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Abstract This paper briefly overviews some of the results and research directions
in the area of substructural logics from the last couple of decades. Substructural log-
ics are understood here to include relevance logics, linear logic, variants of Lambek
calculi and some other logics that are motivated by the idea of omitting some struc-
tural rules or making other structural changes in LK , the original sequent calculus
for classical logic.
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1 Introduction

Substructural logics originated in the work of Gentzen [40] (see also [85]), namely,
in the formalization of intuitionistic logic as the sequent calculus LJ . The classi-
cal sequent calculus LK yields LJ with the restriction that there be at most one
formula in the succedent. This restriction also renders two of the right structural
rules superfluous. In the late 1950s, Lambek introduced a calculus, which omitted
all the structural rules from LK , and then, in [56], he treated the comma as a binary
operation with no special properties assumed.

Of course, various changes to LK may change the properties of the logical con-
nectives that can be introduced, plus previously interchangeable rules may turn out
not to be equipotent. Substructural logics, in a limited sense, could mean the inves-
tigation of logical systems that are obtained from LK via the introduction of some
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structural restrictions. However, we adopt a more encompassing view here, which
includes into the area of substructural logics all those logics that have a sequent
calculus-style formalization that is not merely an extension of LK with new axioms
or rules. [29] is a representative collection of papers that was published after the first
conference on substructural logics in 1990.

I will emphasize two main themes that intertwine in the investigations of substruc-
tural logics, in the last 40 years or even longer. One of these is the connection between
combinatory logic and sequent calculi. The other is the goal of defining semantics
(preferably, set-theoretic semantics) for a wide range of logics in a systematic way
— rather than crafting somewhat ad hoc interpretations each time.

Substructural logics have produced a lot of interesting results in the last couple of
decades, and there remain interesting unsolved, and yet undiscovered problems. In a
short overview, there is no space to provide complete proofs or even proof sketches.
Also, the list of references cannot be exhaustive; however, it is intended to provide
some pointers — including for topics that are not touched upon in any detail in the
text.

2 New Substructural Logics

The major relevance logics (R, E and T ) had been formulated in the 1950s and
1960s. However, the so-called minimal relevance logic, B was not introduced until
1972 in [64] (and reshaped in [81]). What the logic B and its fragments lack in
complexity, they make up in interesting connections to type assignment systems and
to structurally free logics.

A logic that attracted much attention in the 1990s is linear logic, LL, that was
introduced in [42]. It was advertised as the constructivization of logic carried all the
way through. However, the main influences of this logic were a surge of interest in
logics (and their set-theoretical semantics) that cannot prove the distributivity of con-
junction (∧) and disjunction (∨) and an interest in exploring structural rules that are
applicable only to formulas of a particular shape. The first paper on LL used a pecu-
liar notation, and its terminology is often quite original. More standard presentations,
including axiomatic, natural deduction and two-sided sequent calculi may be found
in [4] and [87].

Linear logic may be viewed as a combination of logics: its multiplicative part
(minus the zero-ary constants) is BCI logic, which was singled out already in [57];
the algebra of the additive part is a non-distributive lattice, and the exponentials are
modalities. The idea of combining modal logics is well-known — this is how Prior
created the first tense logics, for instance. There had been a sustained interest in
adding necessity to R — with the idea of giving an alternative presentation for E,
the logic of entailment (or at least for some of its fragments). Indeed, E and LL

have a strong similarity in that they both restrict the types of arguments for certain
combinators. The restrictions in E are expressible by improper combinators, which
require certain arguments to have functional types; LL, on the other hand, requires
the addition of new sorts of combinators, because the modalities cannot be captured
as functional types.
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Additions of modalities to the basic relevance logic are studied in [82]. Further
combinations of certain relevance logics and intuitionistic negation and intuitionistic
implication are investigated, respectively, in [76] and [43], for example.

Fragments are, perhaps, neither new logics, nor separate logics (in some sense).
Nonetheless, sometimes they are isolated, investigated and extended later than the
original logics are — as illustrated by [24], which deals with (extensions of)
fragments of R-mingle.

3 Sequent and Display Calculi

Given that substructural logics originated from modifications of LK , it may be sur-
prising at first that not all substructural logics had sequent calculus formulations in
the early 1960s.

The implicational fragments of E and R had been formulated as sequent calculi
long ago, and Kripke’s decision procedure for them in [52] relied on those sequent
calculi. The addition of negation was straightforward as in [7], however, the addition
of ∧ and ∨ turned out to be challenging.

The difficulty, to put it quickly, is that the proof of the distributivity of ∧ over
∨ (e.g., in LK) requires not only permutation and contraction, but also thinning,
which is not an acceptable structural rule from the point of view of the motivations
of relevance logics — see [33] for more details. The left thinning rule in LK yields
(1), the so called “negative paradox of material implication” (⊃), and with a left
permutation step added, it gives (2), the “positive paradox” too.

(1) ϕ ⊃ ψ ⊃ ψ (2) ϕ ⊃ ψ ⊃ ϕ

The difficulties arising in a sequent calculus formulation of a logic that contains
distributive conjunction and disjunction, may be compared to the easy sequent cal-
culus presentation of linear logic and of some variations on the associative Lambek
calculus, where the distributivity of ∧ and ∨ is not provable. The latter logics have
been studied in [69] as well as in [75] and in [71] among others.

The core insight that is necessary to obtain a sequent calculus presentation of pos-
itive relevance logics, is the split of the structural connective of a sequent calculus
along the lines where the families of operations are divided. Classical propositional
logic in its common presentations is highly redundant in the light of functional com-
pleteness results, but in R, for instance, the addition of ∧ and ∨ (using usual notation)
is not superfluous when → (implication) and ∼ (negation) are the only connectives.
Of course, it should also be ensured that the structural connectives (or the structures
that they generate from formulas and structures) interact appropriately.

Dunn in [30] defined LR+ and introduced a new structural connective, denoted
by ; , which may be thought to correspond to ◦ (intensional conjunction) in a simi-
lar way as , corresponds to ∧ (extensional conjunction). The two kinds of structural
connectives generate intensional and extensional structures, respectively. To ensure
the appropriate interaction of the two kinds of structures, the empty intensional struc-
ture has to be handled carefully, especially, in applications of the cut rule. This is
facilitated by the inclusion of t (intensional truth) into the logic.
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LK — unlike LJ — is a calculus with multiple right-hand sides. Several formulas
on the right-hand side of the turnstile are used in handling negation as well as in a
proof of the classical theorem ((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ (which is often used as an axiom).
The analogue of this formula is not a theorem of R→, and in the absence of negation,
the calculus may be formulated so that every sequence contains exactly one formula
on the right.

R allows the permutation as well as the regrouping of the premises. In other words,
◦ is a commutative and associative operation in R. Neither E nor T contains a sim-
ilar semi-group operation. In this respect, these logics are somewhat similar to the
non-associative Lambek calculus, in which the only structural connective is a binary
operation that is not assumed to be either associative or commutative. The need for
t in the sequent calculi for the positive fragments of B, T and E used to cause a
difficulty. The cut theorem, following Gentzen, is usually proved by double induc-
tion for a single or a multiple cut. (For relevance logics, the latter cannot go as far
as mix does, because there is no way to reinstate missing occurrences of a formula
by applications of the thinning rule.) Unfortunately, the double inductive argument is
not sufficient to prove the cut theorem when the constant t is included.

Connections between structural rules in sequent calculi and combinators were
noticed by Curry (mentioned in [28]), who also invented the theory of functionality.
The connection was made precise in [38], where structurally free logics, the LC sys-
tems were introduced. Function application is neither associative nor commutative;
accordingly, LC contains a binary structural connective ; . Additionally, LC moves
beyond type-assignment systems in that it treats combinators as formulas, and they
appear not simply as labels on rules, which may as well be omitted from a proof.
Combinators can be introduced in two ways, either by the identity axiom or by rules
that are reminiscent of structural rules, but insert the appropriate combinator into the
lower sequent. That is, combinatory rules are like structural rules, but their appli-
cation leaves an indelible mark in the sequent itself. To give an example, the rule
for the combinator C (the three-place regular permutator) and for Y (the fixed point
combinator) are as follows.

�[�1; �2; �3] � ϕ

�[C; �1; �3; �2] � ϕ
(C �)

�[�; (Y; �)] � ϕ

�[Y; �] � ϕ
(Y �)

The axioms for these combinators are Cxyz � xzy and Yx � x(Yx). The latter com-
binator is obviously not proper, but it is definable from a combinatorially complete
basis — even if that comprises proper combinators only. Y was not included in the
original LC systems in [38], where the admissibility of cut was proved. If (Y �) is
included, then the usual double inductive proof for multiple cut cannot be carried out.
Nonetheless, it is possible to prove by induction, as in [10], that applications of the
cut rule, in which the cut formula is Y, are directly eliminable. t with respect to its
effect is more like the identity combinator I (perhaps, collapsed with the dual iden-
tity combinator). However, from a proof-theoretic point of view, the behavior of t is
quite similar to that of Y.

Structurally free logics are interesting in their own right, but they also inspired
some of the new sequent calculi for the implicational and for the positive fragments
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of B, T and E. These are presented in [16, Ch. 2], [11] and [12], respectively. The
implicational fragment of ticket entailment with intensional truth, T t→ may be for-
malized as a sequent calculus by the identity axiom ϕ � ϕ and the multiplicative
implication introduction rules

� � ϕ �[ψ] � χ

�[ϕ → ψ; �] � χ
(→�)

�; ϕ � ψ

� � ϕ → ψ
(� →)

together with structural rules, three of which are similar to rules for the combinators
B, B′ and W,

�[�1; (�2; �3)] � ϕ

�[�1; �2; �3] � ϕ
(B �)

�[�2; (�1; �3)] � ϕ

�[�1; �2; �3] � ϕ
(B′ �)

�[�1; �2; �2] � ϕ

�[�1; �2] � ϕ
(W �)

and two of which are specific to t

�[�] � ϕ

�[ t; �] � ϕ
(KIt �)

�[ t; t ] � ϕ

�[ t ] � ϕ
(Mt �).

A remarkable feature of this as well as of the aforementioned sequent calculi is that
they all admit the cut rule, and the cut theorem has been proved rigorously, utilizing
multiple inductions.

The sequent calculi LT t→ and LEt→ treat the structural connective ; as a groupoid
operation, which leads to the idea that a proof of a theorem of T→ or E→ in these
sequent calculi must allow the extraction of a combinatory inhabitant for the theorem.
Combinatory type-assignment systems are usually formulated in natural deduction-
style, which are quite close to axiomatic proof systems with a strict notion of proofs
(see, e.g., the traversing proofs in [11]). Sequent calculi retain the context at each
step in a proof, thereby, allowing freedom as to which formulas to reason with. The
constant presence of context makes the inhabitant extraction more challenging than
that from a traversing proof. Extraction algorithms are defined for classes of proofs
in LT t→ and LEt→ in [21] and [14, Ch. 9], respectively.

Display logic was introduced in [5] and applied to LL in [6]. Display calculi are
rich in structural connectives — typically containing more than one family of them
— and they place an emphasis on the relationships between these connectives. The
name of these systems alludes to the possibility of displaying formulas on one or
the other side of the turnstile without any surrounding formulas or structures. This
facilitates the proof of the admissibility of the display cut rule.

Residuation, a concept that originated in lattice theory, is a conspicuous rela-
tionship between certain operations that is suitable for “moving things around.” In
LK , ⊃ is a residual of ∧. If a new structural connective would be added to LK ,
let us say, denoted by �, then �, ϕ � � could perhaps be treated as equivalent
to � � ϕ � �, which would allow moving formulas to the right. Similarly, the

⊃ connective is a residual of ∨, that is, of , on the right-hand side of � . Adding
a structural connective emulating 
⊃ would enable moving formulas to the left.
The display logic framework has been applied to other logics, for instance, in [74]
and [45].
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The structural connectives on the two sides of the turnstile may have the same
shape (like , in LK), but they are distinct structural connectives. The cut rule in LK

can be used as follows.

This is a very simple (classical) example of the phenomenon that was called
hemidistributivity in [37]. Obviously, in LK where , is associated to ∧ or to ∨, respec-
tively, and all structural rules are available, this cut is as eliminable as any other.
The general case, however, is more subtle as shown in [18], where a new method is
introduced for the proof of the cut theorem in symmetric generalized Galois logics.
The semantical analysis of the same logics using set-theoretical representations (and
expanding previous results in gaggle theory, including those in [16]) are in [17].

4 Semantics for Substructural Logics

The first set-theoretical semantics for a substructural logic was introduced in the
1960s by Kripke in [54]. Intuitionistic logic has well-known connections to the nor-
mal modal logic S4, and their semantics utilize a pre-order (or a partial order) on a set
of situations and on a set of possible worlds. From the more general viewpoint pro-
vided by gaggle theory, that was introduced by Dunn in [34], it is a coincidence that
the intuitionistic implication connective can be modeled from a binary accessibility
relation (as shown in [36]).

Relevance logics are philosophically well-motivated. Notwithstanding, the meta-
theory of these logics posed new and often mathematically more difficult problems
than those encountered in the meta-theory of classical logic. The set-theoretical
semantics of classical logic along the lines of [83] and [47] can be viewed to be con-
tinued in the representation theory for Boolean algebras with operators in [48] and
[49], as well as in the standard semantics for normal modal logics in [53] and [55].

A set-theoretical semantics was defined for the semi-relevant logic R-mingle
(RM) in [31] and [32]. R-mingle is atypical within the relevant family, because Sug-
ihara matrices, which are linearly ordered, are models of propositional RM . Once
again, it is a coincidence that the accessibility relation that enters into the modeling
of the implicational connective can be chosen to be an order relation.

The major relevance logics, E, R and T have less similarity to classical logic than
RM has. The positive fragments of these logics were given a semantics in [79], which
was accompanied by two other papers, [78] and [80]. R, E and T may be thought of
as logics obtained by successively excluding certain axioms from a suitably chosen
axiomatization of classical logic. (Of course, this means that we overlook that all
these are different logics with their own languages.)

The semantics for the modal logics K , T , B, S4 and S5 showed that some axioms
necessitate that the accessibility relation possesses certain properties. For instance,
�ϕ ⊃ ϕ requires the accessibility relation to be reflexive; on the other hand, the
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axiom permits the canonical accessibility relation to be proved reflexive. (In the
modal logic literature, the investigations into how modal axioms and conditions on
the accessibility relation are related has become to be known as correspondence the-
ory.) Correspondences between axioms in relevance logics and conditions on the
ternary accessibility relation were considered in [64]. Furthermore, it was realized
that some of those conditions have a strong resemblance to combinatory reduction
axioms. Mares and Meyer in [61] also emphasize such connections between rel-
evance and combinatory logics — in view of later developments of connections
between relevance logics and extended theories of type assignment.

It had been known for a long time that R’s implicational fragment, R→, which
was introduced by Church in [26] (with another label), comprises the principal type
schemas for the combinators B, W, C and I. Similarly, T→ corresponds to B, B′, W
and I (or B, B′, S′ and I, if contraction is replaced by a form of the distributivity
of → over →). E→ is more complicated, because the restricted axioms (such as
restricted permutation, restricted conditioned modus ponens and restricted assertion)
require that an argument of a combinator is typed with a non-atomic simple type.
As a result the combinators that have these axioms as their types, which figure into
formalizations of E→, turn out not to be proper. For example, restricted assertion,
(ϕ → ψ) → ((ϕ → ψ) → χ) → χ corresponds to a combinator, denoted by 1 in
[11], the axiom of which, for example, can be described by 1xy � y(B′Ix).

Operators on Boolean algebras, as defined in [48], are everywhere monotone
operations, which is not a serious limitation on the operations that can be consid-
ered, because of the interplay between negation and the other operations. Roughly
speaking, an operation that is anti-tone in some argument places can be equivalently
replaced by an everywhere monotone one. Ultrafilters of Boolean algebras are prime,
but in the semantics for R, or for the other major relevance logics, the points are prime
filters, which are, in general, not absolutely maximal. At the same time, the (orig-
inal) De Morgan negation of relevance logics does not support similar definability
results. Thus, finding a suitable modeling of → from a ternary accessibility relation
was important, in particular, because relevance logics focus on relevant implication
and entailments.

Some substructural logics differ from the major relevance logics in that ∧ and ∨
do not distribute over each other. Examples include the non-distributive version of R,
LR, which was introduced in the process of investigations into the decidability of R,
and linear logic, LL.

Two generalizations of Stone’s representation for Boolean algebras to distributive
lattices are given in [84] and in [73], the latter of which has been more influential
and applicable in the semantics of substructural logics. A reason for this might be
that the addition of a partial order to a topology is unproblematic when the canoni-
cal frame comprises theories, which can be ordered straightforwardly by the subset
relation.

The representation theory for (general) lattices, that is, for lattices that are not
required to be distributive or even modular, is more “chaotic.” Of course, each pro-
posed representation supports the respective theorems, however, it is less clear which
of them (if any) should be the favored one, when additions of further operations,
relative simplicity and other similar aspects are taken into account too.
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An easy way to generalize prime theories (or prime filters) is to drop primeness.
(Filters and theories as well as ideals and co-theories may be used interchangeably,
because they are “essentially the same” in a mathematical sense, though the algebraic
objects are a type-level higher.) Primeness is very useful in the modeling of ∨, how-
ever, in a lattice that is not distributive there may be too few prime filters for them to
be useful. To put it informally, even if ∧ and ∨ do not distribute over each other, they
are still connectives in the logic; therefore, they need to be modeled somehow.

Urquhart in [88] introduced a doubly ordered topological space. A pair of Galois
functions, l and r are defined from the two pre-orders, �1 and �2, as in (1) and (2).

(1) l(X) = { y : ∀x (y �1 x ⇒ x /∈ X) }
(2) r(X) = { y : ∀x (y �2 x ⇒ x /∈ X) }

The sets that carry the model are the Galois-closed sets. The topological space
is compact and disconnected with respect to both pre-orders, which means that it
is totally order disconnected with respect to both pre-orders where the separating
set is Galois-closed, and both that set and its l image are closed in the topology.
These doubly ordered topological spaces have to satisfy two further conditions, one
of which is connected to the intricacies of modeling ∨ on Galois-closed sets.

The usual operations that stand in for ∧ and ∨ in a model comprising sets are inter-
section and union (or vice versa). The choice of prime theories ensures that unions of
sets of prime theories, that are propositions, represent disjunctions of propositions,
because non-prime theories do not need to be added in — they are all excluded from
the set of situations by definition. On the other hand, if a representation contains only
one sort of objects, then no matter what those are, the two set-theoretical operations,
∩ and ∪ cannot be used at once to represent ∧ and ∨, because they distribute over
each other.

An idea that goes back at least to [23] is to use a pair of Galois functions, let us say
f and g. Then the lattice operation meet can be mapped into intersection, whereas
the other operation, join is mapped into the closure of union. A bit more formally
and more generally, let us take a pair of ordered sets 〈X, ≤X〉 and 〈Y, ≤Y 〉, that are
linked by a pair of order inverting functions g : X −→ Y and f : Y −→ X, where
(G) holds.

(G) x ≤X f (y) iff y ≤Y g(x)

Taking the set of Galois-closed elements in X, the closure of Z, where Z ⊆ X is the
set of closed elements that are closures of elements that belong to Z. Then, a lattice
of the closed subsets of X can be constructed by taking intersection for meet, and
f (gZ1 ∩gZ2) for join. The latter operation turns out to be the closure of the union of
Z1 and Z2. Other topological representations of lattices, which utilize Galois-closed
sets in some way can be found in [46] (Stone spaces), in [16, Ch. 9] (inclusion spaces
and centered spaces).

The appropriate doubly ordered topological space of a lattice in [88] is built out
of certain pairs of filters and ideals, namely, of maximally disjoint filter–ideal pairs.
That is, the filter is maximal (in the ⊆ ordering on filters) with respect to not inter-
secting the ideal, and the other way around for the ideal. It is not difficult to prove that
the elements of these pairs are join-irreducible filters and meet-irreducible ideals.
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Philosophically speaking, such a pair can be thought to contain both positive and
negative information about a situation — without the information being contradic-
tory. Moreover, there is no similar pair that could contain more information, either
from the point of view of the theory or from the point of view of the co-theory.

Given this characterization of the situations, a natural question to ask is whether
the maximality is a necessary condition. It is not difficult to prove that maximally
disjoint filter–ideal pairs do not need to “exhaust” the lattice, that is, there can be ele-
ments in a lattice of which no information is available, and because of the maximality,
it is clear that the pairs cannot be “improved” in this respect. Maximality, indeed,
may be omitted without the loss of the representation result. It is also worth point-
ing out that if the lattice is distributive, then the maximally disjoint filter–ideal pairs
provide complete information about a situation; more technically speaking, all join-
irreducible filters are prime filters and all meet-irreducible ideals are prime ideals.
The converse inclusions are always true, which means that the pairs are embellished
versions of prime filters, when the lattice is distributive.

Join-irreducible filters are usually defined by saying that they are not intersections
of two other filters. Of course, this is a perfectly good definition, however, it appeals
to objects (i.e., other filters), that are not given or determined by the join-irreducible
filter itself. Prime filters, on the other hand, can be defined without appealing to
anything outside of the filter. This distinction may be philosophically interesting, and
it may explain why filters without qualifiers appear to be an easier generalization of
the notion of prime filters.

Dunn in [34] introduced gaggle theory, which provides a framework for semantics
for a wide range of logics — as shown in [35, 36] and [16]. Gaggles (i.e., generalized
Galois logics or ggl’s) are generalizations of Boolean algebras with operators. ♦ —
in the standard semantics of normal modal logics — is modeled using the existential
image of a binary accessibility relation, whereas ◦ — in the standard semantics of
relevance logics — is the existential image of a ternary accessibility relation, as in
(3). Then, the interpretation of →, which is a residual of ◦, is defined in a model by
a universally quantified formula, as in (4).

(3) A ◦ B = { z : ∃x ∃y (R1xyz ∧ x ∈ A ∧ y ∈ B) }
(4) A → B = { x : ∀y ∀z ((R2xyz ∧ y ∈ A) ⇒ z ∈ B) }

The properties of the connectives can be seen to determine their modeling in the
framework provided by gaggle theory. It is well-known that ♦ and � in normal modal
logics can be modeled by one accessibility relation, which should not be surprising,
given the interdefinability of these connectives. An important insight of gaggle theory
is that certain connectives can be modeled by the same accessibility relation even
if one cannot be expressed in terms of the others. That is, interdefinability is not a
necessary condition for a shared accessibility relation. For example, ◦ and →, in the
positive fragments of relevance logics, can be modeled from one ternary accessibility
relation (together with ← in B+ and T+). Indeed, R1 and R2 in (3) and (4) above
are the same relation. A key concept is abstract residuation — or yet more generally,
colligation — between operations. These relationships join operations into families,
and yield further properties for the operations such as their distribution and tonicity
types, depending on context.
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The concrete modeling of a (general) lattice impacts how ◦, → and other inten-
sional operations can be modeled. If the model is based on Galois-closed sets, then
it is natural to define each operation by a universal formula, because gZ1 ∩ gZ2 is
the intersection of certain sets. This is how a semantics for LL, and for several other
logics is defined in [1]. Despite appearances, this semantics generalizes the seman-
tics for relevance logics, because in a distributive lattice the union of upward closed
sets of prime filters could be replaced equivalently by the intersection of downward
closed sets of prime ideals. It is fortunate that either prime theories or prime co-
theories suffice, and traditionally, the former are in the center of attention. It has been
pointed out in [1] that maximality could be omitted from maximally disjoint filter–
ideal pairs. A concrete example of a semantics based on disjoint filter–ideal pairs for
punctual logic (which was introduced in [6]) may be found in [16, Ch. 3].

Galois-closed sets can be created from a polarity, in the sense of [23], on a sin-
gle partially ordered set. The interest in this idea is that the set of filters is partially
ordered by ⊆ and the Galois-closed sets can be independently characterized as the
upward closed sets that have their intersection as their element. A semantics for
the minimal substructural logic LS was defined based on this idea in [15]. Further
applications of this idea may be found in [16, Ch. 3 and Ch. 9].

The original LC calculus in [38] did not contain ∧ or ∨, which makes the defini-
tion of a semantics simpler in the sense that there are plenty of theories (i.e., cones)
available. At the same time, these theories do not have some desirable properties.
Filters, which exist if there is conjunction in the language, can be generalized to
cones (i.e., increasing sets), however, an intermediate step is to consider downward
directed upward closed sets. Directed sets are also important in theories of com-
putation, hence, it is perhaps, not surprising that they turned out to be the suitable
situations for the semantics of structurally free logics, where combinators are essen-
tial. A complete combinatory basis has to contain a combinator which produces at
least two copies of at least one of its arguments. S (with axiom Sxyz � xz(yz))
and W (with axiom Wxy � xyy) are, perhaps, the best known duplicators; and the
already mentioned S′ (with axiom S′xyz � yz(xz)) is another example. A semantics
for LC was given in [38] using downward directed cones.

Combinators are constants, and this likens them to t and its cousins, T , f and F .
By and large, it is clear that these distinguished elements have to be modeled by sub-
sets of situations. However, the specific properties of these constants are revealed by
their interaction with each other or with the (non-zero-ary) connectives. For example,
if a logic is not prime (when ∨ is its connective), then there can be no single situation
that generates the modeling of t ; or if F is in the language of LC, then ◦ cannot be
a normal operation provided that cancellators are not excluded. Gaggle theory pro-
vides the conceptual framework to deal with such and other questions too, some of
which are investigated in detail in [16].

5 Decidability and Complexity

Views concerning the desirability of a logic being decidable vary. One could, per-
haps, say that classical propositional logic is so easy to learn, because it is decidable.



Substructural Logics 619

However, even in that case, the best decision procedure is thought to be unfeasible,
because it is a co-NP -complete problem. On the other hand, it may be reasonable to
claim that a sufficiently refined logic is likely to be (or outright must be) undecidable
already at the propositional level — unlike in classical logic, where undecidability
shows up only at the first-order level.

The decidability of E→ and R→ was resolved in [52] soon after those logics were
singled out. The decidability results for the negation–implication fragments followed
quickly. This might have generated a certain expectation as to the decidability of R

and E (and perhaps, of T too) to be solved easily. Alas, the problem turned out to
be difficult: many experts in relevance logics tried to solve it, and the only proof of
the undecidability that exists so far (see [89] and [92]) is far more difficult to fol-
low than a proof of the undecidability of classical first-order logic. We only mention
here that the word problem of a semigroup is reduced to provability in an R the-
ory. Then after further considerations, the undecidability follows for E and T too.
Urquhart in [89] (see also [3, §65]) shows that the deducibility problem all the way
from T W+ “upward” (to the logic determined by the models constructed in the proof)
is undecidable.

The logic of ticket entailment occasionally gets less attention that E and R do.
T is a well-motivated logic, in which the idea about the distinction between laws
and facts, and their respective roles in reasoning are captured. This is emphasized in
the Fitch-style natural deduction formulation of T→, where laws must precede facts.
Despite the elegance of T→, its decidability turned out to be one of the last decid-
ability problems in the area of relevance logics among those that were conceived at
about the same time when R→ and E→ were shown to be decidable. The decidability
problem of T→ was open for over 50 years.

Bimbó and Dunn in [19] and [20] present a solution that utilizes Kripke’s decid-

ability proof for R→ together with the sequent calculus , which is an extension
of LT t→ from [11]. The two new rules are “purely combinatorial,” in the sense that
they do not introduce a new connective, though one of them introduces t , for which
there is already an introduction rule in LT t→.

�[�] � ϕ

�[�; t ] � ϕ
(Kt �)

�[�; t ] � ϕ

�[ t; �] � ϕ
(Tt �)

T is definable as CI. In the labels for the rules, the combinators are subscripted with
t to indicate that the rules are not applicable to arbitrary structures; rather one of
them, in a specific place, must be the intensional truth constant. This calculus also
has the cut property — despite the latter two rules imposing limitations on the shape
of structures to which they are applicable.

The rule (Kt �) introduces t as if it were a dual identity combinator. Of course,
if there is a left and a right identity element for a binary connective, then the “two”
identities are the same. Looking at the addition of the two rules algebraically, they
make t into a left-right lower-upper identity, and this turns the logic of ticket entail-

ment into the logic of relevant implication. That is, the calculus captures Rt→,
which makes this calculus suitable to re-create cut-free irredundant proofs of Rt→ and
T t→ theorems.
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The multiplicative–additive fragment of linear logic (or MALL) had been known
to be decidable for a long time, because its decidability is a consequence of the decid-
ability of lattice-R (LR), which was proved in [62]. Linear logic’s unique feature
is the modalization of thinning and contraction. Perhaps, because of the interaction
between the exponentials and the structural rules, the decidability of MELL, the
multiplicative–exponential fragment remained unresolved for nearly 30 years. This
logic was proved decidable in [8] using a suitable modification of the Curry–Kripke
proof technique (which was used to prove R→ and E→ decidable). The latter is based
on the insight that the possibility of contraction is created by applications of rules;
hence, the contraction rule may be forfeited, if a limited amount of contraction is part
of the operational rules. The decidability of full propositional linear logic has been
proved in [22]. Lambek calculus with contraction is also decidable, and it has been
proved in [14, Ch. 9].

Complexity theory concerns computational problems in general, however, a sem-
inal result about NP -completeness (in [27]) concerns the satisfiability problem of
a logic, namely, of classical propositional logic. The simplicity of classical logic
that I stated earlier is vindicated by several results about the complexity of substruc-
tural logics (that are decidable) compared to the complexity of classical propositional
logic.

Urquhart in [90] and [91] proved upper and lower bounds for some decidable
relevance logics. Kripke’s decision procedure for R→ is elegant, but its space com-
plexity is staggering: it requires an exponential amount of space in the length of
inputs. [90] also proved that the size of the search tree resulting from an applica-
tion of the R→ decision procedure is primitive recursive in the Ackermann function.
The search tree comprises “backward proof” attempts in the sequent calculus for
R→ in which the contraction rule is omitted in favor of a left-introduction rule
for → that builds in a sufficient amount of contraction. (Detailed presentations of
versions of this calculus may be found in [33] and [19].) The same lower bound
applies to the conjunction–implication fragments of R, and of logics between T→∧
and R→∧.

A decision procedure for LR was implemented as the program Kripke as
described in [86]. Urquhart [91] showed that there is no primitive recursive decision
procedure for LR+, the positive fragment of LR. The same bound applies to LR,
and to the implication–conjunction fragments of logics between T and R. The upper
bound of the complexity of the decision procedure for LR is proved to be primitive
recursive in the Ackermann function.

6 Some Other Topics

Sequent calculi are preeminently useful to prove conservative extension results —
provided that the calculus is well-behaved, that is, the cut theorem has been proved.
The sequent calculus formalizations of various fragments of relevance logics that we
already mentioned show that those logics are put together in a reasonable way, and
with suitable translations into axiomatic and natural deduction systems, prove similar
results for the latter kinds of calculi.
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Booelan algebras are extremely well-studied and well-understood structures
nowadays. Although the main relevance logics have ∧ and ∨ distributing over each
other, De Morgan negation is not a complementation, and the major relevance logics
do not algebraize into a Boolean algebra with operations. The addition of a “clas-
sical” negation to relevance logics, especially to R, was thought to be an exciting
philosophical question.

The papers [65] and [66] show that a “classical” negation, denoted by ¬, can be
added to R+ without the resulting logic becoming a notational variant of classical
logic. Furthermore, the original negation of R (∼) can be defined if a unary con-
nective ∗ is added to the language, that is, ∼ ϕ is ¬∗ϕ. The notation for the new
connective is similar to the unary operation in the set-theoretical semantics of rele-
vance logics (which enters into the interpretation of formulas of the form ∼ ϕ), and
the interpretation of ∗ϕ in the situation x goes via the interpretation of ϕ at the situa-
tion x∗. Similar conservativity results were obtained for some other relevance logics
including B in [63].

Mares in [59] proved that the addition of ¬ to E is not conservative. The extension
CE is obtained by adding formulas of the form ϕ → ψ to E, where ¬ϕ ∨ ψ is an
instance of a classical tautology. � is defined as usual in E, and then it is proved that
the modal K axiom, in the form ∼ �(∼ p∨q)∨ ∼ �p∨�q (for some propositional
variables p and q) in not an E theorem, whereas ∼ �(∼ ϕ ∨ ψ)∨ ∼ �ϕ ∨ �ψ is a
theorem of CE, because the normal modal logic S4 can be embedded into CE.

Lastly, I mention that there seems to be a renewed interest in the Lambek cal-
culi and related systems. Both the associative and the non-associative Lambek calculi
are decidable leading to the question of their complexity, as in [72]. Linguists, for
instance in [68], introduced some new extensions of the basic calculi to deal with a
range of natural language phenomena such as VP ellipsis, pied-piping and gapping.
[67] dualizes the Lambek calculus, and includes certain distribution like struc-
tural rules, which allows the modeling of limited permutations in natural languages
without having the full power of a permutation rule in the calculus.1

Acknowledgments I am grateful to J. Michael Dunn for helpful comments on this paper. Also, I would
like to thank A. Tedder for some English suggestions.

References

1. Allwein, G., & Dunn, J.M. (1993). Kripke models for linear logic. Journal of Symbolic Logic, 58,
514–545.

2. Anderson, A.R., & Belnap, N.D. (1975). Entailment: The logic of relevance and necessity, Vol. I.
Princeton: Princeton University Press.

3. Anderson, A.R., Belnap, N.D., & Dunn, J.M. (1992). Entailment: The logic of relevance and necessity,
Vol. II. Princeton: Princeton University Press.

4. Avron, A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57,
161–184.

1This paper was originally written in 2012 for the 40th anniversary issue of the Journal of Philosophical
Logic; I only had time to make some small revisions and additions in October 2014.



622 K. Bimbó
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17. Bimbó, K., & Dunn, J.M. (2009). Symmetric generalized Galois logics. Logica Universalis, 3, 125–
152.
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