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Abstract I derive a sufficient condition for a belief set to be representable by a
probability function: if at least one comparative confidence ordering of a certain
type satisfies Scott’s axiom, then the belief set used to induce that ordering is repre-
sentable. This provides support for Kenny Easwaran’s project of analyzing doxastic
states in terms of belief sets rather than credences.

Keywords Formal epistemology · Representation theorem · Belief · Credence ·
Scott’s axiom

1 Introduction

Bayesian credences measure the degrees to which agents are confident in various
propositions. To have .9 credence in the proposition p is, roughly, to be 90% certain
that p is true. To have 1 credence in p is to be completely certain that p is true,
and to have 0 credence in p is to be completely certain that p is false. It is usually
supposed that an agent’s credences should obey the standard probability axioms.1 So
for instance, an agent should not have credence .9 in p without also having credence
.1 in ¬p.

1If an agent’s credences do not conform to, for example, Kolmogorov’s axioms of probability, then in
certain betting scenarios, she is guaranteed to lose money. See [11] for one version of this ‘Dutch Book’
argument.
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There are several reasons to take credences seriously. As discussed in [7], they can
be used to explain when and how an agent should update her beliefs in response to
new evidence. Credences also yield an attractive solution to the Preface Paradox.2 It
has even been argued that beliefs reduce to credences. According to one prominent
version of this claim, known as the ‘Lockean threshold’ analysis of belief, agent A
believes that p if and only if A has sufficiently high credence in p.3

But credences come with a cost. What exactly are credences? Are they dispositions
to bet a certain way [1], or systematizations of agential behavior [9], or something
else entirely? Why should credences obey the probability axioms, rather than other
formal constraints? And given that credences are typically taken to be real num-
bers, how do the mental states of finite creatures like ourselves exemplify the infinite
precision of the continuum?

In order to side-step tricky questions like these, Kenny Easwaran argues that
belief—not credence—is the “real” doxastic state.4 Credences can be understood as
mathematical summaries of agential belief. To interpret credences in this way, first
ascribe belief sets to agents. Then find a way to use probability functions to repre-
sent those sets. What was taken to be a credence function is, therefore, a probability
function that represents a particular set of beliefs.

If this can be done, it promises to yield many of the benefits of credences without
incurring the costs. As discussed in [2], for example, it promises to provide an answer
to the Preface Paradox without raising tricky questions about what credences are,
why they should obey various formal constraints, and how our mental states can
exemplify the precision of real numbers. In short, if this account succeeds, then what
Bayesians take to be credence functions are really just mathematical representations
of belief sets. The idealizations of probability axioms, and the infinite precision of
credences, are merely formal tools which can be used to describe belief and the value
that agents place on truth and falsity.

All this requires that belief sets be representable by probability functions, how-
ever. So what does it take for probability functions to represent belief sets? In partial
answer, Easwaran lists several necessary conditions for representability. One is strong
coherence: a belief set B is strongly coherent just in case there is no other belief set
that is at least as accurate as B in every possible state of the world, but that is strictly
more accurate in at least one state. Easwaran shows that if B is representable, then B

is strongly coherent (see [2], p. 829).5

It would help Easwaran’s project considerably if strong coherence were also a suf-
ficient condition for representability. Then by satisfying strong coherence, an agent’s
belief set would conform to many of the constraints that credences impose on ratio-
nality, since that belief set would be representable by a probability function that

2See [8] for a statement of the Preface Paradox, and see [4] for a proposed solution.
3For a defense of this analysis, see [4]. For a detailed discussion of just the left-to-right direction, see [6].
4See [2], p. 830.
5The proof assumes that the probability function which represents B assigns a non-zero probability to
every possible state of the world.
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mimics the properties of credences. Moreover, strong coherence itself seems like a
plausible rationality constraint. For if an agent is rational, then her belief set had
better not be less accurate, overall, than another belief set. But unfortunately, strong
coherence is not sufficient for representability: there are subsets of Boolean algebras
that are strongly coherent yet unrepresentable (see [2], pp. 846–849).

This raises two questions. First, what conditions are sufficient for a belief set to be
representable by a probability function? Second, does any such sufficient condition
provide a plausible constraint on rationality, the way strong coherence does?

In this paper, I answer both questions with a new sufficient condition for rep-
resentability. In Section 2, I review the basic notions which are used to articulate
that condition. In Section 3, I derive representability from the sufficient condition.
In Section 4, I explain why this condition provides a plausible rationality constraint.
Finally, in Section 5, I discuss some paths for future research. I briefly present some
of that research in the Appendix.

Aside from explaining how to reduce credence to belief, this paper also contributes
some new theorems that might be of general interest. For example, Theorems 3.4
and A.4 establish certain formal connections between belief sets and comparative
confidence orderings. These theorems, and the theorems and lemmas leading up to
them, may be interesting for all parties concerned with the connection between belief
and comparative confidence, not just those who want to reduce credence to belief.

2 Basic Notions

2.1 Belief Sets

Roughly, an agent’s belief set is the set consisting of all propositions which she
believes.

Definition 1 (Belief Set) Let X be a finite Boolean algebra. A belief set is a set
B ⊆ X .

The atoms of the algebra—call them ‘state descriptions’—represent mutually
exclusive states in which the world may be. The propositions which agent A believes
are disjunctive combinations of these atomic states. For example, if the atoms of the
algebra are a1, a2, and a3, A’s belief set might contain a1, or a2∨a3, or any other dis-
junctive combination of zero or more of the ai .6 The algebra is assumed to be finite
(and non-empty) in order to simplify the forthcoming analysis.

The following definition states the conditions under which a belief set B is repre-
sentable by a probability function. The idea, roughly, is that B is representable just
in case all the propositions in B are at least as likely as not to be true, and all the
propositions not in B are at least as likely as not to be false.

6The proposition which consists of zero atoms is the empty proposition, denoted ⊥.
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Definition 2 (B-Representability) Let X be a finite Boolean algebra, and let B ⊆ X
be a belief set. Say that B is b-representable (for ‘belief-representable’) just in case
there is a probability function Pr such that for all p ∈ X ,

(i) if Pr(p) > 1
2 then p ∈ B, and

(ii) if Pr(p) < 1
2 then p /∈ B.

Note that if Pr satisfies (i) and (ii), but Pr(p0) = 1
2 for some proposition p0 ∈ X ,

then Pr b-represents B regardless of whether p0 ∈ B or p0 /∈ B. In other words,
propositions assigned a probability of 1

2 do not make a difference to whether or not
the given probability function b-represents the given belief set.7

It is a general fact that for any probability function Pr and any p ∈ X , Pr(p) > 1
2

if and only if Pr(¬p) < 1
2 . Read through the light of this fact, Definition 2 says that

if a proposition is more likely than its negation then it is believed, and if a proposition
is less likely than its negation then it is not believed.

This notion of representability is related to the version of the Lockean threshold
analysis of belief which sets the threshold to 1

2 . For suppose we take the probabilities
Pr(p) to express the credences of some agent A. Then Definition 2 says that if A’s
credence in p is greater than 1

2 then A believes that p, and if A’s credence in p is less
than 1

2 then A does not believe that p.
It is now possible to state, using Definition 2, exactly what needs to be done in

order to reduce credence to belief. We must identify a condition such that if a given
belief set satisfies that condition, then the belief set is b-representable. That is, we
must identify a condition such that if a belief set satisfies that condition, then there
exists a probability function that assigns a probability of at least 1

2 to the propositions
believed – the propositions in the set – and assigns a probability of no more than 1

2
to the propositions not believed – the propositions not in the set. This accomplished,
we will have a condition which is sufficient for a belief set to be summarizable in
terms of a credence function which respects the 1

2 threshold. We will have a condition
for when the structure of belief and the structure of non-belief can be described by
credences.

Note that the particular notion of representability defined in Definition 2 assumes
that the threshold for belief is 1

2 . So the principal results of this paper concern the 1
2

threshold case. As discussed in Section 5 and in the Appendix, however, the results
of this paper can be extended to the threshold 1, and possibly to other thresholds
as well. I focus on the results for the 1

2 threshold case (and the 1 threshold case)
because they are relatively simple. Similar results for other thresholds may be quite
complicated. Moreover, 1

2 and 1 are among the most natural thresholds for belief. So
it is particularly desirable to have representation results for them.

The following two theorems will be useful later. The first—Theorem 2.1—says
that if a proposition and its negation are both in B or both not in B, then they are
equiprobable.

7For justification of this consequence of Definition 2, see [2] (p. 828).
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Theorem 2.1 Let X be a finite Boolean algebra and let B ⊆ X be a belief set. If B
is b-represented by a probability function Pr , then the following conditions hold.

(i) For every proposition p ∈ B, if ¬p ∈ B then Pr(p) = Pr(¬p) = 1
2 .

(ii) For every proposition p /∈ B, if ¬p /∈ B then Pr(p) = Pr(¬p) = 1
2 .

Proof For (i): suppose that p ∈ B and ¬p ∈ B. By Definition 2, Pr(p) � 1
2 and

Pr(¬p) � 1
2 . Since Pr(p) = 1 − Pr(¬p), it follows that Pr(p) = Pr(¬p) = 1

2 .
For (ii): suppose that p /∈ B and ¬p /∈ B. By Definition 2, Pr(p) ≤ 1

2
and Pr(¬p) ≤ 1

2 . Again, since Pr(p) = 1 − Pr(¬p), it follows that Pr(p) =
Pr(¬p) = 1

2 .

Roughly put, the second theorem about belief sets—Theorem 2.2—says that if
two sets only differ from each other on pairs of propositions and their negations, then
those sets are b-represented by exactly the same probability functions.

Theorem 2.2 Let X be a finite Boolean algebra and let B ⊆ X be a belief set.
Suppose B is b-representable by the probability function Pr , and suppose B ′ ⊆ X is
a belief set that satisfies the following two conditions.

(i) If p ∈ B \ B ′ then ¬p ∈ B.
(ii) If p ∈ B ′ \ B then ¬p /∈ B.

Then Pr b-represents B ′.

Proof Let p ∈ X be such that Pr(p) > 1
2 . Then p ∈ B (since Pr b-represents

B). Suppose p /∈ B ′. Then ¬p ∈ B by condition (i). But then Pr(p) = 1
2 by

Theorem 2.1, which contradicts the supposition. Therefore, p ∈ B ′.
Now let p ∈ X be such that Pr(p) < 1

2 . Then p /∈ B (since Pr b-represents
B). Suppose that p ∈ B ′. Then ¬p /∈ B by condition (ii). But then Pr(p) = 1

2 by
Theorem 2.1, which contradicts the supposition. Therefore, p /∈ B ′.

So by Definition 2, Pr b-represents B ′.

As will become clear in Section 3, this little theorem is quite important. Think of it
as showing that if two belief sets are ‘sufficiently similar’ to each other, establishing
the b-representability of one suffices to establish the b-representability of the other.

2.2 Comparative Confidence Orderings

Comparative confidence orderings—which encode information about whether an
agent is more (or less) confident in one proposition than another—play a crucial role
in the coming discussion of belief. They act as tools for explicating certain properties
of belief sets, properties which are relevant to whether those sets are b-representable.
In this section, I define comparative confidence orderings, and I introduce some of
the constraints which will be relevant for connecting them to belief sets.
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Definition 3 (Comparative Confidence Ordering) Let X be a finite Boolean algebra.
A comparative confidence ordering is a set � ⊆ X × X .

Intuitively, if A is an agent and p, q ∈ X , then p � q just in case A is at least as
confident in the truth of p as in the truth of q. Let p 	 q be shorthand for p �

.
Comparative confidence orderings, like belief sets, can be represented by proba-

bility functions.

Definition 4 (C-Representability) Let X be a finite Boolean algebra, and let � ⊆
X × X be a comparative confidence ordering. Say that � is c-representable (for
‘comparative-representable’) just in case there is a probability function Pr such that
for every p, q ∈ X , p � q if and only if Pr(p) � Pr(q).

So a comparative confidence ordering is c-representable just in case there is a
probability function on the underlying algebra which preserves the ordering.

As discussed in [3], comparative confidence orderings are typically taken to obey
five conditions. Of those five, just three will be relevant here. Let X be a finite
Boolean algebra, and let � ⊆ X × X be a comparative confidence ordering. The
three conditions are as follows.

(A1) For every p, q ∈ X , either p � q or q � p.
(A2) 
 	 ⊥.
(A3) For every p ∈ X , p � ⊥.

(A1) says that the ordering is total: for every pair of propositions, the agent is at
least as confident in one as in the other. (A2) says that the agent is strictly more
confident in 
, the tautological proposition that contains every atom in X , than ⊥,
the contradictory proposition that is empty. (A3) says that for every proposition, the
agent is at least as confident in that proposition as in ⊥.

As I shall use them, (A1), (A2), and (A3) are best understood as ‘belief-to-
confidence’ constraints. In Section 3, I show how to construct collections of com-
parative confidence orderings from belief sets. (A1), (A2), and (A3) are important
constraints which the orderings obtained from that construction end up satisfying.

The following condition, which some comparative confidence orderings satisfy,
will also play a central role in this paper.

(SA) (Scott’s Axiom) LetX be a finite Boolean algebra and let� ⊆ X ×X be a com-
parative confidence ordering. For all pairs of sequences X = 〈x1, . . . , xn〉
and Y = 〈y1, . . . , yn〉 of length n � 2 whose elements belong to X , if

(i) X and Y have the same number of truths in every atom of X ,8 and
(ii) for all i ∈ [1, n), xi � yi ,

8Formally, this is represented as
n∑

i=1
xi =

n∑

i=1
yi , where each xi (and each yi ) is understood to be a

characteristic function of the corresponding element in X .
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then

(iii) yn � xn.

The idea of (SA) can be explained via a simple example drawn from a more famil-
iar context: the real numbers under the usual� relation. Let x1, x2, y1, and y2 be real
numbers, let X = 〈x1, x2〉, and let Y = 〈y1, y2〉. Suppose that x1 + x2 = y1 + y2,
which is the analog of condition (i). Also suppose that x1 � y1, which is the analog
of condition (ii). It follows that y2 � x2,9 which is the analog of (iii). Thus, the �
relation on the reals satisfies an analog of (SA) for the case n = 2.10 One can think
of (SA) as encapsulating this fact about � in the context of Boolean algebras.

As discussed in more detail in Section 4, despite its complicated appearance, (SA)
articulates an intuitively plausible constraint on comparative confidence. For if agent
A is at least as confident in each xi as in the corresponding yi for i ∈ [1, n) (condi-
tion (ii)), and A is strictly more confident in xn than in yn (the negation of condition
(iii)), then A seems to be irrational if she also knows that the X propositions and the
Y propositions are equally accurate (condition (i)). To put it roughly: if the X propo-
sitions and the Y propositions are known by A to be equally accurate, then A had
better not be strictly more confident in the X propositions than in the Y propositions.

Dana Scott used (SA) to prove what is now called “Scott’s Theorem” [10], one
version of which is given below.

Theorem 2.3 (Scott’s Theorem) Let X be a finite Boolean algebra, and let � ⊆
X×X . Then� satisfies (A1), (A2), (A3), and (SA) if and only if� is c-representable.

Thus, satisfaction of (A1), (A2), (A3), and (SA) is sufficient and necessary for c-
representability.

Theorem 2.3 is important for our purposes because it connects (SA) to c-
representability. So if c-representability connects to b-representability in the right
way, then in virtue of Theorem 2.3, (SA) can be used to derive a sufficient con-
dition for b-representability. In the next section, I show how c-representability and
b-representability are so connected, and then derive the sufficient condition.

3 The Sufficient Condition

Before deriving the sufficient condition for b-representability, I discuss a particular
way of constructing comparative confidence orderings from belief sets. Think of the
construction as producing the comparative confidence orderings that an agent might
reasonably exemplify, given what she believes; the orderings that are consonant, say,
with her belief set. The construction proceeds in two steps. First, starting from a
belief set B, I construct a partial comparative confidence ordering ��

B . Roughly, B

9If x2 > y2, and x1 � y1, then x1+x2 > y1+y2, which contradicts the supposition that x1+x2 = y1+y2.
10It is not hard to show that � on the reals also satisfies an analog of (SA) for all n greater than or equal
to 2.
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induces ��
B by inducing certain comparisons among the beliefs that B contains. Sec-

ond, I construct the set of all total extensions of ��
B that satisfy some relatively minor

restrictions.
Also, from now on, I assume that ⊥ /∈ B and that 
 ∈ B. This is a reasonable

assumption to adopt because it is implied by strong coherence: it can be shown that
if ⊥ ∈ B or if 
 /∈ B, then B is not strongly coherent.11

The ordering ��
B is constructed as follows. Let B ⊆ X be the belief set of agent

A. Define the following three sets.

D1 = {〈p, ¬p〉 | p ∈ B}.
D2 = {〈¬p, p〉 | p /∈ B}.
D3 = {〈p, ⊥〉 | p ∈ X }.
Then let ��

B= D1 ∪ D2 ∪ D3.
D1 says that if A believes p, then A is at least as confident in p as in ¬p. Since

this is extremely plausible, the comparisons in D1 seem like the sorts of comparisons
that A’s belief set should induce. So D1 belongs in the partial comparative confidence
set ��

B that is induced by A’s belief set. D3 says that for every p ∈ X , A is at least as
confident in p as in the empty proposition. Again, since this is extremely plausible,
D3 belongs in ��

B too.
In the case ofD2, things are a bit more complicated.D2 says that for every p which

A does not believe, A is at least as confident in ¬p as in p. Given that the notion of
b-representability at issue here is based on a 1

2 threshold for belief (see Definition 2),
this is extremely plausible. So given the relevant notion of b-representability, D2
should be included in the comparative confidence set ��

B . Of course, D2 is much
less plausible for thresholds of belief other than 1

2 . But for other thresholds, D2 is no
longer required in order to obtain interesting results; see Section 5 and the Appendix.

D1, D2, and D3 make no assumptions about how A’s beliefs ought to be compared
with each other. They only concern comparisons among beliefs and non-beliefs.12 So
they are consistent with a wide variety of comparative confidence orderings that one
might want to construct from A’s belief set. Very little is assumed about the ordering
that, given belief set B, should be associated with A.

Now for the second step of the construction. Let K be the set of total comparative
confidence orderings� that contain��

B as a subset, and that also satisfy the following
two conditions.

(C1) 〈⊥, 
〉 /∈ �.
(C2) For all p ∈ B, if ¬p /∈ B then 〈¬p, p〉 /∈ �.13

Given that 〈
, ⊥〉 is automatically in each ordering in K (since it is in D3), (C1)
simply says that according to all of those orderings, A is strictly more confident in 


11Thanks to an anonymous reviewer for drawing my attention to this.
12Depending on the belief set in question, the only possible exception to this might be D1. For D1 would
include comparisons among A’s beliefs if for some p, A believes p and A believes ¬p.
13Given the assumption that ⊥ /∈ B and that 
 ∈ B, (C1) actually follows from (C2). I still state (C2) as
a separate condition because in the proofs to come, it is perhaps the most important consequence of the
assumption that ⊥ /∈ B and that 
 ∈ B.
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than in⊥. (C2) says that comparative confidence is strict for any proposition the agent
believes without also believing its negation: if agent A believes p and does not believe
¬p, then according to (C2), A is strictly less confident in ¬p than in p. Basically,
(C2) implies that D1 and D2 exhaust the comparisons between propositions and their
negations that orderings in K may include. As shown in Theorem 3.3, this ensures
that the belief sets which can be ‘read off’ orderings in K are ‘sufficiently similar’ to
the belief set B, for the purposes of drawing conclusions about b-representability.

The following definition provides a succinct way to refer to this construction.

Definition 5 (Constructed from B in the manner of C) Let X be a finite Boolean
algebra, let B ⊆ X be a belief set, and let K be the set of total comparative confi-
dence orderings that contain ��

B and that satisfy (C1) and (C2). Then K is the set of
comparative confidence orderings constructed from B in the manner of C.

Like (A1), (A2), and (A3), the conditions D1, D2, D3, C1, and C2 are best under-
stood as ‘belief-to-confidence’ constraints. They are constraints used to generate the
set K of comparative confidence orderings that a given belief set induces. Of course,
the latter five constraints are explicitly built into the C construction. But as the follow-
ing lemma shows, the orderings constructed in the manner of C satisfy (A1), (A2),
and (A3) as well.

Lemma 1 Let X be a finite Boolean algebra, let B ⊆ X be a belief set, and let K be
the set of comparative confidence orderings constructed from B in the manner of C.
Each � ∈ K satisfies (A1), (A2), and (A3).

Proof For (A1): by Definition 5, � is total. Thus, � satisfies (A1).
For (A2): 〈
, ⊥〉 ∈ ��

B because 
 ∈ D3. Since ��
B ⊆ �, 〈
, ⊥〉 ∈ �. By

Definition 5, � satisfies (C1), and so 〈⊥, 
〉 /∈ �. Hence, 
 	 ⊥.
For (A3): for each p ∈ X , 〈p, ⊥〉 ∈ ��

B ⊆ �.

The following theorem shows that (SA) is both sufficient and necessary for an
ordering in K to be c-representable.

Theorem 3.1 Let X be a finite Boolean algebra, let B ⊆ X be a belief set, and let
K be the set of comparative confidence orderings constructed from B in the manner
of C. Then for each � ∈ K, � satisfies (SA) if and only if � is c-representable.

Proof By Theorem 2.3, � satisfies (A1), (A2), (A3), and (SA) if and only if it is c-
representable. By Lemma 1, each � ∈ K satisfies (A1), (A2), and (A3). Therefore,
for each � ∈ K, � satisfies (SA) if and only if � is c-representable.

The remaining theorems connect the c-representability of orderings in K to the b-
representability of the belief set from which K was constructed. They invoke a new
notion: that of a belief set induced by a comparative confidence ordering.
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Definition 6 (Induced Belief Set) Let X be a finite Boolean algebra, and let � ⊆
X ×X be a comparative confidence ordering. Let B� be the belief set which consists
of all and only the propositions p such that p 	 ¬p. Call B� the belief set induced
by �.

The following theorem connects comparative confidence orderings to the belief
sets they induce. It states that if an ordering induces a belief set, then any probability
functions that c-represent the former must b-represent the latter.

Theorem 3.2 Let X be a finite Boolean algebra, and let � ⊆ X × X be a com-
parative confidence ordering that induces the belief set B�. Let Pr be a probability
function that c-represents �. Then Pr b-represents B�.

Proof If Pr(p) > 1
2 then 2 · Pr(p) > 1 = Pr(p) + Pr(¬p), and so Pr(p) >

Pr(¬p). By Definition 4, p � ¬p. Also by Definition 4, for if ¬p � p,
then Pr(¬p) � Pr(p). Therefore, p 	 ¬p. So by Definition 6, p ∈ B�.

If Pr(p) < 1
2 then 2 ·Pr(p) < 1 = Pr(p)+Pr(¬p), and so Pr(p) < Pr(¬p).

By Definition 4, ¬p � p, so . Definition 6 implies that p /∈ B�.
Therefore, by Definition 2, Pr b-represents B�.

The next theorem shows that if B is used to construct a set K of comparative
confidence orderings in the manner of C, then each comparative confidence ordering
induces a belief set that is ‘sufficiently similar’ to B.14

Theorem 3.3 Let X be a finite Boolean algebra, let B ⊆ X be a belief set, and let
K be the set of comparative confidence orderings constructed from B in the manner
of C. Suppose that some � ∈ K induces the belief set B�. Then the following two
conditions hold.

(i) B� ⊆ B.
(ii) For every p ∈ B \ B�, ¬p ∈ B \ B�.

Proof For (i): let p ∈ B�. By Definition 6, p 	 ¬p, and so 〈¬p, p〉 /∈ �. It follows
that p ∈ B, for if p /∈ B, then 〈¬p, p〉 ∈ D2. But then 〈¬p, p〉 ∈ �, which is a
contradiction.

For (ii): let p ∈ B \ B�. By Definition 6, p ∈ B� if and only if p 	 ¬p. Since
p /∈ B�, either 〈p, ¬p〉 /∈ � or 〈¬p, p〉 ∈�. The former is impossible: since p ∈ B,
it follows that 〈p, ¬p〉 ∈ D1, and thus, 〈p, ¬p〉 ∈ �. So 〈¬p, p〉 ∈ �. And if
¬p /∈ B, then � does not satisfy (C2). Therefore, ¬p ∈ B.

By Definition 6, ¬p ∈ B� if and only if ¬p 	 p. As was already shown,
〈p, ¬p〉 ∈ �. Therefore ¬p �	 p, and so ¬p /∈ B�.

Thus, ¬p ∈ B \ B�.

14In fact, each ordering in K induces the very same belief set.
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The set B� is ‘sufficiently similar’ to B in the sense that (i) every proposition in
B� is in B, and (ii) if B includes a proposition that B� does not, then B (and not B�)
also includes that proposition’s negation.15

At long last, here is the sufficient condition for b-representability.

Theorem 3.4 (Sufficient Condition for B-Representability) Let X be a finite
Boolean algebra, let B ⊆ X be a belief set, and let K be the set of comparative con-
fidence orderings constructed from B in the manner of C. Suppose that some � ∈ K
satisfies (SA). Then B is b-representable.

Proof By Theorem 3.1, � is c-representable by some probability function Pr . Let
B� be the belief set induced by �. By Theorem 3.2, Pr b-represents B�.

By Theorem 3.3, B� ⊆ B. Since B� \ B = ∅, condition (i) of Theorem 2.2
holds trivially (where B� is substituted for B in Theorem 2.2, and B for B ′). Since
Theorem 3.3 implies that ¬p ∈ B \ B� for every p ∈ B \ B�, condition (ii) of
Theorem 2.2 holds as well. It therefore follows from Theorem 2.2 that since Pr

b-represents B�, Pr also b-represents B.

Here is an informal, intuitive account of how this sufficient condition was derived.
Start with a belief set B. Use B to construct a setK of comparative confidence order-
ings that satisfy some restrictions. Then use Scott’s theorem to show that if at least
one of those orderings satisfies (SA), then it is c-representable. Suppose some such
ordering � does indeed satisfy (SA), and let Pr be the probability function that c-
represents it. Use � to induce a second belief set B�, and show that Pr b-represents
B�. Finally, show that since Pr b-represents B�, Pr also b-represents the origi-
nal belief set B. This establishes Theorem 3.4: if the set of comparative confidence
orderings constructed from B in the manner of C includes at least one ordering that
satisfies Scott’s axiom, then B is b-representable.16

4 The Sufficient Condition as a Constraint on Rationality

At the end of Section 1, I raised two questions for the project of representing
belief sets by probability functions. First, what conditions are sufficient for repre-
sentability? Second, does any such condition amount to a plausible constraint on
rationality?

Theorem 3.4 provides an answer to the first question: for an agent’s belief set to
be representable by a probability function, it is sufficient that one of the comparative
confidence orderings constructed from her belief set, in the manner of C, satisfies
(SA). But what about the second question? Does the sufficient condition of Theorem
3.4 amount to a plausible rationality constraint?

15To illustrate what this means: if B turns out to be representable by a probability function, then every
proposition in B but not B� must get assigned probability 1

2 .
16A necessary condition for b-representability is related to—but distinct from—this sufficient condition.
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There are reasons for thinking that it does. In particular, there are reasons for
thinking that every rational agent’s belief set B should conform to the following two
criteria. The first is Constructive Consistency: B should be consistent with the C con-
struction. That is, B should give rise to at least one total comparative confidence
ordering that contains D1, D2, and D3, and that satisfies (C1) and (C2). The sec-
ond is Scott Satisfiability: at least one of the orderings which B induces—via the C
construction—should satisfy (SA).

Note that if an agent’s belief set must indeed conform to these criteria, in order for
that agent to be rational, then the sufficient condition of Theorem 3.4 is a plausible
rationality constraint. For by Constructive Consistency, if agent A is rational, then her
belief set should be consistent with the C construction: her belief set should generate
at least one total comparative confidence ordering that satisfies the requirements of
the C construction. And by Scott Satisfiability, if A is rational, then one of the order-
ings generated by the C construction should satisfy (SA). Thus, if A is rational, then
(SA) must be satisfied by one of the comparative confidence orderings constructed
from A’s belief set in the manner of C.

Let us now see what justifies these two criteria. To start, consider Constructive
Consistency. First and foremost, note that Constructive Consistency does not require
the agent to actually have a comparative confidence ordering.17 Constructive Con-
sistency merely requires that the agent’s belief set induce at least one comparative
confidence ordering that satisfies the belief-to-confidence constraints of the C con-
struction. The fundamental doxastic state is the belief set; the orderings induced are
not included in that fundamental state. Think of the comparative confidence order-
ings as providing non-fundamental, higher-level descriptions of fundamental facts
about belief.18

Second, the C construction invoked by Constructive Consistency places very few
restrictions on the comparative confidence orderings that may suitably describe A’s
doxastic state.19 In virtue of D1, it requires that according to the descriptions those
orderings provide, A must be at least as confident in her beliefs as in those beliefs’
negations. This seems like a reasonable restriction to impose: if A believes that p,
then presumably A should not be strictly less confident in p than in ¬p. In virtue
of D2, it requires that according to the descriptions those orderings provide, A must
be no more confident in the beliefs she does not have than in the negations of those
non-beliefs. This too seems reasonable: if A does not believe that p, then A should

17Thanks to an anonymous reviewer for pressing the importance of this point.
18An analogy might help here: facts about beliefs (constrained by the C construction) give rise to those
orderings, much in the way that facts about fundamental particles (constrained by statistical mechanical
laws) give rise to the law-like regularities of thermodynamics.
19Note that the C construction does not itself suggest anything about which (if any) of the generated
orderings provide the best description of A’s doxastic state. At most, it articulates a necessary condition
on the comparative confidence ordering that A may reasonably have: in order to be a suitable non-
fundamental description of A’s belief set, that ordering must satisfy the relatively minor restrictions of the
C construction.
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be at least as confident in ¬p as in p.20 In virtue of D3, it requires that according
to the descriptions those orderings provide, A must be at least as confident in every
proposition as in ⊥. Once again, this seems like a completely reasonable restriction
to impose on rationality: A should not be strictly more confident in a contradiction
than in some other proposition.

In virtue of (C1), the C construction requires that according to each of the orderings
induced by A’s belief set, A must be strictly more confident in 
 than in ⊥. This
seems reasonable: A should not be strictly more confident in a contradiction than in a
tautology, and A should not be equally confident in both. Finally, in virtue of (C2), it
requires that according to the descriptions those orderings provide, A must be strictly
more confident in her beliefs than in the negations of those beliefs, whenever A does
not believe those negations. This seems reasonable as well: it would be arbitrary for
A to be exactly as confident in p as in ¬p, but to believe one and not the other.

Of course, Constructive Consistency does not imply that A must have a total
comparative confidence ordering, in order for A to be rational. For Constructive Con-
sistency does not require that A have a comparative confidence ordering, total or
partial, at all. Rather, it only requires that A’s belief set be capable of inducing a
total ordering in the manner of the C construction. This too seems like a reasonable
constraint to impose on rationality.

So each of the constraints that the C construction imposes on comparative confi-
dence orderings are pretty reasonable. They seem like constraints that descriptions of
rational agents—descriptions which invoke comparative confidence, at least—should
satisfy. Therefore, Constructive Consistency is a plausible rationality constraint.

Now consider Scott Satisfiability, which states that every rational agent’s belief
set should give rise, via the C construction, to at least one comparative confidence
ordering that satisfies (SA). To see why this is a plausible constraint on rationality,
suppose that agent A has a belief set which fails to satisfy Scott Satisfiability. That
is, suppose that every comparative confidence ordering induced by A’s belief set—
every ordering, consistent with the C construction, which may describe A’s doxastic
state—fails to satisfy Scott’s axiom. Then intuitively, A’s doxastic state is irrational.

That irrationality could manifest itself in a number of ways. To see it in just one
case, assume that the C construction generates exactly one ordering �1 from A’s
belief set,21 and suppose that �1 violates (SA) because there are two n-tuples of
propositions 〈x1, . . . , xn〉 and 〈y1, . . . , yn〉 such that the following three conditions
obtain. First, according to the description provided by �1, A is at least as confident
in x1 as in y1, at least as confident in x2 as in y2, and . . . and at least as confident in
xn−1 as yn−1. In other words, A satisfies condition (ii) of (SA). Second, according to
�1, A is strictly more confident in xn than in yn. That is, A violates condition (iii) of
(SA). Third, according to �1, A knows that collectively, the xis are just as accurate
as the yis. In other words, (i) of (SA) is true. Then according to the description of
A’s doxastic state which �1 provides, A is irrational. And that seems right. For A is

20This is especially reasonable given the assumption, employed in the formulation of Definition 2, that
the threshold for belief is 1

2 . It is less reasonable for different belief thresholds. Again, this is discussed in
Section 5 and in the Appendix.
21This is assumed merely in order to keep the example relatively simple.
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strictly more confident in the collection of xis than the collection of yis, despite the
fact that A knows the two collections contain the same number of truths.

In general, of course, A’s belief set will induce many different comparative confi-
dence orderings that are consistent with the C construction. If some of those orderings
do not satisfy (SA), but others do, it does not follow that A is irrational. For there
are descriptions of A’s doxastic state which do not have the sorts of implications for
irrationality that �1 has. Actually, since Theorem 3.4 implies that A’s belief set is b-
representable in this case, A is rational. In short, rationality merely requires that there
be at least one comparative confidence ordering, at least one such description of A’s
belief set, which satisfies both (SA) and the requirements of the C construction.

But suppose instead that every single one of the orderings generated by the C
construction fail to satisfy (SA). Suppose there is no way whatsoever to describe
A’s doxastic state, using comparative confidence, in a way that avoids the sort of
irrationality exhibited by �1. Then A clearly seems irrational.22

A concrete example will help motivate these conclusions. Suppose Emily the
policewoman is chasing Dick the thief. She sees three directions in which Dick
could have run: LEFT, RIGHT, or STRAIGHT. She is more confident that Dick went
LEFT than that he went STRAIGHT. So intuitively, she should be more confident in
LEFT ∨ RIGHT than in STRAIGHT ∨ RIGHT.23

Violating (SA) amounts to violating this extremely plausible intuition. I shall
demonstrate why for just one such violation.24 Let X be the Boolean algebra con-
sisting of three atoms: LEFT, RIGHT, and STRAIGHT. Let X = 〈LEFT, STRAIGHT ∨
RIGHT〉 and let Y = 〈STRAIGHT, LEFT ∨ RIGHT〉. Since X and Y have the same
number of truths in each atom of X ,25 condition (i) of (SA) is satisfied. Since
Emily is more confident that Dick went LEFT than that he went STRAIGHT—
that is, since LEFT � STRAIGHT, according to Emily’s comparative confidence
ordering—condition (ii) is satisfied too. But suppose (SA) fails here. That is, suppose
STRAIGHT ∨ RIGHT 	 LEFT ∨ RIGHT; this is just the negation of condition (iii).
Then according to �, Emily’s belief set is such that she is strictly more confident in
STRAIGHT∨ RIGHT than in LEFT ∨ RIGHT. Since she is at least as confident in LEFT

as in STRAIGHT, however, she is irrational.

22There is a related argument for the claim that (SA) is a rationality constraint. In [5], pp. 60–62, James
Hawthorne argues that a rational agent should have a comparative confidence ordering that either satisfies,
or is extendible to, a condition he calls (X). Roughly put, an agent’s total comparative confidence ordering
satisfies (X) just in case there is some way to partition the space of possibilities into equally plausible states
such that the agent has very little confidence in any one of them. It can be shown that in conjunction with
a few other plausible assumptions, (X) implies (SA). Thus, to the extent that (X) amounts to a necessary
condition for rationality, (SA) does too. Note that this argument, unlike mine, assumes that agents actually
have comparative confidence orderings.
23For clarity of exposition, in this example, I occasionally describe Emily as actually having a compar-
ative confidence ordering. Nothing hangs on that, however. The entire example could be reworded, in a
convoluted way, so that the comparative confidence ordering is just a way of describing Emily’s belief set.
24The other ways of violating (SA) are just as irrational as this one.
25Regardless of which atom is taken to be actual, the number of truths in X and the number of truths in
Y are each one. For example, if LEFT is taken to be actual, then exactly one proposition in X is true (the
proposition LEFT) and exactly one proposition in Y is true (the proposition LEFT ∨ RIGHT).



The Representation of Belief 729

Given these reasons for thinking that rational agents should satisfy Constructive
Consistency and Scott Satisfiability, the sufficient condition of Theorem 3.4 provides
a plausible rationality constraint. Consequently, in virtue of that theorem, it follows
that if an agent is rational, then her belief set can be represented by a probability
function.

5 Conclusion

Theorem 3.4 states a sufficient condition for b-representability, and there are reasons
for thinking that this condition provides a plausible rationality constraint. Moreover,
by satisfying that constraint, an agent’s belief set conforms to many of the constraints
on rationality that credences impose. For by Theorem 3.4, there exists a probability
function that b-represents the belief set.

Though I find the points made in Section 4 compelling, I do not think that they
establish, once and for all, that credences are just mathematical representations of
agential belief. Perhaps there are countervailing reasons to reject Scott Satisfiabil-
ity, for instance. (SA) is a rich, complicated axiom, and that might make it seem too
strong to be a rationality constraint. Moreover, Definition 2 assumed that the thresh-
old for belief is 1

2 . So one may be able to reject the conclusion that credences reduce
to belief, as argued for here, by rejecting the 1

2 threshold.
But in fact, these results look like they will generalize to thresholds other than 1

2 .
By way of illustration, in the Appendix, I explain how to generalize these results to
a threshold of 1.26 To put it briefly, for the 1 threshold case, I change the definition
of b-representability, I alter D1 and (C2), I delete D2, and I change the definition
of a comparative confidence ordering inducing a belief set. The definition of b-
representability is changed because, of course, the threshold for belief is now 1. D1
and (C2) are altered because they are the key belief-to-confidence constraints in the
C construction which allow a belief set to be (almost) entirely recovered from the
comparative confidence orderings it induces. And when the threshold is 1, different
belief sets need to be recovered. D2 is deleted simply because it no longer applies.
The agent could fail to believe that p, and yet still be properly described as strictly
more confident in p than in ¬p. The definition of an ordering inducing a belief set is
changed because, unsurprisingly, the required notion of ‘inducing’ for a threshold of
1 is different from the required notion of ‘inducing’ for a threshold of 1

2 .
For the sake of reducing credence to belief, of course, it would be great if these

results extended to other thresholds. But it would also be quite interesting if they did
not. That would suggest that the thresholds 1

2 and 1 are rather special: they are the
unique thresholds for which credences can be reduced to belief via Scott’s axiom and
orderings induced by belief sets. So either way, the present results point to avenues
for future research that are worth pursuing. If the results extend to other thresholds,

26Generalizations to other thresholds seem to be more convoluted than the 1 threshold generalization.
Some of them may constitute mathematically and philosophically successful reductions of credence to
belief, but it is beyond the scope of the present discussion to explore if that is so.
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then the reductive project is that much closer to full success. If not, then we have
discovered an interesting fact about thresholds 1

2 and 1.
In sum, the results of Sections 3 and 4 motivate the view that belief is basic, and

that credences are just mathematical tools for summarizing belief states. Moreover,
given that Theorem 3.4 holds for the 1

2 threshold, and that a similar theorem holds for
the threshold 1, there is reason to seek out analogous theorems for other thresholds.27

The present results illustrate a couple ways by which to reduce credence to belief,
and they point to other ways of carrying out that reduction.
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Appendix

The results of Section 3 generalize to the case of a belief threshold of 1. First, a new
definition of belief representability is required.

Definition 7 (B1-Representable) Let X be a finite Boolean algebra, and let B ⊆ X
be a belief set. Say that B is b1-representable just in case there is a probability
function Pr such that

(i) if Pr(p) = 1 then p ∈ B, and
(ii) if Pr(p) < 1 then p /∈ B.

Second, the C construction needs to be adjusted for the 1 threshold. The new
construction consists of two parts. For the first, define the following two sets.

D1
1 = {〈p, 
〉 | p ∈ B}.

D1
2 = {〈p, ⊥〉 | p ∈ X }.

Then let ��1
B = D1

1 ∪ D1
2.

D1
1 says that if A believes p, then A is at least as confident in p as in the tautologi-

cal proposition. Given that the notion of b1-representability under scrutiny here takes
the threshold for belief to be 1, D1

1 is extremely plausible: it implies absolute cer-
tainty in all propositions believed. D1

2 is plausible for same reasons D3 is plausible
(see Section 3).

27Of all the thresholds for which one might want to reduce probability to belief, 1 and 1
2 are among the

most desirable. For they are among the few thresholds for belief which seem plausible, independent of
context. In part, the results are simplest for these thresholds because there are known qualitative axiom-
atizations of the constraints that belief sets corresponding to them must satisfy. In the case of 1, those
constraints derive from classical logic: the belief sets must be deductively closed, for instance. For the case
of 1

2 , see [12].
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For the second part of the construction, let K1 be the set of total comparative con-
fidence orderings � that contain ��1

B as a subset, and that also satisfy the following
conditions.

(C1) 〈⊥, 
〉 /∈ �.
(C12) For all p /∈ B, 〈p, 
〉 /∈ �.

As before, (C1) ensures that according to every ordering in K1, A is strictly more
confident in 
 than in ⊥. (C12) ensures that if p is not believed, then A is not at least
as confident in p as in 
. Since the orderings in K1 are total, this implies that if p is
not believed, then A is strictly more confident in 
 than in p.

The following definition provides a succinct way to refer to this construction.

Definition 8 (Constructed from B in the manner of C-1) Let X be a finite Boolean
algebra, let B ⊆ X be a belief set, and let K1 be the set of total comparative confi-
dence orderings that contain ��1

B and that satisfy (C1) and (C12). Then K1 is the set of
comparative confidence orderings constructed from B in the manner of C − 1.

As before, we need an account of how comparative confidence orderings can
induce belief sets.

Definition 9 (Induced1 Belief Set) Let X be a finite Boolean algebra, and let � ⊆
X ×X be a comparative confidence ordering. Let B� be the belief set which consists
of all and only the propositions p such that p � 
. Call B� the belief set induced1
by �.

Now to derive a sufficient condition for b1-representability that is analogous to
Theorem 3.4. Proofs are included only when they are significantly different from the
proofs of the corresponding lemmas and theorems in Section 3.

Lemma 2 Let X be a finite Boolean algebra, let B ⊆ X be a belief set, and let K1
be the set of comparative confidence orderings constructed from B in the manner of
C-1. Each � ∈ K1 satisfies (A1), (A2), and (A3).

Theorem A.1 Let X be a finite Boolean algebra, let B ⊆ X be a belief set, and let
K1 be the set of comparative confidence orderings constructed from B in the manner
of C-1. Then for each � ∈ K1, � satisfies (SA) if and only if � is c-representable.

Theorem A.2 Let X be a finite Boolean algebra, and let � ⊆ X × X be a com-
parative confidence ordering that induces1 the belief set B�. Let Pr be a probability
function that c-represents �. Then Pr b1-represents B�.

Proof If Pr(p) = 1 then since Pr(
) = 1, it follows that Pr(p) � Pr(
). So by
Definition 4, p � 
. Therefore, by Definition 9, p ∈ B�.
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If Pr(p) < 1 then since Pr(
) = 1, it follows that Pr(p) < Pr(
). So by
Definition 4, p ≺ 
. Definition 9 implies that p /∈ B�.

Therefore, by Definition 7, Pr b1-represents B�.

Theorem A.3 Let X be a finite Boolean algebra, let B ⊆ X be a belief set, and let
K1 be the set of comparative confidence orderings constructed from B in the manner
of C-1. Suppose that some � ∈ K1 induces1 the belief set B�. Then B� = B.

Proof First, take p ∈ B�. By Definition 9, p � 
. By condition (C12), if p /∈ B, then
p �� 
. Thus, p ∈ B. So B� ⊆ B.

Second, take p ∈ B. Then 〈p, 
〉 ∈ D1
1, from which it follows that 〈p, 
〉 ∈ �.

Thus, by Definition 9, p ∈ B�. So B ⊆ B�.
Therefore, B� = B.

Finally, here is the sufficient condition for b1-representability.

Theorem A.4 (Sufficient Condition for B1-Representability) Let X be a finite
Boolean algebra, let B ⊆ X be a belief set, and let K1 be the set of comparative
confidence orderings constructed from B in the manner of C-1. Suppose that some
� ∈ K1 satisfies (SA). Then B is b1-representable.

Proof By Theorem A.1, � is c-representable by some probability function Pr . Let
B� be the belief set induced1 by �. By Theorem A.2, Pr b1-represents B�. Since
B� = B by Theorem A.3, Pr b1-represents B.
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