
J Philos Logic (2016) 45:73–87
DOI 10.1007/s10992-015-9362-x

An Interpretation of Łukasiewicz’s 4-Valued
Modal Logic
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Abstract A simple, bivalent semantics is defined for Łukasiewicz’s 4-valued modal
logic Łm4. It is shown that according to this semantics, the essential presupposition
underlying Łm4 is the following: A is a theorem iff A is true conforming to both the
reductionist (rt) and possibilist (pt) theses defined as follows: rt: the value (in a biva-
lent sense) of modal formulas is equivalent to the value of their respective argument
(that is, ‘A is necessary’ is true (false) iff A is true (false), etc.); pt: everything is
possible. This presupposition highlights and explains all oddities arising in Łm4.

Keywords Many-valued logics · Modal logics · 4-valued logics · Łukasiewicz’s
4-valued modal logic · Bivalent semantics

1 Introduction

Łukasiewicz’s 4-valued modal logic was introduced in [12] (cf. also [11], Chap. VII;
cf. the paragraph preceding Definition 2.3 on the label Łm4). The reader can find
a good analysis of the history, motivation and different formulations of the system
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in [5] (cf. also [18]). The aim of this paper is to define a simple, intuitive, bivalent
semantics for Łm4 similar to that characterizing classical propositional logic.

Łukasiewicz’s system has not had much influence in the development of modern
modal logic. This lack of success is mainly due to the presence in Łm4 of what
we can label “Łukasiewicz-type modal paradoxes” , where the term “paradox” has
to be understood in the same sense used by Lewis in [10] when referring to “the
paradoxes of material conditional” (παρα−δoξα , what comes away from the ‘doxa’
—the common opinion). Among these conspicuous paradoxes are the following (cf.
Definition 2.1 about the logical language used in the paper):

p1. (A → B) → (MA → MB)

p2. (A → B) → (LA → LB)

p3. (MA ∧ MB) → M(A ∧ B)

p4. L(A ∨ B) → (LA ∨ LB)

p5. LA → (B → LB)

p6. LA → (MB → B)

It is clear that p1-p6 are, to say the least, difficult to understand according to
the standard notions of ‘necessity’ and ‘possibility’. Actually, Hughes and Cresswell
point out that “if by a modal logic we mean a logic of possibility and necessity, this
system [Łm4] takes us to the limits of what should be regarded as a modal logic at
all” ([7], p. 310 —quoted in [5], p. 176). And on their part, Font and Hajek express an
extended opinion when they affirm that “Łukasiewicz’s system is rather a dead end
from an intuitive or applied point of view” ([5], p. 160). The semantics we are going
to define identifies the essential presupposition —not Łukasiewicz’s own motivation
at all!— underlying Łm4 and thus it can explain why these and other oddities and
difficulties afflict Łukasiewicz’s system. But let us recall the standard semantics for
Łm4.

Łukasiewicz defined his system syntactically by using both inference and rejection
rules, and claimed that it was determined by a certain 4-valued matrix (cf. Definition
4.1 below). By reformulating the presentation of Łukasiewicz’s system, Smiley [17]
and especially Lemmon [9] (Section 5) proved that Łukasiewicz was right (cf. the
axiomatization of Łm4 by Lemmon in Definition 2.3).

Lemmon also provided an algebraic semantics for Łm4 that can be generally
reformulated in Kripke semantics as follows (cf. [9], Section 5; [5] and [18]). A
Łm4-model is a structure (K, O, R,�) where K is a set of worlds; O is a set of
(non-normal) worlds (anything is possible in them); R is the accessibility relation,
and finally, � is a (valuation) relation that evaluates →, ∧, ∨ and ¬ standardly while
evaluates L and M as follows:

a � LA iff a /∈ O & ∀x(Rax ⇒ x � A)

a � MA iff a ∈ O or ∃x(Rax & x � A)

It also has to be remarked that R has the following properties: (i) ∀x, y ∈
K(Rxy ⇒ x = y); (ii) x /∈ O ⇒ Rxx.
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Now, as it is well known, normal modal logics cannot be characterized by means of
finite matrices (cf. [4]; [2], Section 9), which of course entails that Łm4 is not normal,
as it happens with the Kripke models w.r.t. which Łm4 is sound and complete, which
are non-normal too, as we have seen. The aim of this paper is then to provide a
simpler semantics for Łm4 similar to the bivalent semantics characterizing classical
propositional logic. The essential presupposition in this semantics —and the source
of all difficulties Łm4 presents— can generally be described as follows. Consider
the following theses: (1) Reductionist thesis: there are two (truth) values, T and F ,
representing truth and falsity in the classical sense, and the value of LA and MA is
the value assigned to A ; (2) the possibilist (or non necessitarianist) thesis: nothing
is necessary or, equivalently, everything is possible. The explicit rejection of both
theses is established by Łukasiewicz as a ‘conditio sine qua non’ of any (basic) modal
logic (cf. [5], p. 175; [18], Section 2). But, nevertheless, according to the semantics
that we are going to define and w.r.t. which Łm4 is sound and complete, the essential
presupposition underlying Łukasiewicz’s system is the following: A is a theorem
of Łm4 iff A is true according to both the reductionist and the possibilist theses.
However, notice that this does not mean that Łm4 endorses both theses (far from
it), but rather (in a sense to be made precise below) that it corrects the reductionist
thesis with the possibilist one, or the other way round. (Remark that if possibilism
is arguable —cf., e.g., [15] and [16]—, reductionism —in the sense defined above—
seems to lack any justification whatsoever).

Thus, as Hughes and Cresswell remarked, Łm4 takes us to the limits of what can
be considered as a modal logic (to the limits of what can be considered an arguable
philosophical thesis?), although, be it as it may, Łm4 is undoubtedly a very interesting
system from more than one point of view (cf., for example, [5] on its algebraic nice
properties).

In order to expound the general features of our semantics (explained in detail in
Section 3), let us introduce some terminology. Formulas of the form LA (MA) are
named “necessitives” (“possibilitives”). (The (ugly) terminology is borrowed from
Anderson and Belnap —[1], Section 5.2—; the qualifying term for this terminology,
“ugly” , is also Anderson and Belnap’s.) A “necessitive interpretation” is a function
from the set of wffs F to the set {T , F } where T and F represent truth and falsity
in the classical sense. All necessitive interpretations evaluate →, ∧, ∨, ↔ and ¬
according to the classical two-valued tables, but differ in the interpretation of neces-
sitive and possibilitive formulas (cf. Definition 2.1 about the logical language used in
the paper). In fact, there are two classes of “necessitive interpretations” : “necessita-
tive interpretations” and “strongly non-necessitative interpretations” (“necessitative”
is another ugly term coming from “necessitation” , in its turn taken from the locu-
tion “necessitation rule” , i.e., the rule A ⇒ LA. Cf. propositions 3.12, 3.13 below
about this rule). A necessitative interpretation is a necessitive interpretation assign-
ing to each necessitive and possibilitive formula the value assigned to its respective
argument (A is the argument of LA and of MA); a strongly non-necessitative
interpretation is a necessitive interpretation assigning F to all necessitives and T

to all possibilitives. Then, a wff A is a theorem of Łukasiewicz’s 4-valued modal
logic iff it is validated (assigned the value T ) by all necessitative and all strongly
non-necessitative interpretations.
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It is now easy to see why the paradoxes p1-p6 are validated. Let us take p5 as
an example. It is clear that each necessitative interpretation I validates p5 (LA →
(B → LB)) since I validates A → (B → B); it is also obvious that each strongly
non-necessitative interpretation validates p5: no strongly necessitative interpretation
validates the antecedent of p5. In the same sense, one can immediately see why the
characteristic axioms of Lewis’ S5 (MA → LMA; MLA → LA) are not theorems
of Łm4: although validated by each necessitative interpretation, they are invalidated
by all strongly non-necessitative interpretations. Finally, to take a last example, the
strong theses (1) MA and (2) ¬LA and the collapsing formulas (3) A → LA and
(4) MA → A are invalidated as follows. Theses 1 and 2: by any necessitative inter-
pretation assigning F (in 1) and T (in 2) to A (1 and 2 are validate by any strongly
non-necessitative interpretation); formulas 3 and 4: by any strongly non-necessitative
interpretation assigning T (in 3) and F (in 4) to A (3 and 4 are validated by any
necessitative interpretation).

The structure of the paper is as follows. In Section 2, the logic Łm4 is defined
and some facts about theories built upon Łm4 are proved. These facts are used in
the completeness proof in Section 3. Section 3 is the main section of the paper. In
it, the bivalent semantics that has generally been delineated above is introduced.
Then, completeness is shown by an easy Henkin-style proof. Consistent, com-
plete and necessitative (strongly non-necessitative) theories are used as canonical
necessitative (strongly non-necessitative) interpretations. Next, it is shown that each
non-theorem fails to belong to a consistent and complete necessitative (or strongly
non-necessitative) theory. Once soundness and completeness of Łm4 w.r.t. the biva-
lent semantics is proved, it has been shown that the latter in fact characterizes
Łukasiewicz’s 4-valued modal logic. Nevertheless, in Section 4, the bivalent seman-
tics and Łukasiewicz’s 4-valued matrix are put in correspondence by showing that for
each necessitive interpretation invalidating a given formula there is a corresponding
interpretation in Łukasiewicz’s matrix invalidating the same formula. The section is
ended with the proof of soundness and completeness w.r.t. validity in Łukasiewicz’s
4-valued matrix. In Section 5, we end the paper with a couple of concluding remarks.

2 The Logic Łm4

We begin by defining the logical language and the notion of logic considered in this
paper.

Definition 2.1 (Language) The propositional language consists of a denumerable
set of propositional variables p0, p1, ..., pn, ..., and the following connectives: →
(conditional), ¬ (negation) and L (necessity). Other propositional connectives such
as ∧ (conjunction), ∨ (disjunction), ↔ (biconditional) and M (possibility) are
eventually introduced by definition. The set of wffs is defined in the customary way.

A, B (possibly with subscripts 0, ...1, ...n), etc., are metalinguistic variables. By
P and F , we shall refer to the set of all propositional variables and the set of all
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formulas, respectively. (We note that the symbols L (for the necessity operator) and
M (for the possibility operator) are used by Łukasiewicz — cf. [5], Note 2, p. 158.)

Definition 2.2 (Logics) A logic S is a structure (L,
S) where L is a propositional
language and 
S is a (proof-theoretical) consequence relation defined by a set of
axioms and a set of rules of derivation. The notions of ‘proof’ and ‘theorem’ are
understood as it is customary in Hilbert-style axiomatic systems. That is, a proof is a
sequence of formulas each one of which is an axiom or the result of applying a rule of
derivation to one or more previous formulas in the sequence. A theorem is a proven
formula. The notion of ‘proof from premises’ is also understood as it is customary.
In symbols, ‘A is a theorem of S’ is rendered by 
S A; and ‘A is provable from � in
S’, by � 
S A.

Łukasiewicz’s system can be defined as follows (the label Łm4 abbreviates
‘Łukasiewicz modal 4-valued logic’ and it is intended to distinguish Łm4 from
the linearly ordered many-valued and infinite valued Łukasiewicz’s logics and,
in particular, from the 4-valued logic Ł4 —Łukasiewicz used the symbol Ł for
Łm4).

Definition 2.3 (The logic Łm4) The logic Łm4 is formulated as follows:
Axioms

A1. A → (B → A)

A2. [A → (B → C)] → [(A → B) → (A → C)]
A3. (¬A → ¬B) → (B → A)

A4. LA → A

A5. LA → (B → LB)

Rules of derivation

Modus Ponens (MP): A & A → B ⇒ B

Definitions

A ∨ B =df ¬A → B

A ∧ B =df ¬(A → ¬B)

A ↔ B =df (A → B) & (B → A)

MA =df ¬L¬A

Remark 2.4 (On the axiomatization of Ł m4) Notice that A1-A3 together with MP
is one of the formulations of classical propositional logic (CL) defined in [3]. On the
other hand, remark that the classical axiomatization by Lemmon ([9], p. 214) adds
the axiom A6, L(A → B) → (LA → LB), but this axiom has been shown to not be
independent by Tkaczyk in [18], who also proves that A4 and A5 can be changed by
the sole axiom (JP) (LA∧B) → (A∧LB) (‘Jumping necessity axiom’, in Tkaczyk’s
words), cf. [18], p. 231.
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Remark 2.5 (Some theorems of Łm4) The following theorems of Łm4 will be useful:

t1. A → A

t2. [(A → B) ∧ A] → B

t3. ¬A → (A → B)

t4. [(A → B) ∧ (¬A → B)] → B

t5. (A ∧ ¬LA) → ¬LB

Notice that t1-t4 are theorems of CL, while t5 is immediate by A5 and CL.

Finally, we note that the Deduction Theorem (DT) is provable in Łm4.

Proposition 2.6 (The Deduction Theorem DT) For any set of wffs � and wff A, B,
if �,A 
Łm4 B, then � 
Łm4 A → B.

Proof As it is known, DT is provable in any extension of the implicative fragment
of propositional intuitionistic logic (axiomatized by A1, A2 and MP) with MP as the
sole rule of inference (cf. e.g., [13]).

Next, we prove some facts about theories built upon Łm4. These facts are used in
the completeness proofs of Section 3. Firstly, the notion of a theory is defined.

Definition 2.7 (Łm4-theories) A Łm4-theory (theory, for short) is a set of formulas
containing all theorems of Łm4 and closed under modus ponens (MP). That is, T is a
theory iff (1) if 
Łm4 A then A ∈ T ; and (2) if A → B ∈ T and A ∈ T , then B ∈ T .

Definition 2.8 (Classes of theories) Let T be a theory. We set (1) T is consistent iff
for no wff A, A∧¬A ∈ T ; (2) T is complete iff for every wff A, A ∈ T or ¬A ∈ T ;
(3) T is necessitative iff for every wff A, LA ∈ T iff A ∈ T ; (4) T is strongly non
necessitative iff for every wff A, MA ∈ T .

As commented in the introduction to this paper, the “necessitation rule” (NR) is
the following: A ⇒ LA. It will be proved that NR is not admissible in Łm4 (cf.
propositions 3.12 and 3.13), but necessitative theories are closed under NR anyway.
On the other hand, (consistent) strongly non-necessitative theories do not contain
a sole necessitive formula. Both classes of theories are essential to the develop-
ment of the paper and shall be put in correspondence with necessitative and strongly
non-necessitative interpretations, as the reader may guess. A couple of lemmas are
recorded to end the section. The first one recalls the main property of conditionals in
complete theories; the second one proves a first extension result.

Lemma 2.9 (The conditional in complete theories) Let T be a complete theory.
Then, for any wffs A, B, A → B ∈ T iff A /∈ T or B ∈ T .

Proof (1) Left to right: by t2; (2) right to left: by A1 and t3.
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Lemma 2.10 (First extension lemma) Let T be a theory and A a wff such that
A /∈ T . Then, there is a consistent, complete theory � such that T ⊆ � and A /∈ �.

Proof Extend T to a maximal theory � such that A /∈ �. For reductio, suppose
that � is not complete, that is, B /∈ �, ¬B /∈ � for some wff B. Define the sets
[�, B] = {C | B → C ∈ �}, [�,¬B] = {C | ¬B → C ∈ �}. We prove: (1)
[�, B] and [�,¬B] are closed by MP: by A2 and the fact that � is a theory; (2)
� ⊆ [�, B] and � ⊆ [�,¬B]: by A1, as � is a theory; (3) [�, B] and [�,¬B]
are theories: these sets are closed by MP (by 1) and contain all theorems of Łm4 (by
2); (4) � � [�, B], � � [�,¬B]: by t1, B ∈ [�, B] and ¬B ∈ [�,¬B], but, by
hypothesis, B /∈ � and ¬B /∈ �. Consequently, (by the maximallity of �) we have
A ∈ [�, B], A ∈ [�,¬B] whence A ∈ � (by t4), which is impossible. Therefore,
� is complete. Moreover, � is consistent: by t3.

3 Bivalent Semantics for Łm4

We proceed into the definition of the bivalent semantics. Firstly, the notions of
a necessitative interpretation (in symbols, �-interpretation) and a strongly non-
necessitative interpretation (in symbols, �-interpretation) are defined.

Definition 3.1 (�-interpretations) A �-interpretation, I , is a function from F to
{T , F } such that for all pi ∈ P and A, B ∈ F the following conditions are fulfilled:

1.I (pi) = T or I (pi) = F

2.I (¬A) = T iff I (A) = F

3.I (A → B) = T iff I (A) = F or I (B) = T

4.I (LA) = T iff I (A) = T

Definition 3.2 (�-interpretations) An �-interpretation, I , is a function from F to
{T , F } such that for all pi ∈ P and A, B ∈ F the following conditions are fulfilled:

1.I (pi) = T or I (pi) = F

2.I (¬A) = F iff I (A) = T

3.I (A → B) = F iff I (A) = T and I (B) = F

4.I (LA) = F iff I (A) = T or I (A) = F

It will be useful to introduce labels to refer to the set of all necessitive interpreta-
tions (in symbols, �-interpretations; cf. Section 1) and to the set of all interpretations
belonging to each one of the two classes defined above (necessitative and strongly
non-necessitative interpretations).

Definition 3.3 (�-interpretations) Let us refer by I� (I�) to the set of all �-
interpretations (�-interpretations). By I�, we shall refer to the set I� ∪ I�, that is,
to the set of all �-interpretations and �-interpretations.
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Now, let I ∈ I�, I ′ ∈ I� and I ′′ ∈ I�. We remark that for all A, B ∈ F , the
following conditions are fulfilled:

1. I (A ∧ B) = T iff I (A) = I (B) = T

2. I (A ∨ B) = T iff I (A) = T or I (B) = T

3. I ′(MA) = T iff I (A) = T

4. I ′′(MA) = T iff I (A) = T or I (A) = F

(Cf. definitions of ∧, ∨ and M in Definition 2.3.)
On the other hand, we remark that for any set of wffs � and I ∈ I�, we have: (1)

I (�) = T iff ∀A ∈ �(I (A) = T ); (2) I (�) = F iff ∃A ∈ �(I (A) = F).
Now, validity in the semantics of necessitive interpretations is defined as

follows.

Definition 3.4 (�-validity) A wff A is �-valid (in symbols, �� A) iff I (A) = T

for all I ∈ I�. And the rule A0&A1&...&An ⇒ B preserves �-validity iff, for all
I ∈ I�, I (B) = T if I (Ai) = T for each Ai (1 ≤ i ≤ n).

In what follows, we proceed into the definition of canonical interpretations.

Definition 3.5 (T -interpretations) Let T be a consistent, complete theory. A T -
interpretation, I , is a function from F to {T , F } defined as follows: for any A ∈ F ,
I (A) = T iff A ∈ T .

As it is to be expected, there are two main classes of consistent and complete
theories: necessitative and strongly non-necessitative theories (cf. Definition 2.8).

Definition 3.6 (The set T �) T � is the set of all consistent, complete and necessi-
tative theories.

Definition 3.7 (The set T �) T � is the set of all consistent, complete and strongly
non-necessitative theories.

Definition 3.8 (The set T �) By T � we shall refer to the set T �∪T �.

Notice that T �∩T �= ∅.

Lemma 3.9 (Each T ∈ T � induces an I�-interpretation) Let T be a consistent,
complete and necessitative theory; and let I be the T -interpretation built upon T , as
indicated in Definition 3.5. Then, I is an I�-interpretation.

Proof Let pi ∈ P and A, B ∈ F . (1) pi ∈ T or ¬pi ∈ T : by completeness of T ;
(2) ¬A ∈ T iff A /∈ T : by consistency and completeness of T ; (3) A → B ∈ T iff
A /∈ T or B ∈ T : by Lemma 2.9 (properties of the conditional in complete theories);
(4) LA ∈ T iff A ∈ T : by A4 and the fact that T is necessitative.
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Lemma 3.10 (Each T ∈ T � induces an I�-interpretation) Let T be a consistent,
complete and strongly non-necessitative theory; and let I be the T -interpretation
built upon T , as indicated in Definition 3.5. Then, I is an I�-interpretation.

Proof Clauses (1)-(3) are proved similarly as in Lemma 3.9. So, let us prove
clause (4). As T is strongly non-necessitative, ¬LA ∈ T for any wff A; hence
LA /∈ T by the consistency of T . Finally, I (LA) = F , for any wff A, as was to be
proved.

Before proving completeness, we prove soundness w.r.t. � -validity.

Theorem 3.11 (Soundness w.r.t. �-validity) For any A ∈ F , if 
Łm4 A, then �� A.

Proof Let I ∈ I�. It is obvious that I validates A1-A5 and MP.

Next, we turn into the proof of completeness. Firstly, we record two easy but
important facts about necessitives in Łm4.

Proposition 3.12 (No theorems of necessitive form) Let A be any wff. Then, LA is
not a theorem of Łm4.

Proof Let A be any wff and I ∈ I�. Then, I (LA) = F and so, �Łm4 A by
Theorem 3.11.

An immediate corollary of Proposition 3.12 is the following:

Proposition 3.13 (Nec does not preserve �-validity) The rule necessitation (Nec),
that is,

A ⇒ LA

does not preserve �-validity (Nec does not hold in Łm4).

Proof It is immediate: by Proposition 3.12, there are no theorems of necessitive form
in Łm4 (notice that Nec is not even admissible in Łm4).

Nevertheless, we have:

Proposition 3.14 (Negations of theorems are not possible) Let A be a theorem of
Łm4. Then, M¬A is not provable in Łm4.

Proof Let A be a theorem of Łm4, let I ∈ I�. By the soundness theorem, I (A) =
T (Theorem 3.11). Thus, I (LA) = T , and so, I (¬LA) = F . Then, �Łm4 M¬A

follows by definition of M and the soundness theorem.

Now, the main extension lemma can be proved and, then, the completeness
theorem.
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Lemma 3.15 (Main extension lemma) Let T be a theory and A a wff such that
A /∈ T . Then, there is a consistent and complete theory � such that T ⊆ � and
A /∈ �. Moreover, � is either necessitative or else strongly non-necessitative.

Proof Assume the hypothesis of Lemma 3.15. By Lemma 2.10, there is a consis-
tent and complete theory � such that T ⊆ � and A /∈ �. Now, let pi ∈ P . By
propositions 3.12 and 3.14, neither L(pi → pi) nor ¬L(pi → pi) are theorems
of Łm4, but as � is consistent and complete, either (1) L(pi → pi) ∈ �, or (2)
¬L(pi → pi) ∈ �, but not both. Suppose (1) L(pi → pi) ∈ � and let A be any
wff. By A4 and A5, A ∈ � iff LA ∈ �. So, � is necessitative. But, on the other
hand, suppose (2) ¬L(pi → pi) ∈ �. As pi → pi ∈ T , ¬L¬A ∈ � (for any
A) follows by t5; hence MA, by definition of M and, consequently, � is strongly
non-necessitative.

Theorem 3.16 (Completeness w.r.t. �-validity) For any A, if �� A, then 
Łm4 A.

Proof We prove the contrapositive of the claim. Suppose �Łm4 A and let Łm4 be
the set of its theorems. By Lemma 3.15, there is a consistent and complete theory T
such that A /∈ T . Moreover, T is either necessitative or strongly non-necessitative.
Therefore, by Lemma 3.9 and Lemma 3.10, T induces a �-interpretation I

such that I (A) �= T . Consequently, �� A by Definition 3.4, as was to be
proved.

The logic Łm4 has been axiomatized following Lemmon’s formulation of
Łukasiewicz’s 4-valued modal logic (cf. Definition 2.3). And, as we have just seen,
Łm4 is sound and complete w.r.t. the bivalent semantics defined in this section.
Therefore, these bivalent semantics determine (or characterize) Łukasiewicz 4-valued
modal logic. Nevertheless, we shall put in correspondence the bivalent semantics and
Łukasiewicz’s matrix by proving that for each necessitive interpretation invalidat-
ing a given formula, there is a corresponding interpretation in Łukasiewicz’s matrix
falsifying the same formula.

4 The Bivalent Semantics and the Matrix MŁm4

Let us first define (our version of) Łukasiewicz’s matrix MŁm4 (cf. [5] and [18]).

Definition 4.1 (The matrix MŁm4) The matrix MŁm4 is the structure (V ,

D, f→, f¬, fL) where V = {0, 1, 2, 3} and it is partially ordered as shown in the
following diagram:



An Interpretation of Łukasiewicz’s 4-Valued Modal Logic 83

D = {3}, and f→, f¬ and fL are defined according to the following tables:

0 1 2 3
0 3 3 3 3
1 2 3 2 3
2 1 1 3 3
3 0 1 2 3

¬
0 3
1 2
2 1
3 0

L
0 0
1 0
2 2
3 2

V is the set of (truth) values and D is the set of designated values. The notions
of an MŁm4-interpretation, MŁm4-validity and preservation of MŁm4-validity by a
rule of derivation are defined in the standard way. That is, an MŁm4-interpretation is
a function from F to V , according to the functions f→, f¬ and fL as defined above;
A is MŁm4-valid (in symbols, �M Łm4 A) iff I (A) ∈ D for all MŁm4-interpretations
I ; a rule of derivation A0&A1&, ..., An ⇒ B preserves MŁm4-validity (in symbols,
{A0, A1, ..., An} �MŁm4 B) iff, for all MŁm4-interpretations I , I (B) ∈ D if I (Ai) ∈
D for each Ai (1 ≤ i ≤ n). Finally, for any set of wffs � and MŁm4-interpretation
I , I (�) = inf{I (A) : A ∈ �}.

We note the following remark on the definition just stated.

Remark 4.2 (On the notation of MŁm4) Łukasiewicz’s tables are usually pre-
sented by pairs of zeros and ones: 00,01,10,11, which correspond to 0,1,2 and
3 in Definition 4.1, respectively. Instead, Łukasiewicz used 0,3,2 and 1 for
00,01,10 and 11, respectively. (The notation in Łm4 is chosen because it is
easier to use with the tester in [6], in case the reader needs one.) For the
reader’s convenience, we record the tables for ∧, ∨ and M (cf. Definition 2.3):

0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

M
0 1
1 1
2 3
3 3

In the following lemma, it is shown how to define an MŁm4-interpretation for
each necessitive interpretation.

Lemma 4.3 (Corresponding MŁm4-interpretations to � -interpretations) Let
I ∈ I�. Then, there is a MŁm4-interpretation IŁ such that for any A ∈ F , (1)
IŁ(A) ∈ {3, 2} if I (A) = T ; and (2) IŁ(A) ∈ {0, 2} if I (A) = F .

Proof Let I ∈ I�. We define a MŁm4-interpretation IŁ as follows: for each
pi ∈ P , we set (i) IŁ(pi) = 3 iff I (pi) = T ; (ii) IŁ(pi) = 0 iff I (pi) = F .
Then, we prove (1) and (2) by induction on the length of A. We have to consider
the following cases: (a) A is a propositional variable; (b) A is of the form ¬B;
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(c) A is of the form B → C; (d) A is of the form LB. Now, case (a) follows
from the definition of IŁ, and concerning cases (b) and (c), it is easy to prove
the following: IŁ (B) ∈ {3, 2} iff I (B) = T and IŁ(B) ∈ {0, 2} iff I (B) =
F . Let us prove case (cii) as way of an example (H.I abbreviates hypothesis of
induction).

Case (cii): IŁ(B → C) ∈ {0, 2} iff I (B → C) = F . We have IŁ(B →
C) ∈ {0, 2} iff (by MŁm4) IŁ(B) /∈ {0, 2} and IŁ(C) ∈ {0, 2} iff (H.I)
I (B) = T and I (C) = F iff (definitions 3.1 and 3.2) I (B → C) = F . But
in order to prove case (d), we have to separately consider �-interpretations and
�-interpretations.

Case (d): �-interpretations. Suppose that the function I ∈ I� we are consid-
ering is a �-interpretation. (di) Let I (LB) = T . By Definition 3.1, I (B) = T ,
hence IŁ(B) ∈ {3, 2} (by H.I) and finally, IŁ(LB) ∈ 2 (by MŁm4). (dii) Let now
I (LB) = F . By Definition 3.1, I (B) = F , hence IŁ(B) ∈ {0, 2} (by H.I) and so, I

Ł(LB) ∈ {0, 2} (by MŁm4). �-interpretations. Suppose that the function I ∈ I� we
are considering is a �-interpretation. Then, case (di) (I (LB) = T ) cannot arise since
I (LA) = F for any wff A. (dii) Let I (LB) = F . We have I (LB) = F iff (by Defi-
nition 3.2) I (B) = T or I (B) = F iff (by H.I) IŁ(B) ∈ {3, 2} or IŁ(B) ∈ {0, 2} iff
(by MŁm4) IŁ(LB) ∈ {0, 2}.

By using Lemma 4.3, it is easy to prove that for each necessitive interpretation
invalidating a given formula, there is a MŁm4-interpretation invalidating the same
formula, whence completeness w.r.t. M Łm4-validity follows.

Theorem 4.4 (Completeness w.r.t. MŁm4-validity) For any A ∈ F , if �MŁm4 A,
then 
Łm4 A.

Proof Suppose �Łm4 A. By the completeness theorem w.r.t. �-validity (Theo-
rem 3.16), there is some I ∈ I� such that I (A) �= T . So, I (A) = F . By
the lemma just proved (Lemma 4.3), there is some Łm4-interpretation IŁ such
that IŁ(A) /∈ {3, 2} and IŁ(A) ∈ {0, 2}. Consequently, IŁ(A) = 0. That is,
�MŁm4 A.

The section is ended with a proof of the “strong” soundness and completeness, but
before, let us note the following remark.

Remark 4.5 (Soundness w.r.t. MŁm4-validity) As we have just seen, for any wff A

not provable in Łm4, there is a MŁm4-interpretation IŁ invalidating it. On the other
hand, it is straight-forward to check that all axioms of Łm4 are MŁm4-valid and that
MP preserves MŁm4-validity. Therefore, we have: (soundness w.r.t. MŁm4-validity):
if 
Łm4 A, then �MŁm4 A.

Strong soundness and completeness are immediate. Actually, these properties can
be proved for Łm4 similarly as they are proved for classical propositional logic CL
(axiomatized by A1-A3 and MP, for example), once the simple theorems have been
previously proved.
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Definition 4.6 (Consequence relations) For any set of wffs � and wff A, we set (1)
� 
Łm4 A is understood in the standard sense (cf. Definition 2.2); (2) � �� A iff
I (A) = T if I (�) = T for all I ∈ I� (cf. definitions 3.3 and 3.4); (3) � �MŁm4 A

iff I (A) = 3 if I (�) = 3 for any MŁm4-interpretation I (cf. Definition 4.1); (4)
� � A iff � �� A (or, equivalently, � �M Łm4 A).

Then, we prove:

Theorem 4.7 (Strong soundness and completeness) For any set of wffs � and wff
A, we have (1) if � 
Łm4 A, then � � A; (2) if � � A, then � 
Łm4 A.

Proof (1) It is immediate: by the (simple) soundness theorem (cf. Theorem 3.11
and Remark 4.5) the axioms are [� / MŁm4]-valid and MP preserves [� / MŁm4]-
validity. (2) Suppose � � A and let � = {B1, ..., Bn}. It is clear that � B1 → (... →
(Bn → A)...). Then, we have 
Łm4 B1 → (... → (Bn → A)...) by the (simple)
completeness theorem (cf. Theorem 3.16 and Theorem 4.4); hence, � 
Łm4 A.

5 Concluding Remarks

We think that the semantics presented in this paper clarify what Łukasiewicz’s system
does really mean and where its difficulties really come from. The paper is closed
with two remarks. The first one relates our results to a theorem by Lemmon in his
outstanding works [8] and [9]; the second one states that the difficulties raised by
Łm4 can (and in fact have been) surmounted.

5.1 On the Systems PC and E

Consider the following axioms
a1. A → LA

a2. MA

Under the head “Three degenerate systems, intersection results” , in Section 5 of
[9], Lemmon investigates Łukasiewicz’s logic Łm4 along with the system PC and E
that can be axiomatized as follows:

PC: Łm4 plus a1.
E: Łm4 plus a2.
Each one of the three systems is endowed with an algebraic semantics. The system

PC is “degenerate” in the sense that it collapses into classical propositional logic;
and E is “degenerate” in the sense that LA ↔ F is a theorem (F is a falsity constant
syntactically equivalent to the negation of any given theorem). However, it is not
explained why Łm4 can be named “degenerate” and although this is not the place to
discuss the question, we cannot but remark that neither E nor Łm4 can in our opinion
be labelled at all “degenerate” (cf. in this respect the comments by Mortensen in
[16] about the relationship between possibilism and truth-functional modal logic).
Anyway, the topic is mentioned here for two reasons. The first one is that it may be
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worth noting that a semantics has been provided above for PC and E. Consider the
following axioms

a3. L(A → A)

a4. ¬L(A → A)

Notice that a3 and a4 instead of a1 and a2 suffice for axiomatizing PC and E,
respectively. Then, it is obvious that PC is sound and complete w.r.t. �-validity, being
this notion defined in the set I� (the set of all necessitative interpretations) similarly
as � -validity was defined given the set I� (cf. definitions 3.1, 3.3 and 3.4). On
the other hand, it is not less clear that E is sound and complete w.r.t. �-validity
defined in the set I� similarly as �-validity has just been defined (cf. Definition
3.2). The second reason why this topic is mentioned is that the facts just reported and
the general results in the present paper conform to the following theorem proved by
Lemmon: 
Łm4 A iff both 
PC A and 
E A (cf. [9], Theorem 60, p. 216).

5.2 The Logic ŁB4

The logic ŁB4 defined in [14] is the logic characterized by modifying the matrix
MŁm4 as follows: the tables for ¬ and L are changed by the following ones:

0 1 2 3
¬ 3 1 2 0

0 1 2 3
L 0 0 0 3

ŁB4 is a strong and rich 4-valued modal logic without “Łukasiewicz-type” modal
paradoxes.
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6. González, C. (2012). MaTest, available at http://ceguel.es/matest. (Last access 08/02/2015).
7. Hughes, G.E., & Creswell, M.J. (1968). Introduction to modal logic. London: Methuen.
8. Lemmon, E.J. (1966). Algebraic semantics for modal logics I. The Journal of Symbolic Logic, 31(1),

46–65.

9. Lemmon, E.J. (1966). Algebraic semantics for modal logics II. The Journal of Symbolic Logic, 31(2),
191–218.

http://www.unilog-org/many-valued.pdf
http://www.unilog-org/many-valued.pdf
http://ceguel.es/matest


An Interpretation of Łukasiewicz’s 4-Valued Modal Logic 87

10. Lewis, C.I., & Langdord, C.H. (1932). Symbolic Logic, New York: Century Company. Reprinted,
New York: Dover Publications, 2nd edition, 1959, with a new Appendix III (Final Note on System
S2) by Lewis.

11. Łukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic. Oxford:
Clarendon Press.

12. Łukasiewicz, J. (1953). A system of modal logic. The Journal of Computing Systems, 1, 111–149.
13. Mendelson, E. (1964). Introduction to mathematical logic, 5th edn: Chapman and Hall/CRC.
14. Méndez, J.M., & Robles, G. (In preparation). A strong and rich 4-valued modal logic without

Łukasiewicz-type paradoxes.
15. Mortensen, C. (1989). Anything is possible. Erkenntnis, 30, 319–337.
16. Mortensen, C. (2005). It isn’t so, but could it be? Logique et Analyse, 48(189–192), 351–360.
17. Smiley, T.J. (1961). On Łukasiewicz’s Ł-modal system. Notre Dame Journal of Formal Logic, 2, 149–

153.
18. Tkaczyk, M. (2011). On axiomatization of Łukasiewicz’s four-valued modal logic. Logic and Logical

Philosophy, 20(3), 215–232.


	An Interpretation of Łukasiewicz's 4-Valued Modal Logic
	Abstract
	Introduction
	The Logic Łm4
	Bivalent Semantics for Łm4
	The Bivalent Semantics and the Matrix MŁm4
	Concluding Remarks
	On the Systems PC and E
	The Logic ŁB4

	Acknowledgments
	References


