitions

Suppose that in light of these difficulties pertaining to Read’s rule =-INTRO* we
decide to hold on to =-INTRO. Our problem is then to explain what a canonical deriva-
tion of t = u, for syntactically distinct terms t and u, looks like. Our stipulations so
far fail to tell us this. The relevant stipulations are:

(i) A canonical derivation is one that ends in the application of an introduction rule.
(ii) The introduction rule for identity is =-INTRO.

Read’s suggestion is to change stipulation (ii). I suggest that we instead look at stipu-
lation (i). Thus I wish to propose that we revise the stipulation of what is to count as a
canonical derivation. I will say that a canonical derivation is one that ends in the appli-
cation of an introduction rule followed by any number, possibly zero, of replacements
of terms or formulae by definitionally identical terms or formulae. This is a natural
generalization of stipulation (i) once the relation of definitional identity is present,
since the substitution of an expression a for a definitionally identical b in an expres-
sion c is just a rewriting of c. A canonical derivation in the new sense is therefore
just a canonical derivation in the old sense possibly followed by certain rewritings
of the conclusion. That the relation of definitional identity should be included in the

1This result is proved model-theoretically in Milne [12, p. 38, fn. 12]; it is the main topic of Griffiths [5].
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formalism once the identity predicate is present can be seen by reflections such as
the following.

Many forms of definition take the form of one or more equations; and on the
basis of such definitions we can derive formulae of the form t = u for syntactically
different terms t and u. For instance, from the well-known recursive definition of
addition and the definition of 1 as s(0), the successor of 0, we can derive

1 + 1 = s(s(0))

and infinitely many other identity formulae. In trying to understand the logic of iden-
tity we are therefore led to ask how definitions are to be dealt with in a formal system.
We may distinguish two kinds of definition (we are interested only in definitions that
take the form of equations). A definition of the first kind introduces vocabulary that
is to abbreviate an expression already available in the language; this is often called an
explicit definition. In this case the definiendum is to be eliminable, and the extension
of the theory by the definition is to be conservative (i.e., the definition is not “cre-
ative”). A definition of the second kind, by contrast, is to determine the meaning of
primitive vocabulary. Here the definiendum need not be eliminable, nor need a the-
ory extended by such a definition be conservative. Such definitions therefore have to
appear as axioms, such as the defining equations of addition and multiplication do in
first-order Peano arithmetic. It is, however, common also to regard an explicit defini-
tion as an axiom of an extended (conservatively extended) theory. Definitions quite
generally are thus typically treated as axioms in formal systems.

It is natural to define the notion of an axiom as a rule without premisses. Accord-
ingly, we may regard =-INTRO as an axiom; and, conversely, any further axiom of
the form t = u that a theory contains may be regarded as an introduction rule for the
identity predicate. Indeed, such an axiom serves, just as much as =-INTRO does, to
introduce the identity predicate into a derivation. If definitions take the form t = u

and are regarded as axioms, they must therefore also be regarded as introduction
rules for the identity predicate. Since introduction rules are meaning-determining,
definitions thus come to play a role in determining the meaning of the identity
predicate.

The account of identity that this leads to is, however, quite unsatisfactory. Behind
the usual treatment of the identity predicate as a logical symbol lies the idea that the
rules governing it are topic neutral: they are the same regardless of topic, that is, the
same in any domain of discourse. But if defining equations are introduction rules,
then the identity predicate can no longer be regarded as topic neutral, since its rules
will then differ from one theory to the other. The defining equations needed in, for
instance, arithmetic are unlike those needed in set theory, hence these two theories
will provide the identity predicate with different introduction rules, and so with a
different meaning. In fact, not only shall we have to regard the meaning of identity in
arithmetic as being different from its meaning in set theory: even the simple addition
of an explicit definition to a theory will have to be regarded as changing the meaning
of the identity predicate inside that theory, since such a definition will be a new
introduction rule for the identity predicate.
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Adding a theory of definitional identity to natural deduction will not only make
it possible to justify =-ELIM on the basis of =-INTRO. It will also make it clear that
definitions do not disturb the topic-neutrality of the identity predicate.

5 Definitional Identity

Accounts of definitional identity have already been developed by Curry and Feys
[2, pp. 62–76], Curry [1, pp. 104–111], and Martin-Löf [10], and we may take these
accounts as our starting point. The formulae of the theory are all of the form a ≡ b,
expressing that a and b are definitionally identical. Thus we have an equational the-
ory (no connectives or quantifiers!); but a and b may be expressions of any category,
in particular, terms or formulae, provided they are both of one and the same cate-
gory. The principles governing definitional identity will depend on the underlying
language, in particular on which categories of expression are available and on how
composite expressions may be formed. For the language of first-order predicate logic,
the following seems like a reasonable characterization.

Definitional identity is an equivalence relation, thus there are first of all the
following axiom and rules:

a ≡ a
a ≡ b

b ≡ a
a ≡ b b ≡ c

a ≡ c

In addition there are two axiom schemes and two rules, as well as a “bridge principle”
that lets us integrate a derivation D from the theory of definitional identity into an
ordinary natural deduction derivation D .

The theory of definitional identity is understood to be paired with an underly-
ing theory. We assume that for the theory in question specifications have been made
regarding the formal conditions that a definition has to meet. The first axiom scheme
says that whenever a and b meet these conditions as definiendum and definiens
respectively, then a ≡ b may be posited as an axiom. In schematic form we may
write:

definiendum ≡ definiens

In first-order arithmetic, for instance, the modes of definition usually admitted are
explicit definition of individual constants and of functions, as well as recursive def-
inition of functions. An explicit definition, of an individual constant c or a function
f , takes the form of a simple equation:

c ≡ t f (x̄) ≡ t[x̄]

A recursive definition consists of two equations:

f (x̄, 0) ≡ t[x̄]
f (x̄, s(y)) ≡ u[x̄, y, f (x̄, y)]
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When adding a recursive definition to an underlying arithmetical theory, we are thus
positing two axioms in the theory of definitional identity.2

It seems reasonable to require that definitional identity be preserved by the renam-
ing of bound variables, since the result of such a renaming is just a notational variant
of what one started out with. The second axiom scheme says that a formula A is def-
initionally identical to any formula B that arises from A by the renaming of one or
more of its bound variables:

A ≡ B

Of course, we must take care that B is really just a notational variant of A, that no
new binding relations are created in B. In standard first-order logic, the only variable-
binding operators are the existential and the universal quantifiers, each of which
produces a formula. If there are variable-binding operators producing expressions
of other grammatical categories, for instance a definite-description operator, then a
similar rule is posited for each such category.

When we analyze the meaning of an expression by continuously replacing in it
definienda by their definientia, then it seems clear that definitional identity is pre-
served. For instance, if 2 is definitionally identical to s(1), and 1 is definitionally
identical to s(0), then it seems clear that 2 is definitionally identical to s(s(0)). The
general principle is captured by the following rule:

a ≡ b c ≡ c′
a ≡ b[c′/c]! (R1)

Here b[c′/c]! is any formula that results from replacing any number of occurrences of
c in b by c′.3 It is of course presupposed that a is of the same category as b, and that
c is of the same category as c′; but c may, for instance, be a term, and a a formula.

In order to be able to state the definition of a function, such as the definition of
addition, by means of variables, we need a way of instantiating terms for variables.
Clearly, the instantiation should preserve definitional identity. For instance, given the
definitional equation x + 0 ≡ x, it should follow that 2 + 0 ≡ 2, i.e., that 2 + 0 is
definitionally identical to 2. Thus we have the following rule:

a ≡ b

a[t/x] ≡ b[t/x] (R2)

2For the benefit of conceptual clarity we might distinguish recursive definition from definition by cases.
The standard definition of the predecessor function,

pred(0) ≡ 0
pred(s(y)) ≡ y

is a definition by cases, but it is not recursive, that is, it does not refer to “previous” values of itself. The
displayed scheme of recursive definition in arithmetic covers also such non-recursive definitions by cases.
3Unlike the ordinary substitution notation, the notation b[c′/c]! therefore does not uniquely determine
the formula in question. If we need b[c′/c]! in a given context to stand for different formulae (namely,
formulae that arise by substituting c′ for different sets of occurrences of c in b), then we may use some
mechanism such as priming for indicating this. Otherwise it will be assumed that b[c′/c]! at all of its
occurrences stands for one and the same formula.
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Here x is a first-order variable, t is a term, and a[t/x] is the result of replacing x by
t at all of its occurrences in a. If variables of other types are available, then a similar
rule is posited for each type.

In arithmetic the schemes of explicit definition and definition by recursion
together with the rules R1 and R2 allow us to define all primitive recursive functions
[6, § 54]. Indeed, the theory of definitional identity quite generally may be regarded
as a theory of formal computation: the unravelling of definitions inside an expression,
as can be carried out within a theory of definitional identity, may naturally be thought
of as its calculation, computation, or evaluation. The value of an expression is then
its complete analysis. By incorporating definitional identity into natural deduction,
we thus get a system that formalizes not only proof, but also computation.

As the “bridge principle” that lets us integrate derivations D from the theory of
definitional identity into ordinary natural deduction derivations we shall make use of
the following rule:

A a ≡ b

A[b/a]!
We shall call this rule definitional substitution. Notice that the conclusion A[b/a]! of
an application of definitional substitution is definitionally identical to, hence just a
rewriting of, the left premiss A.

Consider a derivation D whose final step is a definitional substitution:

D ′
A

D

a ≡ b

A[b/a]!
All top formulae of D count as axioms in D . That is, they are not assumptions that
may be discharged in any extension of D . We might therefore think of D as a separate
derivation and picture D as follows:4

D ′
A

D
A[b/a]!

The derivation D has been written down on a separate sheet of paper, say, and is
invoked here only in order to justify the rewriting of A, the end formula D ′. A dashed
line is used to indicate that this final step in D is just such a rewriting. This way of
regarding the bridge principle leads us to stipulate that D has only one immediate
sub-derivation, namely D ′ (including its end formula A). Thus, we shall not count D
as a sub-derivation of D .

An alternative, but equivalent, bridge principle is:

A ≡ B
A ↔ B

Here A ↔ B is ordinary material equivalence, hence the rule says that the equiva-
lence relation of definitional identity among formulae is at least as fine as material
equivalence.

4Cf. the rule of formula conversion in [11, p. 155].
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As a special case of definitional substitution we have the rule that allows the
renaming of bound variables. Let A and B differ at most in the name of their bound
variables. Then we have

A A ≡ B
B

as a special case of definitional substitution. Borrowing a well-known terminology
from Curry and Feys [2, p. 90], the derived rule that has A as its only premiss and
such a B as conclusion will be called α.

A bridge principle for the category of terms,
t ≡ u
t = u

is easily derivable by means of =-INTRO and definitional substitution. This rule says
that the equivalence relation of definitional identity among terms is at least as fine
as the relation determined by the identity predicate. In arithmetic it can be shown
that definitional identity is in fact strictly finer than the relation determined by the
identity predicate. Namely, although the formula x + y = y + x, for variables x and
y, is derivable by (quantifier-free) induction, the corresponding definitional identity
x + y ≡ y + x is not derivable. Definitional identity in first-order arithmetic can be
seen to be the equivalence relation generated by a reduction relation for which strong
normalization and a Church–Rosser theorem can be proved.5 Since both x + y and
y + x, for variables x and y, are irreducible but not syntactically identical terms, it
then follows that they are not definitionally identical. This shows that definitional
identity is a non-trivial addition to ordinary predicate logic.

6 Canonical Derivations

We shall take a canonical derivation to be a derivation that ends in an introduction
rule followed by any number, possibly zero, of definitional substitutions. An operator
� may apply to formulae, to terms, or to both; and it may or may not be variable-
binding. The general form of a formula whose outermost operator is � can thus be
written as

�x̄.(Ā, t̄ )

where Ā is a sequence of formulae, t̄ is a sequence of terms, and x̄ is a sequence of
variables that are bound by the outermost (i.e., the displayed) � in this formula. Let
us assume that � is associated with an introduction rule (so it is not introduced by
explicit definition). A canonical derivation has the following form

D1 . . . Dn
�-INTRO

�x̄.(Ā, t̄)
definitional substitutions

B

The number of definitional substitutions may be zero, in which case we have a
canonical derivation in the old sense, namely one that ends in the application of
an introduction rule. If the number of definitional substitutions is greater than zero,

5Cf. the stronger result of Tait [19] that Gödel’s T enjoys both of these properties.
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then the conclusion B is in general not syntactically identical to, though it is defini-
tionally identical to, �x̄.(Ā, t̄). An important special case is where B has the form
�x̄′.(Ā′, t̄ ′).

It is quite immaterial precisely which definitional substitutions are applied in get-
ting from �x̄.(Ā, t̄) to B. In general, the only things we care about in a derivation
� consisting entirely of definitional substitutions are the starting point (the leftmost
formula) and the end point (the conclusion). We are therefore led to postulate all
reductions of the following form:

D
A

�

B

�
D
A

�′
B

(�-red)

Here � and �′ are derivations consisting entirely of definitional substitutions whose
starting point is A and whose end point is B.

In getting from �x̄.(Ā, t̄) to the definitionally identical �x̄′.(Ā′, t̄ ′) it is natural
to proceed by first substituting each of the items in the list Ā, t̄ in the order given
and thereafter rename the bound variables x̄ to x̄′. We shall call this the regular
definitional substitution from �x̄.(Ā, t̄) to �x̄′.(Ā′, t̄ ′). As examples let us consider
conjunction and universal quantification:

A ∧ B A ≡ A′
A′ ∧ B B ≡ B ′

A′ ∧ B ′

∀xA A ≡ A′′
∀xA′′

α∀x′A′

In the right-hand derivation the only difference, if any, between A′′ and A′ is that A′
has x′ free wherever A′′ has x free.

With a revised, or generalized, notion of canonical derivation, it is natural also
to revise, or generalize, the standard reductions of first-order logic given by Prawitz
[13]. Thus we wish to define reductions for derivations ending in the pattern:

introduction rule + definitional substitutions + elimination rule

Because of the reduction rule �-red, we may assume that we have a regular defini-
tional substitution from the conclusion of the introduction rule to the major premiss of
the elimination rule. The definition of the various reductions is then straightforward.
For instance, for conjunction we have the following reduction:

D1

A

D2

B∧-INTRO
A ∧ B

D1

A ≡ A′
A′ ∧ B

D2

B ≡ B ′
A′ ∧ B ′

∧-ELIM
A′

�
D1

A

D1

A ≡ A′
A′

Note that, if D1 is canonical in the revised sense, then so is the derivation to the right
here, since it is obtained by extending D1 with one definitional substitution. For the

880



The Harmony of Identity

universal quantifier we have the following reduction:

D
A∀-INTRO ∀xA

D

A ≡ A′′
∀xA′′

α ∀x′A′
∀-ELIM

A′[t/x′]

�
D[t/x]
A[t/x]

D

A ≡ A′′
R2

A[t/x] ≡ A′′[t/x]
A′′[t/x]

To see that this is indeed a reduction, notice that A′′ differs from A′ at most in having
x free wherever A′ has x′ free; hence A′[t/x′] and A′′[t/x] are syntactically identical.
Again it holds that if D is canonical in the revised sense, then so is the derivation on
the right here.

Prawitz’s definition of validity now applies just as before. In particular, a canonical
derivation is said to be valid iff all its immediate sub-derivations are valid. It then
follows that if D ′ is a valid canonical derivation, then so is the derivation D :

D ′
A

D

a ≡ b

A[b/a]!
In other words, the extension of a valid canonical derivation by a definitional
substitution is again a valid canonical derivation.

7 The Justification of =-ELIM

An application of =-INTRO followed by a regular definitional substitution has the
following form:

t ′ = t ′
D1

t ′ ≡ t

t = t ′
D2

t ′ ≡ u
t = u

(=-CanDer)

This is also the form of a canonical derivation of t = u. Here t and u may be syn-
tactically different terms, since in the theory of definitional identity we can derive
formulae of the form t ≡ u, for syntactically different t and u (for instance, we
may let t ≡ u be an explicit definition). Our generalized conception of canonical
derivation thus captures formulae of the form t = u.

We are now in a position to give an informal justification of =-ELIM. We proceed
according to the following steps:

1* Assume that the major premiss of =-ELIM, viz. t = u, is the conclusion of a
canonical derivation.

2* Use the resources provided by this canonical derivation together with the minor
premiss A[x, x] in order to justify A[t, u].

The canonical derivation of t = u may be assumed to have the form =-CanDer.
From the two sub-derivations D1 and D2 in =-CanDer we get t ≡ u by the symme-
try and transitivity of definitional identity. From A[x, x], moreover, we get, firstly,
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A[t, t] by instantiating t for the free variable x and, thereafter, A[t, u] by definitional
substitution. We may write the justification schematically as follows:

A[x, x]
instantiation

A[t, t]
t ′ ≡ t t ′ ≡ u symmetry, transitivity

t ≡ u
definitional substitution

A[t, u]
In the final step it is of course essential that we rely on definitional substitution:
had we relied instead on the indiscernibility of identicals, the justification would be
circular.

For the more formal justification relying on Prawitz’s notion of validity, we must
define reduction for derivations of the form =-CanDer followed by an application of
=-ELIM, just as we did for conjunction and the universal quantifier above.

t ′ = t ′
D1

t ′ ≡ t

t = t ′
D2

t ′ ≡u
t = u

D[x]
A[x, x]

A[t, u]

�

D[t ′]
A[t ′, t ′]

D1

t ′ ≡ t

A[t, t ′]
D2

t ′ ≡ u

A[t, u]
In the right hand derivation here we are applying definitional substitution, and not
=-ELIM, in order to pass from A[t ′, t ′] to A[t, u]. Therefore, if D[t ′] is a canonical
derivation, then so is the whole derivation on the right.

Let us recall how the formal justification is to proceed. We assume that we have
two valid derivations

D1
t = u

D2

A[x, x]
On this assumption we must show that the derivation

D1
t = u

D2

A[x, x]
A[t, u]

(=-ElimDer)

is valid. We may assume that =-ElimDer is a closed derivation. Our task is therefore
to show that it reduces to a valid canonical derivation.

Since =-ElimDer is closed, it follows that D1 is closed; that there are no open
assumptions in D2; and that the only variable free in D2 is x.

That D1 is valid therefore means that it reduces to a derivation of the form

t ′ = t ′
�

t = u

(D ′
1)

where � is a sequence of definitional substitutions. By the reduction rule �-red we
may assume that � is regular, hence that D ′

1 is of the form =-CanDer.
On =-ElimDer we first reduce D1 to D ′

1 and thereafter use our revised =-reduction
to obtain

D2[t ′]
A[t ′, t ′]

D1

t ′ ≡ t

A[t, t ′]
D2

t ′ ≡ u

A[t, u]
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From the assumptions on D2 it follows that D2[t ′] is closed and valid. It therefore
reduces to a valid canonical derivation D3. Being canonical, this derivation ends in
an introduction rule followed by some number of definitional substitutions; but then
so does the derivation

D3

A[t ′, t ′]
D1

t ′ ≡ t

A[t, t ′]
D2

t ′ ≡ u

A[t, u]
This is therefore a canonical derivation of A[t, u]; it is valid, since D3 is valid; and
it is a derivation to which =-ElimDer reduces. Thus we have shown that =-ELIM is
justified.
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