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Abstract The contribution of this paper lies with providing a systematically speci-
fied and intuitive interpretation pattern and delineating a class of relational structures
(frames) and models providing a natural interpretation of logical operators on an
underlying propositional calculus of Positive Lattice Logic (the logic of bounded lat-
tices) and subsequently proving a generic completeness theorem for the related class
of logics, sometimes collectively referred to as (non-distributive) Generalized Galois
Logics (GGL’s).
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1 Introduction

1.1 Motivation

This article is model-theoretically driven. It’s point of departure is the realization that
the relational semantics for non-distributive propositional logics is typically ad hoc
and messy and, despite the sometimes ingenuous solutions offered [4, 10, 11, 17,
23, 45], it is perhaps fair to say that it remains non-intuitive and its suitability for
intended applications (such as temporal, or dynamic extensions of non-distributive
propositional logic) is dubious.
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The main contribution of this paper, building on the existing literature, lies with
providing a systematically specified and intuitive interpretation pattern and delin-
eating a class of relational structures (frames) and models providing a natural
interpretation of logical operators on an underlying propositional calculus of Posi-
tive Lattice Logic (PLL, the logic of bounded lattices) and subsequently proving a
generic completeness theorem for the related class of logics, sometimes collectively
referred to as (non-distributive) Generalized Galois Logics (GGL’s).

GGL’s, introduced by Dunn [15] initially as the logics of distributive lattice expan-
sions (i.e. distributive lattices with additional operators with well-defined monotonic-
ity and distribution, or co-distribution properties) have come to also include the logics
of bounded lattice expansions [4, 26, 28–30, 32]. While the algebraic semantics for
such systems is well-understood [19–21, 37–39], the relational semantics proposed
over the last decade or so for the case where distribution of conjunctions over disjunc-
tions and conversely is not assumed appears to typically lack the necessary intuitive
support, witness [8, 23, 45], which is nevertheless precisely the distinctive feature
and value of relational semantics, at least when modal and, more specifically, tempo-
ral, or dynamic operators are involved. This has been pointed out in [10, 11], where
some progress towards a more intuitive and natural semantics has been made.

Order-dual semantics for non-distributive systems [32], an idea rooted [26] in
every lattice representation theorem, uses both a satisfaction � and a co-satisfaction
(dual satisfaction, or refutation) relation, designated by the notation �∂ in this article.
In the standard approach for a classical and even distributive setting, �∂ is understood
as set complement (x �∂ ϕ iff x /∈ �ϕ�) and it therefore coincides with �. In the case
of Orthologic, it can be easily seen from the results presented in this article (see also
[31]) that dual satisfaction, x �∂ ϕ, is the same as x � ¬ϕ and use of �∂ becomes
thereby redundant. This is no longer the case for systems without an orthonegation
operator, but perhaps with weaker forms of negation, and both truth �ϕ� and refuta-
tion ((ϕ)) sets need to be considered, related by a Galois connection (Sections 1.2 and
2.2). There are a number of logical operators of interest whose intuitive meaning is
specifiable in such a semantic setting, including familiar classical operators (neces-
sity, possibility), but also additional ones such as falsifiability, irrefutability, weak
forms of implication etc.

In this article, a large class of logical operators is identified (Section 2), spec-
ified in terms of generic and intuitive satisfaction and co-satisfaction (refutation)
patterns, a natural axiomatization of the corresponding minimal logical systems is
proposed (Section 3) and completeness by a traditional canonicity argument is proven
(Section 4).

1.2 Preliminaries on Frames and Models

By a Bidirectional K-Algebra (a Kb-algebra) B = (B, 0, 1, ∧, ∨, −,�,�) we mean
a Boolean algebra with a pair of residuated normal modal operators, i.e. such that for
all b ∈ B, b ≤ ��b and ��b ≤ b (and �1 = 1, �0 = 0, by normality).
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Lemma 1.1 Given a frame F = (X, R), let λ, ρ be the Galois connection generated
by R, after [5], by Eq. 1, let also �,♦,�,� be the Jónsson-Tarski image operators
[33] generated by the complement R of R by Eqs. 2 and 3

λU ={x | URx}={x | ∀u (u ∈ U=⇒ uRx)} ρV ={y | yRV }={y | ∀v (v ∈ V =⇒yRv)} (1)

�U = {x | ∀y (xRy =⇒y ∈ U)} �U ={x | ∃y (yRx and y ∈ U)} (2)

�U = {x | ∀y (yRx =⇒y ∈ U)} ♦U ={x | ∃y (xRy and y ∈ U)} (3)

and let � = λρ and � = ρλ be the resulting closure operators on the powerset of
X. Then

1. (P(X),∅, X,
⋂

,
⋃

, −,�,�) is a complete, concrete and atomic Kb-algebra
2. λρ = � = �♦ and ρλ = � = ��
3. �ρA = −A = λ♦A and ♦λD = −D = ρ�D, for all �-stable sets A = �A

and �-stable sets D = �D

Proof 1) is straighforward, from definitions. For 2), it follows by simple calculation
that

λρU = {x | (ρU)Rx} = {x | ∀y (y ∈ ρU =⇒ yRx)}
= {x | ∀y (yRx =⇒ y 	∈ ρU)}
= {x | ∀y (yRx =⇒ ∃z (z ∈ U and yRz))}
= �♦U

Similarly, ρλU = ��U . For 3), by simple calculation we obtain �ρA = ��(−A) =
−�♦A = −A and similarly for a �-stable set D.

Let Gλ(X) be the complete lattice of �-stable subsets of X and Gρ(X) the family
of �-stable subsets. As usual, for a partial order (W, ≤), (W, ≤)op = (W, ≥) stands
for the opposite of (W, ≤) (order reversed). ∅λ designates the bottom element of
Gλ(X), i.e. ∅λ = ⋂

Gλ(X), and similarly for ∅ρ .

Definition 1.2 (Lattice Frames) Frames (X, R), with R ⊆ X × X, will be referred
to as lattice frames. Their family of propositions is the family Gλ(X) of �-stable sets,
while Gρ(X) is the family of co-propositions.

We may think of the Galois connection as a pair of quasi-negation operators, map-
ping a proposition A to a co-proposition ρA and, conversely, a co-proposition B to a
proposition λB (such that A = λ(ρA) and B = ρ(λB)).

To each lattice frame we associate (a) a Kb-algebra structure (bidirectional modal
structure), with modal operators generated as the image operators of R, the comple-
ment of R, as well as (b) a dual Galois structure, with the families Gλ(X), Gρ(X) of
� and � stable sets, respectively. Letting Gλ(X) = {−A | A ∈ Gλ(X)}, Gρ(X) =
{−B | B ∈ Gρ(X)}, the following commutative (given Lemma 1.1) diagram depicts



70 C. Hartonas

the interaction between the two structures, i.e. the way that modal and Galois maps
operate on stable sets.

General lattice frames are structures g = (X, R,Pλ), with Pλ a sublattice of Gλ(X)

and we let Pρ = {ρA | A ∈ Pλ} (which is a sublattice of Gρ(X)). General frames,
as the reader recalls, were first introduced by Thomason [46], see e.g. [6] for more
details. General frames combine the advantages of algebraic semantics with those
of relational, Kripke-style semantics, and we shall prefer to phrase our semantics in
general frame terms, where all operators in the dual algebra of the frame are generated
by relations that are part of the frame specification.

Notational Conventions Throughout this article we make the following notational
conventions:

we use a, b, c, d, e for lattice elements and x, y, z, u, v, w for lattice filters
xa = a↑ designates the principal filter generated by the lattice element a

�,� are used to designate closure operators, typically on subsets of some set X

and we simplify notation by writing �x for the more accurate �({x}), for x ∈ X,
and similarly for �

we overload the use of ≤ whose primary use is for the lattice order and write

• x ≤ y for filter inclusion
• x ≤ U , where x ∈ X,U ⊆ X as an abbreviation for ∀u ∈ U x ≤ u. Similarly

for U ≤ x
• similarly, we let a ≤ x, for a lattice element a and a filter x, designate the fact

that a is a lower bound of the elements in x (i.e. ∀b ∈ x a ≤ b). Note that
a ≤ x iff x ≤ xa (the filter x is contained in the principal filter generated by
a)

� � and (( )) are used as the representation and dual representation maps, respec-
tively and they are also used for the interpretation and co-interpretation function,
simplifying �[ϕ]� to �ϕ�, where [ϕ] is the equivalence class of ϕ, and similarly for
(( )).

2 Distribution Types, Relations and Operators

2.1 Jónsson-Tarski and Generalized Image Operators

The reader will recall that n-ary additive operators (and similarly for multiplica-
tive ones ) on a Boolean algebra are represented in Jónsson-Tarski’s well known
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representation theorem [33] as image operators of canonical (n + 1)-ary
relations on the set U of ultrafilters of the Boolean algebra defined as shown in
Eq. 4

(4)

while the induced image operators are defined on subsets Ui ⊆ U by Eq. 5

(5)

The canonical frame for a Boolean logic whose Lindenbaum-Tarski algebra has the
additive operators fi, i ∈ I is then the frame F = (U , (Ri)i∈I ) and the canonical
interpretation, assigning to each sentence ϕ the set of ultrafilters containing its equiv-
alence class (under provability) satisfies the natural semantic clause in Eq. 6, where

is an n-ary additive operator and is the corresponding canonical relation
Ri and similarly for n-ary multiplicative operators , interpreted with the satisfaction
clause (7).

(6)

(7)
For unary modal operators clauses (6, 7) specialize to the familiar satisfaction
conditions

(8)
admitting a number of variant intuitive interpretations as alethic, dynamic, doxastic,
epistemic, or temporal modalities.

In extending from the Boolean to the merely distributive case, the set U of ultra-
filters is replaced by the set P of prime filters and otherwise the canonical relations
Ri and the corresponding image operators Fi are defined again by Eqs. 4 and 5.
The prime filter canonical frame construction, as the reader knows, is identical to
the ultrafilter canonical frame construction if the underlying distributive lattice is a
Boolean algebra. A number of contributions have appeared in print for the merely dis-
tributive case, including Intuitionistic [3, 7, 24, 40, 43] or Relevant Modal Logic [42],
as well as semantic treatments of distributive systems with negative modal operators
(negation, modally interpreted) [12–14, 16, 48].

Extending to the case of a mere bounded lattice it is possible to provide a repre-
sentation theorem that reduces to that of distributive lattices when the original lattice
happens to be a distributive one [22, 27, 47]. Though the representation of lattice
operators on a bounded lattice may be proven in these cases to reduce to the Jónsson-
Tarski image operators for appropriate accessibility relations when the bounded
lattice happens to be distributive [22, 23], this fails completely when the lattice is
non-distributive (e.g. an ortholattice, or an orthomodular lattice) and the resulting
relational semantics in [9, 17, 23] appears to have difficulties in providing intuitive
relational semantics for intended applications such as temporal, or dynamic exten-
sions of non-distributive propositional logic. For an application motivated approach,
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it is then preferable to make use of a bounded lattice representation theorem as
in [28] that allows for the representation of additional operators as Jónsson-Tarski
image operators, thus providing full support to intuitive relational semantics for
intended applications (temporal, or dynamic extensions of non-distributive proposi-
tional logic). The cost of this approach, it should be clarified, is that it does not reduce
to the classical Stone [44] or Priestley [41] representation of distributive lattices when
the represented bounded lattice happens to be distributive.

In a recent report [32] based on [28], we have indeed shown that PLL can be
extended with n-ary diamonds and m-ary boxes interpreted precisely as in the
classical case by the conditions (6, 7), allowing even for a temporal interpretation
of modalities in a non-distributive setting as we elaborated in [30]. To construct a
canonical model, the lattice representation theorem of [28], reviewed here as The-
orem 4.1, is extended, replacing ultrafilters U , or prime filters P with the set of
lattice filters F , a tradition initiated by Goldblatt [25] in his semantic analysis of
Orthologic.

With both a satisfaction � and a co-satisfaction (refutation) relation �∂ present,
a number of logical operators of interest can be semantically specified. For a first
example, consider a falsifiability operator �, which in a distributive logic without
classical negation is interpreted in models over frames (X, R∗) by the clause x �
�ϕ iff ∃y (xR∗y and y � ϕ). It appears to be impossible to prove completeness
with this semantic approach in a non-distributive setting and thus an alternative must
be sought. One possible way around this problem has been explored in both [9],
using polarities (X, Y, R, R∗) as well as in our own [32], using single-sorted frames
(X, R, R∗) and where in both cases R is used to generate a Galois connection. In each
of [9, 32], falsifiability has been interpreted dually as impossibility, by the expected
clause x �∂

�ϕ iff ∀y (xR∗y −→ y �
∂ ϕ) and then the clause for x � �ϕ

can be derived using the Galois connection and setting x � �ϕ iff x ∈ λ((�ϕ))

iff ∀y (y �∂
�ϕ =⇒ yRx). But perhaps this is not the best possible solution.

Indeed, note that in the clause for falsifiability in a distributive setting, y � ϕ is the
same as y /∈ �ϕ�, which in our non-distributive setting is equivalent to y ∈ � ((ϕ))

(Section 1.2).
Intuitively, assuming we had an appropriate accessibility relation R∗, the standard

clause could be re-written as

x � �ϕ iff ∃y (xR∗y and ∃v (vRy and v �ϕ))

iff ∃v∃y (xR∗y and vRy and v �∂ ϕ)

iff ∃v (xR∗v and v �∂ ϕ)

where we set xR∗v iff ∃y (xR∗y and vRy) and where R is the complement of R.
It then appears that clause (9) is the natural semantic clause for falsifiability in a

non-distributive setting, which raises the question whether a completeness theorem
for a logic with falsifiability, interpreted by Eq. 9, can be proven.

x � �ϕ iff ∃y (xR∗y and y �∂ ϕ) (9)

For another example, a natural notion of irrefutability can be captured by an oper-
ator with the semantics below (intuitively, x sees ϕ as irrefutable iff no R�-successor
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of x refutes it)

x � �ϕ iff ∀y (xR�y =⇒ y �
∂ ϕ) (10)

That this is indeed an intuitive notion of irrefutability follows from the fact that, in
the setting we have presented in Section 1.2, −((ϕ)) = ♦�ϕ� and, therefore, the above
clause is equivalent to the following one.

x � �ϕ iff ∀y (xR�y =⇒ ∃z (yRz and z � ϕ))

The question that arises is whether there might be a general semantic pattern, sim-
ilar to the interpretation pattern for n-ary modalities [6] based on the Jónsson-Tarski
representation [33]. This could then form the backbone of Kripke-style semantics
[34–36] the role of which in the progress of research in modal logic has been
instrumental, replacing the obscurity of existing semantic approaches at the time
by an intuitive semantic account. In Fitting’s words [18] “After a rocky start in
the first half of the twentieth century, modal logic hit its stride in the second half.
[...] Possible-world semantics provided a technical device with intuitive appeal, and
almost overnight the subject became something people felt they understood, rightly
or wrongly”. It appears, to this author at least, that the situation with the semantics of
modal extensions of PLL and, more generally, of lattice-based substructural logics
is currently similar to the pre-Kripkean era of modal logic semantics on a classical
propositional basis.

In the sequel we build up to a proposal of such a systematic treatment for a large
class of logical operators on PLL, semantically specified.

Definition 2.1 (Distribution Types) A distribution type is an element δ of the set
{1, ∂}n+1, for some n ≥ 0, typically to be written as δ = (i1, . . . , in; in+1) and
where in+1 ∈ {1, ∂} will be referred to as the output type of δ. A similarity type
τ is a collection of distribution types, τ = {δ1, . . . , δk}. We refer to types δ of
the form (1, . . . , 1; 1) as additive types and to types δ′ of the form (∂, . . . , ∂; ∂) as
multiplicative types.

To each distribution type δ = (i1, . . . , in; in+1) we associate a pair of rela-
tions Rδ, R

∂
δ ⊆ Xn+1 from which generalized image operators are defined (see

Definition 2.3).

Remark 2.2 (Notational Convention) When δ = (i1, . . . , in; 1) is of output type
1, we designate the relations by , rather than Rδ, R

∂
δ . Similarly, if δ =

(i1, . . . , in; ∂) is of output type ∂ , we use the notation R�, R∂� for Rδ, R
∂
δ . In other

words, Rδ is either , or R�, depending on the output type of δ, and similarly for
R∂

δ . The relations (and similarly for R�, R∂� are used to define a pair of order-
dual operators (�, �∂ , respectively) and we think of a relation R∂

δ as the ‘dual’
of the relation Rδ . In the canonical frame construction of Section 4 the two relations
Rδ, R

∂
δ are literally order-dual (see Eqs. 23 and 24).
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Definition 2.3 (Generalized Image Operators) Let δ = (i1, . . . , in; in+1) be a dis-
tribution type and Rδ, R

∂
δ ⊆ Xn+1(n + 1)-ary relations on a set X. Then Eqs. 11 and

12

(11)

(12)
define the generalized image operators generated by the relations, when δ =
(i1, . . . , in; 1) is of output type 1, while Eqs. 13 and 14

� (U1, . . . , Un)=
⎧
⎨

⎩
x |∀u1, . . . , un

⎛

⎝
ij =1∧

j=1···n
(uj ∈ Uj ) ∧

ir=∂∧

r=1···n
(ur ∈ρUr) =⇒ xR�u1 · · · un

⎞

⎠

⎫
⎬

⎭
(13)

�∂ (U1, . . . , Un)=
⎧
⎨

⎩
x |∃u1, . . . , un

⎛

⎝xR∂�u1 · · · un ∧
ij =1∧

j=1···n
(uj ∈ λUj ) ∧

ir=∂∧

r=1···n
(ur ∈Ur)

⎞

⎠

⎫
⎬

⎭
(14)

define them when δ = (i1, . . . , in; ∂) is of output type ∂ .

The definition of the image operator in Eq. 11 is a generalization of the
Jónsson-Tarski additive image operators in a mere distributive setting (lacking a
complementation operator), resulting by the addition of the extra conditions that
ur ∈ ρUr , whenever ir = ∂ , a case that is captured in a Boolean context by composi-
tion with classical negation. For an intuitive reading, the reader may wish to think of
Ur as the interpretation of some sentence ϕ, in which case ρUr is its co-interpretation
and therefore ur ∈ ρUr is intended to designate the semantic fact ur �∂ ϕ, which in
a distributive setting is identical to ur � ϕ.

In [30, 32] we have shown how to model the necessity operator (unary, or n-ary)
in a non-distributive context while adhering to the classical relational interpretation
(7). Equation 13 defines the order-dual of a generalized ‘diamond’ operator, defined
with Eq. 11. Interestingly enough, this is not a necessity operator, but rather a gen-
eralized irrefutability operator, when specialized to a distribution type of the form
δ = (∂, . . . , ∂; ∂). The reader may wish to take a look at this point at the last example
in 2.1, with Eqs. 19 and 20 comparing necessity and irrefutability side-by-side. The
reader is reminded that in a distributive context and with semantics based on prime
filters �∂ coincides with � and hence x �∂ ϕ is the same as x � ϕ in the distributive
case and, thereby, necessity and irrefutability coincide. But this is not necessarily the
case in a non-distributive setting, at least in the approach taken in this article. In other
words, truth and refutation sets are related in the standard approach to the seman-
tics of distributive logics by ((ϕ)) = −�ϕ� whereas, as discussed in Section 1.2, in the
non-distributive case ((ϕ)) = ρ(�ϕ�) and �ϕ� = λ((ϕ)) (see also Definition 2.8 of lat-
tice frames and models). Therefore, in the absence of both an orthonegation operator
and of distributivity, it appears that more subtle notions can be semantically captured,
such as a distinction between necessity and irrefutability.
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Definition 2.4 (τ -Frames) Let τ = 〈δ1, . . . , δk〉 be a similarity type and recall the
notational convention made in Remark 2.2. A τ -frame Fτ = (X, R, (Rδ, R

∂
δ )δ∈τ )

is a lattice frame (X, R) together with a pair of relations Rδ, R
∂
δ ⊆ Xn+1, for each

δ ∈ τ , where n + 1 = 
(δ) is the length of δ = (i1, . . . , in; in+1). For each
δ∨ = (i1, . . . , in; 1) ∈ τ of output type 1, and where is its corresponding
relation pair we let be the generalized image operators generated by ,
respectively, defined by Eqs. 11 and 12. Similarly, for each δ∧ = (i1, . . . , in; ∂) ∈ τ

of output type ∂ and where (R�, R∂�) is its corresponding relation pair we let �, �∂

be the generalized image operators generated by R�, R∂�, respectively, defined by
Eqs. 13 and 14. The following requirements are placed on the operators of the
frame.

1. Gλ(X) is closed under the operators , while Gρ(X) is closed under the
operators .

2. the operators and the operators �, �∂ are order-dual, i.e. they
are interdefinable by means of the Galois connection generated by
the binary relation R of the frame. More specifically, for any sets
A1, . . . , An ∈ Gλ(X) and any D1, . . . , Dn ∈ Gρ(X) the follow-
ing two (equivalent) conditions hold: ,

. Similarly, the following two (equiv-
alent) conditions hold: �(A1, . . . , An) = λ(�∂ (ρA1, . . . , ρAn)) and
�∂ (D1, . . . , Dn) = ρ(�(λD1, . . . , λDn)).

A general τ -frame gτ = (X, R, (Rδ, R
∂
δ )δ∈τ ,Pλ) is a frame with a distinguished

sublattice Pλ ⊆ Gλ(X) such that restrict to operators of the respective
distribution type on Pλ and similarly for , and Pρ .

Definition 2.4 includes the case of main focus in this article, where in each argu-
ment place operators either distribute, or co-distribute over either joins, or meets,
always returning the same type of operator, i.e. either uniformly a join, or uniformly
a meet. But it also includes the case of quasi-normal operators that may fail to dis-
tribute over either joins or meets in some argument place, being merely monotone or
antitone at that place. An example of such an operator was studied in [32] and it is
an operational notion of implication, semantically weakened to the requirement that
ϕ −�ψ holds at some state iff after any successful confirmation of ϕ, the conclusion
ψ becomes verifiable in the resulting state.

Remark 2.5 (τ -Frames and Ordinary Kripke Frames) Kripke frames are instances of
τ -frames. Indeed, since every subset of a Kripke frame is a proposition, it must be
that the closure operator induced by the frame relation is the identity operator. This
is achieved simply by considering the relation xRy iff x 	= y. The reader can easily
verify that each of λ, ρ is the set-complement operator so that any subset U ⊆ X is
�-stable, simply because �U = λρU = − − U = U .

For a distribution type δ and its associated relation pair Rδ, R
∂
δ it follows from

the above definition of the dual operators and �, �∂ , given that in the case
of Kripke frames the Galois connection involved is defined by set-complementation,
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that (and similarly for �∂ ) is the classical dual of , since the condition in Def-
inition 2.4 reduces to . Given this identity
and the definitions of (and similarly for �, �∂ ) we obtain after some obvious
logical manipulation that

We may then simply take , given also the fact that it is desirable in the
classical setting to interpret dual operators by the same accessibility relation.

In the next definition the intended meaning of distribution types is clarified and it
is what the reader has no doubt anticipated.

Definition 2.6 (Normal Operators) Following [33], an n-ary monotone operator
f : Ln −→ L will be called additive if it distributes over joins of L in each argument
place. More generally, if L1, . . . ,Ln,L are bounded lattices, then a monotone func-
tion f : L1 × · · · × Ln −→ L is additive, if for each i, f distributes over binary joins
of Li , i.e. f(a1, . . . , ai−1, b ∨ d, ai+1, . . . , an) = f(a1, . . . , ai−1, b, ai+1, . . . , an) ∨
f(a1, . . . , ai−1, d, ai+1, . . . , an).

As a matter of notation, we write L1 for L and L∂ for its opposite lattice (where
order is reversed, usually designated as Lop). Similarly, ≤∂ designates the opposite
order.

An n-ary operator f on a lattice L is normal [28] if it is an additive function f :
Li1 ×· · ·×Lin −→ Lin+1 , where each ij , for j = 1, . . . , n, n+1, is in the set {1, ∂},
i.e. Lij is either L, or L∂ . For a normal operator f on L, its distribution type is the
(n + 1)-tuple δ(f) = (i1, . . . , in; in+1).

An n-ary operator that may fail the additivity condition in some (though not in
all) argument place will be referred to as a partial normal, or quasi-normal operator
and its type will be designated by a sequence μ = μ(f) = (i1, . . . , ij , . . . , in; in+1)

indicating the position(s) where additivity fails by an underbar.

Each of the operators , is an operator in the Kb-algebra associated to
the underlying lattice frame of a τ -frame.

Lemma 2.7 1. In the generalized image operators have
the monotonicity properties corresponding to their respective type δ

2. If δ is of output type 1, then for each j = 1, . . . , n such that ij = 1, the operator
distributes over arbitrary unions of sets. In particular then, if δ = (1, . . . , 1; 1)

is an additive type, then is a completely additive operator in Kb(X, R)

3. If δ is of output type ∂ , then for each j = 1, . . . , n such that ij = 1, the operator
� co-distributes over arbitrary unions of sets, turning them to intersections.

4. If δ is of output type 1, then for each j = 1, . . . , n such that ij = ∂ , the inclu-
sion holds, where only the argument
at the j -th place is displayed
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5. If δ is of output type ∂ , then for each j = 1, . . . , n such that ij = ∂ , the inclusion
�(. . . ,

⋂
k Wjk

, . . .) ⊆ ⋂
k �(. . . , Wjk

, . . .) holds.

Proof For 1), we need to show that are monotone/antitone at the j -th position,
accordingly as ij = in+1, or ij 	= in+1. In the sequel we let U<j abbreviate the
sequence U1, . . . , Uj−1 and similarly for U>j and Uj+1, . . . , Un.

For , with δ of output type in+1 = 1, assume that ij = 1 = in+1 and that U ⊆ V .
To show that , let . By defini-
tion, there exist u1, . . . , un such that, , for each s ∈ {1, . . . , n}
such that is = 1, and ur ∈ ρUr , for each r ∈ {1, . . . , n} such that ir = ∂ . In par-
ticular, uj ∈ U ⊆ V . Then it follows from the definition that .
Hence is monotone at the j -th position in this case. If ij = ∂ 	= 1 = in+1 and

, let again u1, . . . , un be such that , for each
s ∈ {1, . . . , n} such that is = 1, and ur ∈ ρUr , for each r ∈ {1, . . . , n} such that
ir = ∂ . Then in particular, uj ∈ ρV and since U ⊆ V , by assumption, it follows that
uj ∈ ρV ⊆ ρU . Hence and therefore is antitone at the j -th
position in that case.

For �, with δ of output type ∂ , assume that ij = 1 	= in+1 and that U ⊆ V .
To show that �(U<j , V , U>j ) ⊆ �(U<j , U, U>j ), let x ∈ �(U<j , V , U>j ). To
show that x ∈ �(U<j , U, U>j ) let u1, . . . , un be any points such that us ∈ Us ,
for each s ∈ {1, . . . , n} such that is = 1, and ur ∈ ρUr , for each r ∈ {1, . . . , n}
such that ir = ∂ . In particular, uj ∈ U ⊆ V and then since we assume that x ∈
�(U<j , V , U>j ) it follows from the definition of the operator that xR�u1 · · · un.
Hence we may conclude that x ∈ �(U<j , U, U>j ). Next suppose that ij = ∂ = in+1
and assume that x ∈ �(U<j , U, U>j ). Given any u1, . . . , un such that us ∈ Us ,
for each s ∈ {1, . . . , n} such that is = 1, and ur ∈ ρUr , for each r ∈ {1, . . . , n}
such that ir = ∂ and where in particular uj ∈ ρV , it follows that uj ∈ ρU and
since x ∈ �(U<j , U, U>j ), by assumption, the definition implies that xR�u1 · · · un.
Therefore, x ∈ �(U<j , V , U>j ).

For 2), one direction follows from the monotonicity properties of
part 1), verified by the above arguments. It remains to show that

, when ij = 1).
Assuming , let u1, . . . , un be such that

, for each s ∈ {1, . . . , n} such that is = 1, and ur ∈ ρUr ,
for each r ∈ {1, . . . , n} such that ir = ∂ . In particular, uj ∈ ⋃

k Wk , hence
uj ∈ Wk , for some k, from which it follows that and thereby

.
For 3), one direction is a consequence of the monotonicity properties and we only

need to verify that
⋂

k �(U<j , Wk, U>j ) ⊆ �(U<j ,
⋃

k Wk, U>j ).
Assuming x ∈ �(U<j , Wk, U>j ), for all k, let u1, . . . , un be any points such

that
∧

is=1 us ∈ Us and
∧

ir=∂ ur ∈ ρUr . In particular, under the assumption
that ij = 1 and given that Uj = ⋃

k Wk , there is some k such that uj ∈ Wk .
Since x ∈ �(U<j , Wk, U>j ), for all k, it follows that xR�u1 · · · un. Therefore
x ∈ �(U<j ,

⋃
k Wk, U>j ).
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4) and 5) follow by the monotonicity properties of , verified in part 1).

2.2 Interpretation Patterns and Models

The language of PLL is generated by the schema L � ϕ := p (p ∈ P)|�|⊥|ϕ ∧
ϕ|ϕ∨ϕ, where P is a countable, non-empty set of propositional variables and
we use ∨ to designate disjunction. Axioms and rules are stated below in the
form of a symmetric consequence system (a single sentence on each side of the
turnstile).

Definition 2.8 (Lattice Models) Given a Lattice Frame F = (X, R), where R ⊆
X×X, a Lattice ModelM = (F, V ) is a frame together with an admissible valuation
V = (V1, V2) consisting of a pair of valuations V1 : P −→ Gλ(X) and V2 : P −→
Gρ(X) such that V1(p) = λV2(p) and V2(p) = ρV1(p).

An interpretation � � and co-interpretation (or refutation) (( )) is a pair of functions
extending V1, V2, respectively, to all sentences of the language and subject to the
conditions in Table 1, together with the constraint that for all ϕ, �ϕ� = λ((ϕ)) and
((ϕ)) = ρ�ϕ]�, i.e. all triangles in the diagram in Table 1 commute (where L is the
Lindenbaum-Tarski algebra of PLL).

A model on a general lattice frame g is a pair M = (g, V ) where V is an admissi-
ble valuation as previously detailed, but with the additional requirement that for every

Table 1 Interpretation and dual interpretation
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propositional variable p, V1(p) ∈ Pλ and then also V2(p) ∈ Pρ . The satisfaction
� and co-satisfaction �∂ relations are defined by x � ϕ iff x ∈ �ϕ� and x �∂ ϕ iff
x ∈ ((ϕ)).

A sentence ϕ is (dually) satisfied in a model M = (F, V ) = ((X, R), V ) if there
is a world x ∈ X such that x � ϕ (respectively, y �∂ ϕ, for some y ∈ X). It is
(dually) valid in M iff it is satisfied (respectively, dually satisfied) at all worlds x ∈ X

(respectively, at all y ∈ X). Similarly for a model M = (g, V ) on a general frame g.
A sequent ϕ � ψ is valid in a model M iff for every world x of M, if x � ϕ, then

x � ψ . Equivalently, the sequent is valid in the model M iff for every world y, if
y �∂ ψ , then y �∂ ϕ. The sequent is valid in a frame F if it is valid in every model
M based on the frame F. Similarly for a model M = (g, V ) on a general frame g.
Finally, we say that the sequent is valid in a class F of (general) frames iff it holds in
every frame in F.

Given the interpretation and co-interpretation functions and the conditions in
Table 1, the satisfaction � and dual satisfaction (co-satisfaction, refutation) �∂ rela-
tions from worlds to sentences are defined as in Table 2, so that �ϕ� = {x ∈ X | x �
ϕ} and ((ϕ)) = {x ∈ X | x �∂ ϕ}.

Soundness of PLL is straightforward to prove and the interested reader need only
observe that for any sentence ϕ its interpretation �ϕ� is a �-stable set, while its co-
interpretation ((ϕ)) is �-stable.

Definition 2.9 (Propositional τ -Languages) The propositional language of τ -
frames is the extension PLLτ of the language of PLL with an n-ary operator ©δ

for each δ ∈ τ . Explicitly, sentences are generated by the grammar ϕ := p (p ∈
P) | � | ⊥ | ϕ ∧ ϕ | ϕ∨ϕ | ©δ (ϕ, . . . , ϕ) (δ ∈ τ).

We next specify a natural and uniform interpretation pattern for τ -languages,
interpreted over τ -frames.

Definition 2.10 A model M = (g, V ) on a general τ -frame g is a lattice model (on
the underlying general lattice frame) in the sense of Definition 2.8 where the satisfac-
tion and co-satisfaction relations are subject to the following additional conditions,
where we make the convention to write for ©δ when δ = (i1, . . . , in; 1) is of

Table 2 Satisfaction and dual satisfaction relations

x � p iff x ∈ V1(p) x �∂ p iff x ∈ V2(p)

x � � always x �∂ ⊥ always

x � ⊥ iff x ∈ ∅λ x �∂ � iff x ∈ ∅ρ

x � ϕ ∧ ψ iff x � ϕ and x � ψ x �∂ ϕ ∨ ψ iff x �∂ ϕ and x �∂ ψ

x � ϕ∨ψ iff ∀y (yRx =⇒ ∃z (yRz and (z � ϕ or z � ψ)))

iff x ∈ �(♦ �ϕ� ∪ ♦�ψ�) x �∂ ϕ ∧ ψ iff x ∈ �(�((ϕ)) ∪ �((ψ)))

iff x ∈ λ ((ϕ∨ψ)) iff x ∈ ρ(�ϕ ∧ ψ�)
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output type 1 and we write �δ , respectively, when δ = (i1, . . . , in; ∂) is of output
type ∂ .

(15)

(16)

x��δ(ϕ1, . . . , ϕn) iff ∀u1, . . . , un (
ij=1∧

j=1···n
(uj �ϕj )∧

ir=∂∧

r=1···n
(ur �∂ ϕr ) =⇒ xR�u1 · · · un)

(17)

x �∂ �δ(ϕ1, . . . , ϕn) iff ∃u1, . . . , un (xR∂�u1 · · · un ∧
ij =1∧

j=1···n
(uj � ϕj )

∧
ir=∂∧

r=1···n
(ur �∂ ϕr))

(18)

Satisfaction and validity are defined as in lattice models (Definition 2.8).

Example 2.1 We present some cases of interest for the operators:

• If δ = (1; 1), then Eq. 15 specializes to the clause

so that is a unary diamond operator ♦. Similarly, is an n-
ary diamond operator with the familiar satisfaction clause, since the satisfaction
clause in the above definition reduces to the clause in Eq. 6. In particular, the dis-
tribution type δ = (1, 1; 1) corresponds to the binary diamond operator known
as the fusion operator in substructural and relevance logics.

• If δ = (∂; 1), then is the falsifiability operator we discussed in motivating
the present section. Indeed, the satisfaction clause (15) provided above becomes

In words, ϕ is falsifiable at x iff it is refuted at some successor state u of x.
• If δ = (1; ∂), then �1;∂ is an impossibility operator, i.e. a modally inter-

preted negation operator ∼ whose semantics in a distributive setting (using an
accessibility relation R∗, see e.g. [14]) is provided by the clause x �∼ ϕ iff
∀u (xR∗u =⇒ u � ϕ).

That this is indeed the case for δ = (1; ∂) can be seen from the respective
clause (17) instantiated below, where R�1;∂ is the complement of R�1;∂

x � �1;∂ϕ iff ∀u (u � ϕ =⇒ xR�1;∂ u) iff ∀u (xR�1;∂ u =⇒ u 	� ϕ)

• If δ = (∂; ∂) then the respective clause (17) reads as follows

x � �∂;∂ϕ iff ∀u (u � ϕ =⇒ xR�∂;∂ u) iff ∀u (xR�∂;∂ u =⇒ u �
∂ ϕ)
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which is precisely the irrefutability operator we also discussed in motivating the
present section.

• If δ = (1, ∂; ∂), then �1,∂;∂ = −� is an implication operator, with satisfaction
clause instantiating (17),

x � ϕ −�ψ iff ∀u,v (u � ϕ and v �∂ ψ =⇒ xR−�uv) iff

∀u,v (xR−�uv and u � ϕ =⇒ v �
∂ ψ)

which we treated in [32] and as noted there it resembles the clause for Relevant
implication [1, 2], except for replacing satisfaction of the conclusion at v by its non-
refutation. Co-satisfaction is specified by the following clause, instantiating (18)

x �∂ ϕ−�ψ iff ∃u, v (xR−�uv and u � ϕ, but v �∂ ψ)

which is the natural analogue of a clause for negated implication.
• For δ = (∂, 1; ∂), the operator �δ = �∂,1;∂ is a reverse implication �–, as the

reader can easily see by instantiating the corresponding satisfaction clause (17).
• The case δ = (∂, ∂; ∂) corresponds to a binary non co-refutability operator, with se-

mantic clause (instantiating (17) and after contraposition and writing � for �∂,∂;∂ )

x � ϕ � ψ iff ∀u, v (xR�uv =⇒ (u �
∂ ϕ or v �

∂ ψ)) iff

∀u, v (xR�uv and u �∂ ϕ =⇒ v �
∂ ψ)

It is interesting to note that the order-dual of an n-ary diamond, of distribution
type δ = (1, . . . , 1; 1), is the n-ary non co-refutability operator and the dif-
ference with n-ary box is shown in their respective satisfaction clauses, listed
side-by-side in Eqs. 19 and 20, where we write � for �∂···∂;∂ .

(19)

x � �(ϕ1, . . . , ϕn) iff ∀u1 · · · un (xR�u1 · · · un =⇒
∨

r=1···n
(ur �

∂ ϕr))

(20)

3 Logics of Bounded Lattice Expansions

Let L = (L,∧, ∨, 0, 1) be a bounded lattice and PLL designate Positive Lattice
Logic (the propositional logic of bounded lattices).

Definition 3.1 A lattice expansion is a structure L = (L,∧, ∨, 0, 1, (fi )i∈k) where
k > 0 is a natural number and for each i ∈ k, fi is a normal operator on L of some
specified arity α(fi ) ∈ N

+ and distribution type δ(i). The similarity type of L is the
k-tuple τ(L) = 〈δ(0), . . . , δ(k − 1)〉. Where τ is a similarity type, Lτ is the class of
lattice expansions of similarity type τ .

Bounded modal lattices , implicative lattices (L,∧, ∨, 0, 1, →),
ortholattices (L,∧, ∨, 0, 1, ¬) and residuated lattices (L,∧, ∨, 0, 1, ←, ◦, →) are
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examples of normal bounded lattice expansions. The similarity type of residuated
lattices is the type τ = 〈(∂, 1; ∂), (1, 1; 1), (1, ∂; ∂)〉 and analogously for the other
cases.

Definition 3.2 For a given similarity type τ , the minimal inequational theory of Lτ

is the theory E0(τ ) in the first-order language with equality L(≤) of partial orders
whose axioms are the following:

• Equality and partial order axioms
• Bounded lattice axioms
• For each n-ary normal operator f : Li1 × · · · × Lin −→ Lin+1 of distribution

type δ

– Monotonicity rules: a≤ij b

f(...,a,...)≤in+1 f(...,b,...)
, for each j = 1, . . . , n and

where ≤1=≤ and ≤∂=≥
– Distribution axioms: f(. . . , a ∨ij b, . . .) = f(. . . , a, . . .) ∨in+1

f(. . . , b, . . .), where ∨1 = ∨ and ∨∂ = ∧.

An inequational theory E(τ ) for Lτ is any superset of E0(τ ) in the first-order
language L(≤) of partial orders.

For example, the normal modal theory E(〈. . . , (1; 1), (∂; ∂) . . .〉) will include the
normality axioms and for the unary normal possibility and necessity
operators.

Definition 3.3 For a given similarity type τ , the propositional language L(τ) for
Lτ is the τ -language of Definition 2.9, generated by the grammar: ϕ := p (p ∈
P)|�|⊥|ϕ ∧ ϕ|ϕ∨ϕ| ©δ (ϕ, . . . , ϕ) (for each δ ∈ τ), where P is a countable,
nonempty set of propositional variables. The minimal propositional logic 
0(τ ) (or
PLLτ ) is the extension of PLL, axiomatized by the axioms and rules below

with, in addition,

• a monotonicity rule Ri for each i ∈ k: ϕ1�i1ψ1 ··· ϕα(i)�iα(i)ψα(i)

©δ(ϕ′
1,...,ϕ

′
α(i)

)�iα(i)+1©δ(ψ ′
1,...,ψ

′
α(i)

)
, where

α(i) is the arity of ©δ , for each j = 1, . . . , α(i), ϕj �ij ψj stands for ϕj � ψj

if ij = 1 and it stands for ψj � ϕj if ij = ∂ and similarly for the conclusion of
the rule, while ϕ′

j = ϕj and ψ ′
j = ψj if ij = 1 and ϕ′

j = ψj and ψ ′
j = ϕj if

ij = ∂

• distribution axioms D
j
i for each i ∈ k and each j = 1, . . . , α(i):

©δ(ϕ1, . . . , ζ∨ij ξ, . . . , ϕα(i)) �α(i)+1 ©δ(ϕ1, . . . , ζ, . . . , ϕα(i))∨α(i)+1

©δ(ϕ1, . . . , ξ, . . . , ϕα(i))
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where the same convention as above applies to the superscripted turstile and the
superscripted ∨r is ∨ if the superscript r = 1 and it is ∧ if the superscript r = ∂ .

Notation is perhaps awkward, but the idea is really simple, as an example or two will
show. Indeed, consider first the case of implication →, of distribution type (1, ∂; ∂).

The monotonicity rule, literally transcribed, is the rule ϕ�1ϕ′ ψ�∂ψ ′
ϕ→ψ�∂ϕ′→ψ ′ which, given the

above notational conventions, is exactly the familiar rule ϕ�ϕ′ ψ ′�ψ
ϕ′→ψ ′�ϕ→ψ

and similarly
for co-distribution over joins in the first and distribution over meets in the second
position. For an n-ary diamond operator, whose distribution type is (1, . . . , 1; 1), all
superscripted turnstiles in the monotonicity rule are plain turnstiles. The same is true
of the distribution rule, where in addition ∨1 = ∨. For an n-ary box operator ,
whose type is (∂, . . . , ∂; ∂), after following through with the notational convention
the monotonicity rule becomes . For the distribution axiom,

note first that ∨∂ = ∧ and given also the notational convention on the superscripted
turnstile the axiom becomes the familiar one ,
where we only displayed the sentence at the j -place (any j = 1, . . . , n).

Given the way we defined the minimal logic 
0(τ ) as a symmetric consequence
system, with axioms and rules being a direct syntactic copy of the axioms and rules
of the minimal inequational theory E0(τ ), the following is no surprise.

Theorem 3.4 The Lindenbaum-Tarski algebra of the logic 
0(τ ) is an algebra in
the class Lτ .

As a consequence, we derive an algebraic soundness and completeness result for
the minimal logic 
0(τ ).

Corollary 3.5 (Algebraic Soundness and Completeness) 
0(τ ) is sound and com-
plete in the class Lτ of bounded lattice expansions by normal operators, for each
similarity type τ .

τ -languages are interpreted (Definition 2.10) over τ -frames (Definition 2.4).
Soundness of PLLτ in the class of general frames of Definition 2.4, for any similar-
ity type τ , is immediate, by the way we defined frames. Completeness of PLLτ is
proven in the next section.

4 A Canonical Frame Construction

In Section 2 we presented a natural and intuitive relational semantics for the logics
of bounded lattice expansions discussed in Section 3. The models we presented build
on the idea of order-dual semantics we introduced in [32], an idea that is inherent in
every lattice representation theorem [26] and which makes use of both a satisfaction
and a co-satisfaction relation. The complex algebras g+

τ of the frames of Section 2
are bounded lattice expansions with a natural family of operators of well-determined
distribution types and which are generated by relations in the frame and include the
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usual logical operators familiar from the study of specific logical systems. The logic
of bounded lattice expansions is then the logic of the relational semantic structures
specified in Section 2. Soundness of the logic in the class of frames specified rests on
the proof of Lemma 2.7 for the monotonicity axioms and it is otherwise immediate by
the fact that we require of frames that the restrictions of the operators in the family Pλ

satisfy the desired distribution properties axiomatized by corresponding distribution
axioms in the minimal logic 
0(τ ). Completeness can be perhaps shown in many
ways and we present our own canonical construction in this section, based on and
extending [28].

4.1 Canonical Lattice Frame

Quoting from [32] we list the following representation result, based on previous work
[28] by this author. For more proof details the reader is referred to [28, 32].

Theorem 4.1 (Modal Lattice Representation) For every bounded lattice
(L, 0, 1, ∧, ∨) there is a concrete, complete and atomic Kb-algebra Kb(X, R) gen-
erated by a frame (X, R), such that if Gλ(X),Gρ(X) are its associated lattices of �

and � stable sets and Gλ(X) = {−A | A ∈ Gλ(X)},Gρ(X) = {−B | B ∈ Gρ(X)}
then

1. there is a lattice embedding � � : L −→ Gλ(X) and a lattice dual embed-
ding (( )) : L −→ Gρ(X)op such that �a� = λ((a)) and ((a)) = ρ(�a�) and
therefore �a� = �(�a�) = �♦(�a�) is �-stable and ((a)) = �((a)) = �� ((a)) is
�-stable

2. the composition ♦[[a]] = −((a)) is an embedding of L into Gρ(X), while the
composition �((a)) = −�a� is a co-embedding of L into Gλ(X).

Proof The proof of the first claim is implicit in the results of this author’s [28] where
a lattice is represented in its partially-ordered space of filters (X, ≤), generalizing
Goldblatt’s representation of ortholattices [25] in their filter space. Indeed, letting

be the Dedekind-McNeille Galois connection generated by the

partial order relation of filter inclusion and Gλ(X) the family of �-stable subsets of
X, A = �A = λρA = �♦A (where �,♦ are generated by �), by the results of [28]
stable sets A = �A are generated as upper closures of singletons, A = �x, and a
lattice element a is represented as the set �a� = �xa = {x | xa ≤ x} = {x | a ∈ x}
of filters containing it, where xa = a ↑ is the principal filter generated by a and
a ∈ x iff xa ≤ x iff x ∈ �xa .

It is also dually represented as the set ((a)) = {x | x ≤ xa} = {x | a ≤ x}.
Meets are represented as stable set intersections, �a ∧ b� = �a�∩ �b�, while joins are
represented as closures of unions �a ∨ b� = �(�a� ∪ �b�) = λ(ρ(�a�) ∩ ρ(�b�)) and
dually represented as intersections. By Lemma 1.1 we then have �a ∨ b� = �(♦�a�∪
♦�b�) = �a�∨�b�, while for any a we have �a� = �xa = λρ({xa}) = �♦({xa}).
The image of the representation map is identified in [28] as the set of stable-compact-
open subsets of X, where X is topologized by the subbasis S = {�a� | a ∈ L} ∪
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{X \ �a� | a ∈ L}. By [28] ((a ∨ b)) = ((a)) ∩ ((b)) and ((a ∧ b)) = �( ((a)) ∪ ((b)) ) =
ρ(λ ((a)) ∩ λ((b)) ) = �(� ((a)) ∪ �((b))).

The following result is then immediate and we merely list it below (for details, the
reader is referred to [28]).

Theorem 4.2 PLL is sound and complete in the class of (general) lattice frames.

4.2 Normal Operators and Canonical Relations

Let L = (L,∧, ∨, 0, 1, f) be a bounded lattice expansion with a normal n-ary oper-
ator f of some distribution type δ(f) = (i1, . . . , in; in+1), let Lτ be the class of
algebras for the similarity type τ = 〈δ〉 and let 
0(τ ) be the corresponding minimal
propositional logic for this similarity type. To prove that the logic is complete in the
respective class of τ -frames we define a filter operator f� and (n + 1)-ary relations
Rf, Rf,∂ by distinguishing, for technical reasons, the two cases corresponding to the
output type (1, or ∂). A lattice operator f of distribution type δ∨ = (i1, . . . , in; 1)

is consistently denoted in this paper by the generic symbol , while for an operator
with distribution type δ∧ = (i1, . . . , in; ∂) we consistently use the symbol �. Hence
we define the filter operator f� for the two distinct cases and �� by Eqs. 21 and
22 and the corresponding relations, the same for each of the cases , by Eqs. 23
and 24. The definitions we provide below are essentially the same as those in our
[28], except for the presentation, which is now simpler.

(21)

��(x1, . . . , xn) =
∨

⎧
⎨

⎩
f(a1, . . . , an)↑ |

ij =1∧

j=1···n
(aj ≤ xj ) ∧

ij =∂∧

j=1···n
(aj ∈ xj )

⎫
⎬

⎭
, (in+1 = ∂) (22)

xRfx1 · · · xn iff f�(x1, . . . , xn) ≤ x (23)

xRf,∂x1 · · · xn iff x ≤ f�(x1, . . . , xn) (24)

For a lattice element a ∈ L, let �a� = {x | a ∈ x} and ((a)) = {x | a ≤ x}, as in
Theorem 4.1.

Lemma 4.3 Let f be an n-ary normal lattice operator of any distribution type δ =
(i1, . . . , in; in+1). Then

1. f, f� have the same monotonicity type. In other words, if for all j = 1, . . . , n,
if xj ≤ uj whenever ij = 1 and uj ≤ xj whenever ij = ∂ , then
f�(x1, . . . , xn) ≤in+1 f�(u1, . . . , un), where ≤in+1 is ≤ if in+1 = 1 and it is ≥ if
in+1 = ∂

2. f�(xe1 , . . . , xen) = f(e1, . . . , en)↑, for any lattice elements e1, . . . , en

3. For any lattice elements a1, . . . , an, �f(a1, . . . , an)� = Rfxa1 · · · xan and
(( f(a1, . . . , an) )) = Rf,∂xa1 · · · xan
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4. For any lattice elements a1, . . . , an and filters u1, . . . , un, if aj ∈
uj , whenever ij = 1 and aj ≤ uj , whenever ij = ∂ , then
f�(xa1 , . . . , xan) ≤in+1 f�(u1, . . . , un). Equivalently, under these assumptions,

and �(a1, . . . , an) ≤
��(u1, . . . , un) (case in+1 = ∂). In yet other words,

and ��(u1, . . . , un) ∈ ((f (a1, . . . , an) )),
under the same assumptions.

Proof For 1), let u ≤ v and separate the cases. Assume first in+1 = 1 = ij , i.e. f
is monotone at the j -th position. Then for any element e, if e ≤ v, then e ≤ u and
this implies that the defining set Sv for f�(x, v, y) is contained in the corresponding
defining set Su for f�(x, u, y). Hence f�(x, u, y) = ∧

Su ≤ ∧
Sv = f�(x, v, y) and

so f is also monotone at the j -th position.
Assume now in+1 = 1 	= ∂ = ij , i.e. f is antitone at the j -th position. Then

for any element e, if e ∈ u, then e ∈ v and therefore Su ⊆ Sv , from which we
obtain f�(x, v, y) = ∧

Sv ≤ ∧
Su = f�(x, u, y) and so f� is also antitone at the j -th

position.
If in+1 = ∂ , separate again the two cases ij = 1, ij = ∂ as above. Since now

f� is defined by taking a join, the desired conclusion easily follows, by the same
considerations as above.

For 2), assume first that in+1 = 1. Let a1, . . . , an be lattice elements such that
if ij = 1, then aj ≤ xej

and if ij = ∂ , then aj ∈ xej
. In the first case, aj ≤ ej

and because f is monotone in the j -th position, by the case assumption in+1 = 1, it
follows that f(· · · aj · · · ) ≤ f(· · · ej · · · ). In the second case, ej ≤ aj and because f is
antitone in the j -th position it follows again that f(· · · aj · · · ) ≤ f(· · · ej · · · ). Hence
f(a1, . . . an) ≤ f(e1, . . . en), i.e f(e1, . . . en)↑≤ f(a1, . . . an)↑. When in+1 = 1, then
clearly f(e1, . . . en)↑ is the meet (intersection) of the principal filters in the definition
of f� in Eq. 21, since it is both a member of the set whose meet is taken in the
definition and below all elements in that set. If in+1 = ∂ , then f is antitone at the j -
th position when ij = 1 and monotone when ij = ∂ hence the previous inequalities
are reversed and f(e1, . . . en)↑ is now the largest element in the set described in the
definition of f�.

For 3), �f(a1, . . . , an)� = {x | f(a1, . . . , an) ∈ x} = {x | f(a1, . . . , an) ↑≤ x} =
{x | f�(xa1 , . . . , xan) ≤ x} = Rfxa1 · · · xan , by definition and using the first case of
the Lemma, and similarly for (( f(a1, . . . , an))).

4) is a direct consequence of the first claim.

4.3 Completeness Proof

The canonical general frame is the structure gc
τ = (X, ≤, (Rδ, Rδ,∂ )δ∈τ ,Pλ) where

X = F is the set of all filters of the Lindenbaum-Tarski algebra of the logic
(including the improper filter), ≤ is filter inclusion, Pλ is the set of stable sets
generated as upper closures of principal filters and for each distribution type δ ∈ τ ,
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Rδ, Rδ,∂ are defined as in Eqs. 23 and 24 using the filter operators f� defined in
Eqs. 21 and 22 and where f is the operator of distribution type δ.

Lemma 4.4 (Canonical Frame Lemma) The canonical frame satisfies all frame
conditions of Definition 2.4.

Proof We prove the Lemma with a series of Claim proofs.

Claim 4.5 The defined operators preserve stable sets and restrict to operators on
Pλ,Pρ , respectively.

For the proof, we distinguish cases according to the output type.

Case with By Eq. 21, the definition of the filter operator
is

and the corresponding set operators are defined by Eqs. 11
and 12, repeated below, where the canonical relations are defined by

and .

We first show that the operator preserves �-stable sets. Letting Ai = �xi , for
i = 1, . . . , n, we have

Conversely, if then by choosing uj = xj for each j =
1, . . . , n it follows by the defining condition for membership in ,
which is now trivially satisfied by the choice of the uj that .

Hence and therefore restricts to an oper-
ator on Gλ(X). That also restricts to an operator on Pλ is seen by the following
simple calculation, given also Lemma 4.3.

Given that �xa = �a�, the above is proof that
and hence the representation map is a homomorphism.
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We next show that the operator preserves �-stable sets. Indeed, let Di = �xi ∈
Gρ(X), for i = 1, . . . , n. Then we have the following computation.

where the converse direction follows by the monotonicity properties of , verified
in Lemma 4.3.

In particular, if xj = xaj
, the following computation shows that restricts to an

operator on Pρ and that the representation map is a homomorphism.

Hence .

Case , with Then the definition of the filter operator is

��(x1, . . . , xn) =
∨

⎧
⎨

⎩
f (a1, . . . , an)↑ |

ij =1∧

j=1···n
(aj ≤ xj ) ∧

ij =∂∧

j=1···n
(aj ∈ xj )

⎫
⎬

⎭

The corresponding set operators �, �∂ are defined by Eqs. 13 and 14, Definition 2.4,
repeated below,

�(U1, . . . , Un)=
⎧
⎨

⎩
x | ∀u1, . . . , un

⎛

⎝
ij=1∧

j=1···n
(uj ∈ Uj )∧

ir=∂∧

r=1···n
(ur ∈ ρUr) =⇒ xR�u1 · · · un

⎞

⎠

⎫
⎬

⎭

�∂ (U1, . . . , Un)=
⎧
⎨

⎩
x | ∃u1, . . . , un

⎛

⎝xR∂�u1 · · · un∧
ij =1∧

j=1···n
(uj ∈ λUj )∧

ir=∂∧

r=1···n
(ur ∈ Ur)

⎞

⎠

⎫
⎬

⎭

while the canonical relations are defined by xR�u1 · · · un iff �� (u1, . . . , un) ≤ x

and xR�,∂u1 · · · un iff x ≤ ��(u1, . . . , un).
If Ai = �xi , for i = 1, . . . , n, are in Gλ(X), then the following computation

shows that � restricts to an operator on Gλ(X).

x ∈�(�x1, . . . , �xn) iff ∀u1, . . . , un

(∧ij=1
j=1···n(uj ∈ �xj )∧∧ir=∂

r=1···n(ur ∈ρ�xr ) =⇒ xR�u1 · · · un

)

iff ∀u1, . . . , un

(∧ij=1
j=1···n(xj ≤uj )∧∧ir=∂

r=1···n(ur ≤ xr ) =⇒ ��(u1, . . . , un)≤x
)

iff �� (x1, . . . , xn)≤x

where again the converse direction follows by the monotonicity properties of ��,
verified in Lemma 4.3. Therefore, �(�x1, . . . , �xn) = �(��(x1 · · · xn)) ∈ Gλ(X).
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In particular, if xj = xaj
= aj ↑, then the following calculation demonstrates that

� restricts to an operator on Pλ (the lattice of upper closures of principal filters).

x ∈ �(�xa1 , . . . , �xan) iff �� (xa1 , . . . , xan) ≤ x

iff � (a1, . . . , an)↑ ≤ x

iff x ∈ �(�(a1, . . . , an)↑)

Hence �(�xa1 , . . . , �xan) = �(�(a1, . . . , an) ↑). In particular, the above calcula-
tion shows that the representation function is a homomorphism, since we have in fact
demonstrated that �(�a1�, . . . , �an�) = ��(a1, . . . , an)�.

To see, next, that �∂ preserves �-stable sets, let Di = �xi ∈ Gρ(X), for i =
1, . . . , n.

x ∈ �∂ (�x1, . . . , �xn) =⇒ ∃u1, . . . , un (x ≤ ��(u1, . . . , un)

∧ ∧ij =1
j=1···n(uj ∈ λ�xj )

∧ ∧ir=∂
r=1···n(ur ∈ �xr))

=⇒ ∃u1, . . . , un (x ≤ ��(u1, . . . , un)

∧ ∧ij =1
j=1···n(xj ≤ uj )

∧ ∧ir=∂
r=1···n(ur ≤ xr))

=⇒ ∃u1, . . . , un (x ≤ ��(u1, . . . , un)

≤ ��(x1, . . . , xn))

=⇒ x ≤ ��(x1, . . . , xn))

=⇒ x ∈ �(��(x1, . . . , xn))

Conversely, if x ∈ �(��(x1, . . . , xn)), i.e. x ≤ ��(x1, . . . , xn)), then choosing
uj = xj the defining property for membership of x in the set �∂ (�x1, . . . , �xn) is
trivially satisfied. Hence, �∂ (�x1, . . . , �xn) = �(��(x1, . . . , xn)) ∈ Gρ(X).

In particular, if xj = xaj
are principal filters, then we obtain by the above argu-

ment, given also Lemma 4.3, that �∂ (�xa1 , . . . , �xan) = �(�(a1, . . . , an) ↑) and
this shows that �∂ restricts to an operator on Pρ , as well as that the representation is
a homomorphism, since the above conclusion can be rewritten as ((�(a1, . . . , an) )) =
�∂ ( ((a1)), . . . , ((an)) ).

This completes the proof of Claim 4.5.

Claim 4.6 If A1 = �x1, . . . , An = �xn ∈ Gλ(X) and D1 = �y1, . . . , Dn = �yn ∈
Gρ(X), then all of the following hold:

For the proof of the claim note that

where we used Claim 4.5. The other cases are similar.
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By the proofs of Claims 4.5 and 4.6 we have shown that the canonical frame
satisfies the frame conditions of Definition 2.4.

Claim 4.7 The distribution conditions of Definition 2.4 hold in the canonical general
frame.

For the proof of the case of an operator , let ij = 1 for some j = 1, . . . , n, let
x, z1, . . . , zn be filters such that , i.e. , let also A =
�xa, B = �xb and Dr = �xar , for r 	= j , be members of Pλ. Assume, furthermore,
that zj ∈ A ∨ B, while for r 	= j zr ∈ Dr .

Notice that �xa ∨ �xb = �(xa ∩ xb) = �xa∨b. Furthermore,

The proof of the case of an operator � is by essentially the same argument, using the
proof of Claim 4.5 as we did above.

This completes the proof of Claim 4.7 and of Lemma 4.4.

Lemma 4.8 (Canonical Interpretation Lemma) The canonical interpretation � �
and co-interpretation (( )), defined by �ϕ� = {x ∈ X|[ϕ] ∈ x} and ((ϕ)) = {x ∈ X|[ϕ] ≤
x}, where [ϕ] is the equivalence class (under provability) of ϕ, satisfy the model
conditions of Definition 2.10.

Proof The claim is true by definition for the case of propositional variables and the
case of lattice operators has been handled in the proof of Theorem 4.1. For the case
of an operator f of distribution type δ, we separate the cases according to the output
type of δ.

When the output type is 1, we designate f by , as we have been consis-
tently doing throughout this article. Let in the
Lindenbaum-Tarski algebra of the logic.

Claim 4.9 iff there exist filters u1, . . . , un such that (a)
, (b) aj ∈ uj whenever ij = 1 and (c) aj ≤ uj whenever ij = ∂ .

For the proof of the claim, first let u1, . . . , un be filters such that and
aj ∈ uj whenever ij = 1, while aj ≤ uj whenever ij = ∂ . By Lemma 4.3 the
last two assumptions imply that . By the same
Lemma 4.3, hence the hypothesis implies that

. In addition, by definition of and hypothesis we
have and thereby .
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Conversely, assume and choose ui = xai
, for i = 1, . . . , n.

For a principal filter xe it is the case that both e ∈ xe and e ≤ xe. Hence it holds
that aj ∈ uj whenever ij = 1 and ai ≤ uj whenever ij = ∂ . It remains to verify
that which, by definition, is the same as . Given that
uj = xaj

, given also that by Lemma 4.3 this
is equivalent to , which is precisely the case assumption and this
completes the proof of the claim.

Consider now the case where the output type of δ is ∂ . Then we designate f by � and
let [�(ϕ1, . . . , ϕn)] = �(a1, . . . , an) in the Lindenbaum-Tarski algebra of the logic.

Claim 4.10 �(a1, . . . , an) ∈ x iff for any filters u1, . . . , un if both (i) aj ∈ uj

whenever ij = 1 and (ii) aj ≤ uj whenever ij = ∂ , then xR�u1 · · · un, i.e.
��(u1, . . . , un) ≤ x.

For the proof, assume first �(a1, . . . , an) ∈ x, let u1, . . . , un be any fil-
ters and suppose conditions (i) and (ii) hold. By Lemma 4.3 the conditions
imply that ��(u1, . . . , un) ≤ ��(xa1 , . . . , xan), where the latter is identical to
(�(a1, . . . , an)) ↑. Therefore, �(a1, . . . , an) ≤ ��(u1, . . . , un), i.e. �(a1, . . . , an)

is below every element of the filter ��(u1, . . . , un). Since by assumption
�(a1, . . . , an) ∈ x and x is a filter it follows that every element of ��(u1, . . . , un) is
in x. In other words, ��(u1, . . . , un) ≤ x.

Conversely, assume that for any filters u1, . . . , un if conditions (i) and (ii) hold,
then ��(u1, . . . , un) ≤ x and choose uj = xaj

for j = 1, . . . , n. Trivially
(i) and (ii) hold for principal filters regardless of the side condition and therefore
��(xa1 , . . . , xan) ≤ x, but ��(xa1 , . . . , xan) = (�(a1, . . . , an)) ↑, this shows that
�(a1, . . . , an) ∈ x and hence the proof of the claim is complete.

For the co-interpretation, we again separate the cases according to the output type
of δ and we consider first the case where it is 1.

Claim 4.11 iff for any filters u1, . . . , un if (1) aj ∈ uj whenever
ij = 1 and (2) aj ≤ uj whenever ij = ∂ , then , i.e. .

To prove the left to right direction, assume , let u1, . . . , un be
any filters and assume that conditions (1) and (2) hold. Condition (1) is equiva-
lent to xaj

≤ uj , when ij = 1, while condition (2) is equivalent to uj ≤ xaj

when ij = ∂ . The values of ij indicate monotonicity and antitonicity at the
respective places according to whether ij = in+1 = 1 or not. By Lemma 4.3,
case 1, . The hypothesis , given
Lemma 4.3, is equivalent to and we then
get the desired conclusion, .

For the converse, choosing in particular uj = xaj
for each j = 1, . . . , n we

obtain . But the latter is the principal filter ,
by Lemma 4.3 and thereby we obtain .

Finally, we consider the case where the output type of δ is ∂ .
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Claim 4.12 �(a1, . . . , an) ≤ x iff there exist filters u1, . . . , un such that x ≤
��(u1, . . . , un) and (a) aj ∈ uj whenever ij = 1, while (b) aj ≤ uj when ij = ∂ .

From right to left, if filters u1, . . . , un exist with the properties described in the claim,
then by the monotonicity properties of �� (Lemma 4.3) we obtain ��(u1, . . . , un) ≤
��(xa1 , . . . , xan) from which it follows that �(a1, . . . , an) ≤ x, using Lemma 4.3.

For the left to right direction, assume and consider uj = xaj
. Then trivially aj ∈

uj whenever ij = 1, while aj ≤ uj when ij = ∂ (simply because e ∈ xe and
e ≤ xe, for any principal filter xe). Furthermore, the hypothesis is equivalent to
x ≤ ��(xa1 , . . . , xan) = ��(u1, . . . , un) by choice of the uj .

This completes both the proof of the claim and the proof of the canonical
interpretation Lemma.

We may then conclude with a completeness result.

Theorem 4.13 (Completeness) Let τ = 〈δ1, . . . , δk〉 be a similarity type and 
0(τ )

the corresponding minimal propositional logic for this type, in the sense of Def-
inition 3.3. Then 
0(τ ) is sound and complete in the class of general frames of
Definition 2.4.

5 Conclusions

In this article we presented a natural, intuitive and uniform relational semantics for
the logics of bounded lattice expansions. We fixed a class of semantic structures
with operators generated by relations by generic patterns, in the spirit of the Jónsson-
Tarski [33] representation theorem, though more general, and including the cases of
familiar operators such as implication, possibility, fusion, negation as falsifiability
etc.

The models we presented build on the idea of order-dual semantics we intro-
duced in [32], an idea that is inherent in every lattice representation theorem [26]
and which makes use of both a satisfaction and a co-satisfaction (refutation) relation.
The complex algebras g+

τ of the frames of Section 2 are bounded lattice expansions
with a natural family of operators of well-determined distribution types and which
are generated by relations in the frame and include as special cases the usual logical
operators familiar from the study of specific logical systems. The logic of bounded
lattice expansions is then the logic of the relational semantic structures specified in
Section 2, for which we proved a generic completeness theorem, by a traditional
canonicity argument, in Section 4.

Comparing to existing approaches, our semantic structures and interpretation pat-
terns are simple and intuitive, despite the absence of distribution, and it then appears
that our approach and results may facilitate the study of logical systems on a non
distributive propositional basis, such as modal, or substructural systems, sometimes
collectively referred to as (non-distributive) Generalized Galois Logics (GGLs) [4].
Though we have explicitly only treated operators that are normal in the sense of
having a well specified distribution type, the observant reader will have noticed
that the same approach applies to quasi-normal operators that may fail distribution
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in some argument place and this may prove useful in studying logics over a non-
distributive propositional basis where the additional operators are not normal in the
usual modal logic sense.

Acknowledgments I wish to sincerely thank the anonymous referees for their comments and recom-
mendations that helped improve the clarity and presentation of this article.

While this article was under review, applications and further clarification of the framework were
pursued in two sequel papers, currently under review:

While this article was under review, applications and further clarification of the framework was pur-
sued by this author in a sequel paper Kripke-Galois Semantics for Substructural Logics (2016), currently
under review, treating a variety of logical systems, from the Full Lambek and Lambek-Grishin calculi to
Modal, Linear and Relevance Logic (without distribution). Other than adopting ‘Kripke-Galois semantics’
in place of the ‘order-dual semantics’ used in the present article and in [32], this follow up paper puts
the framework to test by successfully applying it to the familiar logical systems mentioned above. These
concrete applications will probably be of help in elucidating the approach and the techniques used.
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