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Abstract A logic of grounding where what is grounded can be a collection of truths
is a “many-many” logic of ground. The idea that grounding might be irreducibly
many-many has recently been suggested by Dasgupta (2014). In this paper I present
a range of novel philosophical and logical reasons for being interested in many-many
logics of ground. I then show how Fine’s State-Space semantics for the Pure Logic of
Ground (PLG) can be extended to the many-many case, giving rise to the Pure Logic
of Many-Many Ground (PLMMG). In the second, more technical, part of the paper, I
do two things. First, I present an alternative formalization of PLG; this allows us to
simplify Fine’s completeness proof for PLG. Second, I formalize PLMMG using an
infinitary sequent calculus and prove that this formalization is sound and complete.
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1 Introduction

The logic of metaphysical grounding has recently taken many steps forward (see
e.g., [6, 7, 14, 15, 25]). All presently existing logics of ground, however, have
focused on many-one or one-one notions of ground. While one has allowed that
a collection of truths can ground a single truth, the idea that what is grounded
might itself (irreducibly) be a collection of truths has not been seriously studied.1

Recently, Dasgupta [10] has suggested that there are metaphysical reasons for want-
ing a notion of ground where what is grounded is (irreducibly) a collection of truths.
The main contribution of this paper lies in satisfying this want: I show how the
semantics for the Pure Logic of Ground [15] can be extended to a natural seman-
tics for many-many ground, present a proof theory, and establish soundness and
completeness.

The general idea is quite simple. One can see2 Fine’s State-Space Semantics as
based on two primitive notions. The first primitive is the notion of a metaphysical
verifier. For each truth φ there are the ways that truth can obtain—its metaphysical
verifiers. The second primitive is a notion of equivalence between sets of verifiers.
The idea is that two sets of verifiers {f0, f1, . . .} and {g0, g1, . . .} can be equivalent
in the sense that the world is the same way when the verifiers f0, f1, . . . all obtain as
it is when the verifiers g0, g1, . . . all obtain.

With the help of these notions we can characterize the following notion of many-
one ground: φ0, φ1, . . . ground ψ iff for any ways f0, f1, . . . for φ0, φ1, . . . to be
the case, there is a way g for ψ to be the case such that the way the world is when
f0, f1, . . . all obtain is the same way the world is when g obtains. It is easy to extend
this to many-many ground.We say that φ0, φ1, . . . groundψ0, ψ1, . . . iff for any ways
f0, f1, . . . for φ0, φ1, . . . to be the case there are ways g0, g1, . . . for ψ0, ψ1, . . . to
be the case, such that the way the world is when f0, f1, . . . all obtain is the same way
the world is when g0, g1, . . . all obtain. The many-many logic of ground presented in
this paper flows naturally from this idea.3

The paper falls into two parts, the first less technical than the second. (The less
technically minded reader can get the essentials by studying just the first part.) We
start by providing a range of novel philosophical and logical motivations for the idea
of many-many ground (Section 2). The example of how grounding might work in
domains with many indiscernibles is of particular interest. In Section 3 we recall
the semantics for Fine’s Pure Logic of Ground (PLG) and show how it can be
extended to the many-many setting in a natural way: the result is the Pure Logic
of Many-Many Ground (PLMMG). Section 4 gives some examples of how PLMMG

1Interestingly, Bolzano took a many-many notion of grounding as basic; the only discussion of the many-
many character of Bolzano’s notion with which I am familiar is [5].
2We will see how this is related to Fine’s official formulation of the State-Space Semantics later, in
Section 3.
3The above was an account of weak full ground. A more detailed account of the various notions of ground
will come later in Section 3.
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differs from PLG. The first part concludes (Section 5) by considering some objec-
tions to the semantics and by considering exactly what notion of ground is captured
by PLMMG.

The second part is taken up with proving soundness and completeness. We
begin (Section 6) by extending the languages we are considering and defining con-
sequence properly. In Section 7 we use the resources of a higher-order sequent
calculus4 to give an alternative proof-theory for PLG and provide a proof-theory
for PLMMG. We then (Section 8) prove soundness for PLMMG. In Sections 9 to 11
we show that the reformalization of PLG is complete and we show completeness
for PLMMG.

2 Many-Many Grounding Introduced

2.1 What is Many-Many Ground?

In order to facilitate the discussion we introduce the language of the logic of ground.
Just as in [15] we use sequents to express grounding claims. We have the four
sequent signs <, ≤, ≺ and � for strict full, weak full, strict partial, and weak par-
tial ground familiar from Fine’s presentation. We also have a sequent sign ��: we
might read this as “not a weak partial ground”. When Γ, Δ are some collections
of sentences then Γ < Δ, Γ ≤ Δ, Γ ≺ Δ, Γ � Δ and Γ �� Δ are sequents.5

When Γ = {γ0, γ1, . . .} and Δ = {δ0, δ1, . . .} we often write γ0, γ1, . . . ≤ δ0, δ1, . . .

for Γ ≤ Δ. When readability seems to require it we may insert parenthesis,
writing, e.g., (γ0, γ1, . . .) ≤ (δ0, δ1, . . .). Note that we allow both Γ and Δ to
be empty.6

Strict full ground is the most familiar notion. If Γ < Δ then Γ provides a full
explanation of Δ—nothing needs to be added to Γ in order fully to explain why Δ

is the case. The explanation is strict in the sense that Δ cannot in turn be part of
an explanation of Γ . Weak full ground is a less familiar notion. Whereas nothing
can strictly ground itself, everything weakly fully grounds itself. Γ is a weak partial
ground of Δ if there is some � such that Γ, � is a weak full ground of Δ. Γ is a strict
partial ground of Δ if Γ is a weak partial ground of Δ and Δ is not a weak partial
ground of Γ .7

4“Higher-order” in the sense that we allow the assumption and discharge of sequents.
5We might take the collections to be pluralities of sentences, with the proviso that we allow empty
pluralities.
6Note that a sequent is not a sentence. For this reason there are no iterated grounding claims, i.e., claims
of the form “Γ grounds that (Δ grounds �)”.
7It does not follow from this that there is some � such that Γ,� is a strict full ground of Δ. If the latter is
the case Γ is a partial strict ground of Δ. For more information about the intended interpretation of these
sequents and further distinctions of ground the reader is referred to [15, pp. 3–4], and especially [14, pp.
50–54].
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Fig. 1 Grounds as support
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2.2 Failure of Distributivity: the Wall

The notion of many-many ground we are interested in is collective (non-distributive).
It is to be sharply distinguished both from simultaneous many-many ground [14, p.
54] and from distributive many-many ground [14, p. 54]. Those notions can both be
characterized in terms of many-one ground. Γ simultaneously grounds δ0, δ1, . . . iff
Γ grounds each δi . Γ distributively grounds {δi}i∈I iff Γ = ⋃

i∈I Γi and Γi grounds
δi for each i ∈ I . If Γ, Δ are two given collections of sentences the claim that Γ

distributively grounds Δ can be expressed as a disjunction of conjunctions of claims
of many-one ground. The collective (non-distributive) notion of grounding we are
interested in differs from the above two in allowing Γ to ground δ0, δ1, . . . even when
every Γ ′ ⊆ Γ is such that for no δi does Γ ′ ground δi . How can we make sense of
distributivity failing?

One way of thinking about grounding is that the grounded “rests on” the grounds;
the grounds provide the “support” for the grounded. It is widely accepted that the
grounds have to be “relevant” to the grounded. One sees this, e.g., in the widespread
acceptance of the claim that mere necessitation is not sufficient for grounding: if mere
necessitation sufficed for grounding then any truth would ground that 2 + 2 = 4. In
terms of the metaphor of “support” the grounds have to be “relevantly” supported by
the grounds.

If one approaches grounding via the metaphor of support and insists that the
grounds have to be relevant to what they ground, non-distributive many-many
grounding is quite natural. The following picture should get the idea across.8 Con-
sider Fig. 1. Here we see a wall made out of bricks, the upper row being supported
by the lower row. But there is a sense in which no one brick in the top row rests on
any collection of bricks from the lower row. Consider, e.g., the bricks a, b, and c
depicted in Fig. 1. b and c provide stable support for a, but b, c take up more space
than is needed to provide a with stable support: b, c are not (wholly) relevant to a.
The upper row as a whole, on the other hand, is relevantly supported by the lower
row as a whole. This picture of the wall is very useful for forming the right intuitions
about many-many ground.9

8While this picture of many-many grounding is metaphorical the way non-distributivity comes about in
the official semantics is not dissimilar.
9Dasgupta’s motivations for many-many grounding trade heavily on considerations of relevance [10]. One
can consider “the wall” as giving the “abstract core” of Dasgupta’s examples.
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2.3 Non-distributive Explanations

Many philosophers tie grounding closely to a certain kind of explanation (see e.g.,
[14, pp. 37–40], [12, pp. 3–6], [19, 20]) It is of great interest that many-many
grounding arises naturally if we tie grounding closely to explanation.

One central way of expressing explanations is by means of the asking and answer-
ing of questions “why?”. One can express grounding-explanations by having the
question “why?” take on a particular metaphysical meaning.10 For instance, one way
of expressing that the truth that it is raining or snowing is grounded in the truth that
it is raining is by means of the following little (internal) dialogue.

– It is raining or snowing. Why? Because it is raining.

If this is a way of expressing grounding, there is nothing puzzling about the form of
claims of many-many grounding: one can easily ask why many truths obtain. This
little (internal) dialogue, too, makes perfect sense:

– It is the case that p0. It is the case that p1. . . .. Why? Because q0, q1, . . ..

Another way of expressing claims of ground is by means of inferences that are taken
to have a particular explanatory force. Thus one might express a claim of many-many
ground by carrying out an inference with many conclusions, for instance:

– q0, q1, . . .. Therefore. p0, p1, . . ..11

A one-step explanatory inference plausibly corresponds to a case of immediate
ground. In order to capture the notion of mediate ground the relevant notion is that of
an explanatory argument. We can capture that reading by allowing the “therefore” to
indicate that there is an explanatory argument from q0, q1, . . . to p0, p1, . . ..12

While there is much to be said for tying grounding to explanatory infer-
ences and arguments in the way indicated above it is arguable that the semantics
we develop here does not capture the logic of this conception of grounding—
what we may call the conception of grounding as explanation. (See Section 5.2
below for more discussion.) The point of bringing up the conception of ground-
ing as explanation is twofold. First, even if this is not the conception of ground
that is captured by the semantics developed here, it is a conception of ground
that is naturally many-many. Second, it would be of considerable interest if
the pure logic governing this notion of ground differed from the pure logic of
ground given by the state-space semantics; this would establish some limis to the
state-space semantics.

10Think of a Euthyphro question: “Why is the action beloved by the Gods?”
11 “Therefore” is not intended as a sentential operator here. Rather, think of it as indicating that p0, p1, . . .

are inferred from q0, q1, . . . in a particularly explanatory way. Note that this means that p0, p1, . . . (that
is, each pi ) and q0, q1, . . . (that is, each qi ) are asserted.
12This suggests that we read a sequent Γ < Δ as the claim that there is an explanatory argument from Γ

to Δ.
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Why are these many-many notions of ground of interest? There are, of course,
purely technical reasons for being interested in them; but, as I will argue, there are
weighty philosophical reasons for being interested in them as well. While none of
the potential applications given below force us to accept many-many grounding—
for one thing, the applications are presented in insufficient detail—together they
make a strong case that many-many grounding is of considerable philosophical
interest.

2.4 Structuralist Motivations

Dasgupta introduced the notion of many-many grounding in the service of “struc-
turalist” metaphysics. He argued that many-many grounding is needed for a
proper formulation of qualitativism—the view that, fundamentally, the truths are
wholly qualitative—and comparativism about mass—the view that truths about
the masses of particular individual objects are grounded in mass-relations. Here
we present a novel structuralist motivation for many-many grounding: mathe-
matical structuralism. The following is not intended as a defense of mathe-
matical structuralism, nor is it intended as an argument that a mathematical
structuralist has to accept many-many grounding. The point is merely that a
mathematical structuralist has some distinctive reasons for wanting a notion of
many-many ground.13

A natural mathematical structuralist thesis is that truths about individual mathe-
matical objects are grounded in wholly structural truths about the structure in which
those mathematical objects live.14 A standard problem for views of this sort is
presented by the complex field.15

The two square roots of −1, i.e., i and −i, are indiscriminable in the sense
that there are automorphisms interchanging them. This makes it difficult to see
how the truth that i exists can be grounded in wholly structural truths. To appre-
ciate the problem let us first get clearer on what is meant by a “wholly structural
truth”.

It is tempting to identify the wholly structural truths with the truths about the struc-
ture that are invariant under all automorphisms; but some care has to be taken here.
The truth that 1 is such that i exists is invariant under automorphisms of the com-
plex field in the sense that if we apply an automorphism interchanging i and −i to
the truth that 1 is such that i exists what results is a true proposition, viz., the propo-
sition that 1 is such that −i exists. Intuitively, however, this truth is partly about
the particular object i and so should not count as “wholly” structural. To get around
this problem we take a “structured” view of truths like 1 is such that i exists. One

13By focusing on the case of mathematical structuralism I am not suggesting that Dasgupta’s own motiva-
tions for many-many ground are flawed; they do, however, require rather more set-up and they are harder
to model formally. Dasgupta defends comparativism in [8]; he defends qualitativism in [9]. He argues that
comparativism and qualitativism require many-many ground in [10].
14I do not mean to suggest that this is the only view that could be called “mathematical structuralism”.
15For this problem see [3] and [18].
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could say that this truth is built up from 1, i, existential quantification, and (some-
thing like) λ-abstraction; the truth 1 is such that −i exists, on the other hand, is built
up from 1, −i, existential quantification, and (something like) λ-abstraction. If we
understand truths in such a structured way the truth that 1 is such that i exists is not
invariant under automorphisms: the result of applying an automorphism interchang-
ing i and −i to it gives us the truth 1 is such that −i exists which is a different
structured truth. In what follows we take a wholly structural truth to be a truth
φ such that for all automorphisms π , the result of applying π to φ results in the
truth φ itself.

It is then very plausible that the truth that i exists is not grounded in any wholly
structural truths: for there is no wholly structural truth about the complex field that
bears on the existence of i (as opposed to the existence of −i). And the wholly
structural truths that bear on the existence of both i and −i will contain material
that is irrelevant to the existence of i. Similarly, it is very plausible that there is no
wholly structural truth about the complex field that grounds the existence of −i;
for there is no wholly structural truth about the complex field that bears on the
existence of −i (as opposed to the existence of i). Nevertheless, it is very plau-
sible that there is a wholly structural truth about the complex field that grounds
the collection of truths: (i exists, −i exists). Since i and −i are the unique square
roots of −1, the (unordered) pair of objects 〈i, −i〉 is uniquely characterized in
structural terms.16

By reflecting on this example we see that many-many grounding is of help to
the structuralist in two ways: not only does many-many grounding give a new per-
spective on what is to be grounded—viz., collections of truths—it might also offer
a new perspective on what are the ultimate grounds. For if we espouse a thorough-
going structuralism we would like to say that everything is grounded in the wholly
structural, and the question then arises how the wholly structural itself should be
stated.

One way out is to concoct a language in which only structural truths can be stated.
(This would be the approach of [9].) Once we allow many-many grounding there is,
however, a simpler approach. We could allow the wholly structural to be specified
using collections of truths concerning particular individuals as long as those col-
lections satisfy two conditions: (i) they are invariant under the structure-preserving
transformations; and (ii) they are grounded only in collections that are themselves
invariant under the structure-preserving transformations. We might then state how
things are in wholly structural terms by making a bunch of assertions none of which
individually makes a statement about how things are in wholly structural terms: it

16What drives this example is the existence of indiscernible objects. I should note that Dasgupta is at
pains—and rightly so, in my opinion—to point out that his motivations for many-many grounding do not
require indiscriminable objects [10, p. 10]. But that does not mean that when there are indiscriminable
objects we cannot use this fact to make a case for many-many grounding. Similar cases can be made
for non-mathematical subject-matters: points in space (at least if space were Euclidean) and entangled
electrons are two interesting cases.
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would be enough if the collection of statements together amount to a specification of
how the world is in wholly structural terms. So the wholly structural feature in which
the collection of truths (i exists, −i exists) is grounded might just be the collection
of truths (i exists, −i exists) itself.17,18,19

2.5 Infinite Regress

The idea behind the structuralistic examples is that a collection of truths can be
grounded without any of the members of the collection being grounded. But the con-
verse phenomenon is also of interest: each member of a collection of truths could be
strictly grounded without the collection of truths itself being strictly grounded. (For
the remainder of this subsection we will only be concerned with strict full ground.)
The simplest way for this to happen is when we have an infinite regress of ground.20

Thus we can have that φi is grounded by φi+1 for all i. Taken individually, then, the
φi are fully grounded.

One might, nevertheless, wonder whether the φi taken collectively are grounded.
If one has a many-many notion of ground one can make sense of each φi

being grounded whilst the collection of the φi is ungrounded. The idea that each
member of a series can be grounded without the series itself being grounded
is an idea that occasionally comes up in discussions of the cosmological argu-
ment (see e.g., [21]) or the Principle of Sufficient Reason. The point here is not
to defend the cosmological argument or the Principle of Sufficient Reason; the
point is just to note that the distinction makes perfect sense within a logic of
many-many ground.

It is true that this particular application perhaps can be dealt with by relying only
on simultaneous many-many ground, but as we will see in (Section 4), there are also
more subtle ways in which every member of a collection can be grounded without
the collection itself being grounded—and for those applications we need the notion
of non-distributive many-many ground.

17This, of course, would only give us a case of weak full ground. Later, in Section 4.2, we give a plausible
example of strict full grounding of collections of truths about the complex numbers.
18There are two ways of thinking about what it takes to have a thoroughgoing structuralism. (Cf. Fine’s
distinction between a D-project and an E-project [13, pp. 730–32].) The idea expounded here is that
we have structuralism enough if all truths are grounded in the wholly structural. It then does not matter
if in order to specify the wholly structural we have to make a bunch of claims that are not themselves
wholly structural. But one might demand more (or at any rate, something else): one might ask for a
specification of the wholly structural in terms not involving anything non-structural. One might want
the language of the “Book of the World” [26] to be incapable of making any non-structural statements.
(I hasten to add that the present use of the term “structural” must not be confused with Sider’s own
use of the term.)
19There is an interesting connection here with Fine’s notions of being constitutive of reality and being
factual [16]. Once we allow many-many grounding it is natural to take these notions, too, to be variable-
arity, non-distributive operators. Relatedly, Saucedo [22] has advocated that we adopt a non-distributive
notion of fundamentality. This is not the place to discuss this further.
20There is nothing in the notion of ground per se that rules out infinite regresses of ground. For a dissenting
view see [24]. For more discussion see [1, 2, 4].
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2.6 The Logic of Ground

One needs a logic of many-many ground in order properly to develop a satisfactory
impure21 logic of many-one ground. Suppose we know that Δ strictly grounds a
conjunction φ ∧ ψ . If we think—as we should22—that the conjuncts φ,ψ are the
unique immediate strict full grounds for the conjunction φ ∧ ψ , then we know that
Δ has to weakly fully ground {φ,ψ}. In order to state this we require a notion of
many-many ground in the object-language. It is true that this application does not
require non-distributive many-many ground; but since non-distributive ground is the
more general notion of many-many ground this provides an additional reason for
studying it.

One similarly needs a logic of many-many ground if one wants properly to develop
the pure logic of immediate ground. Suppose we had an operator � meant to express
immediate strict full ground and that we believe—as we should—that strict full
ground is the closure under Cut of strict full immediate ground. Then we need a
notion of many-many ground in the object-language in order to express the following
principle:

(Closure) If Γ < φ then there are some Δ such that Γ ≤ Δ and Δ � φ.

Finally, many-many grounding might prove useful in giving a proper treatment of
negation. Once one has allowed that a collection Δ might be grounded without any
one of the δ ∈ Δ being grounded, one can allow for the possibility that some Γ

grounds the falsity of the Δ taken collectively, without thereby taking Γ (or indeed:
any Γ0 ⊆ Γ ) to ground the falsity of any particular δ ∈ Δ.23 In connection with the
falsity of conjunctions this might be useful. For there are cases where it is tempting
to say that the falsity of a conjunction is grounded without the falsity of either con-
junct being grounded. The falsity of the conjunction might, e.g., be grounded in the
obtaining of a truth that precludes the joint obtaining of the conjuncts without pre-
cluding the obtaining of either conjunct. Plausible cases are instances of the law of
non-contradiction24 and cases of color exclusion.

This, by itself, does not force us to accept many-many grounding: one could just
claim that there is a p such that p grounds the falsity of a conjunction without ground-
ing the falsity of either conjunct. Where many-many grounding earns its keep is by
allowing us to retain a uniform clause for the falsity of conjunctions: one can say that
the falsity of a conjunction φ∧ψ is grounded in the falsity of φ,ψ (taken together).25

21In a pure logic of ground the only logical operators one deals with are the various grounding operators.
In an impure logic of ground, on the other hand, one considers also other logical operators, such as con-
junction, disjunction, and negation. PLG and PLMMG are pure logics. The logics developed in [6, 25] are
impure.
22See [14, pp. 63–67] for more on this.
23Here is a way of expressing this in question-and-answer form: “φ0, φ1, . . .? No way! Why? Because
ψ0, ψ1, . . ..”
24This treatment is, e.g., given in [17]. This is perhaps especially plausible in cases where it seems
indeterminate whether φ.
25I hope to expand on the impure logic of ground elsewhere.
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The above considerations provide strong reasons for thinking that many-many
ground is desirable. But there is a sense in which none of this matters: a pure many-
many logic of ground can be developed within Fine’s State-Space Semantics—the
many-many logics of ground are there, whether we want them or not. Let us now turn
to making good this claim.

3 Semantics

3.1 The Semantics for PLG Recalled

We work in Fine’s State Space Semantics (also: “truthmaker semantics”). We take
as given a collection F of facts equipped with a function � : P(F ) → F . This is
our fact-frame. Think of � as a fusion operator: it takes facts and fuses them into
more complex facts. Note that � is defined even on ∅. We call �(∅) the empty—or
null—fact.

We demand that � is associative in the sense that when each Xi is a collection of
facts from F and each Xj is a collection of facts from F , then

�

⎛

⎝
⋃

j∈J

Xj ∪
⋃

i∈I

{�(Xi)}
⎞

⎠ = �

(
⋃

k∈I∪J

Xk

)

Intuitively, the order and the number of times one fuses some facts makes no
difference. If X = {a0, a1, . . .} we often write �(X) as a0 · a1 · . . . .

Remark 1 The elements f ∈ F of the state space correspond to the metaphysical
verifiers mentioned in the introduction. The fusion operator � models the second
primitive notion. Two sets of verifiers {fi : i ∈ I } and {gj : j ∈ J } are such that the
way the world is when the fi all obtain is the same way the world is when the gj all
obtain iff �({fi}i∈I ) = �({gj }j∈J ).

Let V be a subset of F . We say that V is closed if for all non-empty V0 ⊆ V ,
�(V0) ∈ V . Let {Pi}i∈I be a collection of subsets of F . We define �̄i∈I (Pi)—the
fusion of the sets Pi—as the set of pointwise fusions:

�̄i∈I (Pi) = {�({a0, a1, . . .}) : ai ∈ Pi}
In keeping with the above practice, we often write P0 · P1 · . . . for �̄(Pi).

A generalized fact-frame is a triple 〈F,�, V 〉 where 〈F,�〉 is as before and V is
a collection of closed subsets. A frame is full if V contains all closed subsets of F .
Note that if V is closed and non-empty then V · V = V . Note also that if V0, V1, . . .

are closed then �̄(Vi) is closed. For PLG we will only consider frames where V is
closed under fusion. From now on we abuse notation and use� both for� and for �̄.

For the following definition fix a generalized fact frame F = 〈F,�, V 〉. Assume
that P0, P1, . . . and Q are all in V .
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Definition 1

(i) P0, P1, . . . ≤F Q iff P0 · P1 · . . . ⊆ Q.
(ii) P �F Q iff there is R such that P,R ≤F Q.26

(iii) P ��F Q iff it is not the case that P �F Q

(iv) P0, P1, . . . <F Q iff P0, P1, . . . ≤F Q and Q ��F Pi for each i.
(v) P ≺F Q iff P �F Q and Q ��F P .

Definition 2 A generalized model is a quadruple M = 〈FM , �M , VM , [ ]M 〉.
HereFM = 〈FM , �M , VM 〉 is a generalized frame and [ ]M assigns a set [p]M ∈
VM to each sentence p. This is the verification set of p. Where no confusion is
likely we simply write this [p]. For Γ = {p0, p1, . . .} a set of atoms we put [Γ ] =
�̄([p0], [p1], . . .).

We now define what it is for a sequent α to be true in a model M , writing M |= α

for this notion.27

Definition 3 Let M = 〈FM , �M , VM , [ ]M 〉 be a model.

(i) M |= p0, p1, . . . ≤ q iff [p0], [p1], . . . ≤F [q].
(ii) M |= p � q iff [p] �F [q]
(iii) M |= p �� q iff [p] ��F [q]
(iv) M |= p0, p1, . . . < q iff [p0], [p1], . . . <F [q]
(v) M |= p ≺ q iff [p] ≺F [q]

3.2 Semantics for PLMMG

Let a generalized frame F = 〈F,�, V 〉 be given. For the following definition we
assume that P0, P1, . . . and Q0, Q1, . . . are in V .

Definition 4

(i) P0, P1, . . . ≤F Q0, Q1, . . . iff P0 · P1 · . . . ⊆ Q0 · Q1 · . . . .
(ii) P0, P1, . . . �F Q0, Q1, . . . iff there is R such that

P0, P1, . . . , R ≤F Q0, Q1, . . .
28

26 This clause differs from the clause given in [15]. Fine only requires that there be some R0, R1, . . . such
that P,R0, R1, . . . ≤F Q. Since we demand that V is closed under � there is, for us, no difference
between the two formulations. Since Fine’s formalization of PLG is sound and complete with respect to
fullmodels it makes no difference to his formalization of PLG either. There is, however, a difference in the
higher-order setting developed in Section 7. See the discussion of (Unity) in Section 5.3 below.
27Since sequents are not sentences it is admittedly somewhat strange to say that they are true in model,
but for convenience we will continue to write in this way.
28If we did not demand that V be closed under �, the right-hand side of this clause should instead read:
“there are some R0, R1, . . . such that P0, P1, . . . , R0, R1, . . . ≤F Q0,Q1, . . .”. Cf. footnote 26 above.
In the second part of the paper we will not quite demand that V is closed—it suffices to impose a weaker
condition.
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(iii) P0, P1, . . . ��F Q0, Q1, . . . iff it is not the case that P0, P1, . . . �F
Q0, Q1, . . .

(iv) P0, P1, . . . <F Q1, Q2, . . . iff P0, P1, . . . ≤F Q0, Q1, . . . and
Q0, Q1, . . . ��F P0, P1, . . ..

(v) P0, P1, . . . ≺F Q0, Q1, . . . iff P0, P1, P2, . . . �F Q0, Q1, . . . and
Q0, Q1, . . . ��F P0, P1, . . ..

A model for PLMMG is a quadruple M = 〈FM , �M , VM , [ ]M 〉, where [ ]M
assigns sets in V to the atoms. We define what it is for a sequent to be true in a model
analogously to how we did it for PLG.

Definition 5

(i) M |= p0, p1, . . . ≤ q0, q1, . . . iff
[p0], [p1], . . . ≤F [q0], [q1], . . .

(ii) M |= p0, p1, . . . � q0, q1, . . . iff [p0], [p1], . . . �F [q0], [q1], . . .
(iii) M |= p0, p1, . . . �� q0, q1, . . . iff [p0], [p1], . . . ��F [q0], [q1], . . .
(iv) M |= p0, p1, . . . < q0, q1, . . . iff [p0], [p1], . . . <F [q0], [q1], . . .
(v) M |= p0, p1, . . . ≺ q0, q1, . . . iff [p0], [p1], . . . ≺F [q0], [q1], . . .

The clause for weak full ground hews closely to the informal characterization
given in the introduction. According to the semantics p0, p1 . . . ≤ q0, q1, . . . is true
if for all f0, f1, . . . such that each fi ∈ [p]i , there are g0, g1, . . . such that gi ∈ [qi]
and f0 · f1 · . . . = g0 · g1 · . . .. Recall (Remark 1) that we may read the identity
�i∈I {fi} = �j∈J {gj } as saying that the way the world is when all the fi obtain
is the same way the world is when all the gi obtain. What the clause for weak full
ground expresses is exactly what the informal characterization suggests: a collection
of truths p0, p1, . . .weakly fully grounds another collection of truths q0, q1, . . .when
for any ways f0, f1, . . . of making all the first truths the case there are some ways
g0, g1, . . . of making the latter truths the case such that the way the world is when all
of f0, f1, . . . obtain is the same way the world is when all of g0, g1, . . . obtain.

It is worth explaining how and why the clause for strict full ground differs from
the clause for many-one ground. To do this we introduce the notion of “explanatory
order”. Say that φ is below ψ in the explanatory order if φ is a strict partial ground
for ψ , i.e., if φ is a weak partial ground for ψ , but ψ is not a weak partial ground
for φ. In the many-one setting we can say that p0, p1, . . . strictly fully ground p if
p0, p1, . . . taken together weakly fully ground p and each of the pi is below p in the
explanatory order. (PLG has individualistic clauses for < and ≺.)

In the many-many setting we understand being below in the explanatory order in a
collective way: p0, p1, . . . strictly fully ground q0, q1, . . . iff p0, p0, . . . weakly fully
ground q0, q1, . . . and q0, q0, . . . do not weakly partially ground p0, p1, . . .. It does
not follow from the q0, q1, . . . being above each of them that the q0, q1, . . . are above
them. (PLMMG has collectivist clauses for < and ≺.)

The collectivist clauses for < and ≺ are forced on us. If we kept the individualistic
clauses there would be no guarantee that if Γ ≤ Δ andΔ < � then Γ < �. Here is a
simple example establishing this. Let fusion be union, and let the verification set of p
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be a, b, and let the verification set for q be a and the verification set for r be b. Then
p ≤ (q, r) and (q, r) ≤ p. According to the individualistic clause (q, r) < p, but
of course we cannot have p < p. This result is plainly unacceptable: the collectivist
clauses for < and ≺ are forced on us.

We define consequence in the natural way.29

Definition 6 Let S be a collection of sequents and α a sequent. We say that S |= α

iff for all M such that M |= S, M |= α.

3.3 A Graphical Illustration

The difference between how (weak full) ground works in PLG and PLMMG can be
illustrated by Figs. 2 and 3. In these graphical presentations the fusion of two regions
of logical space is the smallest region containing both regions.

In Fig. 2 we see a typical case of grounding in PLG. On the left we see sixteen
distinct closed sets; on the right we see a single closed set, the fusion of the sixteen
sets on the left. Let the verification set of p1

1 be {(1, 1)}, the verification set of p1
2

be {(1, 2)} etc., and let the verification set of q be the whole rectangle on the right,
that is, {(i, j) : i, j ≤ 4}. The figure depicts that

⋃
i≤4,j≤4{pj

i } ≤ {q}, indeed that
⋃

i≤4,j≤4{pj
i } < {q}.

In Fig. 3 we see a typical case of grounding in PLMMG. While none of the closed
sets depicted on the left are contained in a closed set depicted on the right, the region
of logical space covered by the rectangles on the left is identical to the space covered
by the rectangles on the right. So let the verification set of pi be {(i, j)|j ≤ 4}. Let the
verification set of qk

l be {(k, l)}. Then the figure depicts that⋃i≤4{pi} ≤ ⋃
k,l≤4{qk

l }.
(Imagine putting the right-hand square in Fig. 3 on top of the left-hand square: what
results is an instance of “the wall”.)

4 Consequences of the Semantics

4.1 Reverse Subsumption and Amalgamation

Strikingly, the following two valid principles of PLG are invalid in PLMMG.

φ0, φ1, . . . ≤ Δ φ0 ≺ Δ φ1 ≺ Δ . . .

φ0, φ1 . . . < Δ
Reverse Subsumption

Δ0 < φ Δ1 < φ . . .

Δ0, Δ1, . . . < φ
Strict Amalgamation

The following fact frame witnesses that both principles fail. Put F = {a, b, c, d}
and define � by ab = ac = bc = c, where the empty fact is d. Let V be full. Put

29For the purposes of the completeness proof we will later (Section 6) consider a more expressive language
and this will require a subtler treatment of consequence; for now this will do.
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1,1 1, 1

1,2 1, 2

1,3 1, 3

1,4 1, 4

2,1 2, 1

2,2 2, 2

2,3 2, 3

2,4 2, 4

3,1 3, 1

3,2 3, 2

3,3 3, 3

3,4 3, 4

4,1 4, 1

4,2 4, 2

4,3 4, 3

4,4 4, 4

Fig. 2 Grounding in PLG

[φ] = {a}, [ψ] = {b}, and [θ ] = {a, b, c}. Then we get φ < θ and ψ < θ , but we do
not have φ,ψ < θ since �(c, [θ ]) = c = [ψ, φ].

4.2 Non-distributive Grounding

Next we give a simple example of how we might have a collection of truths strictly
grounded in some collection of truths without having the collection distributively
grounded in that collection of truths.

The following model is intended to capture the following situation. We want to
say:

(i) The truths (i exists or (i exists and 1 exists)) and (−i exists or (−i exists and
1 exists)) are not, taken individually, grounded in wholly structural truths about
the complex field; but

(ii) taken together (i exists or (i exists and 1 exists)) and (−i exists or (−i exists
and 1 exists)) are grounded in wholly structural truths about the complex field.

The idea is that while the truth that 1 exists is wholly structural (1 is the unique
multiplicative unit of the field), it is “contaminated” with the non-structural truth that
i exists (−i exists).

Let a be the fact that i exists, b be the fact that −i exists and c the fact that 1
exists. Say that the facts in the “interior” of Fig. 4 are the structural facts and that the

1,1 1,1

1,2 1,2

1,3 1,3

1,4 1,4

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,4

3,1 3,1

3,2 3,2

3,3 3,3

3,4 3,4

4,1 4,1

4,2 4,2

4,3 4,3

4,4 4,4

Fig. 3 Grounding in PLMMG
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Fig. 4 Complex grounding abc

ac bc

c ab

a b

exterior facts are not purely structural. Interpret φ as {a, ac} and ψ as {b, bc}. Then
φ corresponds to the truth that i exists or i and 1 exist while ψ corresponds to the
truth that −i exists or −i and 1 exist. Then neither φ nor ψ is strictly fully grounded
in wholly structural truths, but φ,ψ taken together are. For the verification set of
{φ,ψ} is {ab, abc}, and ab is a wholly structural fact.

4.3 New Principles

The semantics does not just invalidate principles of PLG; it also validates some
very interesting new principles of grounding. Several of these are established proof-
theoretically in Section 7.3 but three of them should be mentioned here: Squeezing,
Cancellation and Undercut.

Squeezing is the following principle.

Γ ≤ Δ Γ ≤ Δ, �, �

Γ ≤ Δ, �
Squeezing

In words: suppose a collection of facts Δ, � is “sandwiched” between the collec-
tions Δ and Δ, �, �. Suppose further that both Δ and Δ, �, � are (weakly fully)
grounded in Γ . Then Squeezing ensures thatΔ, � is (weakly fully) grounded in Γ .30

We prove Squeezing as follows. Suppose that Γ ≤ Δ. Let a0, a1, . . . be some ver-
ifiers for Γ . Then there are verifiers b0, b1, . . . of Δ such that �(ai) = �(bj ). There
are also verifiers b′

k, cl, dm of Δ, �, � respectively such that �(ai) = �(b′
k, cl, dm).

The following calculation establishes that �(a0, a1, . . .) = �(bj , cl), which suffices
to establish Squeezing.

�(a0, a1, . . .) = �(b′
k, cl, dm) = �(�(b′

k, cl, dm), �(cl))

= �(�(a0, . . .), �(cl)) = �(�(bj ), �(cl)) = �(bj , cl)

30Strict Squeezing—the principle that results if we replace ≤ with < uniformly—is also valid.
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The principle of Cancellation gives us a new way of establishing claims of strict
ground.

Γ ≤ Δ Γ, �1, �0 < �0, Δ

Γ < Δ
Cancellation

In words: if we can transform a weak grounding claim into a strict grounding claim
by adding �1, �0 to the grounds and �0 to the grounded then the grounding claim
was strict to begin with. This is clearest in the case where �1 = ∅: how could we get
a strict grounding claim by adding identical facts to both sides of a weak grounding
claim unless the weak grounding claim was strict to begin with?31

Undercut is the following principle:

Γ ≤ Δ, �

Γ ≤ Γ, �
Undercut

We prove Undercut as follows. Suppose that Γ = {γi}i∈I , Δ = {δj }j∈J and � is
{σk}k∈K . Then let {ai}i∈I be some verifiers of the γi . Then there are verifiers bj , ck

of the δj , σk such that

�(ai)=�(bj , ck)=�(bj , ck, ck)=�(�(bj , ck), ck)=�(�(ai), ck)=�(ai, ck)

This establishes the result.
We conclude the first, less technical, part of the paper by discussing some press-

ing philosophical issues that are raised by the semantics—and by Squeezing and
Undercut in particular. To prefigure: while there are some limitations to what notions
of ground can be captured by the state-space semantics this does not mean that the
notions of ground that can be captured are not of considerable interest.

5 Ground and Middleground

5.1 Conjunction

It is often assumed that a true conjunction φ ∧ ψ is strictly grounded in the con-
juncts φ,ψ taken together. And one might think that we could implement this in the
semantics simply by means of the following clause:32

– s |= φ ∧ ψ iff there are s0, s1 such that s = s0 · s1 with s0 |= φ and s1 |= ψ .

The problem is that if we do this in the many-many setting a conjunction is never
strictly grounded in the conjuncts. This, one might think, is a serious problem for the
proposed semantics.

To my mind this is a problem with the State-Space Semantics in general, and not
just the particular application to many-many ground. For consider that there is no
way of making it the case that φ,ψ < φ ∧ ψ holds as a matter of logic even in the
many-one case. The problem is that logic cannot know that ψ as a matter of fact is
not identical to φ, and so there is no way of getting φ,ψ < φ ∧ ψ logically valid.

31A proof is given in Proposition 6.
32This is the clause used in [14].
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One could reply33 that the problem appears worse in the many-many case: in the
many-one case a conjunction is at least sometimes strictly grounded in the conjuncts.
I am inclined to think that the opposite is true. There is a natural conception of ground
on which a conjunction is always (strictly, immediately) grounded in the conjuncts;
and there is a natural conception of ground on which a conjunction is never strictly
grounded in the conjuncts. The less natural conception is the one where a conjunction
only sometimes is grounded in its conjuncts.

Above (Section 2.3) I mentioned that one could think of grounding in terms
of explanatory arguments. If one thinks of grounding in this way it is natural to
take conjunction-introduction to result in explanatory arguments: any argument of
the form φ ψ

φ∧ψ
is explanatory. On this conception every true conjunction will be

grounded in its conjuncts.
We should admit that PLMMG does not capture this notion. What it captures,

rather, is the notion informally characterized at the beginning of this paper: γ0, γ1, . . .
weakly fully ground δ0, δ1, . . . when for any ways f0, f1, . . . of making γ0, γ1, . . .
the case there are ways g0, g1, . . . of making δ0, δ1, . . . the case such that the way
the world is when all of f0, f1, . . . obtain is the same way the world is when all
of g0, g1, . . . obtain. Let us—to distinguish it from the conception of grounding as
explanation—call this notion middleground. (The reason for the name will become
clear shortly.)

One may say that on the conception of grounding as explanation grounding turns
on the packaging and not on the content of the package. That φ,ψ together strictly
ground φ∧ψ is just a matter of φ∧ψ’s being conjunctively packaged. What is inside
the truths φ,ψ is irrelevant to their grounding φ ∧ ψ ; in particular, it is irrelevant
whether the truth φ in fact is identical to the truth ψ .

Middleground, on the other hand, is all about content. Whether Γ grounds Δ turns
on the ultimate ways of making Γ and Δ the case; how those ways are packaged is
irrelevant. On this conception it is not surprising that conjunctions never are middle-
grounded in their conjuncts. The content of a conjunction is the same as the content
of the conjuncts (taken together).

5.2 Middleground and Squeezing

It is important to see that we do not have to consider the impure logic of ground
in order to see that PLMMG fails to capture a conception of grounding as explana-
tion. PLMMG validates principles that are at odds with a conception of grounding as
explanation. Consider, e.g., the strict version of Squeezing:

Γ < Δ Γ < Δ, �, �

Γ < Δ, �
Strict Squeezing

On the interpretation of grounding in terms of explanatory arguments what this rule
tells us is that if there is an explanatory argument from Γ to Δ and also one from Γ
to Δ, �, �, then there is an explanatory argument from Γ to Δ, �. But why should
this be? What guarantees that there is an explanatory argument from Γ to Δ, �?34

In fact, there are, plausibly, counterexamples to Strict Squeezing on a conception of
grounding as explanation.

33As an anonymous reviewer did.
34There is a related worry for Undercut.
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Suppose that the truths are exhaustively divided into three layers: the Low, the
Middle, and the High. Suppose that there is an explanatory argument from the low
truths taken together to the middle truths taken together. Suppose that there is an
explanatory argument from the middle truths taken together to the high truths taken
together. (And so, by Composition of explanatory arguments, there is an explana-
tory argument from the low truths taken together to the high truths taken together.)
Crucially, however, distribution fails. For a given middle truth there need be no
explanatory argument from some low truths to it. (And similarly for the high truths.)
Consider now a collection, called it Mixed, of truths consisting of all the middle
truths together with some (but not all) high truths. Squeezing ensures that Mixed is
grounded in the low truths. But there does not seem to be any reason to think that
there is an explanatory argument from the low truths to the truths in Mixed. If this
scenario is possible we have a counterexample to Squeezing for the conception of
grounding as explanation.35,36

What is the connection between the notion of grounding as explanation and mid-
dleground? Since no mathematically precise model theory or proof-theory for a
conception of grounding as explanation has yet appeared in print—at least for the
many-many setting37—what follows is perforce speculative. With that caveat in mind
it is natural to conjecture that the connection is as follows. (The truth of the conjecture
would justify the name “middleground”.)38

(Middleground) γ0, γ1, . . .middleground δ0, δ1, . . . iff for any ultimate grounds
f0, f1, . . . for γ0, γ1, . . . there is an explanatory argument from f0, f1, . . . to

35Thanks to Kit Fine and Shamik Dasgupta for discussion on this point.
36One might think that there was a simpler problem with PLMMG. The following inference—call it (RRW)
for restricted right weakening—is valid in PLMMG:

(RRW)
Γ < Δ

Γ < Γ,Δ

An instance of (RRW) is the following. Suppose it is raining. Then the truth that it is raining grounds
the truth that is raining or snowing. (RRW) then ensures that the truths (plural), (it is raining or snowing,
it is raining) are grounded in the truth that it is raining. We can put this in question and answer form: “It is
raining or snowing. It is raining. Why? It is raining” Is this a good, non-circular explanation?
It is not obvious to me that this case is problematic—even on a conception of grounding as explanation.

First, the same phenomenon arises in the many-one impure case. The conjunctive truth ((It is raining or
snowing) ∧ it is raining) is grounded in the truth that it is raining. That does not seem objectionably
circular. Second, part of the oddness one feels with a case like this might be because one has not wholly
shed one’s commitment to distribution. In saying that the truths (it is raining or snowing, it is raining)
together are grounded in the truth that it is raining, one is not committed to the truths taken on their own
being grounded in the truth that it is raining. These considerations are hardly decisive; maybe (RRW)
should be rejected on a conception of grounding as explanation. I do take the considerations to show
that (RRW) is not obviously problematic on a conception of grounding as explanation. Thanks to an
anonymous reviewer for making me realize that this case needs discussion.
37The graph-theoretic approaches of deRosset [11] and Litland [19] and the “structural equations”
approach of Schaffer [23] can arguably be adopted to give us such a semantics for the many-one case. I
hope to return to these issues elsewhere.
38For the purposes of this conjecture assume that every truth is ultimately grounded in some ungrounded
truths. It is possible to rephrase the conjecture to allow the case where we have infinitely descending chains
of ground.
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some Δ0 ⊆ {δ0, δ1, . . .} and also an explanatory argument to some Δ1 ⊇
{δ0, δ1, . . .}.

(As the reader no doubt has noticed (Middleground) is formulated to ensure that
Squeezing comes out valid.)

5.3 Is this Really Many-Many Ground?

Finally, one could object that PLMMG is not a true logic of many-many ground. Let
�Δ be a truth that has as its verifiers exactly the fusions of the verifiers for the Δ.
Then one might hold that what we have presented as a many-many sequent Γ ≤ Δ

is an eccentric notation for the many-one sequent Γ ≤ �Δ. Far from being a logic of
many-many ground PLMMG is an impure logic of ground in misleading notation.39

Indeed, given that we require that every frame F = 〈F,�, V 〉 is such that V is
closed under �̄ there will always be truths like �Δ. In other words, the principle of
(Unity) holds:40

(Unity) For all φ0, φ1, . . . there is a ψ such that (φ0, φ1, . . .) ≤ ψ and ψ ≤
(φ0, φ1, . . .).

How should we respond to this objection?
First, it is possible is to drop the requirement that V always be closed under �̄;

then (Unity) would no longer be valid.41 While one could respond to the objection
in this way, it is preferable not to do so. The worry is not just that one by doing
this would complicate the formulation of the logic; what is worrying is that we by
making this move would make PLMMG’s status as a logic of many-many ground
contingent on (Unity)’s failing. (Unity) is an interesting hypothesis; moreover, it is
one a defender of many-many ground might well be disposed to accept.42

Secondly, while the above point about (Unity) does not explain what is wrong
with the objection it does show that the objection proves too much. If (Unity) is true
then any semantics of many-many ground can be recharacterized as a semantics for

39I am grateful to an anonymous reviewer for raising this objection.
40Since we do not have quantification into sentence position, (Unity) is not properly expressed in this
form. But using the proof-theoretic framework developed in Section 7 we can express (Unity) in the form
of a rule:

p≤Δ
1

Δ≤p
2

E
α
α
1, 2, Unity

here p is a sentence that does not occur in Δ and does not occur in other undischarged premisses of the
argument E .
41As noted in foonote 26 this can be done by complicating the semantics and proof-theory for PLMMG.
42Somewhat picturesquely one can say that (Unity) expresses a sort of “local monism”: whenever we
have some truths φ0, φ1, . . . we can always consider these truths “as one”—as “facets” of the truth
�{φ0, φ1, . . .}.
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an impure logic of many-one ground along the lines of the objection. We should not
rule out irreducible many-many grounding so easily.

Thirdly, we have explained what it means for many-many sequents γ0, γ1, . . . ≤
δ0, δ1, . . . to be true. (Any ways f0, f1, . . . of making γ0, γ1, . . . true are such that
there are ways g0, g1, . . . of making δ0, δ1, . . . true such that �(f0, f1, . . .) =
�(g0, g1, . . .).) It is true—since we demand that V be closed under fusion—that a
sequent Γ ≤ Δ is true in a model M iff Γ ≤ �Δ is also true in M ; but this just
shows that two different types of sequents always agree in truth-value. It does not
show that sequents of the form Γ ≤ Δ really are sequents of the form Γ ≤ �Δ.

Fourthly, it is not straightforward to develop an impure logic for sequents of the
form Γ ≤ �Δ without invoking the resources of many-many ground. The problem
is that the interpretation of �Δ has to be specified “from without”: there is no way
of expressing, in the language of the logic of many-one ground, that �Δ has as its
verifiers exactly the fusions of the verifiers of Δ.43 In the many-many setting, on the
other hand, one can easily write down a sequent ensuring that �Δ has as its verifiers
exactly the fusions of verifiers of Δ: the one-many sequent �Δ ≤ Δ will do. Far
from (Unity) posing a threat to the many-many logic of ground, a many-many logic
of ground provides the ideological resources that allow interesting principles like
(Unity) to be stated.

This concludes the more informal part of the paper.

6 Model Theory: Second Pass

To prove soundness and completeness we extend our languages and work with a
somewhat unusual consequence relation and proof theory. By doing this we are able
to give a uniform treatment of PLG and PLMMG and greatly simplify the completeness
proof for PLG.

6.1 The Language of PLG

We have the sequent signs<, ≤, �, ≺ and ��. Let P be an infinite collection of proper
atoms {p}γ , γ < κ for some cardinal κ . We also have a collection A of auxiliary
atoms of cardinality at least κ+, with P ∩ A = ∅. We use boldface for the auxiliary
atoms, writing p, q, . . . (possibly with subscripts) for the auxiliary atoms. (Here κ+
is the successor cardinal of κ .) We use φ,ψ as meta-linguistic variables ranging over
both proper and auxiliary atoms. We use Γ, Δ, �, � to range over sets of atoms. In

43To see this we use the following fact about PLG. (Unless the reader is already familiar with PLG and
the canonical model construction, return to this footnote after having read Section 10.) Observe that if
{Δ ≤ �Δ}∪S is a consistent set of sequents in the language of PLG, then T = {Δ ≤ �Δ}∪{p ≤ �Δ}∪S,
where p is a fresh sentence letter, is also a consistent set of sequents. (Since “�” is not part of the language
of PLG think of �Δ as a distinguished atomic sentence.) But the canonical model for T contains a verifier
for �Δ that is not a fusion of verifiers of Δ.
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what follows, we often take sets to be written in list-form: so if Γ is the set of the φi ,
we can write φ0, φ1, . . . for Γ .

If Γ is any set of atoms such that at most κ-many auxiliary atoms occur in Γ and
φ,ψ are any (proper or auxiliary) atoms, then Γ ≤ φ, Γ ≤ φ, φ � ψ , φ ≺ ψ and
φ �� ψ are sequents.

We use Γ0 � Δ0, Γ1 � Δ1, . . . to range over arbitrary sequents. We use
S0, S1, . . . , T0, T1, . . . to range over sets of sequents. (We only consider sets of
sequents S such that there are κ+-many auxiliary atoms not occurring in S.)

Remark 2 In the proof theory for PLG and PLMMG there is an “elimination” rule
for weak partial grounding claims. The idea is to mimic an elimination rule for the
regular existential quantifier. If we know that ∃xφ(x) then we can “let” a witness
this, concluding φ(a). We can do this if a is an individual constant we have assumed
nothing about, that is, that has not been used previously. The elimination rules for �
allows us to conclude Γ, p ≤ φ from Γ � φ as long as p is an auxiliary atom that
has not been used before.

6.2 The Language of PLMMG

Just as in PLG we have the sequent signs<, ≤, �, ≺, �� for strict full, weak full, weak
partial, strict partial ground, and not weak partial ground. We take as given an infinite
collection P = {pγ }γ<κ of proper atoms, which, again, may be of any cardinality κ .
The most convenient way of developing the proof-theory of PLMMG requires the set-
theoretic assumption that there is a proper class of strongly inaccessible cardinals. If
there are κ-many proper atoms letA be a set of auxiliary atoms of cardinality λwhere
λ is the first strongly inaccessible cardinal larger than κ . We assume that P ∩A = ∅.

In addition to this we introduce a set D of determinates. D is also of cardinality
λ. We have D ∩ P = ∅ and D ∩ A = ∅. If 〈F,�, V 〉 is a frame the idea is that
the determinates are to be interpreted as singletons {f }, with f ∈ F : they can only
obtain in one way—hence the name. We use a, b, c . . . to range over determinates.44

Whenever Γ, Δ are sets of atoms (proper or auxiliary) and determinates of cardi-
nality γ < λ then Γ < Δ, Γ ≤ Δ, Γ � Δ, Γ ≺ Δ and Γ �� Δ are sequents. If
Γ, Δ contain only proper atoms, we call them proper sequents. We use S, T ,U, . . . ,

possibly with subscripts, for sets of sequents. We may write S; T for S ∪ T .

Remark 3 In PLG we only have as many partial sequents as there are atoms; we
therefore only need κ+-many auxiliary atoms. In PLMMG on the other hand, there are
2κ -many partial sequents when there are κ-many proper atoms. So we have to have at

44It is possible to dispense with a separate category of determinates. Using higher-order rules one can
characterize what it is for an atom to be verifiable in only one way. Since doing this would make the
formalism more unwieldy we opt for using a syntactically separate category of determinates.
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least (2κ) auxiliary atoms. The reasons for demanding inaccessibly many auxiliary
atoms and determinates will become clear as we proceed with the completeness
proof.

6.3 Semantics for PLG and PLMMG

Let L be the language of many-one or many-many ground. A model for L is a tuple
M = 〈F,�, V , [ ]〉 such that
(i) {f } ∈ V , for each f ∈ F .
(ii) If λ is the number of determinates in L then V is closed under fusions of size

< λ.

Here [ ] is a function from the set of proper atoms into V . Auxiliary atoms and
determinates are dealt with separately.

Definition 7 Let M = 〈F,�, V , [ ]〉 be a model. An M -assignment is a func-
tion σ from the set of auxiliary atoms and determinates into V such that if a is a
determinate σ(a) ∈ {{f } : f ∈ F }. Let S be a collection of sequents and let σ, τ be
M -assignments. We say that σ ≈S τ if σ and τ only differ on what they assign to
auxiliaries and determinates not occurring in S.

In what follows we use γ0, γ1, . . . for both proper atoms, auxiliaries, and determi-
nates. If γ is an auxiliary or determinate we write [γ ]σ for the value assigned to γ

under the assignment σ . If γ is not a determinate then [γ ]σ is [γ ]. If F = 〈F,�, V 〉
is a frame then we define ≤F for PLG and PLMMG exactly as in Definitions 1 and 4.

Let M = 〈F,�, V , [ ]〉 be a model. We define truth relative to a model and an
assignment.

Definition 8 (Definition of Truth for PLG)

(i) M , σ |= γ0, γ1, . . . ≤ δ iff
[γ0]σ , [γ1]σ , . . . ≤F [δ]σ

(ii) M , σ |= γ � δ iff [γ ]σ �F [δ]σ .
(iii) M , σ |= γ �� δ iff [γ ]σ ��F δσ

(iv) M , σ |= γ0, γ1, . . . < δ iff [γ0]σ , [γ1]σ , . . . <F [δ]σ
(v) M , σ |= γ ≺ δ iff [γ ]σ ≺F [δ]σ .

Definition 9 (Definition of Truth for PLMMG)

(i) M , σ |= γ0, γ1, . . . ≤ δ0, δ1, . . . iff
[γ0]σ , [γ1]σ , . . . ≤F [δ0]σ , [δ1]σ , . . .

(ii) M , σ |= γ0, γ1, . . . � δ0, δ1, . . . iff [γ0]σ , [γ1]σ , . . . �F [δ0]σ , [δ1]σ , . . .

(iii) M , σ |= γ0, γ1, . . . �� δ0, δ1, . . . iff [γ0]σ , [γ1]σ , . . . ��F [δ0]σ , [δ1]σ , . . .

(iv) M , σ |= γ0, γ1, . . . < δ0, δ1, . . . iff [γ0]σ , [γ1]σ , . . . <F [δ0]σ , [δ1]σ , . . .

(v) M , σ |= γ0, γ1, . . . ≺ δ0, δ1, . . . iff [γ0]σ , [γ1]σ , . . . ≺F [δ0]σ , [δ1]σ , . . .

We will tacitly invoke the following proposition throughout.
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Proposition 1 Let M be a model and τ be an M -assignment. If a sequent Γ � Δ

is true in M with respect to τ , then Γ � Δ is also true in M with respect to any τ ′,
where τ ′ ≈Γ �Δ τ .

The definition of the consequence relation is the same for PLG and PLMMG. We
define a consequence relation |= holding between a set of sequents S and another set
of sequents S0 where S0 is read conjunctively.

Definition 10 Let S be a collection of sequents and S0 a collection of sequents.
We say that S0 is a consequence of S (S |= S0) iff for all models M and all M -
assignments σ , if M , σ |= S then there is an M -assignment τ such that σ ≈S τ and
M , τ |= S0. If S is empty we have the following special case: |= S0 iff for all M
there is an M -assignment σ such that M , σ |= S0.

Remark 4 It is this treatment of consequence that allows us to imitate ∀∃-
quantification over facts. For consider two sets of sequents S and S0. S |= S0 if for
any model M and any assignment σ of values to the auxiliaries and determinates in
S such that M, σ |= S there exists some σ ′ that differs from σ only in what it assigns
to auxiliaries and determinates not in S such that M , σ ′ |= S0. In the case where S

and S0 do not contain any determinates we get the standard account of consequence.

This definition has the following consequence. It is possible for S |= T0 and
S |= T1 and yet for S �|= T0, T1. There is nothing surprising about this: the same phe-
nomenon arises in systems that have a rule of existential instantiation. One can, e.g.,
infer Fc from ∃xFx, ∃x¬Fx (where c is a fresh constant); one can also infer ¬Fc

from ∃xFx, ∃x¬Fx. But one had better not be able to infer Fc, ¬Fc together from
∃xFx, ∃x¬Fx.

However, if a certain condition is satisfied S |= T1; T2 does follow from S |= T1
and S |= T2. For the completeness proofs we need a general version of this condition.

Definition 11 Let {〈Rα, Sα, Tα〉 : α < λ} be a well-ordered set of triples of sequents.
{〈Rα, Sα, Tα〉 : α < λ} satisfies the Collection Condition iff:
(i) for all α,

⋃
β<α Rα ⊆ ⋃

β<α Tα;
(ii) for all determinates a and all α: if a occurs in Tα but not Sα then

(a) if β �= α then a does not occur in Sβ ; and
(b) if a occurs in Tβ then either α < β and a occurs in

⋃
β ′<β Rβ ′ or β < α

and a occurs in
⋃

α′<α Rα′ or

Proposition 2 Suppose that for each α < λ we have Sα,
⋃

β<α Rβ |= Tα . Sup-
pose that {〈Rα, Sα, Tα〉}α<λ satisfies the Collection Condition. Then

⋃
α<λ Sα |=⋃

α<λ Tα .

Proof Let M , σ be such that M , σ |= Sα for each α < λ. Let S = ⋃
α<λ Sα . For

each α, let T̂α = ⋃
β<α Tβ and let R̂α = ⋃

β<α Rβ . We construct a sequence of
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assignments σ = τ0, τ1, . . . , τγ , . . . such that M , τγ |= ⋃
β<γ Tβ and such that for

all α < γ < λ we have τα ≈S;T̂α
τγ .

The case where α = 1 is immediate. Since {Rα : α < 0} = ∅, S0 |= T0. Since
{〈Rα, Sα, Tα〉}α<λ satisfies the Collection Condition the following is the case. If α �=
0, then no determinate a occurring in Sα occurs in T0 unless a also occurs in S0. It
follows that there is τ such that τ ≈S σ and M , τ |= T0. Let τ1 be any such τ .

Next, let α be a successor ordinal β + 1. Let τβ be the previously constructed
assignment. Then M , τβ |= ⋃

β ′<β Tβ ′ . Since
⋃

β ′<β Rβ ′ ⊆ ⋃
β ′<β Tβ ′ we also have

that M , τβ |= Sβ,
⋃

β ′<β Rβ ′ . By assumption Sβ,
⋃

β ′<β Rβ ′ |= Tβ . Let ρ ≈Sβ ;R̂β

τβ be such that M , ρ |= Tβ . We define τβ+1 as follows:

τβ+1(a) =
⎧
⎨

⎩

σ(a) if a is in S

τβ(a) if a is in
⋃

β ′<β Tβ ′
ρ(a) otherwise

Clearly τβ+1 ≈S;T̂β
τβ . Since {〈Rα, Sα, Tα〉 : α < λ} satisfies the Collection

Condition it follows that M , τβ+1 |= Tβ , which is what we have to show.
Finally, let α be a limit ordinal γ . We define an assignment τγ as follows.

τγ (a)=
{
σ(a) if a is a determinate that does not occur in any

⋃
β ′<βTβ ′for anyβ<γ

τβ(a) if a is a determinate that occurs in
⋃

β ′<β Tβ ′ , for some β < γ

This is well defined since the induction hypothesis ensures that if β0 < β1 < γ , then
τβ0 ≈S;T̂β0

τβ1 . It then follows by Proposition 1 that M , τγ |= ⋃
β<γ Tβ .

If each Rα = ∅ we often say that {〈Sα, Tα〉 : α < λ} satisfies the Collec-
tion Condition when we mean that {〈Rα, Sα, Tα〉 : α < λ} satisfies the Collection
Condition.

We have the following special cases.

Corollary 1 If for each i ∈ I , S |= Ti and all determinates in Ti occur in S, then
S |= ⋃

i∈I Ti .

Corollary 2 If {〈Sα, Tα〉}α<λ satisfies the Collection condition and S0, S1, . . . �|=
T0, T1, . . . there is some α such that Sα �|= Tα . In particular, if S0, S1, . . . and
T0, T1, . . . do not contain any determinates then if S0, S1, . . . �|= T0, T1, . . . then there
is an α such that Sα �|= Tα .

7 Proof Theory

The proof-systems for PLG and PLMMG are hypersequent calculi of a distinctive sort.
What is distinctive is, first, that we always derive sets of sequents; second, that we
read the sets of sequents conjunctively.

Since it is more familiar we begin by giving a new formalization of PLG.
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Fig. 5 The rules of PLG

7.1 PLG Reformalized

The rules of PLG are displayed in Fig. 5. A proof in PLG is a converse well-founded
tree.45 The nodes of the trees are labeled with sets of sequents. If S is a set of sequents
and Γ � Δ is a sequent we write S; Γ � Δ for the set of sequents S ∪ {Γ � Δ}.
The sets of sequents are to be read conjunctively. The transition between nodes is in
accordance with the rules in Fig. 5. We use D, E , F , . . ., possibly with subscripts,
as variables ranging over proofs.

We take the trees to be equipped with discharge functions. This is understood
as follows. An occurrence of a sequent is a sequent occurring in a set of sequents
labeling a node. In the rules that discharge sequents, we allow discharge of sequent-
occurrences where not all the sequents labeling a node are discharged.

Some features of the formalization have to be explained.

45An alternative formulation is possible. We could treat arguments as labeled directed hypergraphs. In that
case the rules of Collection and Thinning would not be required.
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“⊥” as it occurs in these rules is not a logical constant. An inference rule written
Γ �Δ

⊥ rather indicates that any set of sequents can be inferred from Γ � Δ.46 For the
�-E rule we have to impose a condition similar to the eigenvariable conditions on
the familiar ∀-I and ∃-E rules. We call this the eigenformula condition. To be precise:
In a proof ending with an application of �-E like

E
S ; φ�ψ

S ; φ,p≤ψ
� -E

we demand that p is an auxiliary atom that does not occur in φ � ψ or S and that
does not occur in the undischarged top-sequents of the proof E .

As noted in Section 6.3 above we cannot conclude that T0; T1 is a consequence of
S0; S1 even if T0 is a consequence of S0 and T1 a consequence of S1. We therefore
have to put a restriction on any rules that allow us to “collect together” proofs of
S0, S1, S2, . . . into a proof of S0; S1; S2; . . .. For convenience the only rule that allows
us to collect together different arguments is the rule of Collection; in all the other
rules the premiss set labels a single node.

To illustrate this, observe that the following is not an acceptable application of Cut:

Γ ≤ φ φ ≤ ψ

Γ ≤ ψ

The two premiss sequents Γ ≤ φ and φ ≤ ψ decorate distinct nodes. To be able to
apply Cut we first have to apply Collection, as follows:

Γ ≤ φ φ ≤ ψ
Collection

Γ ≤ φ ; φ ≤ ψ

Γ ≤ φ
Cut

While in the the case of PLG one can avoid these complications, for PLMMG

proceeding in this way greatly simplifies the soundness and completeness proofs.
As a further illustration of how Collection works, let us show how we can derive

the rule of Reverse Subsumption in this system. In the following derivation we
assume that we only deal with proper sequents; this licenses the application of
Collection.

. . . φi ≺ φ . . . ≺-E
. . . φi � φ; φ �� φi . . .

Thinning
φ0, φ1, . . . ≤ φ . . . φ �� φi . . .

Collection
φ0, φ1, . . . ≤ φ; . . . φ �� φi

φ0, φ1, . . . < φ
< -I

Since most of the PLMMG-derivations we give carry easily over to their analogues in
PLG we refrain from carrying out any further derivations in PLG.

The reader is encouraged to verify that the other rules of Fine’s formalization of
PLG are derivable from the rules in Fig. 5.

46This is just as it is in Fine’s formalization of PLG.
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Fig. 6 The Pure Logic of Many-Many Ground

7.2 Proof Theory for PLMMG

The rules of PLMMG are depicted in Fig. 6. While most of the rules are quite similar
to the rules of PLG some of the rules require explanation.

Recall that we use a, b, c, . . . (with subscripts) for determinates. We will use Γ ≈
Δ as a meta-linguistic shorthand for Γ ≤ Δ; Δ ≤ Γ . So when we write

E
Γ ≈Δ this

means that E is a proof ending in Γ ≤ Δ; Δ ≤ Γ .
An eigenformulae condition is imposed in the following rules: �-E, Determiniza-

tion, ≤-I and ≤-E. The �-E case is as for PLG except that we require that p be an
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auxiliary atom, and not a determinate. If we know that a is a determinate we know
that it cannot serve as an arbitrary proposition—a proposition that can obtain in only
one way is hardly arbitrary.

The Determinization rule tells us, in proof theoretic form, that every proposi-
tion is weakly fully grounded by a determinate—i.e., by a proposition that has as
its verification set the singleton of a fact. If we have concluded some sequents S

and those sequents contain some {γi}i∈I , then we get to assume that there are some
determinates {ai}i∈I such that ai ≤ γi for each i ∈ I .

Determinacy expresses that determinates can only obtain in one way: if some fact
weakly fully grounds a determinate then the determinate weakly fully grounds that
fact.

The ≤-I rule is to be read as follows. Let A be a set of determinates such that
S; A ≤ (γ0, γ1, . . .). Suppose there are some determinates {bi}i∈I . . . such that the
set of sequents T ; {bi ≤ δi : i ∈ I }; A ≈ b0, b1, . . . ≈ c can be derived from S; A ≤
γ0, γ1, . . . by means of a proof E . We demand that in this proof the determinates A do
not occur in the undischarged assumptions S. (The A represent “arbitrary” verifiers
for γ0, γ1, . . ..) In that case we can conclude S; γ0, γ1, . . . ≤ δ0, δ1, . . . discharging
the assumptions A ≤ γ0, γ1 . . ..

≤-I captures proof-theoretically the right-to-left direction of the semantic clause
for ≤ as a special case. For suppose that the determinates a0, a1, . . . are such that
a0 ≤ γ0, a1 ≤ γ1, . . .. Then a0, a1, . . . ≤ γ0, γ1, . . .. If we then can find determinates
b0, b1, . . . , c such that b0 ≤ δ0, b1 ≤ δ1, . . . and such that a0, a1, . . . ≈ b0, b1, . . . ≈
c we can conclude γ0, γ1, . . . ≤ δ0, δ1, . . ..

The left-to-right direction of the semantic clause for ≤ is captured by the ≤-
E rule. The idea is the following. Suppose A is a set of determinates such that
S; (γ0, γ1, . . . ≤ δ0, δ1, . . .); A ≤ γ0, γ1, . . . is the conclusion of an argument E .
Now let b0, b1, . . . , c be any determinates not occurring in E . Then we can conclude
the set of sequents

S; b0 ≤ δ0; b1 ≤ δ1; . . . ; A ≈ b0, b1, . . . ≈ c

If A = {a0, a1, . . .} and f0, f1, . . . are the verifiers that interpret a0, a1, . . . then
since A ≤ γ0, γ1, . . . is the case �(f0, f1, . . .) ∈ [γ0, γ1, . . .]. Since γ0, γ1, . . . ≤
δ0, δ1, . . . is the case there has to be some verifiers g0, g1, . . . for δ0, δ1, . . . such
that f0, f1, . . . fuse to the same verifier as does g0, g1, . . .. Since we have made no
prior assumptions about the determinates b0, b1, . . . , c we can interpret b0, b1, . . . as
g0, g1, . . . and c as �(g0, g1, . . .). It is in order to state this rule that the proof system
allows us to draw many conclusions simultaneously.

Remark 5 An important consequence of the ≤-E rule is that if a ≤ γ0, γ1, . . . then a

can be “apportioned out” into verifiers for γ0, γ1, . . ..

a≤γ0,γ1,... Identity
a≤γ0,γ1,... ; {γ0,γ1,...}≤{γ0,γ1,...}

a≤γ0,γ1,... ; b0≤γ0;b1≤γ1 ; ...a≈b0,b1,...≈c
≤ − E
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In this way the ≤-E rule ensures that any verifier f for a collection Γ = {γ0, γ1, . . .}
is a fusion of verifiers f0, f1, . . . for γ0, γ1, . . . respectively. (Cf. the discussion in
Section 5.3 above.)

Because of the presence of auxiliaries and determinates we have to take some care
when defining the provability relation.

Definition 12 If S and T are collections of sequents we say that T is provable from
S in PLMMG (PLG) iff there is a proof E in PLMMG (PLG) such that the undischarged
nodes of E are labeled with exactly the sequents in S and the conclusion of E is
labeled with T . We write �PLMMG (�PLG) for provability in PLMMG (PLG).

7.3 Derived Rules in PLMMG

Before we go on to establish soundness and completeness, it is instructive to see that
we can establish analogues of the principles of Fine’s PLG. In this section � means
provability in PLMMG. For readability we present most of the proofs so that a single
sequent labels a node of a proof tree.

Proposition 3

(i) Γ < Δ � Γ ≤ Δ (Subsumption(< / ≤))
(ii) Γ ≺ Δ � Γ � Δ (Subsumption(≺ / �))
(iii) Γ < Δ � Γ ≺ Δ (Subsumption(< / ≺))
(iv) Δ0, Δ1 � Γ � Δ0 � Γ (Subsumption(� / �))
(v) Δ0, Δ1 ≺ Γ � Δ0 ≺ Γ (Subsumption(≺ / ≺))

Proposition 4

(i) (Γ � Δ), (Δ, Δ0 � �) � Γ, Δ0 � � (Transitivity(� / �))
(ii) (Γ � Δ), (Δ ≺ �) � Γ ≺ � (Transitivity(� / ≺))
(iii) (Γ ≺ Δ), (Δ � �) � Γ ≺ � (Transitivity(≺ / �))

Proposition 5

(i) (Δ ≺ Δ) � ⊥
(ii) (Δ0 ≤ Γ0), (Δ1 ≤ Γ1), . . . � Δ0, Δ1, . . . ≤ Γ0, Γ1, . . . (Amalgamation)
(iii) (Δ0 ≤ �1), (Δ1 ≤ �1), . . . , (�0, �1, . . . , � < Γ ) � Δ0, Δ1, . . . , � < Γ

(Cut(≤ / <))
(iv) (Δ ≤ Γ0, Γ1, . . .), Δ ≺ Γi � Δ < Γ0, Γ1, . . .. (Restricted Reverse

Subsumption)

Proof The derivations are all straightforward, but since this type of calculus is
unfamiliar we go through some important cases.

The following establishes Subsumption(� / �).
Δ0, Δ1 � Γ �-E

Δ0, Δ1, p ≤ Γ

Δ0 � Γ
�-I
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The following establishes Subsumption(≺ / ≺).

Γ0,Γ1≺Δ ; Δ�Γ0
1 ≺-E

Δ��Γ0,Γ1 ; Δ�Γ0 �-E

Δ��Γ0,Γ1 ; Δ,p≤Γ0 Identity

Δ��Γ0,Γ1 ; Δ,p≤Γ0 ; Γ0,Γ1≤Γ0,Γ1 Cut

Δ��Γ0,Γ1 ; Δ,p,Γ1≤Γ0,Γ1 �-I

Δ��Γ0,Γ1 ; Δ�Γ0,Γ1 ��-E

� ��� 1, ��-I

Γ0,Γ1≺Δ ; Δ��Γ0 ≺-E

Γ0,Γ1�Δ ; Δ��Γ0 Subsumption(�/�)

Γ0�Δ ; Δ��Γ0
Γ0≺Δ

≺-I

The following establishes Transitivity(�/�).

Γ � Δ ; Δ � � � -E

Γ,p ≤ Δ ; Δ � � � -E

Γ,p ≤ Δ ; Δ,q ≤ �
Identity

Γ,p ≤ Δ ; q ≤ q ; Δ,q ≤ �
Cut

Γ,p, q ≤ �

Γ � �
� -I

The following derivation establishes Transitivity(≺/�).

Γ ≺ Δ, ; Δ � � ; � � Γ
1

≺ -E

Δ �� Γ ; Δ � � ; � � Γ
Transitivity(�/�)

Δ �� Γ ; Δ � Γ �� -E
� �� � �� -I

Γ ≺ Δ ; Δ � � ; � �� Γ ≺ -E

Γ � Δ ; Δ � � ; � �� Γ
Transitivity(�/�)

Γ � � ; � �� Γ

Γ ≺ �
≺ -I
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The following establishes Restricted Reverse Subsumption:

Δ≤Γ0,Γ1,... ; Δ≺Γi ; Γ0,Γ1,...�Δ
1

Subsumption(�/�)

Δ≤Γ0,Γ1,... ; Δ≺Γi ; Γi�Δ ≺ -E

Δ≤Γ0,Γ1,... ; Γ ��Δ ; Γi�Δ Non-Circularity

���� 1, ��-I

Δ≤Γ0,Γ1,... ; Γ0,Γ1,...��Δ

Δ<Γ0,Γ1,...
< -I

Whereas the previous results were analogues of principles of PLG the next results
are distinctive of PLMMG.

Proposition 6

(i) Γ �� Δ � Γ, Γ ′ �� Δ (��-weakening)
(ii) (Γ � Δ), (Γ, �0, �1 ≺ �1, Δ) � (Γ ≺ Δ) (Partial Cancellation)
(iii) (Γ ≤ Δ), (Γ, �0, �1 ≺ �1, Δ) � Γ < Δ (Full Cancellation)
(iv) (Γ ≤ Δ0, Δ1), (Δ1 ≤ �) � Γ ≤ Δ0, � (Right Cut)
(v) (Γ < Δ0, Δ1), (Δ1 ≤ �) � Γ < Δ0, � (Strict Right Cut)
(vi) (Γ ≈ Δ, �), Δ ≈ Δ0 � Γ ≈ Δ0, � (Substitution)
(vii) Γ ≤ Δ, � � Γ ≤ Γ, � (Undercut)
(viii) (Γ ≤ Δ), (Γ ≤ Δ, �, �) � Γ ≤ Δ, � (Squeezing)
(ix) (Γ < Δ), (Γ ≤ Δ, �, �) � Γ < Δ, � (Strict Squeezing)

Proof In the following proofs we will tacitly use Cut in the form Γ ≤Δ Δ,�≤�
Γ,�≤�

.
The following establishes ��-weakening for PLMMG.

Γ ��Δ ; Γ,Γ ′�Δ
1

Subsumption(�/�)
Γ ��Δ ; Γ �Δ ��-E

� ��� 1, ��-I
Γ ��Δ ; Γ,Γ ′ ��Δ

Γ,Γ ′ ��Δ
Thinning

To establish Partial Cancellation it suffices to show that (Γ, �0, �1) ≺ (�1, Δ) �
Δ �� Γ .

Γ,�0,�1≺�1,Δ ; Δ�Γ
1 � -E

Δ,�1 ���1,�0,Γ ; Δ�Γ � -E
Δ,�1 ���1,�0,Γ ; Δ,p≤Γ Identity
Δ,�1 ���1,�0,Γ ; Δ,p≤Γ ; Γ,�0,�1≤�1,�0,Γ Cut
Δ,�1 ���1,�0,Γ ; Δ,p,�0,�1≤�1,�0,Γ � -I
Δ,�1 ���1,�0,Γ ; Δ,�1��1,�0,Γ �� -I

���� �� -I
Γ,�0,�1≺�1,Δ ; Δ��Γ

Δ��Γ
Thinning
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Right Cut follows from Regular Cut as follows.

Γ ≤Δ0,Δ1 ; Δ1≤� Identity
Γ ≤Δ0,Δ1 ; Δ1≤� ; Δ0,�≤Δ0,� Cut
Γ ≤Δ0,Δ1 ; Δ0,Δ1≤Δ0,�

Γ ≤Δ0,�
Cut

Strict Right Cut follows from Right Cut by Transitivity(≺/�) and Restricted Reverse
Subsumption.

The following establishes Substitution.

Γ ≈Δ,� ; Δ≈Δ0 Definition of ≈
Right Cut Γ ≤Δ,� ; Δ≤Δ0 ; Δ0≤Δ ; Δ,�≤Γ

Γ ≤Δ0,� ; Δ0≤Δ ; Δ,�≤Γ Cut
Γ ≤Δ0,� ; Δ0,�≤Γ

Γ ≈Δ0,�
Definition of ≈

The following establishes Undercut. First we observe that ai ≈ ai, ck can be derived
from ai ≈ bj , ck . The following proof, call it E, witnesses this.

Substitution
ai≈bj ,ck ; (bj ,ck)≈(bj ,ck,ck) ; bj ,ck≈ai

ai≈bj ,ck,ck ; bj ,ck≈ai

ai≈ai ,ck
Substitution

Call this rule Substitution∗.
Next, suppose that Γ is γ0, γ1, . . .; Δ is δ0, δ1, . . .; and � is φ0, φ1, . . .. At this

point we exploit being able to draw multiple conclusions simultaneously.

γi≤δj ,φk ; ai≤γi
i ≤ -E

ai≤γi ; (ai≈bj ,ck) ; (bj ≤δj ) ; (ck≤φk) Substitution∗
ai≤γi ; (ai≈ai ,ck) ; (bj ≤δj ) ; (ck≤φk) Thinning
ai≤γi ; (ai≈ai ,ck) ; (ck≤φk)

γi≤γi ,φk
i, ≤-I

Note here how we use the fact that we can conclude both a0, a1, . . . ≈ b0, b1, . . .,
c0, c1, . . . and ck ≤ φk from γ0, γ1, . . . ≤ δ0, δ1, . . . , φ0, φ1, . . ..

Squeezing is established as follows:

Γ ≤ Δ ; Γ ≤ Δ, �, �
Undercut

Γ ≤ Δ ; Γ ≤ Γ,�

Γ ≤ Δ, �
Right Cut

Strict Squeezing follows from Squeezing by Restricted Reverse Subsumption.

8 Soundness

Theorem 1 The rules in Fig. 5 are sound with respect to the semantics for PLG.

Theorem 2 The rules in Fig. 6 are sound with respect to the semantics for PLMMG.

We only prove soundness for PLMMG. The proof for PLG is virtually identical.
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Proof The proof is by induction on the depth of the derivations.
Identity and Thinning. Obvious.
Collection. This follows from Proposition 2.
Cut(≤). Let M , σ be such that Si; (Δi ≤ �i); (�0, �1, . . . ≤ Γ ) is true in M

w.r.t. σ . Say that Δi = δi
0, δ

i
1, . . .. Now let f i

0 , f
i
1 , . . . be such that f i

0 ∈ [δi
0]σ ,

f i
1 ∈ [δi

1]σ , . . .. Let R be
⋃

i Si ∪ {Δ0, Δ1, . . . �0, �1, . . . , Γ }. We have to show
that �(

⋃
i,j f i

j ) ∈ [Γ ]τ , for some τ ≈R σ . We know that �
⋃

j {f i
j } ∈ [�i]σ for

each i. But then �(
⋃

i{�
⋃

j {f i
j }}) ∈ [Γ ]σ ], and so �(

⋃
i,j {f i

j } ∈ [Γ ]σ by the
associativity of �. So we may take τ to be σ .

Determinization Let E be a proof of S from some sequents T . And let {γi}i∈I be
some atoms (or determinates) that occur in S. LetM be a model and σ an assignment
such that M , σ |= T . Then by the induction hypothesis M , σ ′ |= S for some σ ′ ≈T

σ . Under σ ′ the {γi}i∈I are interpreted as certain closed sets of facts in FM . For each
i pick an fi ∈ [γi]. Then let σ ′′ be like σ ′ except that it interprets the {ai}i∈I as
the {fi}i∈I . Clearly, M , σ ′′ |= ⋃

i∈I ai ≤ γi . Since the ai satisfy the eigenformulae
condition σ ′′ ≈T σ . This establishes the result

Determinacy Suppose that M , σ |= a ≤ b. Then σ interprets a and b as the same
f ∈ F . It follows that M , σ |= b ≤ a.

≤-I Suppose that we have a proof E of the set of sequents T ; (b0, b1, . . . ≈ A ≈
c); b0 ≤ δ0; b1 ≤ δ1; . . . from S and the assumptions A ≤ γ0, γ1, . . .. Suppose fur-
ther that in E the set of determinates A satisfies the eigenformula condition. Let
M be a model of S w.r.t. to σ . Let f0, f1, . . . be any verifiers of [γ0]σ , [γ1]σ , . . ..
Since the singleton of any fact is in V and no determinate in A occurs in S (they
are eigenformulae) there is an assignment σ ′ such that σ ′ ≈S σ and σ ′ assigns
�(f0, f1, . . .) to each determinate in A. Then M , σ ′ |= S; (A ≤ γ0, γ1, . . .). By the
induction hypothesis there is some τ such that τ ≈S;(A≤γ0,γ1,...) σ ′ and M , τ |=
T ; (bi ≤ δi); (A ≈ b0, b1, . . . ≈ c). Hence τ assigns verifiers g0, g1, . . . to b0, b1, . . .

such that �(f0, f1, . . .) = �(g0, g1, . . .). Since the fi and σ were arbitrary this
establishes that S |= T ; (γ0, γ1, . . . ≤ δ0, δ1, . . .).

≤-E Suppose we have an application of ≤-E as follows.

E
S;(γ0,γ1,...≤δ0,δ1,...);A≤γ0,γ1,...

S;A≤γ0,γ1,...;(bj ≤δj );(A≈b0,b1,...≈c)
≤ -E

Let M , σ be such that M , σ |= S; (γ0, γ1, . . . ≤ δ0, δ1, . . .); A ≤ (γ0, γ1, . . .).
Let D be the set of verifiers assigned to A by σ . Since M , σ |= A ≤ (γ0, γ1, . . .)

there are some verifiers f0, f1, . . . such that σ assigns f0 to γ0, f1 to γ1 and so on
such that �(D) = �(f0, f1, . . .). Since M , σ |= (γ0, γ1, . . .) ≤ (δ0, δ1, . . .) it fol-
lows that there are verifiers g0 ∈ [δ0]σ , g1 ∈ [δ1]σ , . . . such that �(f0, f1, . . .) =
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�(g0, g1, . . .). Since the b0, b1, . . . are fresh determinates we can define an assign-
ment τ as follows.

τ(d) =
⎧
⎨

⎩

σ(d) if d is not one of the determinates b0, b1, . . .

gi if d is the determinate bi ∈ {b0, b1, . . .}
�(g0, g1, . . .) if d is the determinate c

It is then clear that M , τ |= bi ≤ δi for each i and also that M , τ |= (a0, a1, . . . ≈
b0, b1, . . . ≈ c). Since τ ≈S;A σ we also have M , τ |= S; A ≤ γ0, γ1, . . .. Since σ

was arbitrary this establishes the result.

�-I Obvious since we demand that V is closed under fusions of size less than < λ.

�-E Let M , σ |= S; (Γ � Δ). Let V ∈ VM be such that [Γ ]σ , V ≤M [Δ]σ . Let
τ be exactly like σ except that τ assigns V to p. Since p satisfies the eigenformula
condition we have σ ≈S;Γ �Δ τ and M , τ |= S; (Γ,p ≤ Δ). This establishes the
result.

��-I Suppose that � �� � is a consequence of (Γ � Δ); S. Let M , σ |= S. Then
M , σ |= S; Γ �� Δ, since otherwise M , σ |= � �� �, which is impossible.

��-E Obvious.

<-I Obvious.

<-E Suppose M , σ is such that S; (Γ < Δ) is true in M w.r.t. σ . By the definition
of <M , [Γ ]σ ≤ [Δ]σ and [Δ]σ �� [Γ ]σ are both true in M , w.r.t. σ . The result is
immediate.

≺-I Obvious.

≺-E Suppose S; (Γ ≺Δ) is true in M w.r.t. σ . By the definition of ≺M , Γ �Δ and
Δ �� Γ are also true in M , w.r.t. σ . The result is immediate.

9 Witnessing and Other Extensions

In this section we establish certain proof-theoretic results that are required for the
completeness proof.

Definition 13 Let S be a set of sequents in the language of PLG (PLMMG). S is
consistent if there is no derivation from S of a sequent of the form p �� p (� �� �) in
PLG (PLMMG).

The idea behind the completeness proofs is to build canonical models from cer-
tain consistent collections of sequents. For the construction to work the collections
of sequents have to be appropriately witnessed: any partial grounding sequent has to
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have its truth witnessed by a full grounding sequent. For PLG a significant benefit
of the present proof theory is how easy it is to show that we can find a witnessed
conservative extension; for PLMMG I have been unable to find a more standard for-
malization. It would obviously be of interest to find a more standard formulation for
PLMMG.

In the following results we use the notation Γ � Δ for sequents of PLG and
PLMMG. In the case of PLG we make the following two demands.

(i) Δ has to have cardinality 1.
(ii) If � is one of the partial sequent signs �, ≺, �� then Γ , too, has cardinality 1.

Definition 14 Let S be a collection of sequents. S is witnessed iff for every partial
sequent Γ � Δ ∈ S there is a full sequent Γ, � ≤ Δ in S.

For S a collection of sequents let S+ be defined as follows. First, for each strict
partial sequent Γ ≺Δ in S, add the weak partial sequent Γ �Δ. In this way we obtain
the collection of sequents S0. We then introduce new atoms fi, i ∈ I . For each weak
partial sequent Γ � Δ in S0 add a full sequent Γ, fΓ �Δ ≤ Δ subject to the constraint
that if Γ � Δ is not identical to Γ ′ � Δ′, then fΓ �Δ �= fΓ ′ ��Δ′ . We call such f

witnessing constants.
For the remainder of this section � means provability in either PLG or PLMMG.

�PLG means provability in PLG and �PLMMG means provability in PLMMG.

Proposition 7

(i) Let {Γi � Δi : i ∈ I } be some proper weak partial grounding sequents. Let
{pi : i ∈ I } be pairwise distinct auxiliary atoms none of which occur in any of
the Γi � Δi . Then {Γi � Δi : i ∈ I } � {Γi, pi ≤ Δi : i ∈ I }.

(ii) Let {Γi ≺ Δi : i ∈ I } be some proper strict partial grounding sequents. Then
{Γi ≺ Δi : i ∈ I } � {Γi � Δi : i ∈ I } ∪ {Δi �� Γi : i ∈ I }.

Proof Let a well-ordering of I be given. The following proof establishes the first
claim:

Γ0�Δ0 � -E Γ1�Δ1 ... � -E Γy�Δy ... � -E
Γ0,p0≤Δ0 Γ1,p1≤Δ1 ... Γy ,py≤Δy ...

Γ0,p0≤Δ0 ; Γ1,p1≤Δ1 ; Γγ ,pγ ≤Δγ ...
Collection

The second claim is established in the same way.

Proposition 8 Suppose S+ � U where U does not contain any witnessing constants.
Then S � U .

Proof Suppose S+ � U and let E be a proof witnessing this. Since the witness-
ing constants associated with distinct partial sequents are distinct and S; U does not
contain any of the witnessing constants, a witnessing constant fΓ�Δ only occurs
undischarged in a top premiss of E if it occurs in Γ, fΓ�Δ ≤ Δ.
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Let F be the set of witnessing constants fΓi�Δi
that occur in E . Let G ⊆ F be

those witnessing constants of the form fΓ �Δ where Γ � Δ is in S0 \ S. We write
gΓ �Δ for g ∈ G. E may be taken to have the following form.

S ; (Γ0, fΓ0�Δ0 ≤ Δ0) ; (Γ1, fΓ1�Δ1 ≤ Δ1) . . . ; (�0, g�0��0 ≤ �0) ; (�1, g�1��1 ≤ �1) . . .
E
U

We can replace distinct witnessing constants in E with fresh distinct auxiliary
atoms. Write fi for fΓi�Δi

; and similarly for g�j ��j
. Abusing notation, write

fi, gj , . . . for the auxiliary atoms that replace the witnessing constants fi, gj , . . ..
Note that since the witnessing constants for distinct weak partial grounding claims
were pairwise distinct and fail to occur in either S (or U for that matter), the fi and
gj satisfy the eigenformula condition for �-E. The following proof then establishes
that S � U . (The rules labeled (�-E, Collection) and (≺-E, Collection) are justified
by Proposition 7.)

S ; Γi � Δi ; �j ≺ �j ≺ -E, Collection

S ; Γi � Δi ; �j � �j

S ; Γi, fi ≤ Δi ; �j, gj ≤ �j

≺ -E, Collection

E
U

Proposition 9 Let S be a set of proper sequents and let φ,ψ contain no determinates
or auxiliaries.

(i) Suppose S �PLG φ �� ψ . Then S ∪ {φ � ψ} is consistent in PLG.
(ii) Suppose that S �PLG φ �ψ , but S �PLG φ ≺ψ . Then S ∪ {ψ �φ} is consistent

in PLG.
(iii) Suppose that S �PLG φ0, φ1, . . . ≤ φ, but that S �PLG φ0, φ1, . . . < φ. Then

there is an i such that S ∪ {φ � φi} is consistent in PLG.

Proof For the first claim, suppose otherwise. There is then a proof E witnessing that
S ∪ {φ � ψ} is inconsistent. The following proof then shows that S �PLG φ �� ψ .

S ; φ � ψ
1

E
σ �� σ

1, ��-I

S ; φ �� ψ

φ �� ψ
Thinning

For the second claim, if S∪{ψ�φ} is inconsistent then it follows by the first claim
that S �PLG ψ ��φ. So if S �PLG φ �ψ , Collection gives us S �PLG (ψ ��φ); (φ �ψ)

and so S �PLG φ ≺ ψ follows by ≺-I. Contradiction.
For the final claim, suppose that S �PLG φ0, φ1, . . .≤φ. Suppose that S ∪{φ� φi}

is inconsistent for each i. Then S �PLG φi �� φ for each i, by the first claim. But then
S �PLG (φ0, φ1, . . .≤φ); . . . ; φi ��φ; . . . by Collection and so S �PLG φ0, φ1, . . .<φ

follows by <-I in PLG.
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Remark 6 It is significantly harder to establish these results using Fine’s formulation
of PLG. It is also notable that we can liberalize the syntax of PLG to allow partial
sequents of the form Δ � φ and Δ ≺ φ, where Δ is a set of arbitrary cardinality.
The above proofs will still go through. It is not obvious that this can be done using
Fine’s techniques. This might be of some significance since it is somewhat artificial
to restrict the partial grounding claims to those having a single sentence on the left:
if φ,ψ, θ are truths, φ,ψ together partially ground the conjunction φ ∧ ψ ∧ θ .

Proposition 10 Let S be a collection of proper sequents and let Γ, Δ be sets that
contain no determinates or auxiliaries.

(i) Suppose S �PLMMG Γ �� Δ; then S ∪ {Γ � Δ} is consistent.
(ii) Suppose that S �PLMMG Γ � Δ, but that S �PLMMG Γ ≺ Δ. Then S ∪ {Δ � Γ }

is consistent.
(iii) Suppose that S �PLMMG Γ ≤ Δ, but that S �PLMMG Γ < Δ. Then S ∪ {Δ � Γ }

is consistent.

Proof Suppose that S∪{Γ �Δ} is inconsistent; let E witness this. Then the following
proof witnesses that S �PLMMG Γ �� Δ.

S ; Γ � Δ
1

E
� �� �

1, ��-I

S ; Γ �� Δ

Γ �� Δ
Thinning

The two other cases follow straightforwardly from this case as in the proof of
Proposition 9.

Remark 7 Note that in the third case—unlike in the case of PLG—we cannot con-
clude that there is some γ ∈ Γ such that S ∪ {Δ � γ } is consistent. We are only
entitled to conclude that S ∪ {Δ � Γ } is consistent.

The following result on Collection is useful. (It corresponds to Corollary 1 above.)

Proposition 11 If S � Ti , for each i ∈ I and for all i all the determinates in Ti

occur in S, then S � ⋃
i∈I Ti

Proof For each i, let Ei be a proof of Ti from S. Fix a well-ordering of I . The
following proof then establishes that S � ⋃

i∈I Ti .

S S S . . .

E0 E1 E2 . . .

T0 T1 T2 . . .
⋃

iεI Ti

Collection

This application of Collection is acceptable because any determinates in Ti occur
in S.
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10 Completeness of PLG

We prove completeness for PLG exactly as in [15] but it might be useful to recall this
simpler case before tackling the more involved many-many case. The reader who is
familiar with that proof should feel free to skip ahead to Section 11.

Let S be a collection of sequents. We define the canonical model MS =
〈F,�, V , [ ]〉 as follows:
– F = {E : E is a subset of the atoms}
– �(X) = ⋃

X

– V = {⋃ X : X ⊆ V0} where V0 = {{Δ : S � Δ ≤ φ} for some φ}
– [φ] = {Δ : S � Δ ≤ φ}

It is easy to verify that MS is a generalized model. (We define V in this way
because we demand that the collection of closed sets is closed under taking fusions.)

Lemma 1 Let φ0, φ1, . . . ≤ φ be a weak full sequent. S � φ0, φ1, . . . ≤ φ iff MS |=
φ0, φ1, . . . ≤ φ.

Proof Suppose first that S � φ0, φ1, . . . ≤ φ. Let Δ0 ∈ [φ0], Δ1 ∈ [φ1], . . .. Then
we have that S � Δi ≤ φi for each i, and since we have S � φ0, φ1, . . . ≤ φ, we have
S � Δ0, Δ1, . . . ≤ φ by Cut. But then �(Δi) = Δ0 ∪ Δ1 ∪ · · · ∈ [φ], which is what
we have to show.

Conversely, suppose that S � φ0, φ1, . . .≤φ. Then by Identity we have {φi} ∈ [φi]
for each i. Hence [φ0]∪[φ1] . . . = {φ0, φ1, . . .} /∈ [φ], which shows that φ0, φ1, . . .≤
φ is not true in MS .

Lemma 2 Let S be a consistent set of sentences, and let S+ be the witnessed
extension. Then every sequent Δ � φ ∈ S is true in the canonical model MS+ .

Proof Δ�φ is Δ≤φ. Then the result follows by Lemma 1 since Δ≤φ is derivable
from S.

Δ � φ is Δ < φ. By the previous, Δ ≤ φ is true in MS+ . We have to show
that for no ψ ∈ Δ do we have φ � ψ true in MS+ . Suppose otherwise. Then we
have [�], [φ] ≤MS+ [ψ], for some � = {θ0, θ1, . . .}. Then since {θi} ∈ [θi] for
i = 0, 1, 2, . . . and {φ} ∈ [φ], we have that {φ, θ0, θ1, . . .} ∈ [ψ]. But then S+ �
φ, θ0, θ1, . . . ≤ ψ , and so S+ � φ � ψ . Since S+ � Δ < φ, S+ � ψ ≺ φ. Hence S+
is inconsistent. By Proposition 8, S is also inconsistent.

Suppose that Δ � φ is ψ � φ. Then S+ � ψ, f ≤ φ. (Here f = fψ�φ .) And so,
by Lemma 1, MS+ |= ψ, f ≤ φ. Hence ψ � φ is also true in MS+ .

Suppose that Δ � φ is ψ �� φ. Suppose, for reductio, that ψ � φ is true in MS+ .
Then we have [ψ], [�] ≤MS+ [φ], for some set of sentences � = {θ0, θ1, . . .}. But
then {ψ, θ0, θ1, . . .} ∈ [φ], and so we have S+ � ψ, � ≤ φ, and so S+ � ψ � φ. But
then S+ is inconsistent. Contradiction.

If Γ � φ is ψ ≺ φ, the result follows from the two above cases.
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Lemma 3 Suppose that the sequent Γ �φ is not derivable from S within PLG. Then
there is a consistent extension S0 of S and a witnessed extension S+

0 of S0 such that
Γ � φ is not true in the canonical model MS+

0
.

Proof If Γ �φ is weak full, this follows from Lemma 1, by taking S+
0 to be S+. (By

Proposition 8, S+ is conservative over S.)
If Γ � φ is weak partial ψ � φ, let S0 be S. Suppose, for contradiction, that there

is � such that [�], [ψ] ≤MS+ [φ]. Then it follows by Lemma 1 that S+ � �, ψ ≤ φ

and hence that S+ � ψ �φ. But it follows from Proposition 8 that S+ is conservative
over S, and so S � ψ � φ. Contradiction.

If Γ � φ is strict full Γ < φ there are two cases. Suppose first that S � Γ ≤ φ.
Then we are done by the first case. So suppose that S � Γ ≤ φ. Then we know by
Proposition 9 that φ � ψ is consistent for some ψ ∈ Γ . Let S0 be S ∪ {φ � ψ}. Then
by Lemma 2 we have that φ � ψ is true in MS+

0
. Hence Γ < φ is not true in MS+

0
.

Γ � φ is ψ ≺ φ. If S � ψ � φ, we are done by the case for �. If S � ψ � φ

it follows by Proposition 9 that S ∪ {φ � ψ} is consistent. Take this to be S0. Then
φ � ψ is true in MS+

0
by Lemma 2, and hence ψ ≺ φ is not true in MS+

0
.

Γ �φ isψ ��φ. Then it follows by Proposition 9 that S∪{ψ�φ} is consistent. Take
this to be S0. Then ψ � φ is true in MS+

0
, and hence ψ �� φ is not true in MS+

0
.

From this completeness trivially follows.

Theorem 3 (Completeness of PLG) If Γ � φ is not derivable from S then Γ � φ is
not a consequence of S.

Proof By Lemma 3, Γ �φ is not true in the canonical modelMS+ of some witnessed
extension of S+

0 of some extension S0 of S. By Lemma 2, every � � ψ ∈ S is true
in MS+

0
. Hence Γ � φ is not a consequence of S.

11 Completeness of PLMMG

Theorem 4 Let S and T be collections of sequents in the language of PLMMG such
that no determinates occur in S or T . Then if S |= T then S � T .

Remark 8 The proof of Theorem 4 is significantly more involved than the proof
of Theorem 3. Before we embark on the completeness proof it is worth getting
clear on why this is. The difficulty is that a set of sequents {Γ ≤ (δ0, δ1, . . .) : S �
Γ ≤ (δ0, δ1, . . .)} seems not to provide us with enough information to allow us to
assign interpretations to the δi . The problem is that for (γ0, γ1, . . .) ≤ (δ0, δ1, . . .)

to be true is for it to be the case that whenever we have some verifiers f0, f1, . . .

for γ0, γ1, . . . then �(f0, f1, . . .) can be “apportioned” out into verifiers g0, g1, . . .

for δ0, δ1, . . .. If we tried to imitate the construction for PLG we would get into
a position where we know that f0, f1, . . . are verifiers for γ0, γ1, . . . and that
�(f0, f1, . . .) ∈ �̄([δ0], [δ1] . . .). But in order to construct a model where the
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sequent (γ0, γ1, . . .) ≤ (δ0, δ1, . . .) was true we would need to find verifiers g0 ∈
[δ0], g1 ∈ [δ1], . . . such that �(g0, g1, . . .) = �(f0, f1, . . .).

It is at this point that determinates come into play. For the ≤-E rule allows us
to assume that we have found a way of apportioning the fusion of some verifiers
for γ0, γ1, . . . into verifiers g0, g1, . . . for δ0, δ1, . . .. This allows us to carry out
what is essentially a Henkin construction. Whenever we have a weak grounding
claim p0, p1, . . . ≤ q0, q1, . . . and we think that the determinates A weakly ground
p0, p1, . . . we throw in some fresh determinates b0, b1, . . . representing verifiers for
q0, q1, . . . together with the assumption that the determinates A fuse to the same fact
as b0, b1, . . ..

We need the following piece of notation. If B is a set of determinates we write
B≤d {δ0, δ0, . . .} to mean that B = {b0, b1, . . .} and that we have b0≤δ0, b1≤δ1, . . ..
More generally, we write B ≤d Δ to mean that there is some I such that B = {bi}i∈I ,
Δ = {δi}i∈I and bi ≤ δi , for each i ∈ I .

This notation allows us to write instances of the ≤-E rule more economically as
follows:

S;Γ ≤Δ;A≤Γ

S;A≤Γ ;B≤dΔ;A≈B≈c
≤ -E

Definition 15 A diagram is a set of sequents D such that:

(i) D is witnessed;
(ii) if p is an atom occurring in a sequent in D then there is some determinate a

such that the sequent a ≤ p occurs in D;
(iii) if a weak full sequent γ0, γ1, . . . ≤ δ0, δ1, . . . is in D, then for all sets of deter-

minates A such that A≤{γ0, γ1, . . .} ∈ D there is a set of determinates B such
that B ≤d {δ0, δ1, . . .} ⊆ D and such that A ≈ B ≈ c ⊆ D.

The key part of the completeness proof is showing how we can conservatively
extend a consistent set of sequents to a diagram.

Let S be a consistent set of sequents. Without loss of generality assume that S is
witnessed. If S � T and S is not witnessed we can always extend S to witnessed S+
with S+

� T . We now show how to conservatively extend S to a diagram.
Let κ be the number of proper atoms that occur in S. Let λ be the least

strongly inaccessible cardinal larger than κ . Let a collection of fresh determinates
c0, c1, . . . , cα, . . ., α < λ be given. Let L + be the language that results from adding
the determinates c0, c1, . . . to the proper atoms in S. Recall from Section 6.2 that if
Γ, Δ are two sets of atoms and determinates of cardinality < λ, then Γ � Δ is a
sequent of L +, where � is any of the sequent signs <, ≤, �, ≺, ��.

For each atom p ∈ L such that S � σ for some sequent σ in which p occurs, we
add a sequent cp

0 ≤ p. We make sure that if p �= q, then c
p

0 �= c
q

0 . We make sure that
we have λ-many determinates left over. Call the resulting collection of sequents S0.

Next enumerate the weak full sequents of L + as Γ 0 ≤ Δ0, Γ 1 ≤ Δ1, . . . , Γ α ≤
Δα, . . ., α < λ in such a way that each weak full sequent occurs λ-many times.
(Since λ is strongly inaccessible and each sequent only contains β < λ many atoms
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and determinates there are only λ-many sequents.) We now define a sequence of sets
of sequents S ⊆ S0 ⊆ S1 ⊆ . . . , Sβ, . . ., β ≤ λ by transfinite recursion.

Let Sβ be defined for each β < γ . Say that the γ -th weak full sequent is Γ γ ≤Δγ .
If not all the determinates occurring in Γ γ ≤ Δγ occur in

⋃
β<γ Sβ just put Sγ =⋃

β<γ Sβ . If all the determinates in Γ γ ≤ Δγ do occur in
⋃

β<γ Sβ but
⋃

β<γ Sβ �

Γ γ ≤ Δγ put Sγ = ⋃
β<γ Sβ; Dγ ≤d Γ γ , where Dγ is a set of pairwise distinct

fresh determinates.
Finally, if all the determinates in Γ γ ≤ Δγ occur in

⋃
β<γ Sβ and

⋃
β<γ Sβ �

Γ γ ≤ Δγ , we proceed as follows. For all sets of determinates A
γ

k , k ∈ Kγ such
that A

γ

k ⊆ ⋃
β<γ Sβ and

⋃
β<γ Sβ � A

γ

k ≤ Γ γ pick a set of pairwise distinct fresh

determinates B
γ

k and a fresh determinate c
γ

k . Then add the sequents B
γ

k ≤d Δγ and
A

γ

k ≈ B
γ

k ≈ c
γ

k . We choose the B
γ

k such that if A
γ

k �= A
γ

l then B
γ

k ∩B
γ

l = ∅. Finally,
let Dγ be some pairwise distinct fresh determinates. Add the sequents Dγ ≤d Γ γ .
We can do this in such a way that we have λ-many fresh determinates left over.

Let Sλ = ⋃
β<λ Sβ . Let DS = Sλ. We call DS the canonical diagram over S.

Proposition 12 Suppose that S is witnessed. Then DS is also witnessed.

Proof Immediate from the fact that we only add full sequents.

The canonical diagram over S has the following important feature.

Proposition 13 For all β0 < β ≤ λ, we have Sβ0 � Sβ . In particular, S � DS .

Proof We prove the following slightly stronger claim by induction on β ≤ λ: for all
β0 ≤ β we have

⋃
β1<β0

Sβ1 � Sβ . Assume that the result holds for all β < α. For

each β0 ≤ β < α let E <β0
β witness that

⋃
β1<β0

Sβ1 � Sβ .
There are three cases. If not all the determinates in Γ α ≤ Δα occur in

⋃
β<α then

Sα = ⋃
β<α Sβ . Let β < α be given. It suffices to show that Sβ � Sα . The following

argument, call it E β
<α , establishes this:

Sβ
Sβ+1 . . .

1 ⋃
γ0<γ Sγ0 ...

γ

E
<β+1
β+1 E

<β+2
β+2 E

<γ
γ

Sβ+1 Sβ+2 . . . Sγ . . .

⋃
β<α Sβ

γ < α, Collection

In the case where all the determinates in Γ α ≤ Δα are in
⋃

β<α Sβ but
⋃

β<α Sβ �

Γ α ≤Δα , Sα = ⋃
β<α Sβ ∪Dα ≤d Γ α , where Dα are determinates that do not occur

in
⋃

β<α Sβ . The following proof then establishes that Sβ � Sα .

E
β
<α⋃

β<α Sβ

Dα≤Γ α ; ⋃
β<α Sβ

Determinization
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The interesting case is when all the determinates in Γ α ≤ Δα are in
⋃

β<α Sβ and
⋃

β<α Sβ � Γ α ≤Δα . In that case we reason as follows. Let {Ak}k∈Kα enumerate the

sets of determinates occurring in
⋃

β<α Sβ such that
⋃

β<α Sβ � Ak ≤ Γ α . It then
follows by Proposition 11 that

⋃

β<α

Sβ �
⋃

β<α

Sβ ;
⋃

k∈Kα

{Ak ≤ Γ α} ; Γ α ≤ Δα

Let D be an argument witnessing this.
For each k0 ∈ Kα the following is then a proof witnessing that Sβ �⋃
β<α Sβ ; ⋃

k∈Kα {Ak≤Γ α} ; Γ α≤Δα ; Bk0≤dΔα ; Ak0 ≈ Bk0 ≈
ck0 .

Sβ

E
β
<α⋃

β<α Sβ

D
⋃

β<α Sβ ; ⋃
k∈Kα {Ak≤Γ α} ; Γ α≤Δα

⋃
β<α Sβ ; ⋃

k∈Kα {Ak≤Γ α} ; Γ α≤Δα ; Bk0≤dΔα ; Ak0≈Bk0≈ck0
≤ -E

Call this proof Fk0

Since Bk ∩ Bk′ = ∅ and ck �= ck′
as long as k �= k′ it follows that we can apply

Collection and Determinization to combine the proofs Fk0 , k0 ∈ Kα into a proof E
β
α

witnessing that

Sβ �
⋃

β<α

Sβ;
⋃

k∈Kα

{Ak≤Γ α};Γ α≤Δα;
⋃

k∈Kα

{Bk≤dΔα};
⋃

k∈Kα

{Ak ≈ Bk ≈ck}; Dα≤Γ α

Since

Sα =
⋃

β<α

Sβ;
⋃

k∈Kα

{Ak≤Γ α};Γ α≤Δα;
⋃

k∈Kα

{Bk≤dΔα};
⋃

k∈Kα

{Ak ≈ Bk ≈ ck};Dα≤Γ α

this establishes the result.

We define a relation ≈ on sets of determinates as follows.

Definition 16 Let A, B be two sets of determinates in the language L +. A ≈ B iff

(i) A = ⋃
β<λ Aβ , B = ⋃

β<λ Bβ ;
(ii) the cardinality of each Aβ is less than λ (and similarly for Bβ );
(iii) {Aβ}β<λ is closed under unions of less than λ-many sets. (Similarly for

{Bβ}β<λ.)
(iv) D � Aβ ≈ Bβ for each β < λ.

Proposition 14 ≈ is an equivalence relation.

Proof That ≈ is reflexive and symmetric is obvious. To see that it is transitive sup-
pose that A ≈ B and B ≈ C. Let {Aβ}β<λ and {Bβ}β<λ witness that A ≈ B and let
{B ′

β}β<λ and {Cβ}β<λ witness that B ≈ C.
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Let C ∈ {Cβ}β<λ be given. Call it Cβ0 . We can find B ′
β0

such that D � B ′
β0

≈ Cβ .
Then, since {Bβ}β<λ is closed under < λ-unions we can find Bα0 such that B ′

β0
⊆

Bα0 . D � Bα0 ≈ Aα0 . Similarly, we can find B ′
β1

⊇ Bα0 . In this way we build up the
following diagram (here ↪→ represents the subset relation):

⋃
i<ω Bαi

= ⋃
i<ω B ′

βi
. Since D � ⋃

i<ω Aαi
≈ ⋃

i<ω Bαi
and D � ⋃

i<ω B ′
βi

≈
⋃

i<ω Cβi
it follows that D � ⋃

i<ω Aαi
≈ ⋃

i<ω Cβi
. Both

⋃
i<ω Aαi

and
⋃

i<ω Cβi

have cardinality less than λ.
Since we can do this for each C ∈ {Cβ}β<λ we can find {A′

β}β<λ and {C′
β}β<λ

such that D � A′
β ≈ C′

β , for each β < λ. (We may have to close under < λ-sized
unions.) This shows that ≈ is an equivalence relation on the sets of determinates in
L +.

If A is a set of determinates in L + let [A] be the equivalence class of A under ≈.
We define an operation �D on equivalence classes of sets of determinates as

follows.

�D({[A]i}i∈I ) = [
⋃

i∈I

Ai]

To show that this is well-defined let Bi ≈ Ai , for each i ∈ I . We have to show that⋃
i∈I Bi ≈ ⋃

i∈I Ai . For each i, let Ai = ⋃
j∈Ji

Ai
j and Bi = ⋃

j∈Ji
Bi

j be coverings

of Ai, Bi into λ-many pieces of cardinality less than λ such that D � Ai
j ≈ Bi

j , for
each i and j ∈ Ji .

Since
⋃

i∈I Ai has size at most λ,
⋃

i∈I Ai = ⋃
β<λ A′

β , where each A′
β is an Ai

j ,

for some i ∈ I and j ∈ Ji . For each A′
β , let B

′
β be some Bi

j such that D � A′
β ≈ Bi

j .

Similarly,
⋃

i∈I Bi = ⋃
β<λ B ′′

β , where each B ′′
β is some Bi

j . For each β let A′′
β be an

Ai
j such that D � B ′′

β ≈ A′′
β . By closing {A′

β}β<λ ∪{A′′
β}β<λ and {B ′

β}β<λ ∪{B ′′
β}β<λ

under unions of size < λ and ordering them appropriately in ordertype λ, we witness
that

⋃
i∈I Ai ≈ ⋃

i∈I Bi .
For a consistent set of sequents S we now use D = DS to construct a model

MD = 〈FD, �D, VD, [ ]D〉 as follows.
– FD = {[A] : A is a set of determinates in L +}.
– �D is the operation �D defined above.
– [p] is {[a] : a is a determinate in the language of D such that D � a ≤ p}
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VD is defined as follows: V ∈ VD iff there is some Γ in the language of D such that

V = {[c] : D � c ≤ Γ }
In words, the closed sets are the verifiers of some or other collection of propositions.

MD is a state-space model. Clearly, each [p] is non-empty and each [p] ∈ V . We
have to check that VD is closed under fusions of size less than λ. So let {Vα}α<β<λ

be a collection of closed sets from VD . Since Vα ∈ VD , Vα = {[c] : D � c ≤ Γα},
for some Γα . So it suffices to show that �α<β(Vα) = {[c] : D � c ≤ ⋃

α<β Γα}.
The interesting direction is to show that �α<β(Vα) ⊇ {[c] : D � c ≤ ⋃

α<β Γα}. So
suppose D � c≤⋃

α<β Γα . Then Sγ � c≤⋃
α<β Γα , for some γ < λ. (This follows

from Proposition 13.) So by construction of the sets of sequents Sα , there is some
γ0 > γ such that Sγ0 � c ≈ ⋃

α<β Bα; ⋃
α<β(Bα ≤d Γα). Since for each a there

is some ca such that D � Bα ≈ cα , we have D � Bα ≤ Γ cα for each α. And so
[c] = �({cα}α<β) ∈ �({Vα}α<β).

We can now establish the following lemma.

Lemma 4 Let σ be a weak full sequent such that all the determinates and auxiliaries
in σ occur in a Sβ , with β < λ. Then if D � σ then MD |= σ , and if D � σ then
MD �|= σ .

Proof For the former, suppose that Sλ = D � γ0, γ1, . . . ≤ δ0, δ1, . . .. Now let
[a0], [a1], . . . be verifiers for γ0, γ1, . . .. Then there is an Sα such that the deter-
minates a0, a1, . . . all occur in Sα . Since the sequent γ0, γ1, . . . ≤ δ0, δ1, . . . occurs
λ-many times in the enumeration there is a β > α such that the β’th sequent is
γ0, γ1, . . . ≤ δ0, δ1, . . .. We have constructed Sβ+1 so that bj ≤ δj and a0, a1, . . . ≈
b0, b1, . . . ≈ c all occur in Sβ+1 for some fresh determinates b0, b1, . . . and c. But
then �D([b0], [b1], . . .) = �D([a0], [a1], . . .) = [c] as required.

Suppose next that D = Sλ � γ0, γ1, . . . ≤ δ0, δ1 . . .. And suppose that MD |=
γ0, γ1, . . . ≤ δ0, δ1, . . .. Suppose that the determinates in γ0, γ1, . . . ≤ δ0, δ1, . . . all
occur in Sβ . Since each sequent γ0, γ1, . . . ≤ δ0, δ1, . . . occurs λ-many times there is
some γ > β and a set of determinates A such that A ≤ γ0, γ1, . . . is in Sγ and such
that no determinate in A occurs in

⋃
β ′<γ Sβ ′ . Moreover, no other sequents involving

A are in Sγ .
By assumption �D([A]) = �D([b0], [b1], . . .) for some verifiers [b0], [b1], . . .

of δ0, δ1, . . .. There is, then, a least γ0 such that there are representatives b0, b1, . . .

of [b0], [b1], . . . occurring in Sγ0 and such that Sγ0 contains A ≈ b0, b1, . . . ≈ c;
bj ≤ δj .

By Proposition 13 we know that Sγ � Sγ0 ; in particular, then, Sγ � A ≈
b0, b1, . . . ≈ c; bj ≤ δj . Let E be a proof witnessing this. In E , A satisfies the
eigenformula condition. We can therefore use ≤-I as follows.

⋃
β ′<γ Sβ ′

A ≤ γ0, γ1 . . .
0, 1, 2, . . .

E
A ≈ b0, b1, . . . ≈ c; {bj ≤ δj }j∈J
⋃

β ′<γ Sβ ′ ; γ0, γ1, . . . ≤ δ0, δ1, . . .
1, 2, 3, . . .
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This shows that
⋃

β ′<γ Sβ ′ � γ0, γ1, . . . ≤ δ0, δ1, . . .. Since all the determinates and
auxiliaries in γ0, γ1, . . . ≤ δ0, δ1, . . . occur in Sγ and Sγ ⊆ D it follows that D �
γ0, γ1, . . . ≤ δ0, δ1, . . .. Contradiction.

Proposition 15 Let S be a consistent witnessed collection of sequents. If Γ �Δ ∈ S

then Γ � Δ is true in MD .

Proof There are five cases.
Γ � Δ is a full weak grounding claim Γ ≤ Δ. This follows immediately from

Lemma 4.
Γ � Δ is a weak partial grounding claim Γ � Δ. Then since S is witnessed

(Γ, fΓ �Δ ≤ Δ) ∈ S. It follows by Lemma 4 that MD |= Γ, fΓ �Δ ≤ Δ. Hence
MD |= Γ � Δ.

Γ � Δ is Γ �� Δ. Then since S � Γ �� Δ, D � Γ �� Δ. Since D is consistent,
we have D � Γ, � ≤ Δ for all � in the language L +. By Lemma 4 we know
that MD �|= Γ, � ≤ Δ for all � in the language L +. Suppose that V ∈ V is
such that [Γ ], V ≤FD

[Δ]. By the definition of V we know that there is � such that
V = {[c] : D � c ≤ �}.

Say that � = {θ0, θ1, . . .}. And let Γ = {γ0, γ1, . . .} and Δ = {δ0, δ1, . . .}.
Let [a0], [a1], . . . be arbitrary verifiers of θ0, θ1, . . .; and let [b0], [b1], . . . be
arbitrary verifiers for γ0, γ1, . . .. Since �([a0], [a1] . . .) = [c] for some [c] ∈
V , there has to be [d0], [d1], . . . verifiers of δ0, δ1, . . . respectively such that
�([a0], [a1], . . . , [b0], [b1], . . .) = �([d0], [d1], . . .).

But that means that Γ, � ≤ Δ is true in MD and thus by Lemma 4 that D �
Γ, � ≤ Δ and hence that D � Γ � Δ. But then D is inconsistent. Contradiction.

Γ � Δ is Γ < Δ. Then we have D � Γ ≤ Δ, and hence MD |= Γ ≤ Δ by the
first case. We also have D � Δ �� Γ , and hence MD |= Δ �� Γ , by the above result
about ��.

The case where Γ � Δ is Γ ≺ Δ is dealt with similarly.

Lemma 5 Let Γ � Δ be a sequent that contains no determinates or auxiliaries.
Suppose that Γ � Δ is not derivable from S within PLMMG. Then Γ � Δ is not
true in the canonical model MTλ for some witnessed extension T of some consistent
extension S0 of S.

Proof If Γ �Δ is the weak full sequent Γ ≤Δ this follows from Lemma 4, by taking
T to be S.

If Γ � Δ is the weak partial sequent Γ � Δ, then let S0 = S ∪ Γ �� Δ. Then it
follows by Proposition 15 that MSλ |= Γ �� Δ, and so MSλ �|= Γ � Δ.

If Γ � Δ is the sequent Γ �� Δ it follows by Proposition 10 that S ∪ {Γ � Δ}
is consistent. Let this be our S0 and let T be a witnessed extension of S0. Then we
know by Proposition 15 that Γ � Δ is true in MTλ .

If Γ � Δ is the strict full sequent Γ < Δ then either S � Γ ≤ Δ, in which case
the result follows immediately from Lemma 4; or else, by Proposition 10, S ∪ {Δ �
Γ } is consistent. Let this be our S0 and let T be a witnessed extension of S0. By
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Proposition 15 we get that Δ � Γ is true in MTλ , and hence that Γ < Δ is not true in
MTλ .

If Γ � Δ is the sequent Γ ≺ Δ either S � Γ � Δ or else S � Γ � Δ. If the
former the result follows by the case for �. If the latter, we know by Proposition 10
that S ∪ {Δ � Γ } is consistent. Take this to be S0 and let T be a witnessed extension
of S0. Then, by Proposition 15 Δ � Γ is true in MTλ , and hence Γ ≺ Δ is not true in
MTλ .

We can finally prove Theorem 4.

Proof Let S and T be sets of sequents containing no determinates or auxiliaries.
Suppose S � T . It follows that there is some Γ � Δ ∈ T such that S � Γ � Δ.
Otherwise we would get S � T by Collection. But then S �|= Γ � Δ follows from
Lemma 5; S �|= T follows.
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