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Abstract This paper deals with the question of what it is for a quantifier expres-
sion to be vague. First it draws a distinction between two senses in which quantifier
expressions may be said to be vague, and provides an account of the distinction which
rests on independently grounded assumptions. Then it suggests that, if some further
assumptions are granted, the difference between the two senses considered can be
represented at the formal level. Finally, it outlines some implications of the account
provided which bear on three debated issues concerning quantification.
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1 Preliminary Clarifications

Let us start with some terminology. First of all, the term ‘quantifier expression’ will
designate expressions such as ‘all’, ‘some’ or ‘more than half of’, which occurs in
noun phrases as determiners. For example, in ‘all philosophers’, ‘all’ occurs as a
determiner of ‘philosophers’, and the same position can be occupied by ‘some’ or
‘more than half of’. This paper focuses on simple quantified sentences containing
quantifier expressions so understood, such as the following:

(1) All philosophers are rich
(2) Some philosophers are rich
(3) More than half of philosophers are rich
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Although this is a very restricted class of sentences, it is sufficiently representative
to deserve consideration on its own.

In the second place, the term ‘domain’ will designate the totality of things over
which a quantifier expression is taken to range. Very often, when a quantifier expres-
sion is used, it carries a tacit restriction to a set of contextually relevant objects. For
example, on one occasion (1) may be used to assert that all philosophers in a univer-
sity U are rich, so that ‘all’ ranges over a set of people working or studying in U ,
while on another occasion it may be used to assert that all philosophers in another
university U ′ are rich, so that ‘all’ ranges over a set of people working or studying in
U ′. In order to take into account such contextual restrictions it will be assumed that,
whenever a quantifier expression is used, some domain is associated with its use, that
is, the domain over which the expression is taken to range.

One thing that must be clear about this assumption is that it does not settle the
question of how the restriction is determined in the context. To appreciate its neu-
trality, it suffices to think about a debated issue which divides semantic accounts of
domain restriction. According to such accounts, domains are represented by some
sort of variable or parameter in the noun phrase. But it is controversial where exactly
the variable or parameter is located. For example, Westerståhl suggests thay it is in
the determiner, while Stanley and Szabo suggests that it is in the noun. The picture
sketched in this paper is compatible with both options, as it does not concern the
syntactic structure of quantified sentences.1

Another thing that must be clear about the assumption that quantifier expressions
are used in association with domains is that it does not entail that, whenever one
uses a quantifier expression, one has in mind a definite set of contextually relevant
objects. As a matter of fact, that almost never happens. Most of the time, the use of
a quantifier expression involves either a very approximate specification of a set, or
no specification at all. In the first case no unique set is specified, in that different
sets turn out to be equally admissible. In the second, no set at all is specified, in that
nothing is excluded as irrelevant.

The third and last term to be introduced is ‘quantifier’. In accordance with an
established practice, this term will be used to refer to functions from domains to
binary relations. The meanings of ‘all’, ‘some’ and ‘more than half of’ may be
defined as quantifiers, that is, as functions all, some and more than half of which
satisfy the following conditions for any domain D:

Definition 1 allD(A, B) if and only if A ⊆ B.

Definition 2 someD(A, B) if and only if A ∩ B �= ∅.

Definition 3 more than half ofD(A, B) if and only if | A ∩ B |> 1/2 | A |

1Westerståhl [29], Stanley and Szabo [27]. For simplicity we will not consider pragmatic accounts of
domain restriction, that is, accounts on which the determination of domains is left to pragmatic factors
which determine the communicated content as distinct from what is literally said, such as that outlined in
Bach [1].
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Here A and B are sets whose members belong to D, and the left-hand side is read
as ‘the relation denoted by the quantifier expression relative to D obtains between
A and B’. Note that Definition 3 differs from Definitions 1 and 2 in that it involves
a proportional relation that applies to the cardinality of A and B. Accordingly, more
than half of may be called a proportional quantifier.2

The domain parameter that occurs in Definitions 1-3 accounts for the fact that the
extension of a quantifier expression may vary from occasion to occasion, even though
its meaning does not change: if e is a quantifier expression which means Q, then
QD is the extension of e relative to D. For example, if D is a set of people working
or studying in U and D′ is a set of people working or studying in U ′, ‘all’ denotes
different relations relative to D and D′. So there is a sense in which ‘all’ means the
same thing on both occasions, yet the relations denoted differ. The same goes for
‘some’ and ‘more than half of’.

If the meaning of quantifier expressions is defined in the way outlined, and nomi-
nal expressions are taken to denote sets, the meaning of quantified sentences can be
obtained by composition. Let A and B be sets denoted by ‘philosophers’ and ‘rich’
relative to D. Given Definition 1, allD fixes truth conditions for (1) relative to D,
that is, (1) is true if and only if A ⊆ B. So the meaning of (1) may be described as
a function from domains to truth conditions, which results from the combination of
all with the meanings of ‘philosophers’ and ‘rich’. The case of (2) and (3) is simi-
lar. Assuming that A and B are sets denoted by ‘philosophers’ and ‘rich’ relative to
D, the meaning of (2) or (3) may be described as a function from domains to truth
conditions which results from the combination of some or more than half of with
the meanings of ‘philosophers’ and ‘rich’. More generally, the meaning of a quanti-
fied sentence s that contains a quantifier expression e that means Q is obtained by
combining Q with the meaning of the nominal expressions in s.

2 Two Kinds of Indeterminacy

The question of what it is for a quantifier expression to be vague seems to admit two
kinds of answers. It is plausible to say that a quantifier expression e (as it is used
on a given occasion) is vague if it is possible that a quantified sentence s in which e

occurs is neither clearly true nor clearly false - in a way of being neither clearly true
nor clearly false which is distinctive of vagueness - and that does not entirely depend
on the vagueness of other expressions in s. However, it seems that such unclarity can
have two different sources. Roughly speaking, the semantic role of e in s is to specify
a certain amount of things which belong to the domain over which e is taken to range.
So if it is unclear whether s is true or false, and this unclarity does not entirely depend
on other expressions in s, either there is indeterminacy about the domain over which
e is taken to range, or there is indeterminacy about the amount specified.

2Peters and Westerståhl define quantifiers this way in [21], pp. 62-64. Note that in Definitions 1-3 no
index is attached to A and B to show that they depend on D, but such effect could easily be obtained with
some minor adjustment. For example, the notation adopted in Lappin [16] makes A and B systematically
depend on D.
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To illustrate the first kind of indeterminacy, consider (1)-(3). One may easily imag-
ine circumstances in which it is unclear whether (1)-(3) are true or false. Obviously,
this is due at least in part to the fact that ‘philosophers’ and ‘rich’ do not have a def-
inite extension. But even if ‘philosophers’ and ‘rich’ did have a definite extension,
it could still be unclear whether (1)-(3) are true or false. One source of unclarity is
the fact mentioned in Section 1 that the use of a quantifier expression may involve
only a very approximate specification of a set of contextually relevant objects. For
if no definite set is specified, there is a plurality of sets such that it is indetermi-
nate which of them is the intended set. Consider (1). Even if ‘philosophers’ and
‘rich’ had a definite extension, it might still be unclear whether (1) is true or false,
because it might be unclear what exactly is the domain over which ‘all’ is taken to
range. Suppose that (1) is uttered to assert that all philosophers in U are rich, but
that no unique set of contextually relevant objects is specified. In particular, sup-
pose that D is a set of people working or studying in U , and that D′ is a proper
subset of D which differs from D only in that it does not include a certain per-
son whose affiliation to U is unclear for some reason. If so, it might happen that
(1) is neither clearly true nor clearly false. Similar examples can be provided with
(2) and (3).

One way to see that this kind of indeterminacy is correctly described as vagueness
is to see how it can be distinguished from context sensitivity. If ‘context’ is under-
stood informally as a concrete situation in which a sentence is uttered by a speaker, it
is realistic to say that the use of a quantifier expression in a context may fail to spec-
ify a definite domain. For even if a restricting condition is associated to the quantifier
expression - in virtue of contextual features such as the speaker’s intentions, the con-
versational background, and so on - the restricting condition is itself indeterminate.
In the example considered, the restricting condition is expressed by ‘people working
or studying in U ’, but it may be unclear whether a certain person works or studies
in U . Similar examples may be provided with paradigmatically vague expressions: a
restricting condition could be expressed by ‘bald people’, ‘thin people’ or ‘tall peo-
ple’, in which case it would be evident that it involves the kind of unclarity that is
distinctive of vagueness. Obviously, one might introduce a finer notion of context by
stipulating that a context is an n-tuple of parameters which includes a set of objects
as domain. But then one would have to grant the intelligibility of the informal under-
standing of ‘context’, and the point would still remain that the use of a quantifier
expression in a context informally understood may fail to specify a definite context
in the fine sense.

To illustrate the second kind of indeterminacy, consider the following sentences:

(4) Most philosophers are rich
(5) Few philosophers are rich
(6) Many philosophers are rich

It is easy to see that (4)-(6), just like (1)-(3), may be used without specifying a definite
set of contextually relevant objects. But in the case of (4)-(6) there is another possible
source of unclarity, namely, the fact that a quantifier expression may fail to specify
a definite amount of things that belong to a given domain. Consider (4). Even if
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‘philosophers’ and ‘rich’ had a definite extension, it might still be unclear whether
(4) is true, because it might be unclear whether ‘most’ is to be read, say, as ‘more
than 1/2’ or as ‘more than 2/3’. Similar considerations hold for (5) and (6), as ‘few’
and ‘many’ admit multiple readings in the same sense. By contrast, ‘all’, ‘some’ and
‘more than half of’ do not admit multiple readings in that sense. This suggests that
‘most’, ‘few’ and ‘many’ are indeterminate in a way in which ‘all’, ‘some’ and ‘more
than half of’ are not. While ‘all’, ‘some’ and ‘more than half’ provide a definite
specification of a certain portion of the domain, ‘most’, ‘few’ and ‘many’ do not, as
they can be understood in more than one way.

Again, one way to see that this kind of indeterminacy is correctly described as
vagueness is to see how it can be distinguished from context sensitivity. For it is real-
istic to say that the use of a quantifier expression in a context may fail to determine
a definite reading in the sense just illustrated. More generally, there are two ways
in which the use of a quantified sentence in a context may fail to fix definite truth
conditions. In the first case, the sentence has no definite truth conditions because no
definite domain is fixed. This may be called domain indeterminacy. In the second
case, the sentence has no definite truth conditions because, given an intended domain,
no definite binary relation is fixed on that domain. This may be called quantifier
indeterminacy.

Both domain indeterminacy and quantifier indeterminacy are plausibly described
as linguistic phenomena, that is, as forms of indeterminacy that affect linguis-
tic expressions. For neither of them seems easily reducible to non-linguistic
facts. This is not to say that there is indeterminacy only at the linguistic level.
More specifically, in the case of domain indeterminacy this is not to rule out
the existence of indeterminacy at the metaphysical level. It is consistent with
a description of domain indeterminacy as a linguistic phenomenon to suppose
that the very things over which a quantifier expression ranges are indetermi-
nate. What such description requires is that there is indeterminacy at least at the
linguistic level.

Moreover, domain indeterminacy and quantifier indeterminacy are clearly inde-
pendent of each other. On the one hand, it can be the case that a quantifier expression
(as it is used on a given occasion) is indeterminate in the first sense without being
indeterminate in the second. For example, ‘all’ always specifies a determinate por-
tion of the intended domain, even if in some cases it may be indeterminate which is
the intended domain. On the other, it is conceivable that a quantifier expression (as it
is used on a given occasion) is indeterminate in the second sense without being inde-
terminate in the first. For example, even assuming that ‘most’ ranges over a definite
domain in a given case, it still makes sense to say that it fails to specify a definite
portion of that domain.

In substance, domain indeterminacy and quantifier indeterminacy can be regarded
as two ways in which quantifier expressions may be vague. That is, if a quantifier
expression (as it is used on a given occasion) is vague, then it is affected either by
quantifier indeterminacy, or by domain indeterminacy, or by both. This explains why
the question of what it is for a quantifier expression to be vague seems to admit two
different kinds of answer.
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3 Precisifications of Quantifier Expressions

As is well known, there are different views of vagueness, because there are different
ways to explain its distinctive form of unclarity. But the divergences on the nature
of vagueness are to a good extent irrelevant for the purposes of this paper. In what
follows it will simply be assumed that the vagueness of a language entails its capacity
in principle to be made precise in more than one way. That is,

(VP) If an expression is vague, then it admits different precisifications.

Although (VP) is not universally accepted, it is consistent with more than one view
of vagueness. In particular, it is consistent with supervaluationism, epistemicism, and
other views that differ both from supervaluationism and from epistemicism. This
section suggests that the distinction between quantifier indeterminacy and domain
indeterminacy may be understood as a distinction between two kinds of variations in
the precisifications of a quantifier expression.3

To see how domain indeterminacy may be described in terms of precisifications,
it suffices to focus on (1)-(3). Let us assume that an interpretation of a sentence s

is an assignment of semantic properties to the expressions in s which are compati-
ble with their linguistic meaning and determines definite truth conditions for s. On
the assumption that an interpretation of a quantified sentence fixes a domain for the
quantifier expression which occurs in the sentence, a case of domain indeterminacy
may be described as a case in which a quantified sentence is used in a context, but a
plurality of interpretations of the sentence are equally admissible in the context. Each
interpretation provides a precisification of the quantifier expression which occurs in
the sentence.

To illustrate, suppose that (1) is uttered to assert that all philosophers in U are
rich, but that no unique set of contextually relevant objects is specified. In particular,
suppose that D is a set of people working or studying in U , and that D′ is a proper
subset of D which differs from D only in that it does not include a certain person
whose affiliation to U is unclear for some reason. Then there are two precisifications
p1 and p2 such that p1 assigns D to ‘all’ and p2 assigns D′ to ‘all’. Consequently,
it may be unclear whether (1) is true. For (1) might have different truth values in the
two corresponding interpretations.

In order to describe quantifier indeterminacy in terms of precisifications, the
meaning of ‘most’, ‘few’ and ‘many’ will be defined along the lines suggested in
Section 1. Even though the definitions that will be adopted may be controversial,
since there is no general agreement on the meaning of ‘most’, ‘few’ and ‘many’,
nothing essential depends on them. For the present purposes, they may simply be
regarded as possible options that illustrate the way in which ‘most’, ‘few’ and ‘many’

3Supervaluationism is consistent with (VP) both in its standard version outlined in Fine [10] and in non-
standard versions such as that provided in McGee and McLaughlin [19]. Epistemicism is consistent with
(VP) at least in the version advocated in Williamson [31]. Other views consistent with (VP) are those
suggested in Braun and Sider [8] and in Iacona [12], which qualify as neither supervaluationist nor epis-
temicist. Finally, (VP) is consistent with some views according to which vagueness is in rebus, as in Barnes
[2] and in Barnes and Williams [4] and [3].
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differ from ‘all’, ‘some’ and ‘more than half of’.
Let us start with ‘most’. A basic fact about most seems to be that the condition

stated in Definition 3 must be satisfied for the intended relation to obtain: if one says
that most philosophers are rich, one says at least that more than half of philosophers
are rich. This may be regarded as a necessary condition on most. Yet it is not a suf-
ficient condition. Certainly, we can imagine situations in which ‘most’ is used as
synonymous of ‘more than half of’. But if the meaning of ‘most’ were exhausted by
that condition, ‘most’ wouldn’t be indeterminate in the way considered. The meaning
of ‘most’ seems to allow for variation in the proportion between the size of A∩B and
the size of A. Suppose that there are exactly 1.000.000 philosophers on earth, and that
exactly 501.000 of them are rich. In that circumstance it might be unclear whether
(4) is true, while it is clear that (3) is true. In order to account for this variation, a
definition of most may be given along the following lines:

Definition 4 mostD(A, B) if and only if | A ∩ B |> n/m | A |

Here 0 < n < m and n/m ≥ 1/2. For example, 1/2 and 2/3 are equally acceptable
values for n/m. In other words, most is defined as a class of quantifiers rather than
as a single quantifier. Consequently, the meaning of (4) may be described as a class
of functions from domains to truth conditions that is obtained by combining most

with the meanings of ‘philosophers’ and ‘rich’. This means that (4) differs from (1)-
(3), in that the determination of its truth conditions involves a parameter other than
the domain. Let A and B be sets denoted by ‘philosophers’ and ‘rich’ relative to D.
Whether mostD obtains between A and B depends on the values assigned to n and
m. For example, if n = 2 and m = 3, then it obtains just in case | A∩B |> 2/3 | A |.
In order to determine definite truth conditions for (4), we need both a domain and a
value of the additional parameter whose variation is allowed by the indeterminacy of
‘most’.4

As in the case of ‘most’, the meaning of ‘few’ and ‘many’ may be defined as
a class of quantifiers. But there is a significant difference. While ‘most’ is clearly
proportional, it is at least prima facie acceptable that ‘few’ and ‘many’ behave non-
proportionally. Consider few. A basic fact about f ew seems to be that, for an arbitrary
D, to say that f ewD holds between A and B is to set an upper bound on the size of
A ∩ B. There are at least two ways to express this fact. The first may be called the
absolute reading of ‘few’:

Definition 5 f ewD(A, B) if and only if | A ∩ B |≤ n

This reading is called absolute because the upper bound on the size of A ∩ B is
fixed without reference to the size of A or B. The second reading, instead, may be
called the proportional reading of ‘few’, and comes in two versions:

4Definition 4 is in line with the suggestion in Barwise and Cooper [5], p. 163, and the account in West-
erståhl [30], pp. 405-406. In the latter work, two readings of ‘most’ are considered. But if Definition 4 is
adopted there seems to be no reason to do that.
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Definition 6 f ewD(A, B) if and only if | A ∩ B |≤ n/m | A |

Definition 7 f ewD(A, B) if and only if | A ∩ B |≤ n/m | B |

Here n and m are such that 0 < n < m. Definition 6 may be appropriate for (5),
given that in (5) the number of rich philosophers is said to be small with respect to
the number of philosophers. The following sentence, instead, is naturally understood
in terms of Definition 7:

(7) Few cooks applied

In (7) it is said that the number of applicant cooks is small with respect to the number
of applicants, rather than the other way round.

The case of many is analogous. A basic fact about many seems to be that, for an
arbitrary D, to say that manyD holds between A and B is to set a lower bound on the
size of A ∩ B. Again, there are at least two ways to express this fact. The first may
be called the absolute reading of ‘many’:

Definition 8 manyD(A, B) if and only if | A ∩ B |≥ n

This reading is called absolute because the lower bound on the size of A ∩ B is
fixed without reference to the size of A or B. The second reading, instead, may be
called the proportional reading of ‘many’, and comes in two versions:

Definition 9 manyD(A, B) if and only if | A ∩ B |≥ n/m | A |

Definition 10 manyD(A, B) if and only if | A ∩ B |≥ n/m | B |

Definition 9 may be appropriate for (6), given that in (6) the number of rich
philosophers is said to be big with respect to the number of philosophers. The
following sentence, instead, is naturally understood in terms of Definition 10:

(8) Many Scandinavians have won the Nobel Prize

In (8) it is said that the number of Scandinavian Nobel Prize winners is big with
respect to the number of Nobel Prize winners.5

The absolute reading and the proportional reading of ‘few’ and ‘many’ might be
regarded either as two distinct meanings that ‘few’ and ‘many’ can take depending
on the occasion, or as two different hypotheses about their unique meaning. In any
case, the meaning of (5) and (6) is obtained by combining f ew and many with the
meanings of ‘philosophers’ and ‘rich’. Therefore, it may be described as a class of
functions from domains to truth conditions.6

5The examples (7) and (8) are drawn from Peters and Westerståhl [21], pp. 213.
6The hypothesis that ‘most’, ‘few’ and ‘many’ can be treated along the way suggested is adopted in
Barwise and Cooper [5] and in Westerståhl [30]. Instead, Keenan and Stavi [15] and Lappin [16] provide
differents accounts of ‘few’ and ‘many’.
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If the meaning of ‘most’, ‘few’ and ‘many’ is defined in the way suggested, quanti-
fier indeterminacy may be described in terms of precisifications. Consider Definition
4. The variables n and m which occur in this definition indicate the variability of the
proportion between | A ∩ B | and | A |, which constitutes the quantifier indetermi-
nacy of ‘most’. Each assignment of values to n and m amounts to a way of sharpening
the meaning of ‘most’. So it may be assumed that a precisification of ‘most’ involves
such an assignment, in addition to the domain parameter. For example, one precisi-
fication of ‘most’ is that according to which n = 2 and m = 3, so the condition
required is that | A ∩ B |> 2/3 | A |. Definitions 5-10 are similar to Definition 4 in
this respect. For each of these definitions - no matter whether the reading is absolute
or proportional - entails that the quantifier expression defined admits precisifications
that differ in the same way. As in the case of domain indeterminacy, the precisifica-
tions of a quantifier expression determine interpretations of the quantified sentence
in which it occurs.

From what has been said so far it turns out that the distinction between domain
indeterminacy and quantifier indeterminacy may be described in terms of two kinds
of variations in the precisifications of a quantifier expression. On the one hand, if
a quantifier expression (as it is used on a given occasion) exhibits domain inde-
terminacy, then it admits precisifications that involve domain variation. On the
other, if a quantifier expression (as it is used on a given occasion) exhibits quan-
tifier indeterminacy, then it admits precisifications that involve quantifier variation.
Since interpretations of quantified sentences include precisifications of the quantifier
expressions which occur in them, the same distinction may be drawn with respect to
interpretations of quantified sentences.

4 Truth Conditions and Logical Form

The foregoing sections draw attention to the distinction between domain indetermi-
nacy and quantifier indeterminacy, and outline an account of the distinction based
on some relatively uncontroversial assumptions. This section and the following show
how the account outlined may be articulated at the level of logical form. The assump-
tions that will be adopted are more controversial, so the same goes for the conclusions
that will be drawn. But it is important to understand that, even if one is not sympa-
thetic with the line of thought that will be advanced, one may still regard what has
been said so far as plausible and interesting in itself.

There are at least two senses in which one may wonder what is the logical form
of quantified sentences. One question is how quantified sentences are to be formally
represented in order to explain the valid inferences in which they occur. Another
question is how quantified sentences are to be formally represented in order to pro-
vide a compositional account of their meaning. Although it is often assumed that a
unique notion of logical form can provide answers to both questions, it will not be
assumed here. In what follows we will focus only on the first question, leaving aside
the second. The crucial hypothesis that will be held about the formal explanation of
valid inferences is that the notion of logical form it requires is a truth conditional
notion, that is, a notion according to which logical form is a matter of truth conditions.
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Since no uniqueness assumption will be made, this is compatible with there being a
different notion of logical form that is suitable for the second question. More pre-
cisely, it is compatible with the hypothesis that a syntactic notion of logical form -
such the notion of LF adopted in linguistics - is to be adopted to answer the second
question.7

The truth conditional notion of logical form stems from the idea that an adequate
formalization of a sentence must provide a representation of its content that exhibits
its truth conditions. Let L be a standard first order language with identity. Consider
the following sentences:

(9) Aristotle is rich
(10) Aristotle is indeed rich
(11) Plato is rich

Clearly, (9) and (10) have the same truth conditions, because they describe the same
object as having the same property, while (9) and (11) have different truth conditions,
because they describe different objects as having that property. Therefore, (9)-(11)
are adequately formalized in L as Fa, Fa, Fb. On the understanding of adequate
formalization that will be adopted, if s̄ is an n-tuple of sentences and ᾱ is an n-tuple of
formulas, then ᾱ adequately formalizes s̄ only if the formulas in ᾱ represent the truth
conditions of the sentences in s̄ in such a way that two formulas in ᾱ are logically
equivalent if and only if the sentences in s̄ to which they are assigned have the same
truth conditions.

Note that this is only a necessary condition for adequate formalization, so it may
not be regarded as a complete account of adequate formalization. When a set of sen-
tences is represented in a formal language, the representation is intended to capture
what is said by using these sentences, in some sense of ‘what is said’ that is rele-
vant for the purpose of formal explanation. So it is reasonable to presume that, for a
n-tuple of sentences s̄, only some of the n-tuples of formulas that satisfy that condi-
tion adequately formalize s̄. For example, it is usually taken for granted that Fa is
better than ∼∼ Fa or Fa ∧ (Gb∨ ∼ Gb) as a representation of (9). Even though
∼∼ Fa and Fa ∧ (Gb∨ ∼ Gb) are logically equivalent to Fa, they do not cap-
ture what is said by using (9) in the relevant sense of ‘what is said’. The underlying
thought is that, in order to adequately formalize a sentence, one should choose a for-
mula whose complexity is strictly that required by a correct analysis of the content of
the sentence, which means that the formula must have the minimum complexity that
is necessary to capture that content. Here ‘complexity’ is understood in the standard
way, as the number of logical symbols that occur in the formula, and ‘correct logical
analysis’ is irreducibly vague and hard to define.8

On the assumption that sentences have truth conditions relative to interpretations,
it seems correct to claim that sentences have logical form relative to interpretations.
Let it be granted that, for an n-tuple of sentences s̄, an interpretation of s̄ is an n-
tuple ī such that each term in ī is an interpretation of the corresponding term in s̄.

7Iacona [14] provides an argument against the uniqueness assumption.
8Sainsbury [23] suggests a criterion of adequate formalization that rests on the idea that formalization
must preserve what is said, pp. 161-162.
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The criterion of individuation that underlies the truth conditional notion of logical
form may be stated as follows:

Definition 11 s̄ has logical form ᾱ in ī if and only if s̄ is adequately formalized by
ᾱ in ī.

When s̄ has exactly one term, we get that s has logical form α in i if and only if s

is adequately formalized by α in i.9

Definition 11 leaves room for two senses in which a formula α can be said to
express the logical form of a sentence s relative to an interpretation i. The first is that
in which α, as distinct from some other formula, represents the content of s relative
to i, as distinct from some other content. For example, if (9) and (11) are formalized
as Fa and Fb, the fact that Fa and Fb contain different individual constants shows
that (9) and (11) have different truth conditions because ‘Aristotle’ and ‘Plato’ refer
to different individuals. The second is that in which α represents the structure of the
content of s relative to i in virtue of its being a formula of a certain kind. For example,
Fa and Fb are both formulas of the form �τ , where � indicates any unary predicate
of L and τ indicates any individual constant of L. In this sense, it is plausible to say
that (9) and (11) have the same logical form, although they express different contents.

The account of the meaning of quantified sentences outlined in Sections 1 and 3
may be integrated with an analysis of quantified sentences based on the truth condi-
tional notion of logical form. To illustrate, consider (1). As it turns out from Section 1,
(1) can be understood in more than one way. The simplest case is that in which (1)
is used without restriction on the domain. Recall that the assumption that quantifier
expressions are used in association with domains does not entail that, whenever one
uses a quantifier expression, one has in mind a definite set of contextually relevant
objects. It is consistent with that assumption to say that there are contexts in which
nothing is excluded as irrelevant. The following formula represents (1) as used in
such a context, if P stands for ‘philosopher’ and Q stands for ‘rich’:

(12) ∀x(Px ⊃ Qx)

In order to deal with a context in which some things are excluded as irrelevant,
instead, P can be read as including the intended restriction. Suppose that (1) is used
to assert that all philosophers in U are rich. In this case, (1) can be represented as (12),
where P stands for ‘philosopher in U ’ and Q stands for ‘rich’. So if two utterances of
(1) differ in the intended restriction on the domain, they may be represented by means
of different predicate letters. Suppose that (1) is used on one occasion to assert that
all philosophers in U are rich and on another occasion to assert that all philosophers
in U ′ are rich. This difference may be represented in terms of the difference between
(12) and the following formula:

(13) ∀x(Rx ⊃ Qx)

9Brun [9], p. 27, and Baumgartner and Lampert [6], p. 104, provide some considerations in support of the
claim that the logical form of a set of sentences is expressed by an adequate formalization of the set.
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Here R stands for ‘philosopher in U ′’. Note that (12) and (13) are analogous to
Fa and Fb. On the one hand, (12) and (13) represent different contents insofar as P

and R stand for different conditions. On the other, (12) and (13) are formulas of the
same kind, in that they differ only for a predicate letter. In this sense it is plausible to
say that they express the same logical form.

5 First Order Definability and First Order Expressibility

The thesis that quantified sentences can be formalized in L in virtue of their truth con-
ditions has an important consequence which concerns a fact that is usually regarded
as crucial for the expressive power of first order logic. The fact is that some quanti-
fiers are not first order definable, in the sense that they do not denote quantifiers that
satisfy the following condition:

Definition 12 A quantifier Q is first order definable if and only if there is a formula
α of L containing two unary predicate letters such that, for every set D and A, B ⊆
D, QD(A, B) if and only if α is true in a structure with domain D where the predicate
letters in α denote A and B.

Here ‘two’ means ‘exactly two’. It is easy to see that ‘all’ is first order definable,
in that (12) satisfies the condition required. The same goes for ‘some’, given that (2)
can be represented as follows:

(14) ∃x(Px ∧ Qx)

However, ‘more than half of’ is not first order definable. The same goes for ‘most’,
‘few’ and ‘many’. Although (3)-(6) are semantically similar to (1) and (2), in that
they are formed by expressions of the same semantic categories combined in the same
way, there is no formula of L that translates (3)-(6) in the same sense in which (12)
and (14) translate (1) and (2).10

It is often taken for granted that this fact constitutes a serious limitation of the
expressive power of first order logic. For it is assumed that formalization is a matter
of translation, understood as meaning preservation: to say that a quantifier expression
is first order definable is to say that L contains some expression that captures its
meaning. However, without that assumption there is no reason to think that the first
order undefinability of ‘more than half of’, ‘most’, ‘few’ and ‘many’ rules out the
possibility that (3)-(6) are formalized in L. Certainly, it undermines the claim that

10Barwise and Cooper provide a proof of the first order undefinability of more than half of in [5], pp.
213-214. Peters and Westerståhl, in [21], pp. 466-468, spell out a proof method that extends to other
proportional quantifiers.
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there are sentences of L that have the same meaning as (3)-(6). But if logical form is
a matter of truth conditions, such a claim makes little sense anyway, even in the case
of (1) and (2). Instead of asking whether a quantifier is first order definable, one may
ask whether it is first order expressible, that is, whether it denotes a quantifier that
satisfies the following condition:

Definition 13 A quantifier Q is first order expressible if and only if, for every set D

and A, B ⊆ D, there is an adequate formula α of L containing two unary predicate
letters such that QD(A, B) if and only if α is true in a structure with domain D where
the two predicate letters denote A and B.

Again, ‘two’ means ‘exactly two’. The sense in which α is required to be adequate
is the same in which a formalization is expected to be adequate, as explained in
Section 4. That is, α must represent what is said, relative to D, by a sentence which
contains a quantifier expression that denotes Q and two predicates for A and B.
Of course, adequacy so understood is a vague notion, so it can hardly be phrased
in formal terms. However, this does not prevent Definition 13 from playing a role
analogous to that of Definition 12. For if one takes a case in which the notion of
adequacy definitely applies, and in which it is provable that the rest of the conditions
that constitute first-order expressibility are satisfied, then one can rightfully conclude
that Definition 13 applies. This is just the kind of case at issue. The formulas that
will be considered in our reasoning are assumed to be clear cases of adequacy, so the
reasoning itself is to be understood as conditional on that assumption.

To see how adequacy matters, it suffices to think that a trivial proof of the existence
of α can be provided if no such condition is imposed on α. For it is easy to find some
α that has the required truth value for independent reasons. For example, if QD(A, B)

and α is a logical truth, then QD(A, B) if and only if α is true in the structure. But
from what has been said about adequacy it turns out clear that in this case α is not
adequate. The same goes for similar trivial proofs of the existence of α. What is not
trivial, instead, is to prove the existence of an adequate α. As it will be shown, ‘more
than half of’, ‘most’, ‘few’and ‘many’ are first order expressible, in that for every
D and A, B ⊆ D, there is an adequate α containing two predicate letters such that
QD(A, B) if and only if α is true in a structure with domain D where the predicate
letters denote A and B.

Let us start with ‘more than half of’ and ‘most’. In this case the adequacy assump-
tion that underlies the reasoning is that, if what is said by s relative to D is that at
least n As are Bs, then a formula of L that contains n occurrences of ∃ followed
by n distinct variables and two unary predicates P and Q can provide an adequate
representation of s. Such a formula will be indicated as follows:

(15) ∃≥nx(Px ∧ Qx)

A further assumption is that A and B are finite, as it is natural to expect given
that ‘more than half of’ and ‘most’ are normally used to state relations between finite
quantities.

Given these two assumptions, the first order expressibility of ‘most’ can be proved
by showing that, if A, B ⊆ D and 0 < n < m, there is a k such that | B |> n/m | A |
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if and only if | B |≥ k. The first order expressibility of ‘more than half of’ follows
from this result, as it concerns the special case in which n = 1 and m = 2.

Theorem 1 For every D and A, B ⊆ D, there is an adequate formula α of L that
contains two unary predicate letters such that mostD(A, B) if and only if α is true in
a structure with domain D where the two predicate letters denote A and B.

Proof First it will be shown that, if A, B ⊆ D and 0 < n < m, there is a k such that
| B |> n/m | A | if and only if | B |≥ k. Suppose that A, B ⊆ D and 0 < n < m.
A function F can be defined in the following way. If j = 0, then F(j) = 1. If j > 0
and j is divisible by m, then

F(j) = n

m
j + 1

If j > 0 and j is not divisible by m, then F(j) is the smallest integer such that

F(j) >
n

m
j

Now let | A |= j and k = F(j). k is such that | B |> n/m | A | if and only if
| B |≥ k. Suppose that j = 0. Then n/m | A |= 0 and F(j) = 1, so | B |> 0 if and
only if | B |≥ 1. Suppose that j > 0 and j is divisible by m. Then | B |> (n/m)j if
and only if | B |≥ (n/m)j + 1. Finally, suppose that j > 0 and j is not divisible by
m. Since | B | is a natural number, | B |> (n/m)j if and only if | B |≥ F(j).

Once it is shown that, if A, B ⊆ D and 0 < n < m, there is a k such that
| B |> n/m | A | if and only if | B |≥ k, replacing B with A ∩ B it turns out that
there is a k such that | A ∩ B |> n/m | A | if and only if | A ∩ B |≥ k. Therefore,
mostD(A, B) if and only if | A ∩ B |≥ k. This means that (15), for n = k, can be
used to express in L the claim that mostD(A, B). For (15) is true in a structure with
domain D where P and Q denote A and B.

To see that the first order expressibility of ‘more than half of’ follows from this
proof it suffices to think that, once it is shown that there is a k such that | B |>
n/m | A | if and only if | B |≥ k, a fortiori it is shown that there is a k such that
| B |> 1/2 | A | if and only if | B |≥ k. Replacing B with A ∩ B, we get that there
is a k such that more than half ofD(A, B) if and only if | A ∩ B |≥ k.11

From Theorem 1 it turns out that, although more than half of and most are
characterized by a proportional relation, more than half ofD and mostD fix a
non-proportional relation expressible in L for each D. Theorem 1, accordingly,
“squeezes” a proportional relation on a set of non-proportional relations. So, for any
interpretation, (3) has a logical form representable in L relative to that interpretation,
and the same goes for (4).

Now let us consider (5) and (6). Although ‘few’ and ‘many’ admit both an absolute
reading and a proportional reading, the difference between the two readings does not
really matter as far as formalization in L is concerned. The two readings certainly

11A direct proof of the first order expressibility of ‘more than half of’ is provided in Iacona [13]. The
theorems presented in this section provide a generalization of that result.
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differ with respect to first order definability, for ‘few’ and ‘many’ turn out first order
definable on the absolute reading but not on the proportional reading. However, what
matters to formalization in L is first order expressibility. As in the case of ‘most’, a
squeezing argument can be provided to the effect that ‘few’ and ‘many’ are first order
expressible. In the case of ‘many’ the adequacy assumption is the same, while in the
case of ‘few’ it is that, if what is said by s relative to D is that at most n As are Bs,
then a formula of L that contains n occurrences of ∃ followed by n distinct variables
and two unary predicates P and Q can provide an adequate representation of s:

(16) ∃≤nx(Px ∧ Qx)

Theorem 2 For every D and A, B ⊆ D, there is an adequate formula α of L that
contains two unary predicate letters such that fewD(A, B) if and only if α is true in
a structure with domain D where the two predicate letters denote A and B.

Proof Let A, B ⊆ D. If Definition 5 is assumed, f ewD(A, B) if and only if | A ∩
B |≤ n. Therefore, f ewD(A, B) if and only if (16) is true in a structure with domain
D where P and Q denote A and B. If Definition 6 is assumed, f ewD(A, B) if and
only if | A ∩ B |≤ n/m | A |. But a result similar to Theorem 1 can be proved in
similar way, that is, if A, B ⊆ D and 0 < n < m, there is a k such that | B |≤
n/m | A | if and only if | B |≤ k. Therefore, f ewD(A, B) if and only if (16) is
true in a structure with domain D where P and Q denote A and B. The same goes if
Definition 7 is assumed.

Theorem 3 For every D and A, B ⊆ D, there is an adequate formula α of L that
contains two unary predicate letters such that manyD(A, B) if and only if α is true
in a structure with domain D where the two predicate letters denote A and B.

Proof Let A, B ⊆ D. If Definition 8 is assumed, manyD(A, B) if and only if |
A ∩ B |≥ n. Therefore, manyD(A, B) if and only if (15) is true in a structure with
domain D where P and Q denote A and B. If Definition 9 is assumed, manyD(A, B)

if and only if | A ∩ B |≥ n/m | A |. But a theorem similar to Theorem 1 can be
proved in similar way, that is, if A, B ⊆ D and 0 < n < m, there is a k such that
| B |≥ n/m | A | if and only if | B |≥ k. Therefore, we get that manyD(A, B) if
and only if (15) is true in a structure with domain D where P and Q denote A and
B. The same goes if Definition 10 is assumed.

From Theorems 1-3 it turns out that (4)-(6) can be formalized in L. For every pre-
cisification of the quantifier expressions that occur in (4)-(6), there is a formula of L
that represents the truth conditions of (4)-(6). On the assumption that interpretations
of quantified sentences include precisifications of the quantifier expressions which
occur in them, this means that for every interpretation of (4)-(6), there is a formula
of L that represents the truth conditions of (4)-(6).



594 A. Iacona

6 Two Kinds of Formal Variation

From what has been said so far it turns out that a quantified sentence can be repre-
sented by different formulas on different interpretations. But there are basically two
ways in which a representation of a quantified sentence can vary as a function of its
interpretation. Consider (1) and (3). In Section 4 we saw that (12) and (13) can rep-
resent (1) on different interpretations. Similarly, Section 5 shows how the following
formulas can represent (3) on different interpretations:

(17) ∃≥3x(Px ∧ Qx)

(18) ∃≥4x(Px ∧ Qx)

In the second case, however, the difference seems more substantial: one thing is to
say that more than half of five things have a certain property, quite another thing is to
say that more than half of six things have that property.

The difference between these two kinds of variation may be spelled out in terms
of a notion of minimality based on the understanding of adequate formalization sug-
gested in Section 4. As explained in that section, it is plausible to assume that, in order
to adequately formalize a sentence s on a given interpretation, a formula must pro-
vide a correct logical analysis of the content expressed by s. This assumption leaves
room for the possibility that different formulas adequately formalize s on that inter-
pretation. If the differences between formulas that obtain in such a case are called
‘minimal’, the two kinds of variation in the formal representation of a sentence may
be defined as follows:

Definition 14 A minimal variation in the formal representation of a sentence s is a
variation that involves some minimal difference in the formulas assigned to s.

Definition 15 A non-minimal variation in the formal representation of a sentence s

is a variation that involves some difference in the formulas assigned to s which is not
minimal.

The meaning of ‘minimal’ can be specified in more than one way. On the one
hand, any admissible definition of minimality must entail that certain differences
between formulas are minimal, in that they definitely do not affect adequate formal-
ization. Clearly, if two formulas α and β differ only in that β is obtained from α

by uniformly replacing some non-logical expression with another expression of the
same category, as in the case of Fa and Fb, the difference between them is mini-
mal. The same goes if α and β differ only in that β is obtained from α by applying
elementary syntactic transformations that involve simple order, such as that from
Fa ∧ Fb to Fb ∧ Fa. On the other hand, any admissible definition of minimality
must entail that certain differences between formulas are not minimal, in that they
definitely affect adequate formalization. Clearly, if α and β are not logically equiva-
lent, it cannot be the case that they both adequately formalize the same sentence in the
same interpretation. But there are also intermediate cases in which it is not obvious
whether a difference between formulas should be classified as minimal. For example,
the transformation from ∀x(α ∧ β) to ∀xα ∧ ∀xβ might be minimal according
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to one admissible understanding of minimality and not minimal according to
another.

However, it is not essential for the purposes at hand that the meaning of ‘mini-
mal’ is actually specified in this or that way. For the distinction between minimal and
non minimal variations is sufficienty clear in our case: the difference between (12)
and (13) turns out to be minimal on any admissible definition of minimality, while
that between (17) and (18) turns out to be non minimal on any admissible defini-
tion of minimality. This means that, given Definitions 14 and 15, the former may be
described in terms of minimal variation in the formal representation of (1), while the
latter may be described in terms of non-minimal variation in the formal representation
of (3).

Note that, in accordance with the suggestion provided in Section 4, sameness of
logical form can be defined in terms of minimal variation in the formal representation
of a sentence.

Definition 16 A sentence s has the same logical form on two interpretations i and i′
if and only if the difference between i and i′ entails at most minimal variation in the
formal representation of s.

Thus, (1) has the same logical form on the interpretations represented by (12)
and (13). By contrast, (3) does not have the same logical form on the interpretations
represented by (17) and (18).

Definitions 14 and 15 may be employed to characterize domain indeterminacy
and quantifier indeterminacy. In the first place, it seems correct to say that domain
indeterminacy entails minimal variation in formal representation. If a quantifier
expression e (as it is used on a given occasion) exhibits domain indeterminacy and s

is a quantified sentence containing e, then it is indeterminate which is the set of con-
textually relevant objects over which e is taken to range. That is, there are two sets D

and D′ such that it is not clear whether e ranges over D or D′. But then there are two
precisifications p1 and p2 such that the difference between p1 and p2 entails min-
imal variation in the formal representation of s. For different predicate letters must
be employed to represent in L the difference between D and D′. Therefore, there are
two interpretations which require two minimally different formulas of L.12

In the second place, it seems correct to say that quantifier indeterminacy entails
non-minimal variation in formal representation. If a quantifier expression e (as it is
used on a given occasion) is affected by quantifier indeterminacy and s is a quantified
sentence containing e, then there are two precisifications p1 and p2 such that the dif-
ference between p1 and p2 entails non-minimal variation in the formal representation
of s. For the definition of the meaning of e must include some variables such that, for
any domain, different values of those variables determine different binary relations on
that domain (no matter whether e is understood as proportional or non-proportional).

12Here it is assumed that contextual restrictions are formally represented in the way suggested in Section 4.
But note that one would get the same result even if one adopted a formal representation in which a separate
predicate letter expresses the restricting condition, because in that case (12) and (13) would be replaced by
two formulas ∀x(Rx ⊃ (Px ⊃ Qx)) and ∀x(Sx ⊃ (Px ⊃ Qx)) which differ in the first predicate letter.
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So if p1 and p2 are precisifications that differ in such values, the formulas assigned
to s in the corresponding interpretations must differ in non-minimal way.13

7 Logicality

These last three sections show some implications of the analysis suggested on three
debated issues concerning quantification. The first is the issue of logicality. It is
generally believed that some quantifier expressions deserve the label of “logical”
expressions, in that their meaning has a special significance for logic. So it is nat-
ural to wonder whether a principled distinction can be drawn between logical and
non-logical quantifier expressions. More specifically, one may ask whether such a
distinction holds for the quantifier expressions that occur in (1)-(6). This section
outlines a coherent answer to the latter question. The answer, which implies that logi-
cality and vagueness are independent properties, is intended to apply to the restricted
class of sentences considered so far, so it not to be regarded as an attempt to provide
a comprehensive account of logicality.

On the one hand, it is seems right to think that not all the quantifier expressions
that occur in (1)-(6) must be classified as logical. According to Barwise and Cooper,
a distinction must be drawn between logical and non-logical quantifier expressions:
‘all’ and ‘some’ belong to the first category, while ‘more than half of’, ‘most’, ‘few’
and ‘many’ belong to the second. As they have observed, it would be wrong to think
that the meaning of every quantifier expression must be “built into the logic”.14

On the other hand, however, it might be argued that the distinction between
logical and non-logical quantifier expressions misses something important, namely,
that non-logical quantifier expressions may play some logically interesting role in
inferences. Consider the following argument:

A
(4) Most philosophers are rich

(2) Some philosophers are rich

Apparently, A is valid, and its validity depends on the fact that ‘most’ occurs in
(4). As Peters and Westerståhl point out, if we switch the predicates in A, we still
have a valid inference, while if we switch the quantifier expressions, the entailment
is lost. This shows, according to them, that ‘most’ is constant in a way in which
‘philosophers’ is not. A worked out and improved version of this notion of constancy
is provided by Bonnay and Westerståhl, where it is suggested that, on a suitable
understanding of interpretations, a quantifier expression is constant if at least one

13Note that the converse entailment clearly does not hold. For it may be the case that the sentences con-
taining a quantifier expression e (as it is used on a given occasion) admit non-minimal variation in formal
representation even if e does not exhibit quantifier indeterminacy. This is shown by the case of ‘more than
half of’, which does not exhibit quantifier indeterminacy even though (3) may be represented as (17) or
(18).
14Barwise and Cooper [5], p. 162.
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argument in which it occurs is valid in one interpretation but becomes invalid in
another interpretation.15

As it will be shown, this apparent conflict can be resolved in accordance with the
method of formalization adopted here: a distinction can be drawn between logical and
non-logical quantifier expressions, without leaving unexplained the inferential role
of non-logical quantifier expressions. Given Definition 16, logicality may be defined
as follows:

Definition 17 A quantifier expression e is logical if and only if, for every sentence
s in which e occurs and for every pair of interpretations i and i′ such that i′ differs
from i in the domain assigned to e, s has the same logical form in i and i ′.16

From Definition 17 it turns out that ‘all’ is logical. Let s be a sentence which
contains ‘all’, and let i and i′ be interpretations of s that differ in the domain assigned
to ‘all’. Since the difference between i and i′ is represented by assigning to s two
formulas which differ in the first predicate letter, as in the case of (12) and (13), s has
the same logical form in i and i′. Similar considerations hold for ‘some’. By contrast,
‘more than half of’, ‘most’, ‘few’ and ‘many’ are non-logical. As it has been shown in
the case of (3)-(6), two interpretations that differ in the domain assigned to ‘more than
half of’, ‘most’, ‘few’ and ‘many’ can determine a difference of logical form. This
characterization of logicality entails that logicality and vagueness are independent
properties. A quantifier expression (as it is used on a certain occasion) may or may
not be vague - in either of the two senses considered - independently of whether it is
logical or non-logical.17

Once it is clear how the quantifier expressions that occur in (1)-(6) can be clas-
sified as logical or non-logical, it remains to be said how the inferential role of
non-logical quantifier expressions can be explained. Consider A. Given Definition
11, it is consistent to hold that an argument can have different forms in different
interpretations, each of which is valid. This is precisely what happens in the case of
A. Since (4) has different logical forms on different interpretations, A has different
forms on different interpretations. Suppose for example that (17) and (18) express
the logical form of (4) as understood on two different occasions. Then there are two
different but equally valid forms for A, that is

A1
(17) ∃≥3x(Px ∧ Qx)

(14) ∃x(Px ∧ Qx)

A2
(18) ∃≥4x(Px ∧ Qx)

(14) ∃x(Px ∧ Qx)

15Peters and Westerståhl [21], pp. 334-335, Bonnay and Westerståhl [7], Section 8.
16Note that, given the restriction mentioned in Section 1, ‘sentence’ refers to simple quantified sentences
such as (1)-(6).
17Instead, there is a straightforward connection between logicality so understood and first order definabil-
ity. Iacona [13] proves that every logical quantifier expression is first order definable.
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More generally, the validity of A can be explained in terms of formal validity by
using standard principles of first order logic. In this respect, there is no difference
between A and any argument that involves logical quantifier expressions.

It is easy to see how other apparently valid arguments can be treated in similar
way. In particular, an explanation along the lines suggested seems to hold for a con-
siderably wide class of valid arguments formed by sentences containing either ‘most’
or ‘some’. Note, however, that this does not mean that every argument containing
‘most’ which is valid in some interpretation must be valid in all interpretations. For
example, consider the following:

B
(19) Most beers are cool

(20) At least four beers are cool

If (17) and (18) express the logical form of (19) as understood on two different
occasions, then B is valid in some interpretations but invalid in other interpretations.
Therefore, the explanation of the validity of arguments such as A is consistent with
the hypothesis that ‘most’ is constant in the sense spelled out by Bonnay and West-
erståhl, although the explanation itself does not appeal to constancy so understood.
In the perspective adopted here, logicality and constancy may be regarded as distinct
properties of quantifier expressions.18

8 Unrestricted Quantification

The second issue that will be addressed is the issue of unrestricted quantification.
Although quantifier expressions often carry a tacit restriction to a set of contextu-
ally relevant objects, it is legitimate to ask whether they can coherently be used
without such restriction, that is, whether it is possible to quantify over absolutely
everything. Some uses of quantifier expressions are plausibly interpreted as involving
unrestricted quantification. For example, if one uses the word ‘everything’, which is
equivalent to ‘all things’, to state a general metaphysical claim, presumably one does
not want to exclude some things as contextually irrelevant. So, at least prima facie,
natural language seems to leave room for unrestricted quantification.

Of course, even if it is granted that some uses of quantifier expressions are plau-
sibly interpreted as involving unrestricted quantification, this does not mean that a
coherent formal account of unrestricted quantification can be provided. In standard
first order semantics, each structure includes a set as its domain, so when formulas
are interpreted with respect to the structure, the symbols ∀ and ∃ are read as restricted
to the members of that domain. But according to set theory there is no universal set,
that is, there is no set of which everything is a member. The naive idea that there is
such a set is proved inconsistent by the Russell paradox. Therefore, in order to pro-
vide a formal account of unrestricted quantification, some alternative semantics must
be given.

18Moss [20], Section 8.2, provides a complete axiomatization of a class of inferences involving sentences
containing either ‘most’ or ‘some’. The explanation suggested here seems to hold at least for that class.
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Williamson has argued that there is a viable alternative to standard first order
semantics. His main point is that, even though a Russell-like paradox can arise if it is
assumed that interpretations can be quantified over like other things, that is, with first
order quantification, no such paradox can arise if we give up that assumption and rec-
ognize that the semantics must be phrased in an irreducibly second order way. Others,
instead, are not convinced by his line of argument and continue to claim that quan-
tification over everything is incoherent. However, this question will not be addressed
here. In what follows it will simply be granted that, since at least some uses of quanti-
fier expressions may plausibly be interpreted as involving unrestricted quantification,
the possibility of unrestricted quantification must be taken into account.19

To see that Definitions 1-10 are compatible with unrestricted quantification, recall
that, as explained in Section 1, the use of a quantifier expression may or may not
involve an intended delimitation of the domain: there are contexts in which some
things are excluded as irrelevant on the basis of some intended condition, and con-
texts in which nothing is excluded as irrelevant. The distinction between restricted
and unrestricted quantification may be understood in terms of these two cases. That
is, the contexts of the second kind may be understood as contexts in which the domain
is the totality of everything.

Note that, since there is no universal set, if the domain associated to a certain use
of a quantifier expression is the totality of everything, that domain is not a set. So
it cannot in general be assumed that domains are sets. But this is compatible with
Definitions 1-10, given that Definitions 1-10 do not depend on that assumption. A
domain may or may not be a set. All that matters is that, on each domain, a quantifier
expression denotes a binary relation over the domain.20

9 Vague Existence

The third issue that will be addressed is the issue of vague existence. Some recent dis-
cussions on whether it can be vague if certain things exist hinge on a claim that plays a
key role in metaphysical disputes concerning unrestricted mereological composition
and four-dimensionalism:

(UP) If ‘all’ and ‘some’ are unrestricted, then they are precise.

The main argument for (UP), first sketched by Lewis and then elaborated by Sider,
rests on (VP), the assumption about vagueness considered in Section 3. The argu-
ment is intended to show that, given (VP), it is inconsistent to suppose that ‘all’ or
‘some’ are unrestricted and admit different precisifications. Consider ‘all’. If ‘all’
were vague, there would be two precisifications p1 and p2 such that, for some x, it
is determinately the case that ‘all’ ranges over x according to p1 but not according to
p2. But since ‘all’ is unrestricted, if there is such an x then ‘all’ ranges over x. So it is

19Williamson [32], pp. 424-427 and 452-460. Glanzberg [11] argues against Williamson that, for every
every domain purporting to contain everything, there are in fact things falling outside the domain.
20Peters and Westerståhl, among others, assume that domains are sets, see p. 48. In Section 5 the same
assumption is adopted for the sake of argument.
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not determinately the case that ‘all’ ranges over x according to p1 but not according
to p2. The same goes for ‘some’.21

This argument has been widely discussed. Some find it compelling, others do
not. So it is a controversial question whether (UP) is justified. But that question
will not be addressed. In what follows it will simply be assumed that (UP) deserves
consideration, so that it may be worth to dwell on its relation with the account of
quantifier expressions provided in the previous sections. As it will be explained, what
has been said so far is consistent with (UP).22

First of all, it must be noted that here quantifier indeterminacy is not at issue: since
‘all’ and ‘some’ are not vague in that sense, (UP) is clearly safe from quantifier inde-
terminacy. So the crucial question is whether the fact that ‘all’ or ‘some’ can exhibit
domain indeterminacy is compatible with (UP). The answer to this question is affir-
mative, on the assumption that domain indeterminacy arises only in connection with
restricted quantification. That is, one may consistently claim that domain indetermi-
nacy concerns the specification of a restricting condition, so that it does not arise if
no restricting condition is specified. Thus if (1) is used on a certain occasion and ‘all’
exhibits domain indeterminacy, that is, there are different precisifications p1 and p2
which involve different sets as domains, then its indeterminacy may be understood
in terms of different formulas such as (12) and (13) being ascribed to (1) on different
interpretations. By contrast, the same kind of ambivalence does not arise when ‘all’
is used unrestrictedly.23

At least two interesting corollaries may be drawn from what has been said so far.
The first is that, when one deals with vague existence and related metaphysical issues,
one must not confuse the quantifier expressions ‘all’ and ‘some’, which belong to nat-
ural language, with the symbols ∀ and ∃, which belong to formal languages such as L.
In the debate on vague existence, both the advocates of (UP) and their opponents tend
to use the two kinds of expressions interchangeably, as if there were a straightforward
connection between quantified sentences and their logical form. But according to the
method of formalization adopted here, the connection is not so straightforward. Even
if ‘all’ and ‘some’ may be vague in some sense, in that they may involve domain
indeterminacy, there is no sense in which the symbols ∀ and ∃ may be vague.

The second corollary is that domain indeterminacy, unlike quantifier indetermi-
nacy, is a property that concerns the use of a quantifier expression, rather than
the expression itself. In other terms, while quantifier indeterminacy is an intrinsic
property of quantifier expressions, domain indeterminacy is an extrinsic property of
quantifier expressions, in that it arises only in connection with restricting conditions

21Lewis [17], p. 213, Sider [24], pp. 128-129, Sider [25], pp. 137-142.
22Lopez De Sa [22] and Sider [26] elaborate and defend the argument. Liebesman and Eklund [18] and
Torza [28] argue against it.
23Note, however, that it might be unclear whether ‘all’ is used unrestrictedly, in which case a similar kind
of indeterminacy would arise. Note also that, just like ‘all’ may involve a restriction, the same goes for the
general term ‘thing’ as it occurs in ‘all things’. As it is made clear in Lopez de Sa [22], pp. 405-406, (UP)
is compatible with recognizing that there might be restricted uses of ‘thing’ that are vague. For in that case,
quantifying over every thing in that sense is not the same thing as quantifying over absolutely everything.
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that may be associated with them. Perhaps one might be tempted to conclude that
domain indeterminacy is not a genuine property of quantifier expressions, namely,
that the only sense in which quantifier expressions may be vague is that in which they
may involve quantifier indeterminacy. But much depends on what ‘genuine property’
is taken to mean. In any case, even if domain indeterminacy were not classified as
genuine because it is not an intrinsic property of quantifier expressions, its existence
could hardly be denied. All that matters for this paper is that there is a kind of indeter-
minacy which arises in connection with the use of quantifier expressions and differs
from quantifier indeterminacy in the way suggested.

A different question that might be raised in connection with this second corollary
is the following: if the domain indeterminacy that affects a quantifier expression e as
it is used on a certain occasion depends on the restricting condition associated with e

on that occasion, doesn’t it follow that domain indeterminacy is reducible to indeter-
minacy of expressions other than e, the expressions that are tacitly taken to fix that
condition? The answer to this question is that strictly speaking it doesn’t follow. At
least two further issues seems relevant to the justification of such conclusion. One is
whether every restriction is fixed - or can in principle be fixed - by some description.
The other is the issue mentioned in Section 1, that is, whether the restriction depends
on some variable or parameter in the determiner or in the noun. Since neither of these
two issues need be addressed here, the reducibility question may be left unsettled. In
any case, nothing important hinges on that question. Again, all that matters is that
there is a kind of indeterminacy which arises in connection with the use of quantifier
expressions and differs from quantifier indeterminacy in the way suggested.24
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9. Brun, G. (2008). Formalization and the objects of logic. Erkenntnis, 69, 1–30.

10. Fine, K. (1975). Vagueness, truth and logic. Synthese, 30, 265–300.
11. Glanzberg, M. (2004). Quantification and realism. Philosophy and Phenomenological Research, 69,

541–72.

24I presented the material for this paper in talks at the University of Milan (spring 2014), at the University
of Barcelona (spring 2015), and at the University of L’Aquila (fall 2014). The paper has benefited enor-
mously from the questions, objections, and suggestions I have received on those occasions. Special thanks
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30. Westerståhl, D. (1985). Logical constants in quantifier languages. Linguistics and Philosophy, 8, 387–

413.
31. Williamson, T. (1994). Vagueness. Routledge.
32. Williamson, T. (2003). Everything. Philosophical Perspectives, 17, 415–465.


	Vagueness and Quantification
	Abstract
	Preliminary Clarifications
	Two Kinds of Indeterminacy
	Precisifications of Quantifier Expressions
	Truth Conditions and Logical Form
	First Order Definability and First Order Expressibility
	Two Kinds of Formal Variation
	Logicality
	Unrestricted Quantification
	Vague Existence
	References


