
J Philos Logic (2015) 44:203–236
DOI 10.1007/s10992-014-9334-6

Representing and Reasoning about Game Strategies

Dongmo Zhang · Michael Thielscher

Received: 9 July 2012 / Accepted: 31 March 2014 / Published online: 21 October 2014
© Springer Science+Business Media Dordrecht 2014

Abstract As a contribution to the challenge of building game-playing AI systems,
we develop and analyse a formal language for representing and reasoning about
strategies. Our logical language builds on the existing general Game Description Lan-
guage (GDL) and extends it by a standard modality for linear time along with two
dual connectives to express preferences when combining strategies. The semantics of
the language is provided by a standard state-transition model. As such, problems that
require reasoning about games can be solved by the standard methods for reason-
ing about actions and change. We also endow the language with a specific semantics
by which strategy formulas are understood as move recommendations for a player.
To illustrate how our formalism supports automated reasoning about strategies, we
demonstrate two example methods of implementation: first, we formalise the seman-
tic interpretation of our language in conjunction with game rules and strategy rules
in the Situation Calculus; second, we show how the reasoning problem can be solved
with Answer Set Programming.

Keywords Strategic reasoning · Reasoning about actions · General game playing

1 Introduction

Strategic reasoning has been a major research theme in game theory. However, “much
of game theory is about the question whether strategic equilibria exist”, as Johan van
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Benthem points out, “but there are hardly any explicit languages for defining, com-
paring, or combining strategies”[22]. The intrinsic difficulty of modelling strategic
reasoning is that reasoning about strategies is not purely deductive but combines tem-
poral reasoning, counterfactual reasoning, reasoning about actions and preferences,
and multi-agent interaction. If any logic is used, such a logic must be able to support
these reasoning mechanisms.

In recent years a number of specific logical formalisms have been proposed for
specifying strategic behaviour of agents in multi-agent systems [3, 11, 13, 14, 24].
These frameworks offer modelling facilities and inference mechanisms for specify-
ing strategy reasoning in multi-agent systems. At the same time, the conceptually
simple, general Game Description Language (GDL) has been developed as a practi-
cal language for encoding the rules of arbitrary games so that they can be understood
by general game-playing systems, whose task is to learn to play unknown games
without human intervention [6, 20].

In this paper, we explore the middle ground between pure game specification lan-
guages like GDL on the one hand, and existing expressive formalisms for strategic
reasoning on the other hand. Our main contributions can be summarised as follows:

1. We show how a simple extension of GDL using a standard modality for lin-
ear time suffices to describe strategies in addition to the mere rules of a game,
and we present a specific semantics by which formulas in this language can be
understood as move recommendations for a player.

2. We enrich our language by two preference operators, respectively called pri-
oritised disjunction and prioritised conjunction, and show how to use them to
describe strategies that are complete (i.e., provide a move recommendation in
every state) and deterministic (i.e., move recommendations are always unique).

3. We demonstrate two example methods of implementation: a formalisation of
the semantic interpretation of our language in the Situation Calculus [16] and a
translation of a subset of our language into Answer Set Programming [5].

These results are accompanied by a thorough mathematical analysis of the language
and its semantics, in particular with regard to our novel preference operators. The
advantage of our framework is to allow for concise but complete representations of
games and strategic behaviour of agents so that the approach promises to be prac-
tically useful for the design of game-playing agents. We will use a simple game
scenario as a running example to explain the basic concepts and to demonstrate how
our language can be used to write strategies for game-playing agents. Our results lay
the foundations for a variety of applications of automated reasoning about strategies
in AI systems, including the following:

– A general game player can be fed not only with the mere rules of a new game
but also with declarative descriptions of tailor-made strategies.

– General game players can use a high-level, declarative representation of their
strategies as the basis for learning, maintaining, and reasoning about them.

– Players can also use the language and its inference mechanism to represent,
revise and reason with their beliefs about their opponents’ strategies.
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The remainder of the paper proceeds as follows. In Section 2 we will begin our
technical exposition with the definition of a simple state transition semantics for
games. In Section 3, we will then define the semantic concept of a strategy within this
framework, and in Section 4 we will develop a formal game specification language
based on GDL for describing both game rules and strategies in a concise manner. In
Section 5, we will introduce the two preference connectives and show how to use
these to combine strategies into more complex ones. In Section 6, we demonstrate
how to verify if a strategy could bring out an expected outcome with the model-based
approach. In Section 7, we will encode the semantic interpretation of our language
in conjunction with game rules and strategy rules in the Situation Calculus and also
illustrate how the reasoning problem can be solved with Answer Set Programming.
We conclude with a discussion of related work.

2 State Transition Games

To set the stage for our work, we first define formally a general state transition model
for games.

Definition 1 A state transition game G is a tuple (N, W,A, w̄, t, l, u, g), where

1. N is a non-empty finite set of players;
2. W is a non-empty set of states (possible worlds);
3. A = ⋃

i∈N Ai , where Ai is a non-empty finite set of actions for player i ∈ N ;
4. w̄ ∈ W , representing the initial state;
5. l ⊆ W × A is a binary legality relation, describing what actions are allowed in

which states;
6. u : A × W �→ W is an update function, specifying the state transitions;
7. g : N �→ 2W is a goal function, specifying the winning states of each agent;
8. t ⊆ W , representing the terminal states.

To keep our formalism as simple as possible, we assume that all actions are
performed asynchronously, each by a single player (although games need not be
turn-taking). We also assume that different agents have different actions, that is,
Ai ∩ Aj = ∅ for any i �= j , but of course two actions may have the same
effects.

A sequence w0
a0→ w1

a1→ · · · am−1→ wm is called a complete path if

1. w0 = w̄, wm ∈ t , and wj ∈ W for all 0 < j < m;
2. aj ∈ A for all 0 ≤ j < m;
3. (wj , aj ) ∈ l for all 0 ≤ j < m; and
4. u(aj , wj ) = wj+1 for all 0 ≤ j < m.

Any segment wk
ak→ wk+1

ak+1→ · · · al−1→ wl , where k ≤ l, of a complete
path is called a reachable path. We let P(G) denote all reachable paths in a state
transition game G. Note that a single state without action can be a reachable path
(i.e., where k = l). We call such a singleton path w ∈ W ∩ P(G) a reachable state.
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A state-action pair (w, a) is called a reachable legal move (or simply a move) in
G if there is a w′ such that w

a→ w′ is a reachable path. The set of all such moves in
G is denoted by �(G). More formally,

�(G) = {(w, a) : there is w′ ∈ W such that w
a→ w′ ∈ P(G)} (1)

Furthermore, the moves for player i are denoted by �i(G):

�i(G) = {(w, a) ∈ �(G) : a ∈ Ai} (2)

For convenience, we let

li (w) = {a : (w, a) ∈ �i(G)} (3)

To facilitate the presentation of our framework, we will use as our running example
a simple two-player game, which we call CrossDot game1.

Example 1 (CrossDot Game) Two players take turns in placing either a cross “×”
(player 1) or a dot “·” (player 2) into an empty box in a line of m, where m ≥ 2:

��� . . .�︸ ︷︷ ︸
m

Each box can contain at most one object. The first player to successfully fill k
(1 < k ≤ m) consecutive boxes will end and win the game, where k is arbitrary but
fixed. If all boxes have been filled without a winner, the game ends with a tie. We
assume that the “×”-player goes first.

To describe the scenario in terms of the state transition game, let N = {1, 2} be
the players and

W = {(t1, t2, x1, x2, . . . , xm) : t1, t2 ∈ {0, 1} & x1, . . . , xm ∈ {�,��}}

the set of possible states, where t1, t2 specify whose turn it is (ti = 1 if it is player
i’s turn; otherwise ti = 0) and x1, . . . , xm indicate the status of the boxes. The initial
state is w̄ = (1, 0,�,�, · · · ,�).

We write ai
j to denote the action of player i marking the jth box. Let Ai = {ai

j : i ∈
N&1 ≤ j ≤ m}. We refrain from explicitly listing the legality relation, the update
function, and the terminal and goal states for the players as this is possible but consid-
erably lengthy even for a very simple game like this; the syntactic axiomatision of this
game given in the following section will be much more concise and practical. Let us
just pick some random examples: For m = 4 and k = 2, the state (1, 0,�,�,�,�)

is a terminal state and also a goal state for player 1. Under our assumption that
player 1 takes the first move, the state-action pair

(
(1, 0,�,�,�,�) , a1

2

)
, say,

1The game can be viewed as a variation of tic-tac-toe or a simplified Gomoku game.
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satisfies the legality relation, whereas
(
(1, 0,�,�,�,�) , a2

2

)
does not because it

is not player 2’s turn at this stage. As an example of the update function we have
u

(
a1

2, (1, 0,�,�,�,�)
) = (0, 1,�,�,�,�).

For future reference, by G
m,k
CrossDot we denote the instance of our game that

consists of m boxes and has winning length k.

3 Strategies in State Transition Games

In a multi-agent game environment, agents strive to achieve their goals. How individ-
ual agents act is determined by their strategies: At a state of a game, the strategies that
the agent applies determine which actions the agent will take. For example, a strategy
of a player in the game of chess reflects which moves the player would play in cer-
tain positions that can be reached according to the standard chess rules. In terms of
the state transition game, a strategy of a player can be defined as a relation between
game states and (legal) actions the player will perform.

Definition 2 A strategy S of player i is a subset of W × Ai such that S ⊆ �i(G).

Intuitively, a strategy of a player specifies which actions the player should take
in which states. Note that our concept of strategy is significantly different from the
ones in the context of alternating-time temporal logic (ATL) [1, 24, 25]. In ATL, a
strategy is a function that maps each state (or a sequence of states) to an action. In
other words, a strategy specifies which action has to do exactly in each state or each
history of states. However, our concept of strategy can express a “rough idea” of what
to do. A strategy may suggest no action, one action or several actions to do in each
state. A player might apply several strategies in one game. A single strategy does
not necessarily determine the moves for all possible legal positions of a game. In the
later sections, we will further develop a technology to combine and refine strategies
in order to generate a strategy with desirable properties.

3.1 Properties of Strategies

We say that a strategy S is valid if S �= ∅. A strategy S of player i is complete if for
each reachable state w ∈ W ∩ P(G), there is a move (w, ai) ∈ S unless li (w) = ∅.
In other words, a complete strategy provides the player with a “complete” guideline
that always provides the player with one or more suggestions how to act when it is
his move. A strategy S is deterministic if for any (w, a) ∈ S and (w, a′) ∈ S, we
have a = a′. A strategy is functional if it is complete and deterministic. An agent
with a functional strategy knows precisely what to do in any reachable game state.
For instance, if an agent i ∈ N has a default action ai

0 ∈ Ai that is always legal in
any reachable state, then the following simple strategy for this player is complete and
deterministic, hence functional:

Si =
{(

w, ai
0

)
: w ∈ W ∩ P(G)

}
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Example 2 Consider an instance, G
4,2
CrossDot, of the CrossDot game. The following is

an example of strategies for player 1 that intuitively says “fill a box next to one you
have marked before”:

S1 = {((1, 0,�,�,�,�), a1
2), ((1, 0,�,�,�,�), a1

2),

((1, 0,�,�,�,�), a1
3), ((1, 0,�,�,�,�), a1

1),

((1, 0,�,�,�,�), a1
1), ((1, 0,�,�,�,�), a1

3),

((1, 0,�,�,�,�), a1
2), ((1, 0,�,�,�,�), a1

4),

((1, 0,�,�,�,�), a1
4), ((1, 0,�,�,�,�), a1

2),

((1, 0,�,�,�,�), a1
3), ((1, 0,�,�,�,�), a1

3) }

It is easy to see that the strategy is valid but neither complete nor deterministic.

4 Strategy Representation and Semantics

The above example shows that directly representing a strategy in a state transition
game requires to list every move that complies with the strategy. In the following,
we develop a syntactical representation that allows to describe a strategy much more
concisely.

4.1 Formal Game Specification Language

We first present a logic-based, general game description language with linear time.

Definition 3 Consider a propositional modal language L with these components:

– a non-empty finite set � of propositional variables;
– a non-empty finite set N of agent symbols;
– a non-empty finite set Ai of action symbols for each i ∈ N ;
– propositional connectives ¬, ∧, ∨, → and ≡;2

– pseudo-function symbols does(.), legal(.), and wins(.);
– modal operator ©;
– special propositional symbols init and terminal.

Formulas in L are defined as follows:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | © ϕ | does(a) | legal(a) | wins(i) | init | terminal

where p ∈ �, i ∈ N and a ∈ A = ⋃
i∈N Ai .

2Only ¬ and ∧ are treated as primitives.
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Note that we overload N and Ai as they occur in both syntax and semantics. They
can be distinguished from the context. As in Definition 1, we assume that Ai∩Aj = ∅
if i �= j .

We call does, legal and wins pseudo-functions because formally each instance
does(a), legal(a) or wins(i) is taken to be an individual propositional symbol. This
language is a direct adaptation of the general Game Description Language [6] and
allows to describe games in a compact way.

Example 1 (continued)3 We use the propositional symbols pi
j to represent the fact

that box j is filled with i’s marker, where i ∈ {1, 2} and j ∈ {1, . . . , m}. In addi-
tion, we use two specific propositional symbols turn(1) and turn(2) to represent
players’ turns, respectively. Putting all the propositional symbols together, we have

�CrossDot =
{
pi

j : 1 ≤ i ≤ 2 & 1 ≤ j ≤ m} ∪ {turn(i) : i = 1 or 2
}

. With this, we

are able to describe the game rules in our logical language.
To begin with, the following rules specify the initial game state:

init → ¬pi
j for all i ∈ N and j ≤ m (4)

init → turn(1) ∧ ¬turn(2) (5)

The following statement defines the winning conditions: Player i wins if there is j
such that j + k − 1 ≤ m and pi

j ∧ · · · ∧ pi
j+k−1, i.e.

wins(i) ≡
m−k+1∨

j=1

j+k−1∧

l=j

pi
l (6)

With this, the condition for termination is:

terminal ≡ wins(1) ∨ wins(2) ∨
m∧

j=1

(
p1

j ∨ p2
j

)
(7)

As before, let ai
j denote the action of player i filling box j. Legality of the actions of

each player i can be described thus:

¬
(
p1

j ∨ p2
j

)
∧ turn(i) ∧ ¬terminal ≡ legal

(
ai
j

)
(8)

The effects of the actions are given by4

pi
j ∨ does

(
ai
j

)
≡ ©pi

j (9)

turn(1) → ©¬turn(1) ∧ ©turn(2) (10)

turn(2) → ©¬turn(2) ∧ ©turn(1) (11)

Let �
m,k
CrossDot be the set of axioms (4)–(11).

3While all examples in this paper are based on the CrossDot game, some examples are specifically
numbered just for the purpose of cross-referencing.
4To avoid too much complexity, we follow [6] not offering any solution to the frame problem here. Game
descriptions simply include all necessary frame axioms.
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In the following, we interpret the language based on the state transition model.
Give a state transition game G = (N, W,A, w̄, t, l, u, g) (see Definition 1), a valu-
ation function v : W �→ 2� specifies which atom propositions are true at each state.
Propositional formulas and their truth values can be defined accordingly.

Definition 4 Let G = (N, W,A, w̄, t, l, u, g) be a state transition game and v a
valuation function. We call the pair M = (G, v) a state transition model. Let δ =
w0

a0→ w1
a1→ · · · am−1→ wm ∈ P(G) be a reachable path in G and ϕ a formula.

We say that δ satisfies ϕ under M (written M, δ |= ϕ) according to the following
definition:

M , δ |= p iff p ∈ v(w0) (p ∈ �)

M , δ |= does(a) iff a = a0

M , δ |= init iff w0 = w̄

M , δ |= terminal iff w0 ∈ t

M , δ |= legal(a) iff (w0, a) ∈ l

M , δ |= wins(i) iff w0 ∈ g(i)

M , δ |= ¬ϕ iff M, δ �|= ϕ

M , δ |= ϕ1 ∧ ϕ2 iff M, δ |= ϕ1 and M, δ |= ϕ2

M , δ |= ©ϕ iff M, w1
a1→ · · · am−1→ wm |= ϕ

It is worth clarifying that in the limit case m = 0 (i.e., δ = w0) we have that
M, δ |= does(a) and M, δ |= ©ϕ hold for any a and ϕ.

A formula ϕ is valid in model M, denoted M |= ϕ, if it is satisfied by any reachable
path in the game, that is, M, δ |= ϕ for all δ ∈ P(G). Let � be a set of sentences in
L, then M is a model of � if M |= ϕ for all ϕ ∈ �.

Observation 1 Consider the CrossDot game G = G
m,k
CrossDot introduced in Exam-

ple 1. Let v be a valuation function such that for each state w = (t1, t2, x1, · · · , xm) ∈
W , v(w) = {turn(i) : ti = 1} ∪

{
p1

j : xj = � & 1 ≤ j ≤ m
}

∪
{
p2

j : xj = � &

1 ≤ j ≤ m}. Let M = (G, v). Then M is a model of �
m,k
CrossDot (see Eqs 4–11).

Proof Given any reachable path δ = w0
a0→ w1

a1→ · · · ae−1→ we, we only have to
verify that each axiom in �

m,k
CrossDot is satisfied by δ in M. This is straightforward.

Consider for instance the proof that M, δ |= init → ¬pi
j for any i ∈ N and j < m:

If w0 �= w̄, this holds trivially because M, δ |= ¬init . If w0 = w̄, then M, δ |= init

and by the definition of v, pi
j �∈ v(w0), hence M, δ |= ¬pi

j for any i ∈ N and j < m.
The other axioms can be verified similarly.

In order to develop a syntactical representation for strategies, we introduce the fol-

lowing specific concepts. Let δ = w0
a0→ w1

a1→ · · · am−1→ wm. We call δ a reachable
path starting with the move (w0, a0). The set of all the reachable paths in game G that
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starts with (w, a) is denoted by (w, a)�. Given a state transition model M = (G, v),
for any move (w, a) ∈ �(G), a formula ϕ is valid under move (w, a), denoted by
M |=(w,a) ϕ, if M, δ |= ϕ for all reachable path δ ∈ (w, a)�.

Example 3 Consider the same instance of the CrossDot game G
4,2
CrossDot as in Exam-

ple 2. Let M be the state transition model defined in Observation 1 for the case m = 4
and k = 2. Assume that (w, a) = ((1, 0,�,�,�,�), a1

3). It is easy to verify the
following:

M |=(w,a) legal(a1
4)

M �|=(w,a) does(a2
3)

M |=(w,a) ¬(p1
3 ∨ p2

3) ∧ ©p1
3 ∧ ©(legal(a2

4) ∧ does(a2
4))

M |=(w,a) © © terminal

4.2 Describing Strategies

We now turn to the syntactical representation of strategies using the language
introduced above. For any state transition model M = (G, v) and formula
ϕ ∈ L, let

Si(ϕ) = {(w, a) ∈ �i(G) : M |=(w,a) ϕ} (12)

In other words, Si(ϕ) comprises all moves for player i under which ϕ is valid.

Definition 5 Given a state transition model M, let S be a strategy of player i
according to Definition 2. A formula ϕ in L is a representation of S iff S = Si(ϕ).

In the following, we will call “strategy” both a set of moves (i.e., a strategy in the
sense of Definition 2) and its representation (using L). They should be easy to distin-
guish from the context. Note that a formula ϕ ∈ L can represent different strategies
for different players. For instance, the tautology � can be a strategy of player i, i.e.,
Si(�), that allows the player to take any reachable moves at any reachable state.
Another example is does(ai), where ai ∈ Ai . If representing a strategy of player i,
it means to take ai only at any reachable state. However, if representing a strategy of
other players rather than i, it means to do nothing.

While the language we consider in this paper is propositional and finite, a state
transition game can have infinitely many worlds which cannot be distinguished by the
propositions that hold in them. A strategy that assigns different actions to two indis-
tinguishable worlds cannot be described in our language. However, every strategy
that is Markovian in the following sense does have a representation in L.

Definition 6 Given a state transition model M = (G, v), a strategy S is Markovian
if for all (w1, a) ∈ S and w2 ∈ P(G) such that v(w1) = v(w2), (w2, a) ∈ S.
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Proposition 1 Given a state transition model M = (G, v) of L, any Markovian
strategy S of a player has a representation in L.

Proof For each (w, a) ∈ S, since the set � of propositional variables is finite,
v(w) and � \ v(w) are both finite. Thus the following is a well-formed propositional
formula:

ϕ(w, a) =
⎛

⎝
∧

p∈v(w)

p

⎞

⎠ ∧
⎛

⎝
∧

p∈�\v(w)

¬p

⎞

⎠ ∧ does(a) (13)

Again A being finite implies the set {ϕ(w, a) : (w, a) ∈ S} to be finite even
though S may be infinite. Therefore the following is also a well-formed propositional
formula:

ϕ =
∨

(w,a)∈S

ϕ(w, a)

Now we show ϕ is a representation of S. Obviously, for any (w, a) ∈ S, M |=(w,a)

ϕ. For any (w, a) ∈ �i(G), where i is the player under consideration, assume that
M |=(w,a) ϕ. By the construction of ϕ, there is a move (w′, a′) ∈ S such that

M |=(w,a)

⎛

⎝
∧

p∈v(w′)
p

⎞

⎠ ∧
⎛

⎝
∧

p∈� v(w′)
¬p

⎞

⎠ ∧ does(a′)

It turns out that v(w) = v(w′). Since S is Markovian, we have (w, a′) ∈ S. Note that
M |=(w,a) does(a′) implies a = a′ by Definition 4. We then have (w, a) ∈ S, as
desired.

Note that Markovian strategies are history-independent. If we want to specify
strategies in which move choices depend on the history of a game, then we need to
extend our language with syntactic means to talk about past states. This can be done
by adding the inverse of the operator ©, written ©−1, to denote that some property
holds in “the previous state”. We leave this extension for future work.

The reader is reminded that formulas in our language have been endowed with two
different semantics. If it is used to represent a property, it has a truth value as normal
propositional formula. If a formula is used to represent a strategy, then it no longer
has a truth value but represents a set of moves for a player.

The following observation shows how our language can be used to describe a
useful strategy for our running example. Compared to its semantical representation
(cf. Example 2), the syntactical expression of the strategy is much more compact and
meaningful.

Observation 2 Strategy S1 from Example 2 is represented by

ϕ =
∨

1<j≤4

(
p1

j−1 ∧ ¬p1
j ∧ ¬p2

j ∧ does
(
a1
j

))
∨

∨

1≤j<4

(
¬p1

j ∧ ¬p2
j ∧ p1

j+1 ∧ does
(
a1
j

))
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Proof First we show S1 ⊆ S1(ϕ). This can be done by verifying M |=(w,a) ϕ

one by one for each (w, a) ∈ S1. For instance, consider w = (1, 0,�,�,�,�, )

and a = a1
2. Then M |=(w,a) p1

1 ∧ ¬p1
2 ∧ ¬p2

2 and M |=(w,a) does
(
a1

2

)
. Thus

M |=(w,a) ϕ.
In order to show that S1(ϕ) ⊆ S1, we can prove that for each reachable move

(w, a) of player 1, (w, a) �∈ S1 implies M �|=(w,a) ϕ. This can be done by enu-

merating all reachable moves in �1
(
G

4,2
CrossDot

)
\ S1. For instance, let w0 =

(1, 0,�,�,�,�) and a0 = a1
3. Obviously, (w0, a0) is a reachable move and

(w0, a0) �∈ S1. To show M �|=(w0,a0) ϕ, consider the reachable path δ = w0
a0→ w1,

where w1 = (0, 1,�,�,�,�). It is easy to verify that M, δ |= ¬p1
2 ∧ ¬p1

4 ∧
does(a1

3) while M, δ |= ¬does(a′) for any a′ �= a1
3. Thus we have M, δ �|= ϕ. We

then yield that M �|=(w0,a0) ϕ. Other cases can be verified similarly.

The above observation shows that we can still use our logical sense to design
a strategy despite the significant differences of semantics between a propositional
formula and a strategy representation. When doing so it is important to keep it in
mind that a propositional formula bears a very different meaning when understood
as a strategy rather than a state description. In the following we demonstrate the
speciality of strategy representation with a few examples based on the CrossDot game
G = G

4,2
CrossDot .

1. One formula can represent different strategies for different players:

S1(©p1
1) = {((1, 0,�, x2, x3, x4), a

1
1)∈P(G) : x2, x3, x4 ∈ {�,�,�}}

∪{((1, 0,�,�, x3, x4), a
1
2) ∈ P(G) : x3, x4 ∈ {�,�,�}}

∪{((1, 0,�, x2,�, x4), a
1
3) ∈ P(G) : x2, x4 ∈ {�,�,�}}

∪{((1, 0,�, x2, x3,�), a1
4) ∈ P(G) : x2, x3 ∈ {�,�,�}}

S2(©p1
1) = {((0, 1,�,�, x3, x4), a

2
2) ∈ P(G) : x3, x4 ∈ {�,�,�}}

∪{((0, 1,�, x2,�, x4), a
2
3) ∈ P(G) : x2, x4 ∈ {�,�,�}}

∪{((0, 1,�, x2, x3,�), a2
4) ∈ P(G) : x2, x3 ∈ {�,�,�}}

In other words, if ©p1
1 represents a strategy of player 1, it means that player

1 is to fill the first box with his marker if the box is currently empty or to fill any
other empty box if the box has already been filled with a cross whenever it is
his turn. However, if the formula ©p1

1 represents a strategy of player 2, it means
player 2 wishes the first box to be filled by player 1. In this case, he waits for the
states to come and then do whatever is feasible to him.

2. Forcing another player into a particular action:

S1(©does(a2
1)) = {((1, 0,�,�, x3, x4), a

1
2) ∈ P(G) : x3, x4 ∈ {�,�}}

∪{((1, 0,�, x2,�, x4), a
1
3) ∈ P(G) : x2, x4 ∈ {�,�}}

∪{((1, 0,�, x2, x3,�), a1
4) ∈ P(G) : x2, x3 ∈ {�,�}}
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In general, a player does not have control on the other player’s actions. But a
player may be able to create a situation in which the opponent has no choice other
than the desired action. In the above example, player 1 is enforcing a situation in
which player 2 has no other option but to perform a2

1 when it becomes his turn.
3. Thinking forward:

S2((©(¬does(a1
1)) → © © does(a2

1))

= {((0, 1,�,�,�,�), a2
2), ((0, 1,�,�,�,�), a2

3),

((0, 1,�,�,�,�), a2
2), ((0, 1,�,�,�,�), a2

4),

((0, 1,�,�,�,�), a2
3), ((0, 1,�,�,�,�), a2

4)}
This is a strategy for player 2 to try to find an action so that “he can fill

box 1 in his next turn as long as player 1 will not fill it beforehand.” Note that
S2(© © does(a2

1)) = ∅ because he can do nothing to guarantee that does(a2
1)

is doable in his next turn.
4. Try anything to win the game within one step:

S1(©wins(1))

= {((1, 0,�,�,�,�), a1
2), ((1, 0,�,�,�,�), a1

2),

((1, 0,�,�,�,�), a1
1), ((1, 0,�,�,�,�), a1

1),

((1, 0,�,�,�,�), a1
3), ((1, 0,�,�,�,�), a1

2),

((1, 0,�,�,�,�), a1
2), ((1, 0,�,�,�,�), a1

3),

((1, 0,�,�,�,�), a1
3)}

This is a simple strategy for player 1 that aims to try any available action to
win the game in one step.

We have seen from the above examples that even though a strategy rule is written in
the syntax of (temporal) propositional formulas, its semantics is significantly differ-
ent from propositional logic therefore we must be very cautious when we start to use
the language to design game strategies.

To complete this section, we present a property of our strategy representation for
later use.

Lemma 1 Given a state transition model M, for each player i,

1. Si(ϕ1 ∧ ϕ2) = Si(ϕ1) ∩ Si(ϕ2)

2. Si(ϕ1) ∪ Si(ϕ2) ⊆ Si(ϕ1 ∨ ϕ2)

Proof To prove (1), assume that (w, a) ∈ Si(ϕ1 ∧ ϕ2). It follows that a ∈ Ai and
M |=(w,a) ϕ1 ∧ ϕ2. Then for each reachable path δ ∈ (w, a)�, we have M, δ |=
ϕ1 ∧ ϕ2, which implies M, δ |= ϕ1 and M, δ |= ϕ2. It turns out that M |=(w,a) ϕ1
and M |=(w,a) ϕ2. We get (w, a) ∈ Si(ϕ1) and (w, a) ∈ Si(ϕ2). The other direction
is similar.

To prove (2), assume that (w, a) ∈ Si(ϕ1) ∪ Si(ϕ2). Without loss of gener-
ality, suppose that (w, a) ∈ Si(ϕ1), which implies a ∈ Ai and M |=(w,a) ϕ1.
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Hence, M, δ |= ϕ1 for each reachable path δ ∈ (w, a)�. It follows that
M, δ |= ϕ1 ∨ ϕ2. Thus we yield M |=(w,a) ϕ1 ∨ ϕ2. Given that a ∈ Ai , we conclude
(w, a) ∈ Si(ϕ1 ∨ ϕ2).

5 Strategy Composition

As mentioned in the introduction, the main motivation of this work is to introduce a
formal logical language for defining, comparing and combining strategies. We have
provided our formal definition of strategies in both syntactical and semantical levels
in the previous sections. To facilitate the composition of strategies, in this section we
extend our language by two specific connectives, called prioritised disjunction and
prioritised conjunction, respectively.

5.1 Prioritised Disjunction and Conjunction

The idea behind these two new connectives is the following. The prioritised disjunc-
tion “�” extends the choice of actions such that if a first strategy fails to apply then
a second one offers more options, and if that fails too then a third strategy may offer
more options still, and so on. Conversely, the prioritised conjunction “�” narrows
down the choice of actions: if a first strategy allows too many options, then a second
strategy may be used to constrain these options, a third strategy may narrow down
the options even further, and so on—up to the point where the next strategy in line
would lead to empty option.

Definition 7 The set of strategy rules is the smallest set such that

1. a formula in L is a strategy rule;
2. if r1, . . . , rm are strategy rules, then so is r1�r2�· · ·�rm;
3. if r1, . . . , rm are strategy rules, then so is r1�r2� · · ·�rm.

Note that the new strategy connectives are introduced as macros rather than as
additional connectives in the language L. This is so because we do not want to allow
the nesting of the strategy connectives with logical connectives (while nested strategy
rules are allowed). For instance, (ϕ1 � ψ1)�(ϕ2 � ψ2) is a syntactically correct
strategy rule while ϕ → (ψ1�ψ2) is not.

5.2 Semantics of Strategy Rules

Given a strategy S, we let S�w= {(w, a) : (w, a) ∈ S}, i.e., the set of all the moves at
state w specified by S.

Definition 8 Let r be a strategy rule. We define Si(r) recursively on the structure of
r as follows:

1. If r = ϕ ∈ L, then Si(r) = Si(ϕ).
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2. If r = r1�r2�· · ·�rm, then (w, a) ∈ Si(r) iff there exists k (1 ≤ k ≤ m) such
that (w, a) ∈ Si(rk) and

⋃
j<k Si(rj )�w= ∅.

3. If r = r1� r2�· · ·�rm, then (w, a) ∈ Si(r) iff there exists k (1 ≤ k ≤ m) such
that

(a) (w, a) ∈ ⋂
j≤k Si(rj ) and

(b) k = m or
⋂

j≤k+1 Si(rj ) �w= ∅.

Intuitively, r1�r2�· · ·�rm represents a strategy that combines strategies
r1, r2, . . . , rm in such a way that a strategy rule rk becomes applicable only if none
of the higher prioritised rules rj (j < k) is applicable. r1�r2�· · ·�rm tries to apply as
many strategy rules all together as possible but gives higher priority to the left rules
than the right rules if conflicts occur.

The following observations show that the connective � is indeed a kind of priori-
tised disjunction and the connective � is indeed a kind of prioritised conjunction.

Lemma 2 Given a state transition model M, for each player i,

1. Si(r1) ⊆ Si(r1�r2)

2. Si(r1 � r2) ⊆ Si(r1)

3. If Si(r1) = ∅, then Si(r1 � r2) = Si(r2).
4. If Si(r2) = ∅, then Si(r1 � r2) = Si(r1).
5. Si(ϕ1�(ϕ1 ∧ ϕ2)) = Si(ϕ1)

6. Si((ϕ1 ∧ ϕ2)�ϕ2) ⊆ Si(ϕ2)

7. Si(ϕ1 � (ϕ1 ∨ ϕ2)) = Si(ϕ1)

8. Si(ϕ2) ⊆ Si((ϕ1 ∨ ϕ2) � ϕ2)

Proof The proof of (1)–(4) is straightforward from Definition 8.
To show (5), let (w, a) ∈ Si(ϕ1�(ϕ1 ∧ ϕ2)). If (w, a) �∈ Si(ϕ1), then by Defi-

nition 8, (w, a) ∈ Si(ϕ1 ∧ ϕ2). By Lemma 1 (1), this implies (w, a) ∈ Si(ϕ1), a
contradiction. Hence, (w, a) ∈ Si(ϕ1). We have proved Si(ϕ1�(ϕ1 ∧ ϕ2)) ⊆ Si(ϕ1).
The other direction follows (1).

To show (6), let (w, a) ∈ Si((ϕ1 ∧ ϕ2)�ϕ2). Suppose that (w, a) �∈ Si(ϕ1 ∧ ϕ2),
then by Definition 8, we have (w, a) ∈ Si(ϕ2), as desired. If, on the other hand,
(w, a) ∈ Si(ϕ1 ∧ ϕ2), then by Lemma 1 (1) we also have (w, a) ∈ Si(ϕ2).

To show (7), assume that (w, a) ∈ Si(ϕ1). By Lemma 1 (2), (w, a) ∈ Si(ϕ1 ∨ϕ2).
Hence, (w, a) ∈ Si(ϕ1)�w ∩ Si(ϕ1 ∨ ϕ2)�w, which implies (w, a) ∈ Si(ϕ1 � (ϕ1 ∨
ϕ2)). The other direction follows (2).

To show (8), assume that (w, a) ∈ Si(ϕ2). By Lemma 1 (2), (w, a) ∈ Si(ϕ1 ∨ϕ2).
It follows that (w, a) ∈ Si(ϕ1 ∨ϕ2)�w ∩ Si(ϕ2)�w. By Definition 8, we have (w, a) ∈
Si((ϕ1 ∨ ϕ2) � ϕ2).

Note that in the above lemma, only one direction of inclusion in items (6) and (8)
holds. The other direction does not. For instance, assume that Si(ϕ1) = {(w, a)} and
Si(ϕ2) = {(w, a), (w, b)}. Then Si(ϕ1 ∧ ϕ2) = {(w, a)}. It turns out that Si((ϕ1 ∧
ϕ2)�ϕ2) = {(w, a)}. This shows that Si(ϕ2) �⊆ Si((ϕ1 ∧ ϕ2)�ϕ2). Furthermore, if
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Si(ϕ1) = {(w, a)} and Si(ϕ2) = ∅. By Lemma 1, we have (w, a) ∈ Si(ϕ1 ∨ ϕ2).
Thus (w, a) ∈ Si((ϕ1 ∨ ϕ2) � ϕ2)) �= ∅, which means that the other direction of
item (8) does not hold.

The following lemma shows that the prioritised disjunction can be reduced to
binary connectives. Interestingly, the prioritised conjunction does not have such a
nice property.

Lemma 3 Given a state transition model M, for each player i,

Si(r1�r2� · · ·�rm) = Si(r1�(r2� · · ·�rm)) = Si((r1� · · ·�rm−1)�rm)

Proof We will prove the first equation, the other one will be quite similar. We
consider two cases. If Si(r1) �w= ∅ then

(w, a) ∈ Si(r1�r2� · · ·�rm)

iff (w, a) ∈ Si(r2� · · ·�rm)

iff (w, a) ∈ Si(r1�(r2� · · ·�rm))

On the other hand, if Si(r1) �w �= ∅ then

(w, a) ∈ Si(r1� · · ·�rm)

iff (w, a) ∈ Si(r1)

iff (w, a) ∈ Si(r1�(r2� · · ·�rm))

We remark that the prioritised conjunction cannot likewise be reduced to binary
connectives. In general neither Si(r1 � r2 � · · · � rm) = Si((r1 � · · · � rm−1) �
rm) nor Si(r1 � r2 � · · · � rm) = Si(r1 �(r2 � · · ·s � rm)) is true. For example, let
Si(r1) = {(w, a1), (w, a2)}; Si(r2) = ∅; and Si(r3) = {(w, a1), (w, a3)}. Then
Si(r1 � r2 � r3) = Si(r1) = {(w, a1), (w, a2)}. But Si((r1 � r2)� r3) = Si(r1 �
r3) = {(w, a1)}. On the other hand, if Si(r2) = {(w, a2), (w, a3)} and Si(r1) and
Si(r3) are as before, then we get Si(r1 � r2 � r3) = {(w, a2)} while Si(r1 � (r2 �
r3)) = {(w, a1), (w, a2)}.

As a remedy, we may define a prioritised conjunction by the prioritised disjunction
as follows:

ϕ�̇ψ =def (ϕ ∧ ψ)�ϕ

Then we extend it to the multi-argument version in the following way:

ϕ1�̇ϕ2�̇· · ·�̇ϕm =def ((ϕ1�̇ϕ2)�̇ · · · )�̇ϕm

Unfortunately the semantics of �̇ coincides with � in the binary version but not in
the multi-argument version. We will investigate this alternative in our future work.
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5.3 Complete Strategies and Deterministic Strategies

When we build a software game player, we need to instruct it what to do in each
possible situation. In other words, each player should be equipped with a functional
strategy. In the following, we demonstrate how to generate a complete and/or
deterministic strategy by using our prioritised connectives.

We say that a strategy rule is consistent for player i if it represents a valid strategy;
a rule is complete for i if it represents a complete strategy for i; and determin-
istic for i if it represents a deterministic strategy for i. Similarly, a strategy rule
is functional if it is complete and deterministic. Note that all these concepts are
player-specific.

The following theorems show a number of nice properties of the prioritised
connectives, which give us a guideline for how to design a strategy with desired
properties. The first result deals with consistency of strategy rules.

Theorem 1 Given a state transition model M,

1. r1�· · ·�rm is consistent if and only if there is a k (1 ≤ k ≤ m) such that rk is
consistent.

2. r1� · · ·�rm is consistent if and only if r1 is consistent.

Proof To prove (1), let r = r1�· · ·�rm. Assume that Si(r) is non-empty for player
i, then there is (w, a) ∈ Si(r) such that (w, a) ∈ Si(rk) for some k, which means that
rk is consistent for player i. Conversely, let k be the smallest number such that Si(rk)

is non-empty. This implies that Si(r1�· · ·�rm) = Si(rk�· · ·�rm). By the above two
lemmas we have Si(rk) ⊆ Si(r1�· · ·�rm), which means that r is consistent.

To prove (2), we also let r = r1 � · · · � rm. Obviously if r1 is inconsistent, so
is r. Assume that r1 is consistent. Then there is (w, a) ∈ Si(r1). Let k be the biggest
number such that

⋂
j≤k(S

i(rj ) �w) �= ∅. Obviously k ≥ 1. By Definition 8 we have
⋂

j≤k(S
i(rj ) �w) ⊆ Si(r) �w. Thus r is consistent.

The second result shows us how to generate a complete or deterministic strategy.

Theorem 2 Given a state transition model M, for each player i

1. If r1 or r2 is complete, so is r1�r2.
2. If r1 is complete, so is r1 � · · · � rm.
3. If r1 and r2 are deterministic, so is r1�r2.
4. If r1 is deterministic, so is r1 � · · · � rm.

Proof (1) and (4) are straightforward from Definition (8).
To show (2), assume that r1 � · · · � rm is incomplete. Then there exists a reach-

able state w ∈ W∩P(G) such that Si(r1 � · · · � rm)�w= ∅. By Definition 8, this can
happen only if Si(r1)�w= ∅, which contradicts the assumption that r1 is complete.

To prove (3), assume that (w, a), (w, a′) ∈ Si(r1�r2). If Si(r1)�w �= ∅, we have
(w, a), (w, a′) ∈ Si(r1) according to Definition 8. Since r1 is deterministic, this
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implies a = a′. On the other hand, if Si(r1)�w= ∅, then we have (w, a), (w, a′) ∈
Si(r2)�w, which also implies a = a′ since r2 is deterministic.

Statement (1) in the above theorem provides us with an easy way of generating
a complete strategy: create a trivial complete strategy first and then combine it with
other strategies using the prioritised disjunction. Note that creating a trivial complete
strategy is rather easy: let the agent do anything available.5 Statement (2) tells us that
once we get a complete strategy, we can further refine the strategy targeting more
specific properties, say deterministic thus functional, using the prioritised conjunc-
tion without losing its completeness. Statement (3) shows us another feasible way of
generating a functional strategy: instead of creating a complete strategy then refine it
into a deterministic one, we can devise a set of specific deterministic strategies first
and then combine them with the prioritised disjunction targeting a complete strategy.
Example 4 demonstrates how the above mentioned approaches can be applied to the
CrossDot game. Before doing that, let’s show another nice property of the prioritised
connectives.

Theorem 3 Given a state transition model M, for each player i

1. If r1 is complete, then Si(r1�· · ·�rm) = Si(r1).
2. If r1 is deterministic, then Si(r1� · · ·�rm) = Si(r1).

Proof To prove (1), we only have to show Si(r1�· · ·�rm) ⊆ Si(r1). Assume that
(w, a) ∈ Si(r1�· · ·�rm). Because r1 is complete, Si(r1)�w �= ∅. By Definition 8 we
have (w, a) ∈ Si(r1).

To show (2), we need to show that Si(r1) ⊆ Si(r1 � · · · � rm). If (w, a) ∈ Si(r1),
then Si(r1)�w= {(w, a)} since r1 is deterministic. By Definition 8 it follows that
(w, a) ∈ Si(r1 � · · · � rm).

Combining the two statements of this theorem, we can say that if r1 is functional,
then Si(r1�· · ·�rm) = Si(r1 � · · · � rm) = Si(r1). This means that once a strategy
is functional, neither extending nor refining it with strategies of lower priority has any
effect. In fact, our goal of introducing the prioritised connectives is to facilitate the
design of functional strategies. Once a functional strategy has been obtained, these
connectives automatically stop working.

Example 4 Consider the CrossDot game scenario in Example 1. We define a few
strategy rules for player i as follows:

– Fill a box next to a box that contains player i’s mark:

f ill nexti = ∨
1<j≤m

(
¬p1

j ∧ ¬p2
j ∧ pi

j−1 ∧ does
(
ai
j

))
∨

∨
1≤j<m

(
¬p1

j ∧ ¬p2
j ∧ pi

j+1 ∧ does
(
ai
j

)) (14)

5In this case, we might have to give the trivial strategy the lowest priority in the disjunction.
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– Fill an isolated box (i.e., whose immediate neighbours are empty):

f ill isolatedi =
∨

1<j<m

((
¬p1

j−1 ∧ ¬p2
j−1

)
∧

(
¬p1

j+1 ∧ ¬p2
j+1

)

∧
(
¬p1

j ∧ ¬p2
j

)
∧ does

(
ai
j

))
(15)

– Fill any empty box:

f ill anyi = ∨
1≤j≤m

(
¬p1

j ∧ ¬p2
j ∧ does

(
ai
j

))
(16)

– Try f ill nexti first. If this fails, try f ill isolatedi , then try f ill anyi :

combinedi = f ill nexti � f ill isolatedi � f ill anyi (17)

Observation 3 Let M = (G, v) be the state transition model defined in Observation
1. The strategy rule combinedi is complete for player i.

Proof We first prove that the strategy f ill anyi is complete. Assume an arbitrary
reachable state w ∈ W ∩ P(G) such that li (w) �= ∅ (recall formula (3) for the
definition of li and the definition of completeness of a strategy in Section 3.1).
Let ai

j ∈ li (w). It follows that M |=(w,ai
j ) legal(ai

j ). By (8), we know that

M |=(w,ai
j ) ¬p1

j ∧ ¬p2
j , hence M |=(w,ai

j ) ¬p1
j ∧ ¬p2

j ∧ does(ai
j ), which implies

(w, ai
j ) ∈ Si(f ill anyi). Therefore f ill anyi is a complete strategy rule for player

i. According to Theorem 2 (1), we know that the strategy rule combinedi is also
complete.

A complete strategy for a player gives the player a feasible option (if any) for any
given situation. However, a software game player could still be unsure about what to
do under a complete strategy if there is more than one option in the same situation.
The prioritised conjunction provides us with a way to narrow down multiple options.

Example 5 For our running example game, let ci
t =

t∨

j=1
does(ai

j ) where 1 ≤ t ≤ m

(with m being the overall number of boxes as usual), then ci
t represents the strategy

of i to place an object in any box between 1 and a given number t. Let

thoughtf uli = combinedi � ci
m � · · · � ci

1 (18)

where combinedi is the strategy rule defined in Example 4 (cf. (17)).

It is not hard to see that if combinedi gives more than one boxes to fill,
thoughtf uli will choose the left most one.
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Observation 4 Let M = (G, v) be the state transition model defined in Observation
1. The strategy rule thoughtf uli is functional for player i.

Proof By Theorem 2 (2), thoughtf uli is complete because combinedi is complete.
We prove that thoughtf uli is deterministic. Assume that

(
w, ai

j1

)
,
(
w, ai

j2

)
∈ Si(thoughtf uli)

such that, without loss of generality, j1 ≤ j2. Let t be the smallest number

(between 1 and m) such that H = Si(combinedi)�w ∩
m⋂

j=t

Si
(
ci
j

)
�w is not

empty. Such a t exists because Si(combinedi)�w ∩Si
(
ci
m

)
�w �= ∅. By Defini-

tion 8, we have
(
w, ai

j1

)
∈ H and

(
w, ai

j2

)
∈ H , hence

(
w, ai

j1

)
,
(
w, ai

j2

)
∈

Si
(
ci
t

)
�w. Hence j1 ≤ j2 ≤ t . If t = 1, then ai

j1
= ai

j2
= ai

1. Otherwise,

i.e. if t > 1, then Si(combinedi)�w ∩
m⋂

j=t−1
Si

(
ci
j

)
�w= ∅, which implies that

neither
(
w, ai

j1

)
nor

(
w, ai

j2

)
belongs to Si

(
ci
t−1

)
�w. Note that Si

(
ci
t−1

)
�w=

{(
w, ai

j

)
∈ P(G) : j ≤ t − 1

}
. Thus t ≤ j1 ≤ j2. By the above assumption, we

have j1 = j2 = t . We have proved that thoughtf uli is deterministic, thus it is
functional.

To summarise, the prioritised connectives provide a natural way of refining a strat-
egy. If a strategy is too restricted in that it can only be applied to few states, it can be
extended using prioritised disjunction. If, on the other hand, a strategy is too generic
in that it leaves too many options, it can be strengthened using prioritised conjunction.
Once a strategy has been functional, further extension or refinement using the priori-
tised disjunction or conjunction take no effect as long as give the existing strategy
the highest priority.

6 Reasoning About Strategies

Knowing how to write strategies for a game-playing agent, we now consider the
question whether a strategy meets its goal, for instance, if it is guaranteed to lead to a
winning state or to a desirable state given the strategies that the other players use. In
this section, we will demonstrate by using our running example how to reason about
strategies within our framework. We also demonstrate how to design a strategy using
the prioritised connectives to meet desired properties.

6.1 Compliance with a Strategy

In order to verify whether a strategy can bring about an expected result for a player
in a game, we assume that the player complies with the strategy all the way through
the game and observes the outcome of the game.
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Let M = (G, v) be a state transition model of a game G and S a strategy of the
game for player i. We say that M (or G) complies with S by player i if for each
reachable move (w, a) of player i in G, (w, a) ∈ S. In other words, player i follows
the strategy S whenever he makes a move.6

The following observation shows that for any CrossDot game when k = 2 and
m > 2, Player 1 wins as long as he plays the strategy thoughtf uli all the way
through the game.

Observation 5 Let M be a state transition model for the CrossDot game with k = 2
and m > 2. Assume that player i takes the first turn. If M complies with the strategy
Si(thoughtf uli) by player i, then

M |= terminal → wins(1)

In other words, player i wins as long as he takes the first turn and follows the strategy
rule thoughtf uli .

Proof Without loss of generality, we assume that i = 1. We have to show that
M, δ |= terminal → wins(i) for any reachable path δ. Since the definitions of
terminal and wins do not contain does, legal and © (cf. formulas (6) & (7)), we
only need to show for any reachable terminal state we (which is a special case of
a reachable path) M, we |= wins(1). To this end, we assume a complete path δ =
w0

a0→ w1
a1→ ·ae−1

w e, where w0 = w̄ and we ∈ t . Since player 1 has the first turn
and plays with strategy thoughtf ul1, the action the player takes in the initial state
must be a1

2 , i.e., a0 = a1
2. If player 2 responds with action a2

1, i.e., a1 = a2
1, player 1

will then take action a1
3 and win the game at state w3. If player 2 responds with any

other action, player 1 will take a1
1 and also will win the game. In any case, δ ends up

with we = w3 in which player 1 wins. Therefore M, we |= wins(1). We conclude
M |= terminal → wins(1).

The strategy thoughtf ul seems like a “smart” strategy that can guarantee a win-
ning state for the player who takes the first turn when k = 2. However it is less mighty
when taken by the second player, in which case the strategy cannot even compete the
following “trivial” strategy

f ill lef tmosti = ci
m � · · · � ci

1 (19)

where ci
j was defined in Example 5.

6We may understand the concept in the following way. Given an arbitrary state transition model M =
(G, v) and a strategy S of player i in M, let M ′ be another state transition model that is exactly the same
as M except for the legality of actions for player i in such a way that the legality relation l′ in M ′ is l ∩ S,
where l is the legality relation in M. We then view M ′ as the reduction of M once player i complies with
strategy S.
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Observation 6 Let M be a state transition model for a CrossDot game with k =
2 and m > 2. If M complies with S1(f ill lef tmost1) by Player 1 and with
S2(thoughtf ul2) by Player 2, then

M |= terminal → wins(1)

Proof It is not hard to prove that f illlef tmost1 is functional. Since thoughtf ul2

is also functional, there is only one complete path in the game:

(1, 0,�,�,�,�, · · · ,�)
a1

1→ (0, 1,�,�,�,�, · · · ,�)

a2
3→ (1, 0,�,�,�,�, · · · ,�)

a1
2→ (0, 1,�,�,�,�, · · · ,�)

which implies that player 1 takes the left most box, followed by player 2 fills an
isolated box and finally player 1 fills the second box and wins. We can easily verify
that terminal → wins(1) is valid with any segment of the path in M.

The failure of thoughtf ul is not because it is not “smart” enough but because the
thoughtf ul2 strategy requires to fill an isolated box at the first move, which provides
the first player with a chance to win.

6.2 Reasoning About Other Players’ Strategies

The examples of strategies we have shown up to now are all from a single player’s
viewpoint, which is obviously not sufficient. We should also reason about other
players’ strategies.

From Observation 6 we learnt that a player should check for existing threats before
applying any “aggressive” strategy, like thoughtf ul. The following formula defines
a defence strategy, which says that if my opponent can win by filling box j at next
step, then I should mark it now to prevent an immediate loss:

def encei =
m∧

j=1

(
©

(
does

(
a−i
j

)
∧ ©wins(−i)

)
→ does

(
ai
j

))

(20)

where −i stands for the opponent of i. Note that def encei is neither deterministic
nor complete. To create a functional strategy with defence, we let

cautiousi =
(
def encei �ci

m � · · · � ci
1

)
� thoughtf uli (21)

Obviously, def encei � ci
m � · · · � ci

1 is deterministic. Since thoughtf uli is
functional, therefore cautiousi is functional.
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The following observation shows that if the second player plays cautious2, which
means to protect himself before attacking his opponent, then player 1 cannot win
with the f ill lef tmost strategy (cf. equation (19)).

Observation 7 Let M be a state transition model for the CrossDot game with
k = 2 and m > 2. If M complies with S1(f ill lef tmost1) by Player 1 and with
S2(cautious2) by Player 2, then

M |= terminal → ¬wins(1)

Proof Since both players’ strategies are functional, there is only one complete path

in the game. Assume that the complete path is δ = w0
a0→ w1 · · · ae−1→ we. The first

action taken by player 1 must be a0 = a1
1. The first two states in the path is then

w0 = (1, 0,�,�,�,�, · · · ,�) and w1 = (0, 1,�,�,�,�, · · · ,�)

To know which action player 2 chooses at state w1, we calculate S2(def ence2)�w1 .
In fact, we will show that S2(def ence2)�w1=

{(
w1, a

2
2

)}
. Assume any reachable

path δ′ ∈ (w1, a
2
2)�. We verify

M, δ′ |=
m∧

j=1

(
©

(
does

(
a1
j

)
∧ ©wins(1)

)
→ does

(
a2
j

))

This is obviously true because if j = 2, then does(a2
j ) is satisfied. For any 2 < j ≤

m, ©
(
does

(
a1
j

)
∧ ©wins(1)

)
is false.

Next we show that for any a1 �= a2
2, (w1, a1) �∈ S2(def ence2)�w1 . Let δ′ = w1

a1→
w′

2

a1
2→ w′

3. It is easy to verify that

M, δ′ |= ©
(
does

(
a1

2

)
∧ ©wins(1)

)
∧ ¬does

(
a2

2

)

It follows that

M, δ′ �|=
m∧

j=1

(
©

(
does

(
a1
j

)
∧ ©wins(1)

)
→ does

(
a2
j

))

Note that δ′ ∈ (w1, a1)
�. Therefore we have

M �|=(w1,a1)

m∧

j=1

(
©

(
does

(
a1
j

)
∧ ©wins(1)

)
→ does

(
a2
j

))

which implies (w1, a1) �∈ S2(def ence2)�w1 . This completes the proof that
S2(def ence2) �w1=

{(
w1, a

2
2

)}
. Hence, for the complete path δ we find that a1 = a2

2
and w2 = (1, 0,�,�,�,�, · · · ,�). The game continues in the same way until all
boxes are filled without a winner.

The instances of the CrossDot game we considered above are limited to the simple
case where k = 2. In the following, we proposed a solution to the game in the general
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setting where k can be any number larger than 2 (and ≤ m). Consider the following
strategies:

– Fill a box next to an opponent’s box:

f ill o nexti =
(∨

1≤j<m

(
¬p1

j ∧ ¬p2
j ∧ p−i

j+1 ∧ does
(
ai
j

)))

�
(∨

1<j≤m

(
¬p1

j ∧ ¬p2
j ∧ p−i

j−1 ∧ does
(
ai
j

)))

Note that priority is given to the left empty box if exists.
– Passive defence:

passive def encei = ((def encei �f ill o nexti)�f ill anyi)� ci
m� · · ·�ci

1
(22)

Note that we use prioritised conjunction, instead of disjunction, to combine
def ence and f ill o next . This is because def ence gives arbitrary actions
whenever there is no immediate loss for player i, in which case f ill o next takes
over.

The following observation shows that such a passive defence strategy guarantees
no loss for a player no matter whether it is taken by the first player or the second
player, and no matter what the strategy of the other player, for any instance of the
CrossDot game with k > 2 and m > 2.

Observation 8 Let M be a state transition model for a CrossDot game with k > 2
and m ≥ k. If M complies with Si(passive def encei) by player i, then

M |= terminal → ¬win(−i)

where −i represents the opponent player of i. In other words, a player never loses as
long as he plays the passive defence strategy.

Proof Obviously we only have to consider the case when k = 3 because if a strategy
can help a player effectively blocking his opponent to own three consecutive boxes,
he can also block his opponent to form any longer line of consecutive boxes. Also
if we can prove the strategy to be effective for player 2, it is sufficient to show that
it is also effective for player 1 because he can make his first move at random and
then copy player 2’s no-loss strategy (strategy stealing). Altogether this allows us to
restrict the proof to k = 3 and i = 2.

It is easy to show that passive def ence2 is functional. To show M |=
terminal → ¬win(1), we only have to verify that for any complete path δ = w0

a0→
w1

a1→ · · · ae−1→ we, we have M, we |= ¬win(1). Recall that we is a special reachable
path that contains only the terminal state we. If we is a winning state for player 2 or
a tie state, we have M, we |= ¬win(1).

Suppose by contradiction that we is a winning state of player 1. It then turns out e
is an odd number and there are at least three consecutive crosses in some states along
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the complete path δ. In other words, there must be a cross next to two other crosses.
However, we will show by induction on the length of the path that this can never
happen. More precisely, we claim that in each state w2j (0 ≤ j ≤ (e − 1)/2), each
box filled with a cross must be either adjacent to a box with a dot or at an end (left or
right) of the line, meanwhile the box on its left, if any, must not be empty. Note that if
the claim is true in we−1, then player 1 cannot win in state we no matter which action
he chooses in state we−1.

Obviously the claim holds when j = 0 because all boxes are empty in the initial
state w0. Now we assume that the claim holds in state w2(j−1) where j ≤ (e − 1)/2.
We show that the claim also holds at w2j .

Suppose that the action a2(j−1) that player 1 took in state w2(j−1) was a1
v , i.e.,

a2(j−1) = a1
v . Obviously this action can at most affect satisfaction of the claim on

the box itself or its two immediate neighbours, i.e., v − 1, v and v + 1 (if exists).
Therefore we only consider the effect of player 1’s action a1

v on these three possible
boxes.

If box v is not at the right end, by the induction assumption, box v + 1 can never
be with a cross in state w2(j−1); otherwise box v were not empty thus a1

v were not
doable. Therefore box v + 1 (if exists) satisfies the claimed conditions in state w2j .

We then consider satisfaction of boxes v − 1 and v with three cases:

i). If box v − 1 (if exists) has been filled with a dot, both boxes v − 1 and v satisfy
the conditions of the claim, which remain true in state w2j .

ii). If box v − 1 has been already filled with a cross before state w2(j−1), by induc-
tion assumption, box v−1 is either at the left end or next to a box with a dot on
its left. In both situations, box v−1 satisfies the claimed conditions that remain
true in state w2j . After player 1 fills box v with a cross in state w2(j−1), player
2 must respond with action a2j−1 = a2

v+1 by applying def ence2 in state w2j−1
to prevent an immediate loss unless the box v is at the right end or v + 1 has
already occupied by a dot. In both cases, box v satisfies the claimed conditions
in state w2j . Note that the claim guarantees that def ence2 is not applicable to
any other boxes.

iii). If box v − 1 was empty in state w2(j−1), by the construction of
passive def encei , player 2 must respond with action a2

v−1 either because
v − 1 is an immediate loss position or by applying strategy f ill o next2 after
player 1 fills box v. After v − 1 filled with a dot, both boxes v − 1 and v satisfy
the claim in state w2j . Note that def ence2 �f ill o next2 is not applicable to
any box other than v−1 (note that f ill o next2 gives priority to the left empty
box.

We have verified the claim holds in each state w2j (0 ≤ j ≤ (e − 1)/2), including
state we−1, which implies that the player 2 does not lose in state we.

Note that the def ence strategy (cf. equation (20)) plays a crucial role in the
solution. Assume that a game gets into the following situation after a few moves:

�,�,�,�,�,�,�,�, · · ·
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and it is player 2’s turn. If player 2 does not have the def ence strategy but simply
use f ill o next2 to block the opponent, he would take action a2

3 instead of a2
8,

which gives player 1 a chance to win.

The strategy passive def ence can effectively prevent from losing but it is hard to
win because it does not encode any winning strategy. The reader is invited to extend
the strategy with more aggressive rules so that if the other player is “not that smart”,
it can have a chance to win.

7 Computing With Strategies

We now turn to the question of how to actually compute with strategy rules. Gen-
erally speaking, the conceptual simplicity of our language and the fact that it is
not tied to a specific action formalism should make it easy to incorporate knowl-
edge of strategies into various methods for the design and analysis of intelligent
agents. To illustrate this, we will adopt here a very general calculus for reasoning
about actions, the Situation Calculus (see, e.g., [16]), and show how our strat-
egy representation can be easily integrated. Reasoning problems about strategies
can take different forms, and we will specifically consider two of them. First, we
will show how the calculus can be used to infer the possible outcomes of a game
given information about the strategies of all players. Second, we will illustrate how
players can reason about the strategies of opponents to infer their best course of
action. We will also show how our variant of the Situation Calculus forms the basis
for an encoding of game rules and a restricted class of strategies as Answer Set
Programs.

7.1 Example: Situation Calculus

The Situation Calculus is a formalism for reasoning about actions and change that is
based on classical predicate logic with a few pre-defined language elements:

– s0, a constant denoting the initial situation; and DO(α, σ ), a constructor denoting
the situation resulting from doing action α in situation σ ;

– HOLDS(ϕ, σ ), a predicate denoting that fluent ϕ (i.e., an atomic state feature) is
true in situation σ ;

– POSS(α, σ ), a predicate denoting that action α is possible in situation σ .

For our purpose, we extend the base language of the Situation Calculus by the two
game-specific predicates WINS(ι, σ ) and TERMINAL(σ ) meaning, respectively, that
the game is won for player ι in situation σ and that σ is a terminal game position.
With this, any axiom in our game specification language can be easily rewritten for
the Situation Calculus similar to an existing mapping of the Game Description Lan-
guage (GDL) into this calculus [18]. To this end, let A and S be two distinct variables
(standing for any action and situation, respectively), then a formula ϕ in our language
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L can be translated into a Situation Calculus axiom ϕSC[A, S] by the following
inductive definition:

pSC[A, S] := HOLDS(p, S)

(¬ϕ)[A, S] := ¬ϕSC[A, S]
(ϕ ∧ ψ)SC[A, S] := ϕSC[A, S] ∧ ψSC[A, S]
does(a)SC[A, S] := A = a

legal(a)SC[A, S] := POSS(a, S)

wins(i)SC[A, S] := WINS(i, S)

(©ϕ)SC[A, S] := (∀A′) ϕSC[A′, Do(A, S)]
initSC[A, S] := S = s0

terminalSC[A, S] := TERMINAL(S)

Example 1 (continued) Recall the specification of the game in Example 1. Applying
the construction from above to formulas (4)–(11) yields the following, after some
slight syntactic simplifications.

¬HOLDS
(
pi

j , s0

)

HOLDS(turn(1), s0) ∧ ¬HOLDS(turn(2), s0)

WINS(i, S) ≡
m−k+1∨

j=1

j+k−1∧

l=j

HOLDS(pi
l , S)

TERMINAL(S) ≡WINS(1, S) ∨ WINS(2, S) ∨
(∧

1≤j≤m

(
HOLDS

(
p1

j , S
)

∨ HOLDS
(
p2

j , S
)))

(
¬

(
HOLDS

(
p1

j , S
)

∨ HOLDS
(
p2

j , S
))

∧
HOLDS(turn(i), S) ∧ ¬TERMINAL(S)) ≡ POSS

(
ai
j , S

)

HOLDS
(
pi

j , S
)

∨ A = ai
j ≡ HOLDS(pi

j , DO(A, S))

HOLDS(turn(1), S) → ¬ HOLDS(turn(1), Do(A, S)) ∧
HOLDS(turn(2), DO(A, S))

HOLDS(turn(2), S) → ¬HOLDS(turn(2), DO(A, S)) ∧
HOLDS(turn(1), DO(A, S))
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7.2 Adding Strategy Rules

As a general logic-based formalism, the Situation Calculus allows for a straight-
forward encoding of strategy rules with the help of a direct encoding of their
interpretation according to (12) and Definition 8, respectively. Based on the rewriting
rules from above, the Situation Calculus encoding r[A, S] for a strategy rule r over
language L is inductively obtained as follows, where A and S are variables.

ϕ[A, S] := POSS(A, S) ∧ ϕSC[A, S]

(r1� r2 � . . .� rn)[A, S] :=
r1[A, S]
∨
r2[A, S] ∧ ¬(∃A′) r1[A′, S]
∨ . . . ∨
rn[A, S] ∧ ¬(∃A′) (r1[A′, S] ∨ . . . ∨ rn−1[A′, S])

(r1� r2 � . . . � rn)[A, S] :=
r1[A, S] ∧ ¬(∃A′) (r1[A′, S] ∧ r2[A′, S])
∨
r1[A, S] ∧ r2[A, S] ∧ ¬(∃A′) (r1[A′, S] ∧ r2[A′, S] ∧ r3[A′, S])
∨ . . . ∨
r1[A, S] ∧ r2[A, S] ∧ . . . ∧ rn[A, S]

7.3 Computing with Strategies: Examples

The representation of strategy rules in the Situation Calculus can be used to define
a special predicate, which we denote by STRAT(α, σ ), whose intended meaning is
that it is possible according to some player’s strategy to take action α in situation σ .
Consider, for example, a given set of complete strategy rules {r1, . . . , rn} for each
player, then this can be embedded into a Situation Calculus encoding of a game as
follows:

STRAT(A, S) ≡ r1[A, S] ∨ . . . ∨ rn[A, S]

Such information about strategies can be used for a variety of purposes. Specifi-
cally, as we will briefly illustrate next, it can be used to infer possible outcomes of
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a game under a given set of strategy rules or help a player to decide on a course of
action by reasoning about opponents’ strategies.

Inferring Possible Outcomes. Based on the predicate STRAT, the set of all possible
playouts of a game according to players’ strategies can be recursively defined as
follows.

STRATEGIC(s0)

STRATEGIC(S) ∧ STRAT(A, S) → STRATEGIC(DO(A, S))

This predicate determines all paths that are reachable if all players follow their given
strategy rules. Hence, all possible playouts under these strategies can be determined
as all situations S that satisfy STRATEGIC(S) ∧ TERMINAL(S).

Reasoning About Opponents’ Strategies. Another way of using reasoning about
strategies is for players to use knowledge or belief about their opponents’ strategies
in order to compute their own best course of actions in response. As an example, we
will consider the encoding of a generalised form of Minimax evaluation in the Situa-
tion Calculus. To this end, let us take the perspective of particular player i and assume
that this player’s belief about the opponents’ strategy rules is encoded using predi-
cate STRAT as above. Let us assume also that TURN(i,S) expresses the fact that it is
player i’s turn in situation S. We can then define recursively the notion of a winning
situation for i, represented by predicate WIN(S), as follows:

WINS(i, S) → WIN(S) (23)

TURN(i, S) ∧ (∃A)(POSS(A, S) ∧ WIN(DO(A, S))) → WIN(S) (24)

¬TURN(i, S) ∧ (∀A)(STRAT(A, S) → WIN(DO(A, S))) → WIN(S) (25)

According to this definition, a situation is winnable for our player i if he can
choose a course of action whenever it is his turn, (24), such that if all other players
choose their actions according to their strategy, (25), then a terminal situation will be
reached in which player i has won, (23).

7.4 Computing with Strategies in ASP

Under specific conditions, problems that require reasoning about games and strate-
gies can be solved by Answer Set Programming (ASP). This general technique
provides a way of computing models for logic programs for which particularly effi-
cient implementations have been developed in the recent past, such as [4] just to
mention one. ASP has been used successfully for reasoning about actions and plan
generation (see, e.g., [9]) as well as for endgame search in general game playing [19].
In this section, we build on these existing methods and show how ASP can be used to
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compute all possible outcomes of a game under given strategies for the players. We
assume the reader to be familiar with basic notions and notations of ASP, as can be
found in [5].

The standard use of ASP for computing with actions is to replace the branching
time structure of the Situation Calculus by linear time. For deterministic games with
complete specification of the initial state and a given time horizon, the game rules can
be encoded as an ASP in such a way that each answer set corresponds to a reachable
path and vice versa (see, e.g., [19]). For our running example game, Fig. 1 (lines 1–
17) constitute an ASP encoding that follows this principle. Specifically, the so-called
weight atom in clause 16 requires each answer set to include one, and only one, action
at each point in time. The so-called constraint in clause 17 rules out any answer set
in which the chosen action is not legal.

A given ASP that provides a linear-time encoding of a game can be extended by
encodings of strategy rules for the players so that the answer sets comply with the
strategies. This provides a computational method for inferring the possible outcomes
of a game under a given set of strategies.

Provided it does not include the ©-operator, any strategy ϕ in our language
that can be encoded in this linear way according to the following inductive coding

Fig. 1 An ASP encoding of the game from Example 1, including a strategy rule. For the sake of brevity,
we have omitted the domain definitions for variables I, J, and T (the latter ranging from 0 to a given time
horizon)
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scheme. Let n be a unique predicate name that stands for (the satisfaction of) ϕ,
then:

Where necessary, this is accompanied by clauses with head ni to encode the sub-
formulas ψi (for i = 1, 2, . . .), which are obtained inductively.

Clauses 19–29 in Fig.7.4 are an example of applying this encoding in order to
constrain the answer sets for our CrossDot game to those where both players i follow
the simple strategy (f ill nexti)�(f ill anyi) (cf. Example 4): Constraint 19 in con-
junction with clause 20 rejects all answer sets that do not comply with the strategy
definition. Clauses 24–27 encode the first part of the strategy rule for both players (in
a slightly more compact form than obtained by strictly applying the coding scheme
from above), and clause 23, in conjunction with clauses 28–29, encodes the second
part.

7.5 Further Extensions and Computational Complexity

The encoding scheme from above does not extend to strategies that include the
©-operator since their evaluation requires a counterfactual lookahead. Hence, they
cannot be directly represented in an ASP based on a linear time structure. There are
two conceivable ways to overcome this limitation.

1. If the axiomatisation of a game supports the definition of a regression operator
similar to the one in the standard Situation Calculus [15], then any strategy of the
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form ©ϕ can be regressed to a formula ϕ′ that is logically equivalent under the
game axioms and contains one less occurrence of the ©-operator. The repeated
application of regression will yield a ©-free formula, which then can be encoded
in the same way as above.

2. Alternatively, we can extend the linear time structure to allow for more than one
sequence of actions in a single same answer set. A similar approach has been
shown to be practically viable for proving epistemic properties in general games
using ASPs [8].

A detailed formalisation and analysis of either solution goes beyond the scope of this
paper and is left for future work.

Up to now we have demonstrated with two example implementations how our
formalism supports automated reasoning. With regard to the efficiency of the imple-
mentations, we can consider different aspects regarding both the description of
strategies and the problem of reasoning about them.

The complexity of translating a strategy in our language to situation calculus is
linear, and so is the translation to ASP for ©-free strategy rules. However, generally
speaking it is unrealistic to expect high efficiency for a generic strategy reasoning
mechanism because in theory, as an extension of GDL, our language can describe any
finite game with perfect information. Verifying an arbitrary strategy such as, “try any
possible action to win,” is equivalent to solving a game and therefore equally com-
plex. It is well known that the complexity of finding a winning strategy for complex
games like Japanese Go, which can be specified in GDL, is EXPTIME-complete [17].

Moreover, the computational complexity of solving a game sometimes is indepen-
dent of the length of the game description and the strategies that are used to solve
the game. Therefore, a complexity analysis for domain-independent strategy reason-
ing mechanisms can be meaningless.7 However, it is possible that certain restrictions
on both game descriptions and strategy rules may lead to specific upper bounds for
the computational complexity of solving these games. Restrictions on the number of
lookahead steps can also affect the complexity of reasoning. In addition, since our
strategies represent some ideas of how to play a game well, it is possible that we
express these ideas in our language and design specific algorithms to automatically
generate possible moves that correspond to the ideas. The efficiency of these algo-
rithms is crucial to the design of a game player. We leave these issues for future
investigation.

8 Related Work

Modelling and specifying strategies is a fundamental research theme in game the-
ory. Researchers in artificial intelligence have recently joined in the research but
mostly focus on modelling of strategic reasoning with the help of logical approaches.
A number of logical frameworks have been proposed in the literature for strategy
representation and reasoning [1, 3, 7, 11, 12, 23]. Most of the frameworks were

7For instance, the description of game rules for Chinese Go is quite similar to the one for Japanese Go but
their complexity is significantly different.
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built on either Coalition Logic (CL), Alternating-Time Temporal Logic (ATL), or
Propositional Dynamic Logic (PDL).

Both coalition logic [12] and alternating-time temporal logic [1] were developed
to model strategic abilities of coalitions in multi-agent systems. The modality 〈C〉ϕ
(or 〈C〉 © ϕ) expresses that “a group of agents, C, has a joint strategy to bring about
ϕ no matter what strategies the other agents choose”. In CL, a strategy of a player is
simply an action available to the player. In ATL, a strategy is a function that maps a
sequence of states to an action (in ATL). In both logics, strategies stay on the semantic
level without syntactical representation.

A number of extensions of either CL or ATL aim to bring strategies to the syntac-
tical level. van der Hoek et al. [24] proposed an extension of ATL, named CATL for
Counterfactual ATL, with a variation to the coalition modality, Ci(σ, ϕ), represent-
ing the counterfactual statement, “if agent i had committed to a strategy σ , then ϕ

would hold”. Strategies in that framework can be explicitly represented on the syn-
tactical level using dynamic logic-like modalities, even though program connectives
of dynamic logic are not allowed to be used for combining strategies. Walther et al.
25 refine the work of CATL into an axiomatic logical system with a different seman-
tics. However, strategies are still restricted to primitive forms, which means that the
combination of strategies is not supported. Similar restrictions have also been applied
in several other ATL- or CL-like logical frameworks for strategic reasoning, such as
[3, 10, 11].

Another approach to strategy representation and reasoning is to treat a strategy
as a program so that PDL-style program connectives can be used to combine strate-
gies [14, 21, 23]. van Benthem proposed a logical framework, named Temporal
Forcing Logic (TFL), with a modality [σ, i]ϕ, meaning that “player i applies strat-
egy σ , against any play of the others, to force the game to a state in which ϕ holds”,
where a strategy can be defined as any PDL program. Similar proposal can also be
found in [14]. Such an “intuitive analogue to strategies” provides a close approxima-
tion to strategy representation; nevertheless, a strategy has essential differences from
a program, which requires specific ways of composition and reasoning as we have
shown in the previous sections.

We like to stress that our treatment of strategies is different from all of the
abovementioned approaches in the following aspects. Firstly, we can use the same
propositional formulas for different purposes. A propositional formula with the stan-
dard semantics of propositional modal logic can represent properties of the game
state and be used in domain-dependent axioms. But we also represent a strategy
with the help of a propositional formula, by endowing the formula with a specific
semantics. This makes strategy design much easier and efficient. Secondly, we view
a strategy as a set of possible moves, i.e., a set of state-action pairs, rather than a func-
tion from a state (or a sequence of states) to an action. In this sense, our strategies
represent “rough ideas”, which can then be combined and refined. Thirdly, instead
of using PDL-style program connectives, we introduced two prioritised connectives
for combining strategies, which, as we have seen, provides for a very natural and
convenient design of strategies.

We want to mention that the idea of the prioritised disjunction was inspired by
Brewka et al.’s [2] Qualitative Choice Logic (QCL). QCL contains a non-standard
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propositional connective A
−→×B with the meaning, “A if possible; but if A is impossi-

ble then at least B”. We found that the semantics of the connective fits strategies very
well. It is an interesting question for future work whether our prioritised conjunction
can be integrated into QCL.

9 Conclusion

In this paper we have introduced a logical language to describe, compose and com-
bine strategies for game-playing agents. The language derives from the general Game
Description Language (GDL) and extends it by a single temporal operator © and
two new prioritised connectives: � and �. The basic components of GDL facilitate
the representation of initial and terminal conditions, winning criteria and legality of
actions (i.e., preconditions). The temporal operator allows us to describe the effects
of actions. These form the basic language for describing game- and player-specific
strategies. The newly introduced connectives allow us to combine simple strategies
into more complicated and refined ones. When we use the language to describe a
strategy, we endow it with a specific semantics so that we can compose a strategy
in a logical way and the actual moves the strategy represents can be generated in an
automatic way.

We have thoroughly analysed the properties of the language. In fact, the nice
properties in particular of the new connectives give us great freedom in practice for
strategy design: we can start with a strategy that formalises one specific idea. If it
is too restricted, we can extend it with more generic ones using the prioritised dis-
junction, and if it is too generic, we can refine it with more specific strategies using
the prioritised conjunction. We have shown also how strategies can be embedded
into existing methods for the design and analysis of intelligent agents in order to
solve problems that involve reasoning about strategies, including the computation of
possible outcomes of games under given strategies.

Our current implementation for strategy reasoning combines reasoning about
actions and change with an encoding of game rules and strategies using Answer Set
Programming. It would be more efficient to develop a specific method of model
checking based on the structure of our state transition model and the syntax of
strategy composition. We leave this for future work.
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