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Abstract We formulate a Hilbert-style axiomatic system and a tableau calculus for
the STIT-based logic of imagination recently proposed inWansing (2015). Complete-
ness of the axiom system is shown by the method of canonical models; completeness
of the tableau system is also shown by using standard methods.
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1 Introduction

There exists an important difference between imagination and the propositional
attitudes of belief and knowledge. Whilst it is widely assumed that, as a matter of
psychological fact, it is impossible for agents to form beliefs at will, it seems to be
clear that imagination may operate in voluntary mode. However, until recently the
agentiveness of imagination has not been accounted for in the sparse literature on
the logic of imagination ascriptions. Both I. Niiniluoto [10] and A. Costa Leite [8]
treat expressions of the form ‘agent j imagines that’ as normal modal operators.
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Also, there is disagreement concerning the extent to which imagination is regulated
by logical principles. Modelling imagination as a normal modality comes with the
commitment to a number of properties that in analogy to the well-known problem of
logical omniscience in epistemic logic may be said to give rise to a problem of logical
omni-imagination. Imagination then is closed under valid implication and imagined
implication. Moreover, all valid propositions of the underlying non-modal logic are
imagined. This may be seen as a rather strong idealization and as being descriptively
inadequate. According to some authors, such as G. Priest [11], imagination even fails
to be governed by any logical principles.

A position intermediate between these two extremes is adopted in [18], where the
semantics of a propositional logic of imagination ascriptions for single agents has
been motivated and introduced. The main feature of this approach is that ‘to imagine’
is seen as an action verb. It is assumed that subjects often and typically have direct
control over their imaginations. This idea suggests to model imagination ascriptions
by using the modal logic of agency, more concretely the seeing-to-it-that (STIT)
theory developed by N.D. Belnap, M. Perloff, M. Xu, F. von Kutschera, and J. Horty,
cf. [2, 6] and the references given there. In [18] it is argued that imagination is closed
under valid equivalence, and the suggested STIT imagination logic is compared with
Niiniluoto’s [10] semantics of imagination ascriptions. The semantics of the agentive
imagination operator merges the semantics of the dstit-operator from STIT theory
and the interpretation of the necessity operator in the smallest classical modal logicE,
see [4]. As a result, imagination is closed under valid equivalence. In this framework,
propositional content is represented by sets of moment/history-pairs. The point is
not that propositions are necessarily to be identified with sets of moment/history-
pairs, but that for imagination we have closure under some criterion of propositional
identity. This conception agrees with understanding imagination in terms of mental
pictures that are assumed to comprise propositional content. If an agent a imagines
that B, and B is logically equivalent with C, then the mental picture that a creates
in her or his act of imagining that B does not differ from the picture created by
imagining that C, cf. [18].1

In the present paper, we provide two different kinds of proof systems for the
semantically introduced logic of imagination: a Hilbert-style axiomatization and a
tableau calculus. Both systems offer algorithmic insight into the STIT imagination
logic. We shall not repeat the motivating considerations from [18] but otherwise keep
the paper self-contained. Whereas in [18] the focus is on introducing the semantics
of the modal imagination operators, in the present paper we include other modal
operators as well.

1Imagination differs from knowledge not just in being agentive. Knowledge is factive, imagination clearly
is not. Whilst justification is generally seen as a necessary condition of possessing knowledge, this is
clearly not the case for imagination. Epistemic extensions of STIT logic have been presented, for example,
in [3, 16], for a survey see [14].
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2 Semantics

We first present the language of propositional STIT imagination logic and assume a
countably infinite set V ar of propositional variables, the connectives ¬ (negation),
∧ (conjunction),2 and the following set of modalities:

1. SA understood as ‘A is settled true’; the dual modality is PA understood as ‘A
is possible’.

2. [c]aA understood as ‘agent a cstit-realizes A’; another action modality, namely,
[d]aA to be read as ‘agent a dstit-realizes A’, is in this setting a defined one
with the following definition: [c]aA ∧ ¬SA.

3. IaA understood as ‘agent a imagines that A’.

All the agent indices are assumed to stand for pairwise different agents. For these
modalities we assume the following ‘stit-plus-neighbourhood’ semantics defined in
[18].

An imagination model is a tupleM = 〈T ree, ≤, Ag,Choice, {Na | a ∈ Ag}, V 〉,
where:

– T ree is a non-empty set of moments, and ≤ is a partial order on T ree such that

∀m1, m2∃m(m ≤ m1 ∧ m ≤ m2),

and

∀m1, m2, m((m1 ≤ m ∧ m2 ≤ m) → (m1 ≤ m2 ∨ m2 ≤ m1)).

– The set History of all histories ofM is then just the set of all maximal ≤-chains
in T ree. A history h is said to pass through a moment m iff m ∈ h. The set of all
histories passing through m ∈ T ree is denoted by Hm.

– Ag is a finite set of all agents acting in T ree and is assumed to be disjoint from all
the other items in M. The set Ag is fixed for the language of STIT imagination
logic and does not vary from model to model.

– Choice is a function defined on the set T ree × Ag, such that for an arbitrary
(m, a) ∈ T ree×Ag, the value of this function, that is to say Choice(m, a) (more
commonly denoted Choicem

a ) is a partition of Hm. If h ∈ Hm, then Choicem
a (h)

denotes the element of Choicem
a to which h belongs. In the special case when

we have Choicem
a = {Hm}, it is said that the agent a has a vacuous choice at

the moment m. In our models, Choice is assumed to satisfy the following two
restrictions:

– “No choice between undivided histories”: for arbitrary m ∈ T ree, a ∈
Ag, e ∈ Choicem

a , and h, h′ ∈ Hm:

(h ∈ e ∧ ∃m′(m < m′ ∧ m′ ∈ h ∩ h′)) → h′ ∈ e.

2The other Boolean connectives are defined as usual.
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– “Independence of agents”. If f is a function defined on Ag such that
∀a ∈ Ag (f (a) ∈ Choicem

a ), then
⋂

a∈Ag f (a) 
= ∅.

– The set of moment/history-pairs in M, that is to say, the set

MH(M) = {(m, h) | m ∈ T ree, h ∈ Hm}
is then to be used as a set of points, where formulas are evaluated.

– For every a ∈ Ag, we have Na : MH(M) → 2(2MH(M)). Na is thus a neigh-
bourhood function, defining, for every moment history pair (m, h) the set of
propositions imagined by the agent a at the moment m in history h.

– V is an evaluation function for atomic sentences, i.e., V :V ar → 2MH(M).

Definition 1 The relation of satisfaction of sentences in the above defined language
at moment/history-pairs in an imagination model M is then defined inductively as
follows:

M, (m, h) � p ⇔ (m, h) ∈ V (p), for atomic p;

M, (m, h) � (A ∧ B) ⇔ M, (m, h) � A and M, (m, h) � B;
M, (m, h) � ¬A ⇔ M, (m, h) 
� A;
M, (m, h) � SA ⇔ ∀h′ ∈ Hm(M, (m, h′) � A);
M, (m, h) � [c]aA ⇔ ∀h′ ∈ Choicem

a (h)(M, (m, h′) � A);
M, (m, h) � IaA ⇔ ∀h′ ∈ Choicem

a (h)

({(m′, h′′′) ∈ MH(M) | M, (m′, h′′′) � A} ∈ Na((m, h′))) and
∃h′′ ∈Hm({(m′, h′′′) ∈ MH(M) | M, (m′, h′′′)�A} /∈ Na((m, h′′))).

If by ‖A‖M we denote the set {(m, h) ∈ MH(M) | M, (m, h) � A}, i.e., the
truth set of A in model M, then the above satisfaction clause for formulas IaA can
more compactly be rewritten as:

M, (m, h) � IaA ⇔
∀h′ ∈ Choicem

a (h) (‖A‖M ∈ Na((m, h′))) and ∃h′′ ∈ Hm (‖A‖M /∈ Na((m, h′′))).
A picture may help to familiarize oneself with the semantics, see Fig. 1.

Definition 2 A formula is said to be valid in an imagination modelM iff A is satis-
fied by every moment/history-pair in M, and A is said to be valid (simpliciter) iff A

is valid in every imagination model.

The language of STIT imagination logic, as presented here, does not contain tem-
poral operators. Therefore, it may seem natural to use the alternative, atemporal
Kripke STIT semantics developed in [1] for single agents (and in [9] for collective
agents) and to extend it by neighbourhood functions. This is a legitimate move, but
we refrain from making it because we view the branching-time structures augmented
by agent choice functions as the intended semantics of STIT theory.

Note that in [18] it has been pointed out that IaA can be defined as [d]a�aA

(notation adjusted), where �aA is true in a model M at moment/history-pair (m, h)
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Fig. 1 Two choice-cells of the single agent a at moment m; {h1, h2, h3, h4} = Hm; (m, h1) � IaA and
(m, h2) � IaA; ‖A‖ 
∈ Na((m, h3)); (m, h4) 
� IaA

iff ‖A‖M ∈ Na(m, h). The latter can be understood as saying that the proposition
expressed by A belongs to the set of propositions contained in s’s mental image at
(m, h) in modelM. There are, however, reasons to take the operators Ia as primitive
connectives. T. Williamson [13] considers imagination as working in voluntary and
involuntary mode. Treating Ia as primitive guards against misinterpreting [d]a�aA

as saying that agent a sees to it that a imagines in involuntary mode that A, which
could be made true by performing some indirect actions, such as taking drugs, so as
to make sure that �aA is the case. If imagining is seen as a homogeneous activity, it
seems natural to consider the non-normal modal operator �a as incorporated in the
primitive agentive operator Ia .3

3 Axiomatization

For the semantically presented logic we propose the following axiomatization:

(A0) Propositional tautologies.
(A1) S is an S5 modality.
(A2) For every a ∈ Ag, [c]a is an S5 modality.
(A3) SA → [c]aA for every a ∈ Ag.
(A4) (P [c]a1A1 ∧ . . . ∧ P [c]anAn) → P([c]a1A1 ∧ . . . ∧ [c]anAn), provided that

all the a1 . . . an are pairwise different.
(A5) IaA → ([c]aIaA ∧ ¬SIaA) for every a ∈ Ag.

3In [16] (notation adjusted), [d]aBaA is suggested as a formalization of “agent a forms the implicit belief
that A”, where Ba is a KD45 modal operator. In this case, it is desired not to exclude the option of
understanding [d]aBaA as a statement of indirect belief formation.



264 G. K. Olkhovikov, H. Wansing

Rules are as follows:

(R1) Modus ponens.
(R2) From A infer SA.
(R3) From A ↔ B infer IaA ↔ IaB for every a ∈ Ag.

Note Observe that (A4) actually is a family of schemas parametrized by n. The above
axiomatization is just the axiomatization of dstit logic proposed by Ming Xu plus
the axiomatization of the logic of Ia as a minimal neighbourhood modal system for
the smallest classical (or congruential) modal logic E plus the special axiom (A5)
stating the agentive character of the imagination operator. Note also that the converse
of (A5) easily follows from (A2), so that we actually have a biconditional here.

The above axiomatization can easily be show to be sound with respect to the class
of all imagination models. Our aim now is to get a strong completeness theorem for
this system L with respect to the above semantics, in the following form: if � is an
L-consistent set of sentences, then � has a model.

In what follows we will always use ‘consistency’ to mean ‘L-consistency’ and we
let � stand for the relation of L-derivability.

In order to get the main theorem, we use the technique of canonical models, which
is an adaptation of the corresponding techniques for the two respective parts of our
system as mentioned in the Note above. In particular, we draw on [2, ch. 17] in many
matters relevant to the pure STIT part of the following construction.

More precisely, we letW to be the set of allL-maxiconsistent sets of sentences and
we denote the members of W as w, w′, w1 etc. We set wRw′ iff {A | SA ∈ w} ⊆ w′,
and we set w �a w′ iff {A | [c]aA ∈ w} ⊆ w′. By standard modal logic, (A1)
and (A2) ensure that all these relations are relations of equivalence; moreover, (A3)
ensures that �a⊆ R for every a ∈ Ag.

Indeed, let w �a w′ and let SA ∈ w. By (A3) and maxiconsistency of w, we get
[c]aA ∈ w, whence by w �a w′ we get that A ∈ w′. Since A was arbitrary, this
means that wRw′.

In the sequel, we will be denoting equivalence classes of W with respect to R

by X, X′, X1, etc. The set of all such equivalence classes will be denoted by �.
When restricted to an arbitrary X ∈ �, the relation R turns into the universal rela-
tion, but relations of the form �a can remain non-trivial equivalences breaking X

up into several equivalence classes. We will denote the family of equivalence classes
corresponding to �a� X by E(X, a).

For the construction of the canonical model below, we will need to pick among
the elements of W a maxiconsistent set which is the only element of the respective
R- and ∼a-equivalence classes. In order to do this, we consider maxiconsistent sets
extending the following set of formulas:

�={¬p | p ∈ V ar}∪{SA ↔ A | for arbitrary A}∪{[c]aA ↔ A | for arbitrary A}.
The following facts are worth noting:

(F1) There exists exactly one element in W , which extends �. We will denote this
element by w. Indeed, one easily sees that � pre-determines every non-modal
formula by fixing the literals. The modalities S and [c]a are then just vacuous
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in virtue of the definition of �. Finally, every maxiconsistent set extending �

will have to contain ¬IaA for every formula A and every a ∈ Ag. For sup-
pose otherwise. Then for some w ∈ W such that � ⊆ w, for some formula
A and for some a ∈ Ag we will have IaA ∈ w. Then, by (A5) and maxi-
consistency of w we will get ¬SIaA ∈ w. Therefore, by definition of � and
maxiconsistency of w, we will get ¬IaA ∈ w, which contradicts the assump-
tion that w ∈ W . Therefore, the statements beginning with Ia-modalities are
also fixed for every w ∈ W , for which � ⊆ w. It is also easy to see that
such a maxiconsistent w extending � must exist, since � itself is obviously
consistent4

(F2) It follows from the definitions of � and R that the R-equivalence set
containing w contains w only. We will denote this equivalence set by X.

We now proceed to the definition of our canonical model, which will be based on
a tree of depth 2. First, we choose5 an element 0 /∈ � ∪ W and define our set of
moments:

T ree = {0} ∪ � ∪ W.

We then set the following partial order on T ree. For arbitrary x, y ∈ T ree we
have x ≤ y iff x = y, or y ∈ x or x = 0. This allows for a simple description of the
set of histories in our frame. Every history turns out to have the form hw = 〈0, X, w〉,
where X ∈ � and w ∈ X. Thus, our set of histories is in one-to-one correspondence
with W .

Thirdly, we define the choice function. It assigns a vacuous choice to every agent
at every moment m, if m /∈ �. That is to say, the only choice of every agent at
every such moment will be just the set of all histories passing through this moment.
Otherwise, i.e. for the case when m = X ∈ �, we define the choice function as
follows:

ChoiceX
a = {H | ∃e ∈ E(X, a)(H = {hw | w ∈ e})}.

Next, we need to define the imagination neighbourhoods. We do this in the fol-
lowing way. Na((m, h)) = ∅ for every a ∈ Ag and every m /∈ �. For the case
when m = X ∈ �, we need one further auxiliary notion. For every sentence A we
set Ext(A) (read: ‘the extension of A’) to be {(X, hw) | A ∈ w ∈ X} if A /∈ w;
otherwise we set

Ext(A) = {(X, hw) | A ∈ w ∈ X} ∪ {(m, hw) | m /∈ � and m ∈ hw}.
Having defined the extensions, we set

Na((X, hw)) = {Ext(A) | IaA ∈ w}
for arbitrary w ∈ X ∈ �.

Finally, we define the evaluation function for variables in the following way:

V (p) = {(X, hw) | p ∈ w ∈ X ∈ �}.

4� is satisfiable and thus consistent. Indeed, consider a model consisting of a single moment, where every
agent has a vacuous choice, every set of imagination neighbourhoods is empty and every variable valuation
is empty as well.
5We also assume, in view of the definition of ≤ below, that 0 is not an element of any element of � ∪ W .
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We need to show that the canonical model M defined above is a model of our
logic. The semantic restrictions are mostly seen to hold immediately; in particular,
the no-choice-between-undivided-histories restriction holds because we only have
undivided histories at the moment 0, where only vacuous choices are allowed. The
only exception is the independence-of-agents restriction, which we treat below.

Lemma 1 (On Independence) Let m ∈ T ree and let f be a function on Ag such
that ∀a ∈ Ag (f (a) ∈ Choicem

a ). Then
⋂

a∈Ag f (a) 
= ∅.

Proof If m /∈ �, then the statement of the lemma is obvious, since every agent will
have a vacuous choice. We treat the case when m = X ∈ �. Consider a function
f as described in the lemma. For every f (a) we fix ef (a) ∈ E(X, a) such that
f (a) = {hw | w ∈ ef (a)} and we fix, further, an arbitrary wf (a) ∈ ef (a). Since
ef (a) is an �a-equivalence class, there is a set �f (a) of sentences of the form [c]aA
shared by all the members of ef (a) and only those members. Also, since X is an R-
equivalence class, there is a set � of sentences of the form SA shared by all (and
only) members of X. Consider, then, the following set of sentences:

� = (
⋃

a∈Ag

�f (a)) ∪ �.

We claim that � is consistent. Assume otherwise. In this case � contains a finite
inconsistent subset. Given that S and [c]a are S5-modalities, we can assume that this
inconsistent subset has the following elements:

SB, [c]a1A1, . . . , [c]anAn,

where all the a1 . . . an are pairwise different (and moreover, Ag = {a1 . . . an}). We
know, further, that for all 1 ≤ i ≤ n we have SB, [c]ai

Ai ∈ wf (ai). So, choose an
arbitrary w ∈ X. For every 1 ≤ i ≤ n we have wf (ai)Rw, therefore, we must also
have P [c]ai

Ai ∈ w for every 1 ≤ i ≤ n. Indeed, if it were otherwise, we would have
S¬[c]ai

Ai ∈ w since w is maxiconsistent. But then, given that wRwf (ai), we would
have ¬[c]ai

Ai ∈ wf (ai), a contradiction.
Thus, we have in fact that

P [c]a1A1 ∧ . . . ∧ P [c]anAn ∈ w,

therefore, by (A4), we also have

P([c]a1A1 ∧ . . . ∧ [c]anAn) ∈ w.

This, in turn, means that the set

{A | SA ∈ �} ∪ {[c]a1A1 ∧ . . . ∧ [c]anAn}
is consistent: otherwise, we would have that

{A | SA ∈ �} � ¬([c]a1A1 ∧ . . . ∧ [c]anAn),

and, by standard modal S5-reasoning, that

� � S¬([c]a1A1 ∧ . . . ∧ [c]anAn),
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which, given that w ∈ X and hence � ⊆ w, would mean inconsistency of w, a
contradiction.

Therefore, we may choose an arbitrary maxiconsistentw′ extending {A | SA ∈ �}
∪ {[c]a1A1 ∧ . . . ∧ [c]anAn}, and by the fact that this set contains {A | SA ∈ �}
we know that wRw′ and thus w′ ∈ X and further SB ∈ w′. This means that our
finite subset in fact has a model and is not inconsistent. Therefore, since the finite set
was arbitrary, � is consistent as well. Consider, then, an arbitrary maxiconsistent w′′
extending �. Since � ⊆ w′′, we have w′′ ∈ X, and since �f (a) ⊆ w′′ for arbitrary
a ∈ Ag, we have w′′ �a wf (a) for every such a. This means, in turn, that w′′ ∈ ef (a)

for every a ∈ Ag, and so hw′′ ∈ ⋂
a∈Ag f (a) 
= ∅.

By now, the only ingredient to be added is the Truth Lemma; we divide it into two
parts as follows.

Lemma 2 (Truth Lemma 1) Let m /∈ � and m ∈ h. Then, for any sentence A, the
following holds:

M, (m, h) � A ⇔ A ∈ w.

Proof We use induction on the construction of A. If A = p ∈ V ar , then A /∈ w, and
also (m, h) /∈ V (A), since m /∈ �. Therefore, M, (m, h) 
� A.

The Boolean cases are then trivial.
If A = SB, thenM, (m, h) � A iffM, (m, h′) � B for every h′ such that m ∈ h′

iff A ∈ w by induction hypothesis (since we have proved IH for arbitrary h going
through m).

If A = [c]aB, then M, (m, h) � A iff M, (m, h′) � B for every h′ such that
m ∈ h′ and h′ ∈ Choicem

a (h) iff A ∈ w by induction hypothesis (cf. the commentary
on the previous case).

If A = IaB, then A /∈ w by (F1). We also have M, (m, h) 
� A, since, given that
m /∈ �, all the choices at m are vacuous.

Lemma 3 (Truth Lemma 2) Let X ∈ � and w ∈ X. Then, for any sentence A, the
following holds:

M, (X, hw) � A ⇔ A ∈ w.

Proof Again, we use induction on the construction of A. The atomic case we have
by definition of V , and the Boolean cases are obvious. We consider the modal cases.

Let A = SB, and assume that SB ∈ w. Then take any hw′ passing through X. In
the context ofM this means that w′ ∈ X, which in turn means that wRw′. Therefore,
we have B ∈ w′ and, by induction hypothesis, M, (X, hw′) � B. Since hw′ was
arbitrary, this means that M, (X, hw) � SB.

On the other hand, assume that SB /∈ w. This means that the set

α = {C | SC ∈ w} ∪ {¬B}
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is consistent. Indeed, otherwise we would have

{C | SC ∈ w} � B,

and further, by standard S5 reasoning

{SC | SC ∈ w} � SB,

and so, given, maxiconsistency of w, we would have SB ∈ w, contrary to our
assumption. Therefore, consider an arbitrary w′ ∈ W extending α. By definition,
w′ ∈ X, therefore hw′ goes through X and we have, by induction hypothesis, that
M, (X, hw′) 
� B.

Let A = [c]aB, and let [c]aB ∈ w. Then take any hw′ such that hw′ ∈
ChoiceX

a (hw). In the context of M this means that w �a w′. Therefore, we have
B ∈ w′ and, by induction hypothesis,M, (X, hw′) � B. Since hw′ was arbitrary, this
means that M, (X, hw) � [c]aB.

On the other hand, assume that [c]aB /∈ w. This means that the set

β = {C | [c]aC ∈ w} ∪ {¬B}
is consistent. Indeed, otherwise we would have

{C | [c]aC ∈ w} � B,

and further, by standard S5 reasoning

{[c]aC | [c]aC ∈ w} � [c]aB,

and so, given, maxiconsistency of w, we would have [c]aB ∈ w, contrary to our
assumption. Therefore, consider an arbitrary w′ ∈ W extending β. By definition,
w′ �a w, and also w′ ∈ X given that �a⊆ R. Therefore hw′ goes through
X and moreover hw′ ∈ ChoiceX

a (hw). By induction hypothesis, we have that
M, (X, hw′) 
� B, and so, putting all together, that M, (X, hw) 
� [c]aB.

Let A = IaB. First of all, note that by induction hypothesis and Lemma 2 we have
the following identity:

Ext(B) = {(m, h) | M, (m, h) � B}. (1)

Now, assume that IaB ∈ w. Then, by (A5), we also have [c]aIaB ∈ w and
¬SIaB ∈ w. Take any hw′ such that hw′ ∈ ChoiceX

a (hw). In the context of M this
means that w �a w′. Therefore, we have IaB ∈ w′. By definition of Na , this means
that Ext(B) ∈ Na((X, hw′)). On the other hand, the fact that ¬SIaB ∈ w means
that the set

γ = {C | SC ∈ w} ∪ {¬IaB}
is consistent. Indeed, otherwise we would have

{C | SC ∈ w} � IaB,

and further, by standard S5 reasoning

{SC | SC ∈ w} � SIaB,

and so, given maxiconsistency of w, we would have SIaB ∈ w, contrary to our
assumption. Therefore, consider an arbitrary w′′ ∈ W extending γ . By definition,
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w′′ ∈ X so that hw′′ goes through X, and we have Ext(B) /∈ Na((X, hw′′)) by
definition of Na .

Putting all this together, we get that, by Eq. 1, {(m, h) | M, (m, h) �
B} ∈ Na((X.hw′)) for every hw′ ∈ ChoiceX

a (hw) and {(m, h) | M, (m, h) �
B} /∈ Na((X, hw′′)) for some hw′ going through X. That is to say, we get that
M, (X, hw) � IaB.

On the other hand, if IaB /∈ w, then, of course, Ext(B) /∈ Na(X, hw), and given
the fact that hw ∈ ChoiceX

a (hw) and the identity (1), we get thatM, (X, hw) 
� IaB

immediately.

Now we are ready for the main result of this section.

Theorem 1 (Completeness) Let � be a consistent set of sentences. Then � has a
model.

Proof Consider the model M defined above. By Lemma 1 and the reasoning given
immediately before it, M is an imagination model. Take any maxiconsistent set w

extending � and its corresponding R-equivalence class X. Then, by Lemma 3, we
have M, (X, hw) � �.

We also get compactness of the STIT imagination logic axiomatized by L as a
standard consequence of strong completeness.

4 Tableaux

We now devise a tableau proof system to implement the systematic search for coun-
termodels to inferences. The tableau calculus we shall present is based on the tableau
calculus for dstit logic in [17] (see also [15]) and the labelled tableau calculus for E
in [7].

The tableau rules are utilized to process semantic information about imagination
models, and we will use (i) expressions hi�m

a hl to indicate that the histories hi

and hl are choice-equivalent for agent a at moment m, (ii) statements mk ∈ hk to
express that moment mk belongs to history hk , (iii) expressions m ≺ mk to state
that moment m is earlier than moment mk , and (iv) statements ‖A‖ ∈ Na((m, h))

(‖A‖ 
∈ Na((m, h))) to express that the truth set of A belongs (does not belong)
to Na((m, h)). Moreover, it must be ensured that a model induced by a complete
tableau satisfies the independence of agents condition and that�m

a indeed designates
an equivalence relation. To guarantee the latter properties, the structural tableau rules
of Table 1 are assumed.

We annotate formulas by names of moment/history-pairs. If � is a set of formu-
las, then �0 := {A, (m, h0) | A ∈ �}. A tableau is a rooted tree; its nodes are sets
of certain expressions. In this section we shall use ‘�’ not to denote L-derivability,
but to form derivability statements (i.e., sequents) in the tableau calculus we are
about to define. If � � A is a sequent, then the root of the tableau for � � A

is �0 ∪ {m ∈ h0, m ≺ m0, m0 ∈ h0} ∪ {¬A, (m, h0)}. To expressions from this
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Table 1 Structural tableau rules

root, decomposition rules and structural tableau rules can be applied to complete the
tableau. A tableau is said to be complete iff each of its branches is complete. A branch
is complete if there is no possibility to apply one more rule to expand this branch.
A tableau branch is said to be closed iff there are expressions of the form A, (m, h)

and ¬A, (m, h) on the branch or expressions of the form ‖A‖ ∈ Na((m, h)) and
‖A‖ 
∈ Na((m, h)). A closed branch is considered complete. A tableau is called
closed iff all of its branches are closed, and it is called open if it is not closed.

The indices i, k, l, . . . used in the tableau rules are natural numbers, and a new
index is the smallest natural number not already used in the tableau. In models con-
structed from open tableau branches, we shall interpret an agent index a by a itself.
Note that it may happen that a rule is applied to an expression from a tableau node
more than once if the rule requires additional input and suitable additional input
is introduced at later nodes. If, for instance, the decomposition rule for formulas
SA is applied to the expressions SA, (m, hi), m ∈ hk , and later on the branch
a new expression m ∈ hl is introduced, then the rule has to be applied also to
SA, (m, hi), m ∈ hl .

The tableau calculus for STIT imagination logic consists of the tableau rules
presented in the Tables 1 and 2. Syntactic consequence is then defined as follows.

Definition 3 Let � ∪ {A} be a set of formulas. � � A (‘A is derivable from �’)
iff there exists a closed and complete tableau for �0 ∪ {m ∈ h0, m ≺ m0, m0 ∈
h0} ∪ {¬A, (m, h0)}.

If there is a complete and open branch on a tableau with root �0 ∪ {m ∈ h0, m ≺
m0, m0 ∈ h0} ∪ {¬A, (m, h0)}, then there exists a countermodel to the sequent
� � A. The construction of a countermodel is guided by the open branch, but there
are limits to directly reading off a countermodel. An open branch may contain an
expression ‖A‖ ∈ Na((m, h) and thereby provide the information that in the counter-
model the truth set of A is a neighbourhood of agent a at moment/history-pair (m, h),
but that does not fully specify the countermodel.

Examples of tableaux The examples in Table 3 show open and complete tableaux
from which a countermodel can be read off to some extent. Then in Table 4 we
present two examples of closed tableaux. In the first example from Table 4 the
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Table 2 Decomposition rules for STIT imagination logic

branching two-premises tableau rule for the imagination operator is applied. In the
second example from Table 4 we prove an instance of axiom (A5) and apply the other
decomposition rules for the imagination operator.

Note that the open branches in the first two examples do not provide full infor-
mation concerning the construction of a countermodel. The countermodel consists of
three distinct moments of timem,m0, andm1. The momentsm0 andm1 are later than
moment m and are assumed to be incomparable with respect to the temporal order.
There are two histories; history h0 passes through m and m0, and history h1 passes
through m and m1. In the first example the induced model is such that the truth set
of p → p, i.e., the set of all moment/history-pairs, belongs to Na((m, h0)) but not to
Na((m, h1)). The remaining features of the countermodel are left unspecified. In both
examples the open tableau does not give any information concerning the evaluation of
p and thus the evaluation of p is arbitrary. In the second example the induced model
is such that the truth set of Iap belongs to Na((m, h0)) but not to Na((m, h1)). ‖Iap‖
= {(m∗, h∗) | ∀h′ ∈ Choicem∗

a (h∗)(‖p‖ ∈ Na((m
∗, h′))) and ∃h′′ ∈ Hm∗(‖p‖ 
∈

Na((m
∗, h′′)))}. Since no information about ‖p‖ is provided on the open branch,
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Table 3 Examples of open tableaux

we may set ‖Iap‖ = ∅. Thus, in the induced countermodel ∅ ∈ Na((m, h0)) and
∅ 
∈ Na((m, h1)).

Note that in the second example from Table 4 the final node of the leftmost branch
is obtained by applying the rule for negated imagination operators to ¬Iap, (m, h1)

and that the final nodes of the other two branches are obtained by applying the rule
for non-negated imagination operators to Iap, (m, h0). Note also that the rule TRAN
gives rise to infinite tableaux, cf. Example 3.4.7 in [12].

Definition 4 Let M = 〈T ree, ≤, Ag, Choice, {Na | a ∈ Ag}, V 〉 be an
imagination model and let b be a tableau branch. The model M is said to be
faithful to b iff there exists a function, f : S → MH(M), where S =
{ (mk, hi) | mk ∈ hi occurs on b } ⊆ M × H with M = {mk | mk occurs on b },
H = { hk | hk occurs on b }, such that the following conditions hold:

1. For every expression A, (m, h) on b, it holds that M, f ((m, h)) � A.

2. (∀h, h′ ∈ H) (∀m ∈ M) left(f ((m, h))) = left(f ((m, h′))) and (∀m,m′ ∈
M) (∀h ∈ H) right(f ((m, h))) = right(f ((m′, h))), where left and
right are the left and right projection functions. Thus, it is possible to define
two auxiliary functions related to f , π1 : M → T ree and π2 : H → History

by requiring that for m ∈ M , π1(m) = m, if f ((m, . . .)) = (m, . . .), and for
h ∈ H , π2(h) = h̄, if f ((. . . , h)) = (. . . , h̄).

3. If mi ∈ hk occurs on b, then π2(hk) ∈ Hπ1(mi).

4. If hi�m
a hk occurs on b, then π2(hk) ∈ Choice

π1(m)
a (π2(hi)).

5. If ‖A‖ ∈ Na((m, h)) occurs on b, then ‖A‖M ∈ Na(f ((m, h))).

The function f is said to show that M is faithful to branch b.

Lemma 4 Let M = 〈T ree, ≤, Ag, Choice, {Na | a ∈ Ag}, V 〉 be an imagination
model, and let b be a tableau branch. If M is faithful to b and a tableau rule is
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Table 4 Examples of closed tableaux

applied to b, then the application produces at least one extension b′ of b, such that
M is faithful to b′.

Proof Assume that f is a function that showsM to be faithful to b. We have to con-
sider every tableau rule. If extended branches are obtained by applying one of the
rules for ¬¬A, (A ∧ B) or ¬(A ∧ B), then obviously f showsM to be faithful to at
least one extension b′ of b.
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Suppose the rule for formulas SA is applied to SA, (m, hi). Then branch b′ extends
branch b by A, (m, hk) for all m ∈ hk on b. Since f is faithful to b, we have
M, f ((m, hi)) � SA. By the definition of satisfaction, it holds thatM, (π1(m), h̄) �
A for all h̄ ∈ Hπ1(m). Since π2(hk) ∈ Hπ1(m), we haveM, f ((m, hk)) � A for all hk

with m ∈ hk on b and f shows M to be faithful to b′.
Suppose now that the rule for ¬SA is applied to ¬SA, (m, hi), so that b is

extended by m ≺ mk , m ∈ hk , mk ∈ hk , and ¬A, (m, hk), for a new index k.
Since f shows M to be faithful to b, we have M, f ((m, hi)) � ¬SA. Thus, there
is h̄ ∈ Hπ1(m) with M, (π1(m), h̄) � ¬A. We define f ′ to be the same function
as f , except that f ′((m, hk)) = (π1(m), h̄) and f ′((mk, hk)) = (m, h̄) for some
m ∈ h̄with π1(m) ≤ m. Clearly, the function f ′ satisfies Condition 2 of Definition 4,
and the functions π1, π2 of f ′ are appropriately expanded, i.e., π2(hk) = h̄ and
π1(mk) = m. Then M, f ′((m, hk)) � ¬A, π2(hk) ∈ Hπ1(m), and π2(hk) ∈ Hπ1(mk).
The function f ′ shows M to be faithful to the extended branch b′.

Next, suppose the rule for [ca]A is applied to [ca]A, (m, hi). Then we obtain
b′ as an extension of b by A, (m, hk) for all hi�m

a hk on b. Since f is faithful
to b, we have M, f ((m, hi)) � [ca]A. Then, by the definition of satisfaction, it
holds that M, (π1(m), h̄) � A for all h̄ ∈ Choice

π1(m)
a (π2(hi)). Since π2(hk) ∈

Choice
π1(m)
a (π2(hi)), we haveM, f ((m, hk)) � A for all hk with hi�m

a hk on b and
f showsM to be faithful to b′.

Assume that the rule for ¬[ca]A is applied to ¬[ca]A, (m, hi), so that b is
extended bym ≺ mk ,m ∈ hk ,mk ∈ hk , hi�m

a hk , and¬A, (m, hk), for a new index k.
Since f showsM to be faithful to b, we haveM, f ((m, hi)) � ¬[ca]A. Thus, there
is h̄ ∈ Choice

π1(m)
a (π2(hi)) withM, (π1(m), h̄) � ¬A. We define f ′ to be the same

function as f , except that f ′((m, hk)) = (π1(m), h̄) and f ′((mk, hk)) = (m, h̄) for
some m ∈ h̄ with π1(m) ≤ m. The auxiliary functions π1, π2 of f ′ are appropriately
expanded. Then M, f ′((m, hk)) � ¬A, π2(hk) ∈ Hπ1(mk), and π2(hk) ∈ Hπ1(m)

(since π2(hk) = h̄ ∈ Choice
π1(m)
a (π2(hi)) ⊆ Hπ1(m)). The function f ′ shows M to

be faithful to the extended branch b′.
Suppose that the rule for IaA is applied to IaA, (m, hi). Then the branch b′

is obtained as an extension of b by ‖A‖ ∈ Na((m, hk)) for all hi�m
a hk occur-

ring on b and by m ≺ ml , m ∈ hl , ml ∈ hl , and ‖A‖ 
∈ Na((m, hl)) for a
new index l. Since f is faithful to b, we have M, f ((m, hi)) � IaA. This means
that ∀h̄ ∈ Choice

π1(m)
a (π2(hi)) (‖A‖M ∈ Na((π1(m), h̄))) and ∃h̄′ ∈ Hπ1(m)

(‖A‖M 
∈ Na((π1(m), h̄′))). Since π2(hk) ∈ Choice
π1(m)
a (π2(hi)), we have ‖A‖ ∈

Na((π1(m), π2(hk)) for all hi�m
a hk on the branch. We define f ′ to be exactly as f ,

except that f ′((m, hl)) = (π1(m), h̄′) and f ′((ml, hl)) = (m, h̄′) for some m ∈ h̄′
with τ1(m) ≤ m. The auxiliary functions π1, π2 of f ′ are appropriately expanded.
Then π2(hl) ∈ Hπ1(m) (since π2(hl) = h̄′ and h̄′ ∈ Hπ1(m)) and π2(hl) ∈ Hπ1(ml)

(since π1(hl) = m and m ∈ h̄′). The function f ′ shows M to be faithful to b′.
Next, assume that the rule for ¬IaA is applied to ¬IaA, (m, hi). Then there are

two extended branches. The branch b′ extends b by ‖A‖ ∈ Na((m, hl)) for every hl

with m ∈ hl on b. The branch b′′ extends branch b by ‖A‖ 
∈ Na((m, hk)), m ∈ hk ,
mk ∈ hk , m ≺ mk , hi�m

a hk for some new index k. Since f is faithful to b, we have
M, f ((m, hi)) � ¬IaA. Thus either (a) ∀h̄ ∈ Hπ1(m) (‖A‖M ∈ Na((π1(m), h̄)),
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or (b) ∃h̄′ ∈ Choice
π1(m)
a (π2(hi)) with ‖A‖M 
∈ Na((π1(m), h̄′)). The function f

shows M to be faithful to branch b′. In case (b), we define f ′ to be exactly as f ,
except that f ′((m, hk)) = (π1(m), h̄) and f ′((mk, hk)) = (m, h̄) for some m ∈ h̄

with τ1(m) ≤ m. The auxiliary functions π1, π2 of f ′ are appropriately expanded.
Then π2(hk) ∈ Hπ1(m) (since π2(hk) = h̄ and h̄ ∈ Hπ1(m)) and π2(hk) ∈ Hπ1(mk)

(since π1(hk) = m and m ∈ h̄). The function f ′ showsM to be faithful to b′′.
Suppose that the rule for IaA and ¬IaB is applied to IaA, (m, hi) and

¬IaB, (m, hi). Again there are two extended branches. The branch b′ extends branch
b by m ≺ mk , mk ∈ hk , m ∈ hk , A, (mk, hk), ¬B, (mk, hk) for a new index k. The
branch b′′ extends b by m ≺ ml , ml ∈ hl , m ∈ hl , ¬A, (ml, hl), B, (ml, hl) for a new
index l. Since f is faithful to b, we haveM, f ((m, hi)) � IaA andM, f ((m, hi)) �
¬IaB. It is easily seen that therefore |A‖M 
= |B‖M. Hence, either (a) there is a
moment/history-pair (m, h̄) ∈ MH(M) with M, (m, h̄) � A and M, (m, h̄) � ¬B

or (b) there is a moment/history-pair (m, h̄) ∈ MH(M) with M, (m, h̄) � ¬A

and M, (m, h̄) � B. Case (a): We define f ′ to be the same function as f , except
that f ′((m, hk)) = (π1(m), h̄) and f ′((mk, hk)) = (m, h̄) for some m ∈ h̄ with
π1(m) ≤ m. The auxiliary functions π1, π2 of f ′ are appropriately expanded. Then
M, f ′((m, hk)) � A, M, f ′((m, hk)) � ¬B, and π2(hk) ∈ Hπ1(m). The function f ′
showsM to be faithful to the extended branch b′. Case (b): analogous to the previous
case.

Finally, we consider the structural tableau rules. If f showsM to be faithful to b,
and one of the rules REF, SYM, or TRAN is applied to obtain a branch b′, then f

shows M to be faithful to b′ and Condition 4 from Definition 4 is satisfied, because
for every agent a ∈ Ag and everym ∈ T ree, the relation {(h, h′) | h′ ∈ Choicem

a (h)}
is an equivalence relation.

For IND, we have π2(hn) ∈ Choice
π1(m)
a1 (π2(hl1)), . . . , π2(hn) ∈

Choice
π1(m)
ak

(π2(hlk )), because M satisfies the independence of agents condition.

Moreover, since π2(hn) ∈ Choice
π1(m)
a1 (π2(hl1)) ⊆ Hπ1(m), it follows that π2(hn) ∈

Hπ1(m). Thus, the function f showsM to be faithful to a branch b, if the IND-rule is
applied to b.

Theorem 2 (Soundness) If � 
� A, then � 
� A.

Proof If � 
� A, then there is a model M and a moment/history-pair (m′, h′) ∈
MH(M), such that for all B ∈ �, M, (m′, h′) � B and M, (m′, h′) 
� A. We
consider a complete tableau for �0 ∪ { ¬A, (m, h0)} ∪ {m ∈ h0, m ≺ m0, m0 ∈
h0}, such that every branch starts with the single-node branch b consisting of �0 ∪
{¬A, (m, h0)} ∪ {m ∈ h0, m ≺ m0, m0 ∈ h0}. Let f ((m, h0)) = (m′, h′). Then f

showsM to be faithful to b. (Without loss of generality, we may assume that inM’s
set of moments there is a moment m′′ later than m′, so that we can put f (m0, h0)

= (m′′, π2(h0)). If necessary, we can add such a moment and assume that agents
have vacuous choices at (m′′, π2(h0)) and that (m′′, π2(h0)) 
∈ V (p) for every atom
p.) By the previous lemma, after applying a tableau rule to branch b, the model
M is faithful to at least one branch which is an extension of b. Therefore, in the
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tableau there is a complete branch b′ to which M is faithful. If every branch of such
a tableau is closed, then (i) there are formulas C, ¬C, and a pair (m′′, h′′) such that
C, (m′′, h′′) and ¬C, (m′′, h′′) occur on b′, or (ii) there is a formula D, an agent index
a, and a pair (m′′′, h′′′) such that ‖D‖ ∈ Na((m

′′′, h′′′)) and ‖D‖ 
∈ Na((m
′′′, h′′′))

occur on b′. Since M is faithful to b′, there is a function f ′ such that we have the
contradictionM, f ′((m′′, h′′)) � C andM, f ′((m′′, h′′)) � ¬C or the contradiction
‖D‖M ∈ Na((m

′′′, h′′′)) and ‖D‖M 
∈ Na((m
′′′, h′′′)). Hence, there is no complete

closed tableau for �0 ∪ {¬A, (m, h0)} ∪ {m ∈ h0, m ≺ m0, m0 ∈ h0} and thus
� 
� A.

In order to show completeness, we define for a given open branch of a com-
plete tableau a model. Then we show that the defined model satisfies the formulas
occurring on the open branch.

Definition 5 Let b be an open branch of a complete tableau. Then the model Mb =
(T ree, ≤, Ag,Choice, {Na | a ∈ Ag}, V ) induced by b is defined as follows:

1. T ree : = { m | (m, h) occurs on b }.
2. ≤ : = the reflexive, transitive closure of { (mi, mj ) | mi ≺ mj occurs on

b, mi, mj ∈ T ree }.
3. Ag : = { a | a is an agent index occurring on b }.
4. Choicem

a (h) : = { hl | h�m
a hl occurs on b }

for all a ∈ Ag, m ∈ T ree, m ∈ h occurring on b.

5. Na((m, h)) : = {‖A‖Mb
| ‖A‖ ∈ Na((m, h)) occurs on b}.

6. V (p) : = { (m, h) | p, (m, h) occurs on b };
V (p) = ∅ for every other atomic formula p.

Since b is a complete and open branch, (m, h) 
∈ V (p) if ¬p, (m, h) occurs on
b. Because of the reflexive and transitive closure and since every moment mk in-
troduced by a tableau rule is a ≺-successor of the root moment m from the first
node in a tableau, the ordered set (T ree, ≤) is a tree and thus a branching time
structure. Given this branching time structure, we have induced sets of histories and
moment/history-pairs. Since b is an open branch of a complete tableau, by the struc-
tural rules REF, SYM, and TRAN, �m

a is an equivalence relation defined on Hm.
Therefore, Choicem

a (h) is the corresponding equivalence class of h. By rule IND, the
independence of agents condition is satisfied, cf. [17].

Note Contrary to first appearance, the neighbourhood functions Na are well-
defined. We can define the depth of I -nesting of a formula A, dI (A). If A contains
no imagination operator Ia , then dI (A) = 0. If A has the form ¬B or [ca]B, then
dI (A) = dI (B). If A is a conjunction (B ∧ C), then dI (A) is max(dI (B), dI (C)).
If A has the shape IaB, then dI (A) = dI (B) + 1. We can show that Na((m, h)) is
well-defined by a double induction first on the depth of I -nesting and then on the
construction of A. If dI (A) = 0, then the truth set ‖A‖Mb

is well-defined because it
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is defined independently of neighbourhood functions, and thus Na((m, h)) is well-
defined. Suppose that dI (A) = n+1, and Na((m, h)) is well-defined for formulas B

with dI (B) ≤ n, i.e., ‖B‖Mb
is well-defined. Then (i) A has the shape IaB or (ii) A

has the form (B ∧C) with dI (B) ≤ n+1 and dI (C) ≤ n+1. In case (i), we may use
the induction hypothesis to conclude that ‖A‖Mb

is well-defined. In case (ii), we may
note that ‖(B ∧ C)‖Mb

= ‖B‖Mb
∩ ‖C‖Mb

. By induction on the construction of
A, ‖B‖Mb

and ‖C‖Mb
are well-defined, and thus their intersection is well-defined.

But then Na((m, h)) is well-defined. Hence, Na((m, h)) is well-defined for every
formula A.

Lemma 5 If b is an open branch of a complete tableau and Mb = (T ree, ≤, Ag,
Choice, {Na | a ∈ Ag}, V ) is the model induced by b, then (if A, (m, h) occurs on
b, then Mb, (m, h) � A).

Proof The proof is by induction on the number of connectives in A. Suppose that A
is atomic and hence contains no connectives and A, (m, h) occurs on b. By definition
of the valuation function V , (m, h) ∈ V (A), so that Mb, (m, h) � A.

If A is a negated atom ¬p and the expression ¬p, (h,m) occurs on b, then, as
noted above, Mb, (m, h) 
� p, and thusMb, (m, h) � A.

If A has the shape ¬¬B, B ∧C, or ¬(B ∧C) we may use the induction hypothesis
and the fact that the tableau is complete.

Suppose that A has the form SB. If A, (m, h) occurs on b, then for every hk with
m ∈ hk on b we have B, (m, hk) on b (since the tableau is complete) and, by the
induction hypothesis, Mb, (m, hk) � B. By the definition of Hm, it follows that
Mb, (m, h) � SB.

Let A have the form ¬SB. If A, (m, h) occurs on b, then, by completeness of
the tableau, there is a pair (m, hk) on b with ¬B, (m, hk) on b. By the induction
hypothesis and definition of Mb, Mb, (m, hk) � ¬B. Therefore, Mb, (m, h) �
¬SB.

If A has the form [c]aB and A, (m, h) occurs on b, then B, (m, hk) occurs on b

for every hk with h�m
a hk on b. By the induction hypothesis and the definition ofMb

it follows that Mb, (m, h) � [c]aB.
If A has the shape ¬[c]aB and A, (m, h) occurs on b, then there exists an hk with

h�m
a hk and ¬B, (m, hk) occurring on b. By definition of Mb, it follows that hk ∈

Choicem
a (h) and, by the induction hypothesis, it follows that Mb, (m, hk) � ¬B.

Therefore Mb, (m, h) � ¬[c]aB.
If A has the form IaB and A, (m, h) occurs on b, then ‖B‖ ∈ Na((m, h)) occurs

on b for every hk with h�m
a hk on b. Moreover, there exists an hl with h�m

a hl and
‖B‖ 
∈ Na((m, hl)) occurring on b. By definition of Mb, ‖B‖Mb

∈ Na((m, h)) for
every hk with hk ∈ Choicem

a (h) and ‖B‖Mb

∈ Na((m, hl)) with hl ∈ Choicem

a (h).
Hence Mb, (m, h) � IaB.

Suppose that A has the form ¬IaB and that A, (m, h) occurs on b. Then there
are two cases, according to the branching of the decomposition rule for negated
imagination ascriptions. In the first case ‖B‖ ∈ Na((m, hl)) occurs on b for every
hl with m ∈ hl on b. By definition of Mb, ‖B‖Mb

∈ Na((m, hl)) for every hl



278 G. K. Olkhovikov, H. Wansing

∈ Hm. But then Mb, (m, h) 
� IaB, i.e., Mb, (m, h) � A. In the second case there
exists an hk with h�m

a hk and ‖B‖ 
∈ Na((m, hk)) occurring on b. By the defini-
tion of Mb, hk ∈ Choicem

a (h). Since b is open, ‖B‖Mb

∈ Na((m, hk)). But then

Mb, (m, h) 
� IaB, i.e.,Mb, (m, h) � A.

Theorem 3 (Completeness) If � 
� A, then � 
� A.

Proof Suppose that � 
� A. Then there is no complete and closed tableau for �0 ∪
{¬A, (m, h0)} ∪ {m ∈ h0, m ≺ m0, m0 ∈ h0}. Let b be an open branch of a complete
tableau for this set and let Mb be the model induced by b. By the previous lemma,
it follows that Mb, (m, h0) � A for every formula A ∈ � and Mb, (m, h0) � ¬A,
thusMb, (m, h0) 
� A. Therefore, � 
� A.

As a corollary to tableau soundness and completeness we may note that if one
complete tableau for �0 ∪ {¬A, (m, h0)} ∪ {m ∈ h0, m ≺ m0, m0 ∈ h0} correspond-
ing to the sequent � � A is open, then every complete tableau is open, and if one
complete tableau for �0 ∪ {¬A, (m, h0)} ∪ {m ∈ h0, m ≺ m0, m0 ∈ h0} is closed,
then so is every tableau corresponding to � � A.

5 Conclusion

The present paper addresses and solves one of the open problems listed in [18],
namely to give proof-theoretic characterizations of the semantically presented STIT
imagination logic. The other items are still on the agenda: addressing the pro-
gramme of reducing non-propositional imagination ascriptions to propositional ones
as suggested by Niiniluoto [10], the development of a first-order extension of STIT
imagination logic with identity, the addition of conception operators as in [8], and
the development of the idea of “strategic imagination”. In [5] is has been shown that
dstit-logic for groups of agents is undecidable. We conjecture that single-agent STIT
imagination logic is decidable.
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