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Abstract The system GLS, which is a modal sequent calculus system for the prov-
ability logic GL, was introduced by G. Sambin and S. Valentini in Journal of
Philosophical Logic, 11(3), 311–342, (1982), and in 12(4), 471–476, (1983), the sec-
ond author presented a syntactic cut-elimination proof for GLS. In this paper, we
will use regress trees (which are related to search trees) in order to present a sim-
pler and more intuitive syntactic cut derivability proof for GLS1, which is a (more
connectively and inferentially economical) variant of GLS without the cut rule.
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1 Introduction

The modal logic GL (for Gödel and Löb) is the logic obtained when we attach to
classical propositional logic the two modal axioms

A1. �(A → B) → �A → �B

A2. �(�A → A) → �A

and also the inference rule
(Nec) If A then �A.

Historically, GL was created as an attempt to treat the provability predicate in
Peano arithmetic, Pr(�·�), as a modal operator; and thus the theorems of GL were
designed to be provable in Peano arithmetic under any interpretation, ∗, where an
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interpretation of a propositional formula, A, is a sentence in the language of arith-
metic, A∗, such that (atomic sentence)∗ is any sentence (except for ⊥∗ which is
0 = 1), ∗ commutes with boolean connectives and (�A)∗ = Pr(�A∗�).

Thus, for example, the second axiom, A2, was added due to the fact [4] that
Pr(�Pr(�A�) → A�) → Pr(�A�) is always provable in Peano arithmetic for every
sentence A in the language of arithmetic (where �A� is the Gödel number of A).
Similarly for (Nec) and A1.

The importance of GL lies in the fact that if A is not provable in GL then there
exists an interpretation, ∗, such that A∗ is not provable in Peano arithmetic [7] (thus
making GL a provability logic).

In [5], G. Sambin and S. Valentini presented GLS, which (they showed) is a
Gentzen-style sequent calculus system corresponding to GL. In the same paper, they
proved that, given Γ, Δ, sets of formulas, it is possible to decide whether Γ � Δ is
derivable or not in GLS’ (which is basically equivalent to GLS without the cut rule)
by showing that Γ � Δ must have a finite search tree [3].

In this paper, instead of search trees, we will use similar constructs called regress
trees.1 A regress tree is, essentially, an attempt to construct a (legal) proof tree for a
given sequent; thus, when we want to invert the GLR inference rule then, unlike in
search trees, we examine each one of the possible premisses separately—that is, we
examine each one in a separate regress tree.

Do note that, for various reasons, the nodes of a regress tree are not sequents but
are expressions of the form , and are called regressants.2

In this paper, we will use regress trees and a regressant-related induction param-
eter (namely, the height of the regressant’s highest regress tree) in order to present a
(complete) syntactic cut-derivability proof for GLS1. This proof, we believe, is sim-
pler and more intuitive than the one presented in [9] or the ones presented in [1] and
in [6].3

Finally, let us stress that the method of search trees (which can very easily be
adapted to regress trees) has been used to obtain decidability and completeness results
in numerous logic systems (for example, in [3] and [8]); and indeed, it was used in
[5] to show that GL is decidable and complete with respect to finite, transitive and
irreflexive Kripke frames. Thus, unlike the methods utilized in the proofs mentioned
above, this method is more than just an ad-hoc measure used to obtain a simple cut-
derivability result. Moreover, as far as we know, the utilization of regress trees in
order to obtain a syntactic cut-derivability proof is a novel approach, which is likely
to be helpful in other logics as well.

1Stemming from one of the meanings of the word “regress,” which is “The reasoning involved when one
assumes the conclusion is true and reasons backward to the evidence.”
2One reason we use this notation is to avoid confusion with the expression Γ � Δ which sometimes
is a short for “the sequent Γ � Δ is provable,” which might not be true since Γ,Δ can be any sets of
formulas whatsoever. This notation also serves to indicate that the context is of regress trees and not of the
(corresponding) Gentzen proof system.
3See also [2] for a resolution of certain issues concerning the proof in [9].



Cut Elimination for GLS Using the Terminability... 149

2 The Systems GLS1 and RGL

First, a few conventions:
1. The formulas in our language (well formed modal formulas) are constructed

using ⊥, boolean variables, → and �.
2. Upper case Greek letters such as Γ, Δ, Θ will represent sets of formulas.
3. A formula is called prime if it is atomic or boxed.
4. Γ is atomic (prime) if all the formulas in Γ are atomic (prime).

2.1 The System GLS1

(1) Initial sequents: Γ, ⊥� Δ A, Γ � Δ, A A is prime

(2) → -left : Γ � Δ, A B, Γ � Δ

Γ, A → B � Δ

(3) → -right : Γ, A � Δ, B

Γ � Δ, A → B

(4) ⊥ -right : Γ, A � Δ

Γ � Δ, A →⊥
(5) -left : Γ � Δ, A

Γ, A →⊥� Δ

(6) GLR : Γ,�Γ,�A � A

Φ,�Γ � �A, Ψ
(where Φ, Ψ are any sets of formulas)

Note:

1. It is straightforward to prove that rules (2)-(5) are invertible; i.e., if the conclusion
(denominator) is provable in GLS1 then so is the premiss (numerator).

2. The formulas Φ, Ψ in the GLR rule are called, respectively, the weakening and
strengthening formulas of the rule.

3. We can easily prove that weakening and strengthening are derived rules.
4. We do not include a cut rule in our system.
5. Proving cut-derivability for GLS1 is equivalent to proving cut-elimination for

GLS.

2.2 The System RGL

Definition 1 1. For any Γ, Δ, we call the expression of the form a regres-
sant.

2. is a prime regressant if one of the following applies:

a. ⊥ ∈ Γ .
b. There exists a prime formula, A, such that A ∈ Γ ∩ Δ.
c. Γ is prime and Δ is atomic, ⊥ /∈ Γ and Γ ∩ Δ = ∅.

Note that if is a prime regressant, then Γ � Δ is either an initial sequent (cases
a. and b.) or it is obviously not derivable in GLS1 since it is not an initial sequent and
cannot be the conclusion of any of the inference rules of GLS1 (case c.).
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The Rules of Regress:

(1) Primality: is a prime regressant

(2) → -left :

(3) → -right :

(4) ⊥ -right :

(5) ⊥ -left :

(6) GLR: (for all i ∈ {1, . . . , n} and such that Φ, Ψ

are atomic but the denominator is not a prime regressant). We call �Ai the p.f.
(principle formula) of the rule.

Note that these rules are intended to be applied “upwards” from the denominator
to the numerator; thus, for example, we regress using rule (3) in order
to obtain .

Definition 2 A regress tree, T , for a regressant is a (graph theoretical) directed
rooted tree such that:

a). is the root of T .
b). If R, a non-prime regressant, is a node in T then it has either exactly one child,

R1, such that
R1

R
is a regress rule, or it has exactly two children, R1, R2, such

that
R1 R2

R
is a regress rule (namely rule (2)).

c). T has no nodes or edges other than those that are required by the previous items.

Thus, for every Γ, Δ we start from the root and try to regress it (upwards)
until we reach prime regressants, at which point we stop. We call this process the
regress process for GLS1.4

This leads us to the following definition:

Definition 3 For every regressant R, we denote by Mh(R) as the height of R’s
highest regress tree.

The proof in [5] that every search tree in GLS’ is finite can easily be modi-
fied to obtain a similar result for search trees in GLS1 (defined analogously). But,

4For example, if the root is we can use the GLR regress rule to regress it to
or to regress it to (and therefore has at least two

associated regress trees).
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since Mh(R) is obviously equal to the height of R’s search tree in GLS1, we can
immediately deduce that for every regressant R, Mh(R) is finite.

The following corollary is readily seen as true:

Corollary 1 If R, R1 are two regressants such that R1 is a node in one of R’s regress
trees, but not the root, then Mh(R1) < Mh(R).

3 Cut Derivability for GLS1

Note that in this section, we will, at times, forgo writing “Γ � Δ is derivable in
GLS1,” and simply write Γ � Δ. It will be clear from the context when we use this
abbreviation.

Proposition 1 The following two are equivalent for every formula A and any
Γ, Δ, Θ, Ω, Φ, Ψ :
1. If Γ � Δ, A and A, Θ � Ω then Γ, Θ � Δ, Ω (cut derivability).
2. If A → A, Φ � Ψ then Φ � Ψ .

Proof The proof is straightforward and therefore is omitted.

Theorem 1 (Cut-derivability for GLS1) For any regressant and for any
formula A, if A → A, Γ � Δ then Γ � Δ.

Proof By primary induction (P.I.) on the complexity of A and secondary induction
(S.I.) on .

Case 1. A is atomic.

I. is prime. The only non-immediate case is when Γ is prime
and Δ is atomic. By invertibility, we have that Γ � Δ, A and it
must be an initial sequent. Now, if Γ � Δ then we must have that
A ∈ Γ , but since A, Γ � Δ we have that Γ � Δ — contradiction.
So Γ � Δ.

II. is not prime and is the denominator of one of regress rules
(2)–(5). For example, let Δ = Δ′, B → C; now, by invertibility,
A → A, Γ � Δ′, B → C implies that A → A, B, Γ � Δ′, C, and

since is an application of regress rule (3) we can use
the S.I.H. to deduce B, Γ � Δ′, C. We can now use the (→-right)
inference rule to get Γ � Δ. The other cases are similar.

III. The only regress rule applicable is GLR. Then the (derivable) sequent
Γ � Δ, A must be an initial sequent or the conclusion of a GLR
inference rule. In the first case it must be because A ∈ Γ , in the
second caseAmust be a strengthening formula. Both cases imply that
Γ � Δ.
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Case 2. A = B → C. If (B → C) → (B → C), Γ � Δ then, by invertibility,
we can also derive B → C, Γ � Δ and Γ � Δ, B → C; and, again by
invertibility, we can derive S1 = Γ � Δ, B and S2 = C, Γ � Δ and also
S3 = B, Γ � Δ, C. Now, we can derive S4 = B → B, Γ � Δ, C from
S1 and S3 using the (→-left) rule;5 similarly, we can derive C → C, B →
B, Γ � Δ from S4 and S2. We can now apply the P.I.H. twice to get Γ � Δ.

Case 3. A = �B.

I. is prime. Again, the only non-immediate case is when Γ is
prime and Δ is atomic. Now,�B, Γ � Δ is derivable and must be an
initial sequent, which means that Γ � Δ is also an initial sequent.

II. is not prime and is the denominator of one of regress rules
(2)–(5). Done Similarly to the case where A is atomic.

III. The only regress rule applicable is GLR. First, we know that Γ, Δ are
prime, Δ contains a boxed formula, ⊥ /∈ Γ and Γ ∩ Δ = ∅. We also
know that we can prove S = �B, Γ � Δ and S′ = Γ � Δ,�B. We
can assume that �B /∈ Γ ∪ Δ (otherwise it is immediate). Thus, the
only applicable rule in obtaining both S and S′ is GLR.
Now, if �B was a weakening or strengthening formula in any one of
them we are done. Thus, we may assume we have two proofs end-
ing with: (where Γ = Φ,�Γ ′ ; Δ = �D,�Δ′, Ψ and Φ, Ψ are
atomic)

Γ ′,�Γ ′,�B � B

Φ,�Γ ′ � �D,�Δ′, Ψ,�B
︸ ︷︷ ︸

S′

B,�B, Γ ′,�Γ ′,�D � D

�B, Φ,�Γ ′ � �D,�Δ′, Ψ
︸ ︷︷ ︸

S

Which means we also have proofs ending with:

Now, we can obtain S5 = �B → �B, Γ ′,�Γ ′ � B from S2 and S1; we can obtain
S6 = B,�B → �B, Γ ′,�Γ ′,�D � D from S2 and S3, and, finally, we can obtain
S7 = B → B,�B → �B, Γ ′,�Γ ′,�D � D from S5 and S6. We can now apply
the P.I.H. to obtain S8 = �B → �B, Γ ′,�Γ ′,�D � D from S7.
Note that

is an application of the regress rule GLR, thus we can apply the S.I.H. to obtain
Γ ′,�Γ ′,�D � D from S8. Now apply GLR to obtain Γ � Δ.

5Technically, S1 and S3 are not in the right form to allow a legal application of the (→-left) rule; however,
they can easily be weakened and strengthened to the right form, thus allowing us to obtain S4. This remark
will apply to all the following instances involving a similar “illegal” use of the (→-left) rule.
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We can now deduce the following:

Corollary 2
The system GLS allows cut-elimination.
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