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1 Introduction

1.1 Motivation

Compositionality is at the heart of model theoretical semantics and its application
to the semantics of natural language. As has become standard practice, linguists
translate a fragment of English into an intensional extension of classical predicate
logic (PL). Yet, somewhat ironically and strangely, PL itself is not compositional,
because the standard truth conditions for quantificational statements are not a func-
tion of the denotations of its parts but depend on value assignments for variables.
This kind of dependence on value assignments leads to non-compositionality as will
be demonstrated explicitly in Section 1.2. One could, as is well-known, remedy this
awkwardness by considering not truth values as denotations of formulas but sets of
value assignments for variables. As we will show in Section 1.3, such a semantics
is compositional but not “alphabetically invariant” (or “innocent”). In this article
we will formulate a compositional extension of PL that is both compositional and
innocent.

“Same Same But Different” is a hackneyed saying used in Thailand to convey that differences do not
always matter; it has also become known as the title of a movie by Detlev Buck. We would like to
thank Marcus Kracht, Ede Zimmermann and anonymous reviewers for comments and valuable
suggestions.
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The lack of alphabetical “innocence” (or “invariance”) results from the fact that
the denotation of P(x) is different from that of P(y) although the formulas are mere
alphabetic variants of each other: Let [[.]] be the interpretation function for formulas,
and I the interpretation function for predicates, and g a variable for assignment func-
tions. Then [[P(x)]] = {g : g(x) ∈ I (P )} and [[P(y)]] = {g : g(y) ∈ I (P )}. Let g

be an assignment such that g(x) ∈ I (P ) and g(y) /∈ I (P ). Then [[P(x)]] �= [[P(y)]].
This problem is related to what [2], p. 7, calls the “antinomy of the variable”:

Suppose that we have two variables, say “x” and “y”; and suppose that they
range over the same domain of individuals, say the domain of all real numbers.
Then it appears as if we wish to say contradictory things about their semantic
role. For when we consider their semantic role in two distinct expressions –
such as “x > 0” and “y > 0,” we wish to say that it is the same. Indeed,
this would appear to be as clear a case as one could hope to have of a merely
“conventional” or “notational” difference; the difference is merely in the choice
of the symbol and not at all in linguistic function. On the other hand, when we
consider the semantic role of the variables in the same expression – such as
in “x > y” – then it seems equally clear that it is different. Indeed, it would
appear to be essential to the semantic role of the expression as a whole that it
contains two distinct variables, not two occurrences of the same variable, and
presumably this is because the roles of the distinct variables are not the same.1

Another conceptual problem results from making assignment functions part of
a compositional semantics (cf. Section 1.3 for a formal system). Once denotations
are compositionally defined in terms of assignment functions (cf. [4]), these func-
tions become part of the ontology, with the undesirable consequence that there is
more in our ontology than the simple denotations found in the standard semantics.
In particular, the semantics of a language has to refer to the variables of the lan-
guage and thereby becomes language dependent. Calling ordinary denotations “local
extensions” and sets of assignment functions “global extensions”, [14], p. 243 argue
that the regained compositionality is particularly problematic for natural language
semantics:

Apart from the fact that global extensions—or any of their substitutes—are
rather unwieldy, they are also somewhat of a cheat. For other than ordinary
extensions, which correspond to the objects referred to in the non-linguistic
world, global extensions are language dependent in that they are functions
whose domain is the set of variable assignments which in turn are functions
defined on variables, [. . . ] and hence linguistic expressions.

But do compositionality and alphabetical innocence necessarily exclude each
other? Can we provide for an interpretation of predicate logic (with open formulas)
that is both compositional and alphabetically innocent but does not involve unwar-
ranted ontological commitments? In this paper we will propose and discuss variants

1For a more detailed exposition of the problem, see Chapter 1 of [2].
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of PL (with open formulas) which are indeed compositional and alphabetically
innocent, ie. do not invoke reference to variables in their ontology.

Before going into the details of our proposal, let us briefly review some elemen-
tary notions like compositionality and alphabetic innocence, demonstrating thereby
why the classical systems have the properties that crucially motivate an alternative
approach.

1.2 Assignment Functions and the Lack of Compositionality

To state our point explicitly, we briefly state the syntax and semantics of PL as
standardly found in textbooks. We omit constants as they are not relevant for the argu-
ment. Our language thus consists of (a) a finite set of relational symbols {Ri : 1 ≤
i ≤ n}, each of a finite adicity; (b) an infinite set of variables {x, y, x ′, x′′, x′′′, . . .};
(c) the connectors: ¬ and ∧; (d) brackets: (, ); and (e) the quantifier symbol ∃.

We assume that the universal quantifier and other connectives can be defined in
terms of the vocabulary introduced above.

In order to explicate the concept of compositionality we define the syntax and
semantics of PL as follows:

(1) Syntax of formulas:

a. If R is an n-ary relation symbol, and x1, . . . , xn are variables, then
f (R, x1, . . . , xn) := R(x1, . . . , xn) is a formula.

b. If α is a formula, then so is f¬(α) := ¬α.
c. If α and β are formulas, then so is f∧(α, β) := (α ∧ β).
d. If α is a formula, and xi is a variable, then f∃(xi, α) := ∃xiα is a formula.

Let [[α]]M,g be the denotation of α relative to the model M and the assignment
function g. If α is a formula, [[α]]M,g is always 0 or 1.

(2) Semantics of formulas: Let I be an appropriate interpretation function for con-
stants in a model M , let g and g′ be two assignment functions. g′ ∼i g holds
if and only if g and g′ differ at most in the value they assign to xi . We define
the function [[.]] from formulas into the set of truth values {0, 1} recursively as
follows:

a. [[R(x1, . . . , xn)]]M,g = 1 iff 〈g(x1), . . . , g(xn)〉 ∈ I (R)

b. [[¬α]]M,g = 1 iff [[α]]M,g = 0
c. [[(α ∧ β)]]M,g = 1 iff [[α]]M,g = [[β]]M,g = 1
d. [[∃xiα]]M,g = 1 iff there is a g′ with g′ ∼i g and [[α]]M,g′ = 1

For this formulation to be compositional, the semantics associated with each syntactic
rule would have to be some function of the denotation of the parts. Let us assume, as
is standard in a PL with terms, that [[xi]]M,g = g(xi) and [[P ]]M,g = I (P ).

(3) Definition of compositionality:
A meaning assignment function [[·]] is compositional iff for every

structure-building function f there is a semantic operation Of such that
[[f (γ1, . . . , γn)]] = Of ([[γ1]], . . . , [[γn]]).
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It is well known that there can be no such operation for (2-d). To see this, consider
a model with D = {a, b, c}, I (R) = ∅, I (Q) = {b} and an assignment function
g with g(x) = a. Relative to this model and this assignment function, it can easily
be seen that [[R(x)]]M,g = 0. If the meaning assignment were compositional, then
[[f∃(x, R(x))]]M,g would have to be the result of applying a semantic function f∃ to
[[x]]M,g = a and [[R(x)]]M,g = 0, i.e. [[∃xR(x)]]M,g = f∃(a, 0) = 0. Similarly,
we can see that [[Q(x)]]M,g = 0 and by compositionality [[f∃(x, Q(x))]]M,g would
have to be the result of applying the same semantic function f∃ to [[x]]M,g = a

and [[Q(x)]]M,g = 0, i.e. [[∃xQ(x)]]M,g = f∃(a, 0) = 1. But clearly, no function
exists with f∃(a, 0) = 0 and f∃(a, 0) = 1, and therefore we found a model and an
assignment function for which the interpretation of existential quantification as stated
in (2-d) is not compositional.

1.3 Compositionality Regained: Assignment Functions and the Loss
of Alphabetical Innocence

The solution to the compositionality problem is well-known: Instead of assuming
that formulas denote truth-values relative to a model and an assignment function,
assume that they denote sets of assignment functions relative to a model—called
global extensions above. So if G is the set of all assignment functions, then global
extensions for constants and variables are defined as follows:

(4) Semantics of terms:

a. [[xi]]M is that function f from G into D such that f (g) = g(xi)

b. [[ci]]M is that function h from G into D such that h(g) = I (ci)

In order to highlight the parallel and the difference between variables and con-
stants, we now added (4-b) to the definition; observe that the interpretation of
constants is independent of variable assignments g, and variables are independent of
interpretation functions, as is standard in PL. We use ti as variables for terms, i.e.
variables and constants.

(5) Semantics of formulas as sets of assignment functions:

a. [[R(t1, . . . , tn)]]M = {g : 〈[[t1]]M(g), . . . , [[tn]]M(g)〉 ∈ I (R)}
b. [[¬α]]M = G\[[α]]M
c. [[(α ∧ β)]]M = [[α]]M ∩ [[β]]M
d. [[∃xiα]]M = [[∃]]([[xi]])([[α]]M) = {g′ : there is a g such that g′ ∼xi

g and g ∈ [[α]]M}
Algebraically speaking, [[∃]] is the cylindrification of the relation [[α]] at the posi-

tions of xi cf. [4]. As discussed also by [2] p. 10ff such a semantics is compositional.
This might be somewhat surprising, since the semantics of quantification mentions
the condition g′ ∼xi

g and thus seems to refer to a syntactic condition rather
than to a purely semantic one. However, since assignments are part of the ontology
and since assignments are functions that take variables as their arguments, vari-
ables themselves also are part of the ontology, hence semantic objects. As discussed
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in [14] p. 242 this leads to a certain sloppyness of formalization since variables occur
both in the metalanguage of the ontology and in the formulas of PL. This can be
avoided by using counterparts, but in the present paper we simply assume that a vari-
able itself is used as its own semantic value, or conversely that semantic objects can
enter into syntactic formulas.

Compositionality, however, has been bought at a price. It can easily be seen that
in the model specified above with I (Q) = {b}, [[Q(x)]]M �= [[Q(y)]]M , since all
assignment functions g with g(x) = b and g(y) = c are in [[Q(x)]]M but none of
them is in [[Q(y)]]M . The price to be paid is loss of alphabetical innocence.

The intuitive idea behind alphabetical innocence, i.e. that the meaning of a formula
ϕ should not change if we replace a free variable in ϕ by a variable which remains free
in ϕ, can be made more precise by saying that two formulas ϕ and ψ are alphabetical
variants iff there is a bijective function s from the set of free variables in ϕ into the set
of free variables in ψ such that ψ is the result of replacing every free x in ϕ by s(x).
Then we can say (cf. [8], p. 228) that a meaning assignment function is alphabetically
innocent iff for every pair ϕ and ψ of formulas which are alphabetical variants it
holds that ϕ and ψ are synonymous. An equivalent formulation is (6):

(6) Definition of alphabetical innocence:
A meaning assignment function [[·]] is alphabetically innocent iff for all

formulas ϕ[xa1, . . . , xan] where xa1 , . . . , xan are the free variables in ϕ the fol-
lowing holds: if xb1 , . . . , xbn are variables such that xbi

= xbj
iff xai

= xaj

(for all 1 ≤ i, j ≤ n) and if ϕ[xb1 , . . . , xbn] results from the the replacement
of xai

by xbi
in ϕ, and all occurences of xbi

are free in ϕ[xb1, . . . , xbn], then
[[ϕ[xa1 , . . . , xan]]] = [[ϕ[xb1 , . . . , xbn]]].

As shown above, the standard compositional semantics for PL is not alphabetically
innocent.

1.4 Fine on Alphabetic Innocence

Fine’s crucial step towards solving the antinomy of the variable is making the dis-
tinction between intrinsic (or non-relational) and extrinsic (or relational) semantic
features. The intrinsic semantic features of two variables x and y are in effect given
by the specification of their range, so that the intrinsic features of two variables are
identical if their range is identical. However, the specification of the range of a vari-
able does not fully specify its behavior. In particular, the values that the two pairs of
variables x, x and x, y can take are not identical, despite the identical range of x and
y. This difference in the semantic behavior of x, x and x, y is thus due, not to a dif-
ference in the intrinsic features of x and y, but to a semantic feature which is extrinsic
to the specification of the range of the individual variable: identical variables cannot
simultaneously assume different values, whereas distinct variables can.

If we equate the notion of “semantic role” in the above quote with the notion
of extrinsic semantic feature, we can maintain that the semantic roles of x, x and
x, y are different, although the semantic roles (i.e. intrinsic semantic features) of x

and y taken individually are the same, because the extrinsic semantic feature of the
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pair of variables x, y is not determined only by the intrinsic semantic features of the
individual variables, but also by the semantic relationship between these variables,
which implies that x and y can simultaneously take different values. We must thus
“recognize that there may be irreducible semantic relationships, ones not reducible
to the intrinsic semantic features of the expressions between which they hold.” [2, 3]

Fine then argues that none of the three approaches to the semantics of PL (the
Tarskian, the instantial, and the algebraic approach) provide a philosophically satis-
factory solution to the antinomy of the variable. Fine therefore proposes to give up
the idea that the role of semantics is to assign a semantic value to each (meaningful)
expression of a language, and to embrace instead semantic relationism, accord-
ing to which the aim of semantics is to “assign a semantic connection to each
sequence of expressions”, where semantic connections “are intended to encapsulate
not only the semantic features of each individual expression but also the seman-
tic relationships between them.” [2], p. 25 More precisely, his semantics will assign
semantic connections to coordinated sequences of expressions, which are pairs con-
sisting of a sequence of expressions and a coordination scheme, which stipulates
which occurences of variables are coordinated. The crucial features of Fine’s pro-
posal, then are (i) the introduction of coordination schemes, (ii) the assumption
that (coordinated) sequences of variables are assigned semantic connections, and
(iii) the assumption that the job of semantics is to assign a semantic connection to
(coordinated) sequences of expressions.

1.5 Outline of the Theory

But is the move towards a relational semantics in its full generality really forced upon
us? We claim that at least for the purposes of solving the antinomy of the variable
it suffices to assign semantic values to sequences of variables, and to assume coor-
dination schemes. The aim of this paper is to substantiate this claim by designing
an explicit formal system, i.e. by modifying the syntax and semantics of PL in such
way that the semantics assigns values to (coordinated) expressions, not sequences of
formulas, in a compositional and alphabetically innocent way. The modifications of
the syntax and semantics of PL presented here do not affect the assumptions that (i)
the language contains infinitely many variable symbols, and (ii) that n-ary relation
symbols are interpreted as subsets of Dn. This differs from the alphabetically inno-
cent and compositional (variant of) PL presented in [8], which assumes that (i) the
set of variables is finite, and (ii) that relation symbols are interpreted by means of so-
called concepts, where concepts are sets of relations closed under certain operations
on relations.2

The basic idea to be pursued in this paper is that sequences of variables are
meaningful expressions, and that the meaning assigned to them is not determined
by the meaning of the individual variables (i.e. the range of values for the indi-

2The motivation for assuming a finite set of variable symbols is the proof, presented in [8], that if relation
symbols denote concepts, there are models for which there is no alphabetically innocent and compositional
context-free grammar for the language of predicate logic.
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vidual variables which has been called the intrinsic semantic feature by Fine), but
by the relationship between these variables (their extrinsic semantic feature). We
thereby follow Fine in assuming some sort of relationalism embodied in coordi-
nation schemes that will be encoded by so-called ε/ν-structures (defined in 2.1)
which abstract away from the individual shape of a symbol but merely register
whether or not two symbols in a sequence are pairwise identical or different. The
purpose of this is to provide for a semantic entity that restricts the interpreta-
tions of open formulas in such a way that P(x, y) is interpreted differently from
P(y, y) because the sequences xy and yy have different semantic denotations, i.e.
different ε/ν-structures. On the other hand, the sequences xy and yx or zy are
“t-equivalent”, a notion also defined in 2.1. All this is fully in line with Fine’s
discussion, except that Fine did not develop a formal system that captures these
intuitions.

We will see that, in consequence, ε/ν-structures play a role similar to assignment
functions: both assignment functions and ε/ν-structures are considered semantic
entities that guarantee a compositional treatment of PL. But whereas the latter involve
symbols for variables in their domain and thus enhance the ontology with syntactic
objects taken from the language of PL, the objects represented by ε/ν-structures only
reflect (syntactic) properties of the semantic relations already in the model; their only
function is to identify positions of such relations.

Composing simple formulas into complex ones involves two crucial conditions.
The first concerns conjunction. Here we have to specifying which variables of the
subformulas to be conjoined are interpreted as the same symbols in the entire com-
plex formula. If alphabetical variants are to be synonymous, then the actual names
of the variables determine which variables stand for the same individuals within a
sequence of variables, but not across two sequences. For example, formulas like
P(x, y) and Q(x, x) clearly express whether or not their arguments differ; how-
ever, when combining the two we must keep in mind that Q(x, x) is equivalent
to Q(y, y) and Q(z, z) by alphabetic innocence, hence we cannot be sure whether
the result of conjunction should be (P (x, y) ∧ Q(x, x)) or (P (x, y) ∧ Q(y, y)) or
(P (x, y) ∧ Q(z, z)). At this point we have to disambiguate what we call an ambigu-
ous merge (to be defined in Section 2.2). Such a disambiguation will state explicitly
which variables stand for the same individual across two sequences of subformulas.
If a disambiguation states that the variable in the i-th position of a sequence of vari-
ables σ1 is identical with the variable in the j -th position of σ2, we shall say that
the two variables are coordinated. In the above example, a coordination of the sec-
ond variable in P(x, y) with the first (and second) variable of Q(x, x) will yield
(P (x, y) ∧ Q(y, y)) as coordinated formula.

The second crucial condition is quantification. There are basically two possibil-
ities: one is to reduce the arity of a quantified formula by letting the existential
quantification rule delete all occurrences of the variable that gets bound, so that all
variables that occur in the resulting sequence can be guaranteed to be variables not yet
bound by a quantifier. Compositionality now requires the semantic arity of a formula
to be reduced accordingly. This arity-reducing syntax and semantics is worked out in
Sections 3 and 4, in which we prove the equivalence between the logic developed in
this paper and classical predicate logic.
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Superficially, a non-reducing second variant that does not delete bound variables
looks simpler, because we could dispense with all arity-reducing operations. Hence,
bound variables could still be part of the syntactic as well as the semantic represen-
tation, they represent an “internal semantic feature” as their denotation corresponds
to what is called the cylindrification of the argument position they represent, as will
be discussed in Section 5. We will show that such a simple semantics is feasable, but
will not allow for an equally simple translation procedure into ordinary PL. Simplic-
ity can be regained, however, if we make a relevant syntactic distinction between free
and bound variables. Compositionality then requires that an analogous distinction is
also made in the semantics of variables, which somewhat complicates the system and
thereby compensates for the lack of arity reduction.

In Section 6, we show how to add constants and functions to the system. As an
application of the theory we will finally demonstrate how the system can solve a
problem in Montague Grammar.

2 Basic Notions

2.1 Same or Different: ε/ν-Structures

Let z be a word over an alphabet K, i.e. a concatenation of symbols. z has length n iff
z ∈ Kn. We will use variables x, y, x1, . . . , xn to denote occurrences of symbols in a
word. If, for example, K is the alphabet of English and z = pop, then z is a sequence
of symbols x1x2x3 such that x1 = x3, which says that the first symbol of the word is
identical to the third.

We will define a function that abstracts away from the individual properties of
words and the shape of the symbols while at the same time recording whether or
not two entities in the sequence of symbols in a word are identical. This is the only
information about z provided by the function δ defined as follows.

(7) Definition of δ:
Let z = x1 . . . xn. Define δ(〈i, j 〉, z) as that function that assigns to a pair of

positions 〈i, j 〉, 1 ≤ i, j ≤ n, in z the pair 〈〈i, j 〉, ε〉 if xi = xj , and 〈〈i, j 〉, ν〉
otherwise.

Given a word z, the function δ is uniquely determined by z.
The symbol ε means “equal”, ν is “non-equal”. Of course, any other symbols

(+, −; 0, 1) could do the job; here and in the following definition we follow the
notation and the terminology in [9], including the following definition of so-called
ε/ν-structures:

(8) Definition of ε/ν-structures:
κ is an ε/ν-structure of rank n iff κ is a function from all pairs of integers

i, j with 1 ≤ j ≤ i ≤ n into the set {ε, ν} such that for all i, j, k:
a. κ(i, i) = ε,
b. if κ(i, j) = ε and κ(j, k) = ε, then κ(i, k) = ε.
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To illustrate, a word like banana will be assigned the ε/ν-structure κ in (9):

(9) κ = { 〈〈1, 1〉, ε〉, 〈〈2, 1〉, ν〉, 〈〈3, 1〉, ν〉, 〈〈4, 1〉, ν〉, 〈〈5, 1〉, ν〉, 〈〈6, 1〉, ν〉,
〈〈2, 2〉, ε〉, 〈〈3, 2〉, ν〉, 〈〈4, 2〉, ε〉, 〈〈5, 2〉, ν〉, 〈〈6, 2〉, ε〉,

〈〈3, 3〉, ε〉, 〈〈4, 3〉, ν〉, 〈〈5, 3〉, ε〉, 〈〈6, 3〉, ν〉,
〈〈4, 4〉, ε〉, 〈〈5, 4〉, ν〉, 〈〈6, 4〉, ε〉,

〈〈5, 5〉, ε〉 〈〈6, 5〉, ν〉,
〈〈6, 6〉, ε〉, }

And the same structure will be assigned to the word Rococo.
Assume now that K consists of the variables of a predicate logic and that

the sequences of variables like those in R(y1, . . . yn) form a word y1 . . . yn. ε/ν-
structures will then serve as the denotion of y1 . . . yn as defined in (10):

(10) Denotation of σ :
If σ is a word of length n, then the denotation of σ , written as [[σ ]], is

an ε/ν-structure of rank n such that [[σ ]] := {〈〈i, j 〉, α〉 : 〈〈i, j 〉, α〉 =
δ(〈〈i, j 〉, σ 〉) and1 ≤ j ≤ i ≤ n}.

The reader should verify that for any pair of positions i, j of σ with i ≥ j , (i) the
pair 〈〈i, j 〉, ε〉 is in [[σ ]] if and only if the variable at position i in σ is identical with
the variable at position j in σ , and (ii) the pair 〈〈i, j 〉, ν〉 is in [[σ ]] iff the variables at
positions i and j are not identical.

The role of such denotations in the logic to be developed is to have a seman-
tic counterpart to syntactic sequences of variables that help to identify variables
and coordinate them. Clearly, identical variables constrain interpretations in the way
described in the introduction, in that identical variables in a sequence as in Ryxy

will have the effect of restricting the interpretation of R to only those sequences in
I (R) that have identical values in the first and the third position of I (R). In order to
formalize this intuition, we define the following auxiliary notion.

(11) Definition of “t conforms to κ”:
An n-tuple t = 〈a1, . . . , an〉 conforms to an ε/ν-structure κ of rank n iff

∀i∀j [1 ≤ i, j ≤ n → (κ(i, j) = ε → ai = aj )]
A first application of (11) is straightforward: Assume that [[σ ]] is an ε/ν-structure

of rank n, where σ is a string of variables x1 . . . xn. Let Rσ be an atomic formula and
I an interpretation function for R in a model. Now assume that the denotation of Rσ

is {s ∈ I (R) : s conforms to [[σ ]]}. It now follows that the denotation of Rxyz is the
same as that of Ruvw, namely I (R) itself, whereas the denotation of Rxxy picks out
only those 3-tupels in the relation that have identical first and second positions.

The next step, then, will be a semantic account of logical connectives and of
quantification, alongside with a definition of truth and satisfaction.

Before going on a couple of remarks seem to be in order. First, it may seem that the
denotations of sequences could be simplified by formulating them as sets of equiva-
lence classes of positions (for the example above κ = {{1}, {2, 4, 6}, {3, 5}}). But as
we shall see below, if one wants to express the difference between free and bound
variable one would need a more complicated approach than denotations as sets of
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equivalence classes; in fact, it would be necessary to consider two sets of equivalence
classes, one for free and one for bound variables. And of course one would have to
relate the two classes to each other. A much simpler approach would still use ε/ν-
structures, but with a slight modification: in addition to pairs of the form 〈〈i, i〉, ε〉
for free positions, we can introduce pairs of the form 〈〈i, i〉, ν〉 for bound positions,
as defined in Section 5. This has the slight technical advantage that the position of
the different types of variables is still determined in a single string of objects.

Second, it should be noted that the semantic effect expressed by ε/ν-structures can
also be captured syntactically by defining a syntactic notion (called “trito-structure
equivalence” in [9]) which mirrors the equivalence of ε/ν-structures:

(12) Definition of t-equivalence:
Two words z1 and z2 of length n are t-equivalent iff for all positions i, j

with 1 ≤ i, j ≤ n: δ(〈i, j 〉, z1) = δ(〈i, j 〉, z2). If z1 and z2 are t-equivalent,
we write z1 =t z2.

It follows that all symbols as words of lenght 1 are t-equivalent. xy is t-equivalent
with yx and xz, but not with xx or bb, the latter two being t-equivalent again. In
general, we have the following theorem:

(13) σ =t σ ′ iff [[σ ]] = [[σ ′]]
Third, it should be noted that ε/ν-structures, though serving as the denotation of

sequences of variables, will not appear directly as the denotation of formulas in the
language we will define below: here we only see relations in a given domain D.
However, they are crucial in determining these relations, hence still belong to the
compositional semantics, as we will see immediately.

2.2 Coordination and Ambiguous Merge

Let us now look at conjunction. Assume we want to “coordinate” Pxy and Qzx.
What is the result? We know what the two ε/ν-structures look like, namely [[xy]] =
[[zx]] = {〈〈1, 1〉, ε〉, 〈〈2, 1〉, ν〉, 〈〈2, 2〉, ε〉}. But since [[xy]] and [[zx]] abstract away
form the actual symbols, we cannot infer, as the traditional notation would suggest,
that we have to identify the first position of P with the second position of Q. This
kind of information is not yet available, so clearly some kind of additional informa-
tion is required to get a result. This kind of information is, we believe, related to what
[2] calls a coordination scheme in the following quote (p. 30):3

In the first place, the syntactic object of evaluation will no longer be a sequence
of expressions but a coordinated sequence of expressions. This is a sequence of
expressions E1, E2, . . . , En along with a coordination scheme C which tells us
when two free occurrences of the same variable are to be coordinated (formally,

3Note that according to Fine the coordination scheme only tells us which occurrences of the same variable
are coordinated. As will be seen below, our notion of disambiguation may also coordinate occurrences of
different variables.
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a coordination scheme is an equivalence relation on the free occurrences of vari-
ables in the sequence subject to the requirement that it only relate occurrences
of the same variable.) [emphasis in the original]

We will first define an “ambiguous merge” of two words in such a way that
the result corresponds to all possible coordination schemes, which will now be
represented as embeddings of two ε/ν-structures into one. Each such larger struc-
ture will be called a disambiguation. More precisely, we will first define the
ambiguous merge of two strings of symbols, the result being a set of sequences
each of which has an ε/ν-structure that conforms to the internal structure of its
components.

As always, sequences of symbols are generated by concatenation; a sequence of
length n results from concatenating a symbol to a sequence of length n − 1. The
concatention of two words σ1 and σ2 is denoted by σ1σ2. A word of length n in Kn

is also called an n-ary K-sequence.
We now define the range of possible desambiguations (all the possibilities of

identifying the positions of two sequences) as ambiguous merge of sequences of
variables:

(14) Definition of ambiguous merge:
Let σ1 and σ2 be K-sequences. Then the ambiguous merge σ1@σ2 is the set

of all K-sequences σ ′
1σ

′
2 such that σ

′
1 =t σ1 and σ ′

2 =t σ2.

Any illustration of the above definition faces the difficulty that for each σ there are
infinitely many t-equivalent sequences σ ′. We therefore find it convenient to define
equivalence classes or isomorphic representations of K-sequences. One way of doing
so is to assume a total ordering W on K, referred to as a sequence of distinct elements
in (16). We thus adopt the following conventions:

(15) Definition of i-th projection:
If σ is a word of lenght n, let πi(σ ) be the i-th symbol in σ ; if s is an

n-tupel, let πi(s) be the i-th element of s; these elements are called the i-th
projection of s/sigma.

(16) Definition of normalized sequence:
Let W be an infinite sequence in K* such that for all i �= j, πi(W) �=

πj (W). A K-sequence σ ∈ Kn is normalized (with respect to W) iff the
following holds:

if πi(σ ) = πj (W), n ≥ j > 1, then πj−1(W) = πk(σ ) for some k < i.

Assuming W as given in (17), the sequences in (18) are all normalized sequences
of respective lengths.

(17) W = 〈�,�,�,�,� . . .〉
(18) length 0: 〈〉 (= )

length 1:�
length 2:��, ��
length 3:���, ���, ���, ���, ���
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length 4: ����, ����, ����, ����, ����, ����, ����,����, ����, ����, ����, ����, ����, ����, ����.
length 5: etc.

Returning again to the concatenation of K-sequences, an example is given in (19).
There are seven equivalence classes of disambiguations of ��@��, which are
represented by normalized K-sequences. The third column indicates the positions
identified, and the fourth column contains an example out of the infinitely many
K-sequences contained in one equivalence class:

(19)

Taking up Fine’s notion of Coordination Scheme, the positions identified are those
that are “coordinated” by a “disambiguation”. We thus define:

(20) Definition of coordination:
Assume that σ1 ∈ Km, σ2 ∈ Kn and that σ ′

1σ
′
2 is a disambiguation

of σ1@σ2. σ ′
1σ

′
2 coordinates a position i in σ1 with a position j in σ2 iff

πi(σ
′
1σ

′
2) = πm+j (σ

′
1σ

′
2).

We emphasize that a normalized K-sequence (also called a Kenogramm in [9])
is just a convenient way of representing equivalence classes of K-sequences; nor-
malized K-sequences will be used in informal expositions below, but for the sake of
alphabetical innocence, we will not make use of them in the formal definitions to
come.4

Identification of positions as illustrated in (20) will also play a major role
in binding. Consider a formula like P(x, y, x) in normal notation, or 〈P, ���〉
in ours. Adding a quantifier and a variable requires an alphabetically innocent
identification of the variable to be bound. This will be achieved by merging a
symbol with the sequence ���, as in �@���. Disambiguation leads to three
different outcomes. Either the disambiguation γ targets the first (or the third) posi-
tion in σ = ���, which means that γ can be represented as ����. Alternatively,

4Ede Zimmermann proposed to us that it would be much simpler to take the normalized sequences them-
selves as the denotations of sequences of variables, rather than ε/ν-structures. In particular, we could
take W to be the set of natural numbers. At this point the objection is correct, but when it comes to the
distinction between free and bound variables we do not see how to calculate with such sequences in a
straightforward and natural way. Cf. also the remark above that the opposition between free and bound
would necessitate the introduction of two (intertwined) equivalence classes.
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it may target the second position, with γ corresponding to ����. Finally, vacuous
quantification is represented by ����.

3 Arity Reducing Predicate Logic (ARPL)

The following proposal has in common with the proposal in [13] that existential quan-
tification reduces the arity of a relation, so that in effect a position cannot be bound
twice. The main difference, however, concerns the status of variables. Quine’s aim is
to show that (sequences of) variables can be dispensed with in the formulation of PL.
Our aim, on the other hand, is to provide an alphabetically innocent formalisation of
PL with variables.

We therefore have to define two operations: one that kicks out variables from a
K-sequence; and one that correspondingly reduces the arity of its denotation, i.e. the
corresponding ε/ν-structure. In both cases the variable to be bound, e.g. by ∃xi in a
formula P(x1, . . . , xi, . . . , xn), is represented in a K-sequence as the first variable in
the sequence xi, x1, . . . , xi, . . . , xn, so it suffices to compare elements of a sequence
to its first element. Let us start with the syntactic reduction, called 1-reduction, that
kicks out a symbol:

(21) Definition of 1-reduction:
Let σ := x1, . . . , xn be a K-sequence with n ≥ 1,  the empty string, and

+ concatenation. Then the 1-reduction r1(σ ) is recursively defined as follows:

r1(x1, . . . , xn) =
⎧
⎨

⎩

, if n = 1
r1(x1, . . . , xn−1), if n > 1 and x1 = xn

r1(x1, . . . , xn−1) + xn, if n > 1 and x1 �= xn

For example, r1(����) = r1(���)� (third clause)
= r1(��)� (second clause)
= r1(�)�� (third clause)
= �� (first clause)

Suppose σ is xyxz. The first variable will correspond to the variable we find in
∃x in traditional notation. The variables in the remainder of the formula are yxz. The
remaining free variables should beyz. As the reader may easily verify, r1(xyxz) = yz.

Next, let us define the sets Fmln of formulas of rank n:

(22) Syntax of ARPL:

a. Let R be a predicate constant of arity n and σ ∈ Kn. Then f (R, σ) =
〈R, σ 〉 ∈ Fmln

b. If ϕ = 〈α, σ1〉 ∈ Fmln, ψ = 〈β, σ2〉 ∈ Fmlm, and σ ∈ σ1@σ2, then
f∧(ϕ, ψ, σ ) = 〈(ϕ ∧ ψ), σ 〉 ∈ Fmln+m

5

5Alternatively, we could define f∧ by
f∧(ϕ, ψ, σ ) = 〈(α ∧ β), σ 〉 ∈ Fmln+m

This leaves the semantics unaffected, but we would lose unique readability, ie. the unambiguous
decomposition of a conjunction into its constituents.
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c. If 〈α, σ 〉 ∈ Fmln, then
f¬(〈α, σ 〉) = 〈¬α, σ 〉 ∈ Fmln

d. If ϕ = 〈α, σ 〉 ∈ Fmln, k ∈ K1, σ ′ ∈ k@σ , and σ ′′ =t r1(σ
′), then

f∃(ϕ, σ ′) = 〈∃σ ′ϕ, σ ′′〉 ∈ Fmlm
where m is the arity of σ ′′

Here is a complex example with two quantifiers. Consider the PL-formula (23-a),
equivalent to (23-b), which can be interpreted as saying that there are infinitely
many prime numbers (with PN = prime number and <(x, y) as the PL-equivalent to
x < y):

(23) a. ∀x(PN(x) → ∃y(PN(y)∧ <(x, y)))

b. ¬∃x(PN(x) ∧ ¬∃y(PN(y)∧ <(x, y)))

Translating (23-b) into ARPL in a way that only uses normalized sequences in the
order 〈�,�, . . .〉, we start with 〈PN,�〉 and 〈<, ��〉, conjoining them with a
desambiguation that actually twiddles the argument symbols of the relation <:

(24) 〈(〈PN,�〉 ∧ 〈<, ��〉), ���〉
Quantifying over the second position of the relation < amounts to targeting the

third position of the complex relation and thus calls for ���� as an appropriate
desambiguation for the quantifying expression. As the r1-reduction of ���� only
leaves the symbol �, this is normalized to �, which then yields:

(25) 〈∃����〈(〈PN, �〉 ∧ 〈<, ��〉), ���〉, �〉
Continuing with negation and the remainder of the formula we finally get:

(26) 〈¬∃ ���〈(〈PN, �〉 ∧ 〈¬∃����〈(〈PN, �〉 ∧ 〈<, ��〉), ���〉,�〉), ��〉,
〉

In semantics, all formulas will denote n-tuples, where n is the number of free vari-
ables in it. Existential quantification will reduce the arity of a relation. This semantic
reduction of a relation eliminates (or collapses) all projections which are bound by the
existential quantifier. We therefore have to define an operation akin to r1-reduction
that operates on the semantic denotations of K-sequences; the effect is exactly the
same, namely elimination of positions that are bound according to the disambigua-
tion by sameness with its first position. This first position is an auxiliary semantic
construct corresponding to the variable in ∃x, which will become clear from (31-f)
below.

(27) Definition of κ-reduction:
Let s be a sequence of length i and κ a constant ε/ν-structure of arity n ≥ i.

Then:

rκ(s) =
⎧
⎨

⎩

∅ if i = 1
rκ(〈π1(s), . . . , πi−1(s)〉), if i > 1 and κ(1, i) = ε

rκ(〈π1(s), . . . , πi−1(s)〉) + πi(s), if i > 1 and κ(1, i) = ν

Note in passing that the meaning of + as applied to n-tuples should be defined:
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(28) If s = 〈t1, . . . tn〉 and s′ = 〈t ′1, . . . t ′m〉, then s + s′ = 〈t1, . . . tn, t ′1, . . . t ′m〉.
Before we can state the semantics of ARPL, we have to slightly generalize the

definition of Cartesian products when applied to sequences; this will amount to a
product of concatenations:

(29) Let R be an n-place relation, i.e. a set of n-tupels, and Q a set of m-tupels.
ThenR⊗Q is the set of all n+m-tuples such that if s ∈ R⊗Q, then s = s1+s2
and s1 ∈ R and s2 ∈ Q.

(30) Let σ be a K-sequence of length n, then [[σ ]]D := {s ∈ Dn : s conforms to
[[σ ]]}

Note that if  is the empty sequence, [[]]D = {s ∈ D0 : s conforms to [[]]} =
{} = {∅}.
(31) Semantics of ARPL:

Let I be an interpretation of the relational constants of L.

a. [[σ ]] as in (10)
b. [[R]] = I (R) for all constants R.
c. [[f (R, σ)]] = O([[R]], [[σ ]]) = 〈[[R]], [[σ ]]D〉
d. [[f∧(ϕ, ψ, σ )]] = O∧([[ϕ]], [[ψ]], [[σ ]]) = 〈π1([[ϕ]]) ⊗ π1([[ψ]]), [[σ ]]D〉
e. [[f¬(ϕ, σ )]] = O¬([[ϕ]], [[σ ]]) = 〈Dn \ π1([[〈ϕ, σ ]]), [[σ ]]D〉, n = the rank

of [[σ ]]
f. [[f∃(ϕ, σ )]]= O∃([[ϕ]], [[σ ]]) = 〈

{t : there is an s ∈ D ⊗ π1([[ϕ]]) such that t = r[[σ ]](s)
and if 〈〈1, i〉, ε〉 ∈ [[σ ]] and 〈〈1, j〉, ε〉 ∈ [[σ ]] then πi(s) = πj (s)},{t ′ : there is an s′ ∈ [[σ ]]D : t ′ = r[[σ ]](s′))}〉

Note that both 1-reduction and κ-reduction cut away the “identifier” of the variable
(i.e. the first position of the disambiguation). In (31-f), we “provisionally” add a
“dummy” first position to the relational denotation of ϕ that serves as the identifier
in the semantics and that will subsequently be removed by rκ as a consequence of
r1 and rκ being defined in a parallel manner.6 Moreover, the removed entities must
conform to the identity of x, i.e. the values for each occurrence of x must be identical,
as this information is no more available in the reduced K-sequence.

Other connectives can easily be defined. Given that (31-d) is equivalent to (32-a),
we define the usual operators as in (32-b-d):

(32) a. O∧([[ϕ]], [[ψ]], [[σ ]]) = 〈{{s1s2 : s1 ∈ π1([[ϕ]]) and s2 ∈
π1([[ψ]])}, [[σ ]]D〉

b. O∨([[ϕ]], [[ψ]], [[σ ]]) = 〈{s1s2 : s1 ∈ π1([[ϕ]]) or s2 ∈ π1([[ψ]]), [[σ ]]D〉
c. O→([[ϕ]], [[ψ]], [[σ ]]) = 〈{s1s2 : if s1 ∈ π1([[ϕ]]) then s2 ∈

π1([[ψ]]), [[σ ]]D〉
d. O↔([[ϕ]], [[ψ]], [[σ ]]) = 〈{s1s2 : s1 ∈ π1([[ϕ]]) iff s2 ∈ π1([[ψ]]), [[σ ]]D〉
e. etc.

6In a previous much longer version of this paper we added the identifier without subsequent reduction of
the arity. We will not represent such an arity enhancing variant here, as it merely turns out as a notational
variant of the arity preserving logic to be discussed in Section 5.
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We may also add identity: for any two variables x1 and x2, f≡(x1, x2) = x1 ≡ x2
and O≡([[x1x2]]) = 〈{s1s2 : s1 ∈ D, s2 ∈ D and s1 = s2}, [[x1x2]]D〉.

Note that as a consequence of (31-f), a zero-place relation (a closed sentence) will
denote 〈{∅}, {∅}〉 if the zero-place relation (the sentence) is satisfiable, hence true;
whereas it denotes 〈∅, {∅}〉 otherwise, hence when false. Note also that Dn ⊗ D0 =
Dn, Dn ⊗ ∅ = ∅, D0 \ {∅} = ∅, and D0 \ ∅ = {∅}.
(33) Definition of truth and satisfiability:

Assume ϕ is a formula of ARPL and [[ϕ]] = 〈ρ, τ 〉. Then
a. ϕ is true iff τ ⊆ ρ.
b. ϕ is satisfiable iff τ ∩ ρ �= ∅.
c. ϕ is false iff τ ∩ ρ = ∅.

Let us discuss some trivial examples. Assume R is identity and ϕ = 〈R, xy〉.
Then [[ϕ]] = 〈I (R), D2〉. The formula is satisfiable but not true. If ϕ = 〈R, xx〉,
[[ϕ]] = 〈I (R), {〈a, a〉 : a ∈ D}. Since {〈a, a〉 : a ∈ D} = I (R), the formula is true.
If I (R) = D2, both formulas are true.

It should be mentioned that the denotations of (A ∧ B) and (B ∧ A) in ARPL
are not necessarily identical. This is because the concatenation [[ϕ]] ⊗ [[ψ]] is in gen-
eral different from [[ψ]] ⊗ [[ϕ]]. However, this does not affect truth or satisfiability: if
one relation is satisfiable (true), the other must be as well. The deeper reason for this
asymmetry lies in the fact that the representation of any relation in terms of sequences
is conventionalized; for example, the same two-place relation can be represented as
R and as R− with different denotations. The semantic roles of a relation are syntac-
tically encoded by the order of their appearance in R or R− respectively, hence by a
syntactic convention that should be independent of its meaning. The same applies to
the linear representation of conjunction as either (A and B) or (B and A). There are
technical ways to get around this linear effect (cf. [14] p. 80ff or [7]) which could
also be applied to the problem at hand, but for the present purpose we will not bother
(but see Section 4.2 for further discussion).

Recall that the analogue of (33) for compositional PL is (34):

(34) Any formula ϕ of PL is

a. true iff [[ϕ]] = G, the set of all assignments
b. satisfiable iff [[ϕ]] �= ∅ .̧ false iff [[ϕ]] = ∅

We will prove these concepts to be equivalent for PL and ARPL later in Section 4;
for the time being let us only look at atomic formulas. Assume thatϕ=P(x1, x2, . . . , xn)

is an atomic formula of PL and ϕ′ = 〈P, 〈x1x2 . . . , xn〉〉 is the corresponding Fmln in
ARPL, where xi is a meta-variable and PL and ARPL share the same set of variables.
Note that the variables denoted by xi and xj are not necessarily distinct.

(35) ϕ is satisfiable iff ϕ′ is.

Proof ϕ′ is satisfiable iff I (P ) ∩ [[x1x2 . . . xn]]D �= ∅; iff there is an s,
s ∈ I (P ) and s conforms to [[x1x2 . . . xn]]; iff s ∈ I (P ) and there is
an assignment g such that s = 〈g(x1), g(x2), . . . g(xn)〉; iff for some g,
〈g(x1), g(x2), . . . g(xn)〉 ∈ I (P ); iff ϕ is satisfiable.
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(36) ϕ is true iff ϕ′ is.

Proof ϕ is true iff [[ϕ]] = G; iff for all g, 〈g(x1), g(x2), . . . g(xn)〉 ∈ I (P );
iff for all s ∈ Dn, if s conforms to [[x1x2 . . . xn]], then s ∈ I (P ); iff
[[x1x2 . . . xn]]D ⊆ I (P ); iff ϕ′ is true.

Clearly, it already holds in PL that the conditions for truth and satisfiability are
identical for all alphabetic variants of ϕ, though their denotations are different,
whereas it now follows in ARPL that even their denotations are identical.

It should by now be plausible that we get the intended result, namely a version
of PL that is both compositional and radically innocent. We have shown the logical
equivalence for atomic formulas above; in order to prove this for all formulas, we
will define a syntactic correspondence relation between the formulas of PL and of
ARPL and show that for any formula of PL its truth conditions are identical to those
of its corresponding formula in ARPL.

Before doing so in the next section, let us briefly come back to the issue of com-
positionality which in classical PL hinges on the assumption that value assignments
are primitive building blocks that need not be analysed any further. Recall that it was
only by the help of such functions that compositionality could be achieved. Similarly,
ε/ν-structures are presupposed in the present framework as primitive; in particular
it is assumed that each K-sequence is interpreted by (10). However, this still does
not take into account that the sequences can be built up by concatenation of symbols
and that likewise ε/ν-structures could be composed out of simpler ε/ν-structures for
shorter K-sequences. The question then arises as to whether it is possible to arive at
a compositional semantics for K-sequences; in its present formulation the semantics
effectively uses an infinite supply of operations that identify arbitrary positions of a
sequence.

Such a semantics is indeed possible along the lines of [13]; we can then get along
with only a finite number of elementary syntactic and semantic operations that could
build up the syntax and semantics of K-sequences in a recursive way. However, such
a semantics would be rather artificial, and as Fine writes on p. 21 of his book, “we
thereby loose what is most distinctive about the use of variables”, nor would we gain
an understanding of our use of variables. We therefore conclude that, although techni-
cally feasable, this aspect of compositionality is not intended to apply to the domain
of K-sequences, and that therefore the holistic way we conceive of ε/ν-structures as
an indication of sameness vs. difference in a relation is all we need on the conceptual
level, without there being any need of further recursive analysis.

4 Calculus and Semantic Equivalence

4.1 Translation, Entailment, and Deductions

The notions of entailment and deduction can best be understood by realizing that
there is a truth preserving correspondence between the formulas of classical PL and
our systems; we will demonstrate this by specifying a translation function from PL
to ARPL and back from ARPL to PL.
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The most straightforward way to translate from one language into the other is
to assume that both languages use the same set of variables. This assumption will
guarantee that the translation is unambiguous; other possible procedures would be
in need of normalizations which are unnecessary for the simple demonstration of
translatability:

(37) Translation from PL into ARPL:

a. T (P (x1, x2, . . . , xn)) = 〈P, x1x2 . . . xn〉
b. T ((A ∧ B)) = 〈(T (A) ∧ T (B)), σ 〉 where σ = π2(T (A))π2(T (B))

c. T (¬A) = 〈¬π1(T (A)), π2(T (A))〉
d. T (∃xA) = 〈∃σT (A), r1(σ )〉 where σ = xπ2(T (A))

(38) Translation from ARPL into PL:

a. T −(〈P, x1x2 . . . xn〉) = P(x1, x2, . . . , xn)

b. T −(〈(〈α, σ1〉∧ 〈β, σ2〉), σ 〉) = (T −(〈α, σ ′
1〉)∧T −(〈β, σ ′

2〉)) with σ ′
1σ

′
2 =

σ , where σ1 has the same length as σ ′
1, and σ2 has the same length as σ ′

2
c. T −(〈¬α, σ 〉) = ¬T −(〈α, σ 〉)
d. T −(∃σ ′ϕ, r1(σ

′)) = ∃xT −(ϕ) with x = π1(σ
′)

Observe that in (38-b) the values of σ1 and σ2 are irrelevant: these are alphabetic
variants of the two parts of σ . As should be clear from the concept of alphabetic
innocence, the variables chosen for the parts of the conjunction are no more relevant
once the parts enter the larger expression, in which they only serve to determine the
ε/ν-structure of its constituents. Therefore it does not hold that for any conjunction
α in ARPL, α = T (T −(α)), whereas for any α in PL it holds that α = T −(T (α)).

We will now show that the translation from PL to ARPL preserves truth conditions.
In order to do so we first define a function GtoS which converts the representation
of truth conditions in PL, namely a set of assignment functions, into a set of finite
sequences as used in the semantic representation of ARPL. Recall that due to the
coincidence lemma the truth conditions of a formula A in terms of sets of assignment
functions g only depend on the values for free variables that occur inA. Moreover, the
set of these variables is precisely those that occur in π2(T (A)) (proof by induction)
which also states the order of occurences of these variables and the arity of π1(T (A)).

Let �x denote a sequence of variables x1 . . . xn and define g(�x) :=
〈g(x1), . . . , g(xn)〉. We now define for any formula A ∈ PL:

(39) GtoS(A) := {s : there is a g ∈ [[A]] such that s = g(π2(T (A)))}
Note that if A is false, there is no such g, hence the condition on s cannot be

satisfied and GtoS(A) = ∅. If A is a true closed sentence, there is such a g but
x1 . . . xn = , hence GtoS(A) = {} = {∅}. Furthermore, if A is true, then the
restriction of s to σ = π2(T (A)) becomes irrelevant, hence GtoS(A) = Dn.

In order to prove the equivalence of PL and ARPL we state the following:

(40) Lemma 1: GtoS(A) = π1([[T (A)]]) ∩ π2([[T (A)]])
The proof of (40) is stated in Appendix 2. We can now prove the following

theorems:
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(41) Theorem 1: A is satisfiable iff T (A) is satisfiable.

Proof A is satisfiable iff [[A]] �= ∅ iff GtoS(A) �= ∅ iff π1([[T (A)]]) ∩
π2([[T (A)]]) �= ∅ iff T (A) is satisfiable.

(42) Theorem 2: A is true iff T (A) is true. A is true iff ¬A is not satisfiable iff
(by Theorem 1) T (¬A) is not satisfiable iff π1([[¬A]]) ∩ π2([[¬A]]) = ∅ iff
π1([[¬A]]) ∩ π2([[A]]) = ∅ iff Dn \ π1([[A]]) ∩ π2([[A]]) = ∅ iff π2([[A]]) ⊆
π1([[A]]) iff T (A) is true.

Due to these equivalences, the classical notions for PL as given in (43) still hold
for ARPL:

(43) a. A |= B iff for any interpretation I , if A is true in I , then B is true.
b. For any set � of formulas, � |= B iff for any interpretation I, if every

A ∈ � is true, then B is true.
c. A formula is valid iff it is true in all interpretations.

As for modus ponens, PL-theories differ depending on whether or not open for-
mulas can be elements of theories. If so, open formulas are semantically equivalent
to universally quantified formulas, so that

(44) ϕ � ∀xϕ

is a valid inference rule. And the same holds when translating the formulas into ARPL
or APPL, assuming again that ∀ is defined in terms of negation and existential quan-
tification. On the other hand, the Deduction Theorem cannot hold in full generality,
since (44) should not imply the derivability (and logical validity) of � ϕ → ∀xϕ,
unless quantification is vacuous. But this is exactly parallel to classical PL as detailed
in e.g. [10]:

(45) If a deduction �,A � B involves no application of (44) of which the quantified
variable is free in A, then � � A → B.

See [10] p. 60ff for details.
As a consequence of alphabetic innocence, it now holds that indeed A |= B when

A and B are alphabetic variants; we thus need a new inference rule which is not valid
in classical PL:

(46) A � B if A and B are alphabetic variants.

However, the Deductions Theorem must be blocked for (46) as well; hence (45)
must be extended to:

(47) If a deduction �,A � B involves no application of (46) or (44) of which the
quantified variable is free in A, then � � A → B

For example, 〈〈P, x〉 → 〈P, y〉, xy〉 should not be derivable from 〈P, x〉 �
〈P, y〉, because this formula is not a tautology: assume D = {a, b} and I (P ) = {a}.
Then [[〈¬P, x〉]] = 〈{b}, D〉, [[〈(〈P, x〉 ∧ 〈¬P, y〉), xy〉]] = 〈{〈a, b〉}, D2〉 and
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[[¬〈〈P, x〉 ∧ 〈¬P, y〉, xy〉]] = [[〈〈P, x〉 → 〈P, y〉, xy〉]] = 〈{〈b, a〉}, D2〉. This
formula is not even true in the chosen model.

4.2 A Note on Equivalence of Open Formulas

As the reader might have noticed the usual notions in (43) are defined in terms of
truth rather than satisfiability. This is not essential, as one could also equivalently
define these notions based in satisfiability. However, satisfiability in classical PL
gives rise to a more fine grained notion of equivalence: A and B are extension-
ally equivalent in a model M iff [[A]]M = [[B]]M . For examply, in every model
(P (x) ∧ Q(y)) and (Q(y) ∧ P(x)) are extensionally equivalent, as they denote the
same sets of assignments. Likewise, one might want to say that T ((P (x) ∧ Q(y)))

and T ((Q(y) ∧ P(x))) are extensionally equivalent in a model, but it is not
obvious how this could be done, as the two formulas denote different objects in
ARPL.7

In order to express local equivalence in the present framework it seems necesary
to appeal to intensional concepts by exploiting the fact that the interpretation func-
tion I uniquely determines both T (A) and T (B) via the constants that appear in
A and B. Hence, any interpretation J that yields the same extension as I for T (A)

(and thus differs from I in inessential ways, eg. for constants that do not appear
in A) will also yield the same extension for T (B). In other words, the interpreta-
tions that coincide with I on the first formula are exactly the ones that do so on the
second.

In PL, we may say that A locally implies B in a model M = 〈D, I 〉 iff [[A]]I ⊆
[[B]]I . We propose to define the corresponding notion in ARPL by the following
definition:

(48) For any I, B is a local implication of A in I iff
{J : [[A]]J is satisfiable and [[A]]J = [[A]]I } ⊆
{K : [[B]]K is satisfiable and [[B]]K = [[B]]I }

Of course, if [[A]]J is not satisfiable then A is false in J (and I); this case is trivial,
as everything follows from falsity. Moreover, it is trivial that (P (x) ∧ Q(y)) is a
logical consequence of (Q(y) ∧ P(x)) and vice versa, because in PL it holds that
[[(P (x) ∧ Q(y))]]I = [[A]]I = [[B]]I = [[(Q(y) ∧ P(x))]]I . This is different for T (A)

and T (B) in ARPL/APPL. Here, T (A) = 〈(P (x) ∧ Q(y)), xy〉 expresses a certain
relation based on the interpretation I of the constants of PL. If the formulas were not
equivalent we have to find an interpretation function that gives the same extension
to T (A) as I does, but an extension to T (B) that differs from that I gives to T (B).
Clearly this is impossible, hence the local equivalence can be established without

7Note that the problem does not affect global logical relations: it still holds that T ((P (x) ∧ Q(y))) �
T ((Q(y) ∧ P(x))) and T ((P (x) ∧ Q(y))) |= T ((Q(y) ∧ P(x))) because we quantify over all possible
models.
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reference to assignment sets. We leave it to the reader to show that A locally implies
B in I (in PL) iff B is a local implication of A in I (in ARPL).

5 Arity Preserving Predicate Logic (APPL)

Admittedly, arity reduction is a cumbersome process and one might wonder whether
such a complication is really necessary. As it turns out, arity reduction can be avoided
but at a price. In this section we turn to the consequences of such a system, showing
which compensatory complications arise. The impatient reader may skip this section.

The idea of keeping the arity of a formula untouched by quantification is a natural
one once we suppose that a formula of arity n is true iff it denotes Dn and false iff it
denotes the empty set. It seems, then, that the only change we have to make concerns
quantification. Suppose, existential quantification were not arity reducing. This leads
to the following straightforward definition 8:

(49) [[f∃(〈ϕ, kσ ′〉)]] = O∃([[ϕ]], [[kσ ′]])
= 〈{s ∈ Dn, n the arity of π1([[ϕ]]) : there is an s′ such that

s′ ∈ π1([[ϕ]]),
if 〈〈1, i〉, ε〉 ∈ [[kσ ]] and 〈〈1, j〉, ε〉 ∈ [[kσ ]] then πi(s

′) = πj (s
′),

and for all i ≤ n, πi(s) = πi(s
′) unless

〈〈1, i + 1〉, ε〉 ∈ [[kσ ′]]))}, [[σ ′]]D〉
As usual, the definition says that s can take any value at a position i that is bound

by k but otherwise must be identifical to some s′ that satisfies the relational part of
ϕ. If there is no such s, the set is empty (the formula is false). As expected, a formula
ϕ ∈ Fmln is true iff π1([[ϕ]]) = Dn.

However, (49) has some unusal side-effects. AssumeA and B are closed formulas,
say of arity 1. According to the scheme for conjunction, (A ∧ B) has to be supplied
with a coordination scheme. This could be �� or ��. Depending on this choice
we get different denotations. This is somewhat disturbing although the difference is
simply immaterial for the truth conditions, as the reader may easily verify.

What is more disturbing is the fact that we now have no easy way to state a
translation T − into PL. The problem is that we do not see from just inspecting the
coordination whether the variables represented there are free or bound. Bound vari-
ables are irrelevant, but free variables cannot simply be ignored. Of course we can
find out by starting a complicated recursive research into the structures in A and B.
But this is an additional complication that replicates the complication induced by
arity reduction.

Of course, if we could somehow mark variables as bound during the process of
composing formulas, this difficulty can be avoided because we can apply the same

8Note that this condition can be dispensed with: if it should be the case that s has different objects in
positions with the same variable x bound by the coordination, then such an s will not be an element of
[[σ ′]]D and hence will be irrelevant. In the revised version below, however, the condition will be relevant,
as [[σ ′]]D will not contain information about coordinated bound variables.
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translation function as before but only have to ignore bound variables. This is in fact
what we propose in this section: we will attain our target by using different symbols
for free and bound variables. The different variables are said to have a different sort
or “color” so that a variable will change its “color” as soon as it is bound. As a
side effect, the difference between the colors will be employed when saying that
bound variables simply cannot be coordinated, hence the above coordination ��
will not be well-formed unless � is a free variable. Hence, only free variables can be
coordinated.

One way of implementing “colors” is to use K and add the set {+, −} as follows:
(50) Definition of K-symbol: (version 1)

Let K = {�,�,�, . . .}. A K-symbol is an element of {〈x, y〉 : x ∈
{�,�,�, . . .}, y ∈ {+, −}}.

An alternative is to introduce two disjoint vocabularies KF (e.g. hollow symbols)
and KB (black symbols) for free and bound variables respectively:

(51) Definition of K-symbol: (version 2)
Let KF and KB be denumerably infinite disjoint set of symbols (e.g.
{�,�,�,�,�, . . .} and {l, �,u,t,s,. . .}). A K-symbol is an element of
KF ∪ KB .

As the two formulations of the distinction are notational variants nothing hinges
on the choice; the second variant will be used in the following as it leads to a
straightforward modification of the definition of a K-sequence.

We now have to make sure that:

a. the newly built formulas are interpreted with respect to appropriate (modified)
ε/ν-structures that reflect the difference between KF and KB in semantics;

b. binding by a quantifier introduces a new (black) symbol that cannot be coordi-
nated by any further operation.

Let us first turn to the redefinition of ε/ν-structures. In order to make a difference
between two types of variables, we may exploit a redundancy in the previous defini-
tion of ε/ν-structures. Note that due to (8-a) it is impossible that 〈〈i, i〉, ν〉. But now
assume that we modify the definition of ε/ν-structures in such a way that this case
is now permitted. The convention is that 〈〈i, i〉, ν〉 is the “denotation” of a bound
variable and 〈〈i, i〉, ε〉 that of a free variable. More explicitly, we now require that

(52) Definition of ε/ν-structure, revised:
κ is an ε/ν-structure of rank n iff κ is a function from all pairs of integers i, j

with 1 ≤ j ≤ i ≤ n into the set {ε, ν} such that for all i, j, k:
a. Coordination of positions implies identity of color:

if κ(i, j) = ε, then κ(i, i) = κ(j, j),
b. Transitivity:

if κ(i, j) = ε and κ(j, k) = ε, then κ(i, k) = ε.
c. Well-formedness condition: If κ(i, i) = ν, then κ(i, j) = ν for all j .
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Let us next provide for the modified syntactic notions. The guiding intuition is
that the type of variable cannot be changed when considering t-equivalent sequences,
unless there is a process called binding that turns a free variable into a bound one.
First assume that we define t-equivalence as in (13). Then ambiguous merge can-
not change the coloring of its constituents. The only possible and in fact obligatory
change is by binding a free variable. This is largely a matter of syntax. For example,
if ϕ = 〈P, ��u�〉, then 〈∃ϕ, ��ut〉 is well-formed and we can tell from the dif-
ference between ��u� and ��ut that the last position has been bound. We thus
define the syntax of existential quantification as follows:

(53) If ϕ = 〈ψ, σ 〉 ∈ Fmln, then

f∃(ϕ, σ ′) = 〈∃ϕ, σ ′)

for any σ ′ such that:
there is a k ∈ K1

F and a disambiguation s ∈ k@σ such that, if k targets a
position i in s and πi(s) ∈ K1

F , then πi+1(σ
′) ∈ K1

B ; otherwise πj (σ
′) =

πj (σ ) for all other j ≤ n.

It now follows that binding always creates variables that can never be coordinated;
hence the situation described at the beginning of this paragraph can never arise. We
only have to adjust the truth conditions as follows:

(54) [[f∃(〈ψ, σ 〉, σ ′〉)]] = O∃([[〈ψ, σ 〉]], [[σ ′]])
= 〈{s ∈ Dn : there is an s′ ∈ π1([[〈ψ, σ 〉]]) such that

if 〈〈i, j〉, ε〉 ∈ [[σ ]], 〈〈i, i〉, ε〉 ∈ [[σ ]] and 〈〈i, i〉, ν〉 ∈ [[σ ′]]
then πi(s

′) = πj (s
′),

and for all i ≤ n, πi(s) = πi(s
′)

unless 〈〈i, i〉, ν〉 ∈ [[σ ]]}, [[σ ′]]D〉
Intuitively, this means that we first assemble all s which coincide with some s′

on the value of free variables, where s′ satisfies the relation ϕ, the values for bound
variables can be arbitrary, as is the case for the corresponding assignment functions.
As this might still disregard free variables that are coordinated, we add [[σ ′]]D as the
second component of the denotation.

6 Adding Constants and Functions

As constants and functions occur intertwined with variables in argument sequences
we will have to revise a number of definitions. First we will define recursively
the sequences whose counterpart in PL is the sequence of arguments that contain
constants or functions, as in P(x1, . . . c, . . . f (y1, . . . ym), . . . xn). As before, the
variables in f (y1, . . . ym) must come along with a desambiguation that coordinates
them with other variables in the same formula.

Second, we will have to add to our semantics the interpetation of such sequences.
Note that previously, the interpretation was ultimately a sequence s of individuals in
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the model that conforms to the ε/ν-structure of the sequence of variables. We now
have to account for the fact that this sequence can be “impure” by containing other
expressions than just variables.

In the syntax we will define a sequence of arguments recursively, each being
accompanied by a K-sequence that functions as a desambiguation. A sequence of
arguments of length n, alongside with a K-sequence, is defined as ASn by the
following recursion:

(55) Syntax of Arguments:

a. If k ∈ K , then 〈k, k〉 ∈ AS1.
b. if c is a constant, then 〈c, 〉 ∈ AS1.
c. If 〈α, σ 〉 ∈ ASn and 〈α′, σ ′〉 is an AS1 as defined in (a.) or (b.), then

〈α + α′, σσ ′〉 ∈ ASn+1.
d. If 〈α, σ 〉 ∈ ASn and f is an n-place function symbol, then

〈f (〈α, σ 〉), σ 〉 ∈ AS1.
e. If 〈α, σ1〉 ∈ ASn and 〈α′, σ2〉 is an AS1 as defined in (d.), then 〈α +

α′, σ 〉 ∈ ASn+1, where σ ∈ σ1@σ2.
f. If 〈α, σ 〉 ∈ ASn and P is an n-place predicate, then P 〈α, σ 〉 is a formula.

Observe that if 〈α, σ 〉 ∈ ASn, then σ is a K-sequence that reflects the order and
number of free variables in α.

Let us now turn to the semantics. We define the denotation or extension of ele-
ments in ASn with respect to a sequence of individuals of the model; this sequence
formally plays the role of an assignment function in classical logic. Note how-
ever, that it gives directly values for variables, but the variables themselves are not
mentioned in the definition, only their ε/ν-structures are.

Corresponding to (55-f), we have the following definition:

(56) If P 〈α, σ 〉 is a formula, then [[P 〈α, σ 〉]] = 〈{s : [[α]]s ∈ I (P )}, [[σ ]]D〉.
In the subsequent definition of [[α]]s , the length of s will not match with the num-

ber of terms in 〈t1, . . . tn〉, rather it corresponds to the number of free variables in
〈t1, . . . tn〉. This number is determined by the K-sequence σ by definition. We denote
by s − 1 the sequence like s without the last element of s, s − n the sequence like s

without the last n elements, and s | n the sequence of the last n elements of s. It holds
that s = (s − n) + s | n. We can now define [[α]]s by recursion on the length of α:

(57) [[〈t1, . . . tn〉]]s =
a. [[〈〈t1, . . . tn−1〉]]s−1 + s | 1 if tn ∈ K .
b. [[〈〈t1, . . . tn−1〉]]s + I (tn) if tn is a constant.
c. [[〈〈t1, . . . tn−1〉]]s−n + I (f )([[α]]s|i ) if tn = f (〈α, σ 〉)) and i is the length

of σ .

(57-a) shows that s effectively supplies a value for a variable; (57-b) says that
s ignores constants, and (57-c) says that the last i elements of s supply the values
for the free variables that occur in the scope of the function f . Of course all this is
recursive, so that functions can be embedded into functions.
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If follows that an expression like P(c, x, d) denotes a 1-place predicate (given
that c and d are constants), whereas P(x, f (y, z), w) denotes a 4-place relation.
This requires some minor adjustments in previous definitions that involve the arity of
formulas and predicates, but nothing essential is at stake and we leave it to the reader
to make the required changes.

7 Linguistic Semantics

In this section we will briefly sketch a solution to a conceptual problem in Montague
Grammar that will no more arise in the framework of alphabetic innocence. The
problem shows up with one of the most elementary operations of grammar, namely
what is called “Predicate Modification” (PM) in the Heim/Kratzer textbook [3].
Intuitively, this is a semantic rule that combines the denotation of a noun (or noun
phrase) with that of an adjective (or adjective phrase) by intersection of properties;
the rule can thus informally be stated as

(58) λx(AP(x) ∧ NP(x)).

The same also works for the combination of a NP with a relative clause. How-
ever, as pointed out in Thomason’s footnote 12 on page 261 of [12], more complex
phrases could contain free variables, so that the variable x introduced by “PM” must
be chosen in such a way as to avoid “accidental binding”. As observed by Thoma-
son, this might require renaming of variables that were chosen as the translation for
the pronoun. For example, the rule as stated above cannot apply to an AP of the
form λyA(y, x), because the result would be λx(AP (x, x) ∧ NP(x)) instead of the
intended λx(AP (x, z) ∧ NP(x)). This is a severe problem, as it makes translations
from Natural Language into Intensional Logic sensitive to alphabetic variants and
moreover challenges compositionality.

Now, in order to make a comparison between Montagues system and ours it is
temping to catch intensionality by a 2-typed version of Montague Grammar and then
add lambda expressions to an alphabetically innocent formal language that includes
λ-terms along the lines sketched above in Section 6. However, we will argue that
such a step, although possible, is not particularly useful, contrary to what Montague
Grammar seems to suggest.

There are a number of a priori reasons that tell against including lambda terms
into the analysis. First note that the function of lambda abstraction when added to PL
is to form properties from open propositions; such a step is of course unnecessary
when open propositions already denote properties, as in ARPL and APPL. Second,
as already noted by Fine on p. 21, adding expressions like λx1 . . . xnP (y1 . . . ym)

would of course necessitate coordination of variables, and the same would hold for
functional application. As we will see below, this step is completely redundant, as
some sort of identification of positions is already required with each syntactic merge
operation.

Let us now change perspective by switching to a lambda free framework. The
most elementary question is how verbs combine with arguments. Let us assume that
the denotation of an n-place verb is given by an open proposition, i.e. an expression
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〈P, σ 〉 which denotes an n-place relation. Adding an argument reduces the arity of
that expression, so we may assume a version of ARPL. The argument epression can
either be a quantifying expression or a name, i.e. a constant of the language of PL.
For the sake of simplicity, let us only consider constants. (In a much too long version
of this paper we also developed a system with quantifiers equivalent to [11].) We
now need a rule that combines [[〈P, σ 〉]] with I (c). The rule can be stated similar
to quantification, as both rules target a certain position that is determined by the
desambiguation σ ′ and the first position of σ ′:

(59) Ocon([[c]], [[ϕ]], [[σ ′]]) = 〈{t : there is an s ∈ D ⊕ π1([[ϕ]]) such that
t = r[[σ ]](s) and ∀i([[σ ′]](1, i) = ε → πi(s) = I (c)},
{t ′ : there is an s′ ∈ [[σ ]]D : t ′ = r[[σ ]](s′))}〉

where σ ′ is a desambiguation in k@σ . But which one? At this point it is important
to realize that the order of arguments in P(x1 . . . xn) is determined by a linguistic
convention, namely that the first argument corresponds to the highest argument (the
subject) of the sentence, the second corresponds to the second etc. This is different
with “Curried” relations where P would have to apply to xn first. Note that these
considerations are also relevant when using lambda prefixes; in all cases we follow
conventions because, as already observed above, the (syntactic) order of lambdas
(and that of arguments) is not strictly speaking part of the meaning of the verb; cf. [7]
and [14] p. 80ff. But once an order is given, it is clear that adding a constant corre-
sponds to functional application of a Curried predicate, hence applies to xn as the first
argument, which is the last argument in a traditional representation like P(x, y, z).
In other words, the rule for adding constants in ARPL has to target the last position
in that order, i.e. the last free variable to which the rule can have access. Accordingly,
σ ′ is zxyz and in general σ ′ is uniquely determined by σ , up to alphabetic variance.

It thus follows that Ocon([[c]], [[〈P, xyz〉]], [[σ ′]]) = [[〈〈P, xyc〉, xy〉]] in a lan-
guage with constants and arity reduction.

Turning back to the rule of predicate modification, note that in its by now classical
version the rule involves two aspects determined by the format of the rule. First (58)
identifies two argument position by appying P and Q to the same variable x. Second
it says which arguments of P and Q are identified; this simply follows from the
assumption that P and Q are of type 〈et〉. These two assumptions clearly translate
into the present framework by first saying that some argument positions of the predica-
tes 〈P, σ 〉 and 〈Q, σ ′〉 must be identified by a desambiguation, and second by say-
ingwhich arguments are involved: these arguments are the first positions of σ and σ ′.

The first position does not necessarily coincide with the last position of the predi-
cates involved in “PM”, because the translation of pronouns as free variables will not
change the arity of a relation. For example, man such that he loves her will be trans-
lated as a two place relation in the present framework, rather than into a one place
relation (or its characteristic function) with a free varible for her, as in Montague
Grammar. On the other hand, we have to keep track of syntactic argument positions,
to the effect that the next argument that combines with love her is the first argument
of the relation, rather than the second. Hence the second argument must again be
“colored” in order to make it inaccessable for argument saturation.
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The problem of a variable dependent semantics for “PM” has now been solved in
a natural way. The solution lies in the fact that the coordination of conjunction cannot
change the variables of its conjuncts, and hence cannot produce arbitrary argument
coordinations, as opposed to expressions like λx([λy.P (y, x)](x) ∧ [λyQ(y)](x))

that end up with “accidentally” identifying P ’s argument positions. If we want
argument identification within a single predicate, we either have to chose identical
variables right from the scratch, or we can identify argument position by special
operators that do the job of introducing appropriate K-sequences. Other possibili-
ties, e.g. the use of identity relations in the object language, exist. But coordination
crucially leaves the structure of its coordinates intact. Hence “arbitrary binding” is
ruled out.

Of course many other issues arise, but in the interest of conciseness we only make
one point that already suggests itself by generalizing the above examples: In each
case, a syntactic merge operation corresponds to a semantic one that requires the
identification of argument positions, over and above the usual identification of argu-
ments needed to solve pronominal anaphora. By the linguistic conventions adopted
already in classical PL, the identification of these positions in argument saturation
is rule governed and always determined as an operation at the left edge of a work-
ing space that is determined by syntax. Moreover, all operations are compositional,
as the required operations on variable sequences can be formulated in such a way
that they always refer to the first or last element of such a sequence of variables. We
never have to access an intermediate position and hence do not need arbitrary many
semantic operations, much in the spirit of [13].

8 Final Remarks

Concerning the last reference, we want to stress that we are fully aware of alterna-
tive variable free semantics (cf. [5], p. 6). In a rejection of a previous version of this
article, we were urged to compare our system to a variable free one, where pronouns
are not translated as free variables. For example, a reviewer asks, “Why does Fine
himself want variables?” and then complaints that Fine and us fail to consider com-
binatory logic. Thus, our system “inherits sound and insightful reasoning from Fine
regarding what one should do if one lives in a world with both free and bound vari-
ables, but not a particularly good or deep motivation for why one wants to live in
that world”.

We insists that a comparison to a variable free systems is besides the point; the
systems are orthogonal to each other. Implicit in the reviewers’ request is the require-
ment to demonstrate that the present system be superior to a variable free one. But
this is impossible to prove on merely empirical grounds, while conceptual issues
might be largely a matter of taste.

Finally, a different rejecting reviewer wanted us to compare our system to de
Bruijn’ indices, implying that the problems we were attacking are already solved in
that system. Again, we deny that this is an option; for the sake of explicitness, we
confine the following Appendix to a brief discussion of the issue.
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Appendix 1: de Bruijn’s indices

DeBruijn indices [1] are a way of representing (primarily) bound variables by using
integer indices instead of variable names. The basic idea is that the index [n] refers
to a variable bound by the n-th binding expression counting outward from the occur-
rence of [n]. For example, to represent the expression λx3.λx5.x5 by means of de
Bruijn indices, we first remove the occurrences of x3 and x5 immediately following λ

(getting λ.λ.x5), and then we replace x5 by the corresponding de Bruijn index. Since
(the last occurrence of) x5 in λx3.λx5.x5 is bound by λx5, which is the first λ binder
having scope over x5, we replace x5 by the deBruijn index [1], resulting in λ.λ.[1].
On the other hand, the term λx3.λx5.x3 is represented by λ.λ.[2], because x3 is bound
by λx3, which is the second λ-binder having scope over x3. Importantly, note that the
terms λx3.λx5.x5 and λx3.λx7.x7 are represented by the same term λ.λ.[1].

DeBruijn indices can also be used to represent free variables. For example, the
term λx3.x1 can be represented by the term λ.[2]. So, by convention, a deBruijn
index [n] stands for a free variable if it is bigger than the number of binders in whose
scope it is. In addition, one can stipulate that if a deBrujn index [n] is bigger than the
number b of binders having scope over it, then [n] stands for the free variable xn−b.
So in the term λ.λ.[4] the number of binders is 2, the deBrujn index is bigger than
2, and therefore it stands for the free variable x4−2, ie. x2, whereas in λ.λ.[3] the
deBrujn index stands for the free variable x1.

Note, importantly, that the terms λ.λ.[4] and λ.λ.[3] are not alphabetically inno-
cent: prefixing another λ binder to λ.λ.[4] results in λ.λ.λ.[4] where, according to
our convention [4] stands for the free variable x1, whereas prefixing λ.λ.[3] results in
λ.λ.λ.[3] where [3] is bound by outermost λ binder, showing that λ.λ.[4] and λ.λ.[3]
are not alphabetically innocent.

We therefore conclude that deBruijn indices do not provide a solution to the prob-
lem addressed in this paper, namely how to define an alphabetically innocent and
compositional predicate logic.

Appendix 2: Proof of Lemma 1

Let T1(A) = π1(T (A)) and T2(A) = π2(T (A)). Let [[T1(A)]] = π1([[T1(A)]]) and
[[T2(A)]] = π2([[T2(A)]]). Recall:
(60) GtoS(A) := {s : there is a g ∈ [[A]] and s = g(T2(A))}
(61) Lemma 1: GtoS(A) = π1([[T (A)]]) ∩ π2([[T (A)]])

Proof of Lemma one by induction over the complexity of formulas.

Atomic Formulas

Let A be an atomic formua P(x1, . . . xn). Then

(62) GtoS(P (x1, . . . xn))

= {s : there is a g ∈ [[P(x1, . . . xn)]] such that s = g(T2(P ((x1, . . . xn)))}
= {s : there is a g ∈ [[P(x1, . . . xn)]] such that s = 〈g(x1), . . . , g(xn)〉}
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= {s : there is a g, 〈g(x1), . . . , g(xn)〉 ∈ I (P ) and s = 〈g(x1), . . . , g(xn)〉}
= {s : s ∈ I (P ) and s ∈ [[x1 . . . xn]]D}
= I (P ) ∩ [[x1 . . . , xn]]D
= π1([[T (P (x1, . . . , xn))]]) ∩ π2([[T (P (x1, . . . , xn))]])

Negation

Recall that T2(¬A) = T2(A) and that π1[[¬A]] = D\π1[[¬A]].
(63) s ∈ (π1([[T (¬A)]]) ∩ π2([[T (¬A)]])

a. iff
s ∈ Dn\[[T1(A)]] ∩ [[T2(A)]]

b. iff
s ∈ Dn\([[T1(A)]] ∩ [[T2(A)]]) ∩ [[T2(¬A)]]

c. iff
s ∈ Dn\GtoS(A) ∩ [[T2(¬A)]]

d. iff
s ∈ Dn\{s′ : there is a g ∈ [[A]] such thats′ = g(T2(A)) and s conforms
to the free variables of ¬A

e. iff
there is no g, g ∈ [[A]] such thats = g(T2(A))} and s conforms to the free
variables of ¬A

f. iff
for all g, if s = g(T2(A)) then g �∈ [[A]], and s conforms to the free
variables of ¬A

g. iff
there is a g ∈ [[¬A]] such that s = g(T2(¬A))

h. iff
s ∈ GtoS(¬A)

Comments: In (63-b) we duplicate the condition that s conforms to the free variables;
as can be seen at the end of the derivation the second condition becomes redundant
and is elimated in the step from f. to g.

Conjunction

(64) s ∈ GtoS(A ∧ B)

a. iff
there is a g, g ∈ [[A ∧ B]] and s = g(T2(A ∧ B))

b. iff
s = s1s2 and there is a g, g ∈ [[A]], g ∈ [[B]], and
s1s2 = g(T2(A ∧ B)) = g(T2(A)) + g(T2(B))}

c. iff
there is a g, g ∈ [[A]], g ∈ [[B]], and s1 = g(T2(A)), s2 = g(T2(B)) and
s1s2 ∈ [[T2(A ∧ B)]]D
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d. iff
there is a h, h ∈ [[A]], s1 = g(T2(A)) and there is an f , f ∈ [[B]],
s2 = f (T2(B)) and s1s2 ∈ [[T2(A ∧ B)]]D

e. iff
s1 ∈ GtoS(A), s2 ∈ GtoS(B) and s1s2 ∈ [[T2(A ∧ B)]]D

f. iff
s1 ∈ [[T1(A)]] ∩ [[T2(A)]], s2 ∈ [[T1(B)]] ∩ [[T2(B)]] and s1s2 ∈ [[T2(A ∧
B)]]D

g. iff
s1 ∈ [[T1(A)]], s2 ∈ [[T1(B)]] and s1s2 ∈ [[T2(A ∧ B)]]D

h. iff
s1s2 : s1s2 ∈ [[T1(A)]] ⊗ [[T1(B)]] and s1s2 ∈ [[T2(A ∧ B)]]D

i. iff
s1s2 ∈ [[T1(A ∧ B)]] and s1s2 ∈ [[T2(A ∧ B)]]D

j. iff
s ∈ [[T1(A ∧ B)]] ∩ [[T2(A ∧ B)]]D

k. iff
s ∈ π1([[T (A ∧ B)]]) ∩ π2([[T (A ∧ B)]])

Comments: Most equivalences follow by definition. Ad (64-d) upwards from right
to left: assume that h and f assign different values to some variable that occurs
both in A and B. Then it would be impossible for s1s2 to conform to T2(A ∧
B). Therefore these values must be identical and we can combine h and f into
the g of (64-c).

Quantification

(65) s ∈ GtoS(∃xA)

a. iff
s ∈ [[T1(∃xA)]] ∩ [[T2(∃xA)]]

b. iff
s ∈ [[T1(∃xA)]] and s conforms to the free variables of ∃xA

c. iff
there is an s′ ∈ D ⊗[[T1(A)]] such that s = r[[σ ]](s′), s′ conforms to x, and
s conforms to the free variables of ∃xA

d. iff
there is an s′ ∈ D ⊗ [[T1(A)]] such that s = r[[σ ]](s′), and s′ conforms to
the free variables of A

e. iff
there is an s′′ and an a ∈ D such that s′′ ∈ [[T1(A)]], s = r[[σ ]](as′′), and
s′′ conforms to the free variables of A

f. iff
there is an s′′ and an a such that s′′ ∈ [[T1(A)]] ∩ [[T2(A)]], s = r[[σ ]](as′′)

g. iff
there is an s′′ and an a such that s′′ ∈ GtoS(A), s = r[[σ ]](as′′)
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h. iff
there is an s′′, an a, and a g such that g ∈ [[A]], s ′′ = g(T2(A)), and
s = r[[σ ]](as′′)

i. iff
there is an a and a g such that g ∈ [[A]], and s = r[[σ ]](a + g(T2(A)))

j. iff
there is an a, a g and a g′ such that g′ ∈ [[∃xA]], g and g′ possibly differ
only for values for x, and s = r[[σ ]](a + g(T2(A))).

k. iff
for some g′, g′ ∈ [[∃xA]], s = g′(T2(∃xA))

l. iff
s ∈ GtoS(∃xA)

Comments on (65-k): g′(T2(∃xA)) = r[[σ ]](a + g(T2(A))), because the reduction
of g(T2(A)) yields exactly the values for the free variables of T2(∃xA); moreover, it
ignores only the values for x of g, which is exactly what g′ does.
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