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Abstract In the categorical approach to the foundations of quantum theory, one
begins with a symmetric monoidal category, the objects of which represent phys-
ical systems, and the morphisms of which represent physical processes. Usually,
this category is taken to be at least compact closed, and more often, dagger com-
pact, enforcing a certain self-duality, whereby preparation processes (roughly, states)
are interconvertible with processes of registration (roughly, measurement outcomes).
This is in contrast to the more concrete “operational” approach, in which the states
and measurement outcomes associated with a physical system are represented in
terms of what we here call a convex operational model: a certain dual pair of ordered
linear spaces–generally, not isomorphic to one another. On the other hand, state
spaces for which there is such an isomorphism, which we term weakly self-dual, play
an important role in reconstructions of various quantum-information theoretic pro-
tocols, including teleportation and ensemble steering. In this paper, we characterize
compact closure of symmetric monoidal categories of convex operational models in
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two ways: as a statement about the existence of teleportation protocols, and as the
principle that every process allowed by that theory can be realized as an instance
of a remote evaluation protocol—hence, as a form of classical probabilistic condi-
tioning. In a large class of cases, which includes both the classical and quantum
cases, the relevant compact closed categories are degenerate, in the weak sense that
every object is its own dual. We characterize the dagger-compactness of such a
category (with respect to the natural adjoint) in terms of the existence, for each sys-
tem, of a symmetric bipartite state, the associated conditioning map of which is an
isomorphism.

Keywords Quantum foundations · Convex operational theories · Compact closed
category · Dagger-compact category

1 Categorical Semantics and Quantum Foundations

One natural way to formalize a physical theory is as some kind of category, C, the
objects of which are the systems, and the morphisms of which are the processes,
contemplated by that theory. In order to provide some apparatus for representing
compound systems, it is natural to assume further that C is a symmetric monoidal cat-
egory. In the categorical semantics for quantum theory pioneered by Abramsky and
Coecke [1], Selinger [38, 39], and others (e.g., [2, 3, 7, 17]), it is further assumed that
C is at least compact closed, and more usually, dagger compact. This last condition
enforces a certain self-duality, in that there is a bijection between the states of a sys-
tem A ∈ C, represented by elements of C(I, A), and and the measurement-outcomes
associated with that system, represented by elements of C(A, I ). The motivat-
ing example here is the category FDHilb of finite-dimensional complex Hilbert
spaces and unitary mappings—that is, the category of finite-dimensional “closed”
quantum systems and unitary processes. Many of the information-processing fea-
tures of finite-dimensional quantum systems occur in any dagger-compact category,
notably, conclusive (that is, post-selected) teleportation and entanglement-swapping
protocols. On the other hand, if our interest in a categorical reformulation of
quantum theory is mainly foundational, rather than strictly one of systematization,
these strong structural assumptions need further justification, or at any rate, further
motivation.

There is an older tradition, stemming from Mackey’s work on the foundations
of quantum mechanics [35], in which an individual physical (or, more generally,
probabilistic) system is represented by a set of states, a set of observables or mea-
surements, and an assignment of probabilities to measurement outcomes, conditional
upon the state. From this basic idea, one is led to a representation of systems by
pairs of ordered real vector spaces—the convex operational models of our title—and
of physical processes, by certain positive linear mappings between such spaces. The
motivating example is the category of Hermitian parts of C∗ algebras and completely
positive mappings.

This “convex operational” approach, in contrast to the categorical one, is con-
servative of classical probabilistic concepts, but liberal as to how systems may be



Categories of Convex Operational Models 503

combined and transformed, so long as this probabilistic content is respected. In
particular, there is no standing assumption of monoidality; rather, systems are com-
bined using any of a variety of “non-signaling” products. Nor is there, in general, any
hint of the kind of self-duality mentioned above—indeed, the natural dual object for a
convex operational model is not itself an operational model. Nevertheless, here again
various familiar “quantum” phenomena—such as no-cloning and no-broadcasting
theorems, information-disturbance tradeoffs, teleportation and entanglement swap-
ping protocols, and ensemble steering—emerge naturally and in some generality [8,
9, 12, 15]. A key idea here is that of a remote evaluation protocol [9] (of which tele-
portation is a special case), which reduces certain kinds of dynamical processes to
purely classical conditioning.

It is obviously of interest to see how far such convex operational theories can be
treated formally, that is, as categories, and more especially, as symmetric monoidal
categories; equally, one would like to know how much of the special structure
assumed in the categorical approach can be given an operational motivation. Some
first steps toward addressing these issues are taken in [13, 14]. Here, we aim to make
further progress, albeit along a somewhat narrower front. We focus on symmetric
monoidal categories of convex operational models—what we propose to call proba-
bilistic theories. We show that such a theory admits a compact closed structure if and
only if every system allowed by the theory can be teleported (conclusively, though not
necessarily with probability 1) through a copy of itself—or, equivalently, if and only
if every process contemplated by the theory can be represented as a remote evaluation
protocol. We then specialize further, to consider weakly self-dual theories, in which
for every system A there is a bipartite state γA on A⊗A corresponding to an isomor-
phism between A and its dual, and an effect corresponding to its inverse. (Such state
spaces figure heavily in earlier treatments of teleportation protocols [9] and ensemble
steering [12] in general probabilistic theories.) We show that if the state implementing
weak self-duality can be chosen to be symmetric for every A, then a weakly self-dual
monoidal probabilistic theory is not merely compact closed, but dagger compact.

Organization and Notation Sections 2 and 3 provide quick reviews of the category-
theoretic and the convex frameworks, respectively, mainly following [1] for the
former and [8, 9, 12–14] for the latter. Section 4 makes precise what we mean by
a monoidal probabilistic theory, as a symmetric monoidal category of convex oper-
ational models, and establishes that all such theories have the property of allowing
remote evaluation [9]; when the state spaces involved are weakly self-dual, tele-
portation arises as a special case. Section 5 contains the results on categories of
weakly self-dual state spaces described above. Section 6 discusses some of the further
ramifications of these results.

We assume that the reader is familiar with basic category-theoretic ideas and nota-
tion, as well as with the probabilistic machinery of quantum theory. We write C,D
etc. for categories, A ∈ C, to indicate that A is an object of C, and C(A, B) for the
set of morphisms between objects A, B ∈ C. Except as noted, all vector spaces con-
sidered here will be finite-dimensional and real. We write VecR for the category of
finite-dimensional real vector spaces and linear maps. The dual space of a vector
space A is denoted by A∗. An ordered vector space is a real vector space V equipped
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with a regular—that is, closed, convex, pointed, generating—cone V+, and ordered
by the relation x ≤ y ⇔ y − x ∈ A+. A linear mapping φ : V → W between
ordered linear spaces V and W is positive if φ(V+) ⊆ W+. We write L+(A, B) for
the cone of positive linear mappings from A to B. The special case in which B = R,
the positive linear functionals on A, is the dual cone of A+, denoted A∗+. The cate-
gory of ordered linear spaces and positive linear maps we denote by Ordlin. Finally,
we make the standing assumption that, except where otherwise indicated, all vector
spaces considered here are finite dimensional.

2 The Category-Theoretic Perspective

A monoidal category [36] is a category C equipped with a bifunctor1 ⊗ : C×C → C,
a distinguished unit object I, and natural associativity and left and right unit deletion
isomorphisms,

αA,B,C : A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C,

λA : I ⊗ A ∼= A, ρA : A ⊗ I ∼= A,

subject to some coherence conditions (for which, see [36]). If these isomorphisms are
identities, the category is called strict monoidal. Every monoidal category is equiv-
alent to a strict one, so setting A ⊗ I = A etc, is harmless and we will do this
throughout.

A symmetric monoidal category (SMC) is a monoidal category further equipped
with a natural family of symmetry isomorphisms,

σA,B : A ⊗ B ∼= B ⊗ A,

again, subject to some coherence conditions (for which, again, see [36]). Unlike the
other isomorphisms, these symmetry isomorphisms cannot generally be made strict.

Examples of SMCs include commutative monoids (as one-object categories), the
category of sets and mappings (with A ⊗ B = A × B), and—of particular relevance
for us—the category of (say, finite-dimensional) vector spaces over a field K and K-
linear maps, with A⊗B the usual tensor product. Another source of examples comes
from logic: one can regard the set of sentences of a logical calculus as a category,
with proofs, composed by concatenation, as morphisms. In this context, one can take
conjunction, ∧, as a monoidal product.

Much more broadly, if somewhat less precisely, if one views the objects of a cat-
egory C as “systems” (of whatever sort), and morphisms as “processes” between
systems, then a natural interpretation of the product in a symmetric monoidal cat-
egory is as a kind of accretive composition: A ⊗ B is the system that consists of
the two systems A and B sitting, as it were, side by side, without any special inter-
action; f ⊗ g represents the processes f : A → X and g : A → Y acting

1 Bifunctoriality means that: (i) 1A⊗B = 1A ⊗ 1B ; and (ii) given morphisms f : A → X and g : B → Y

in C, there is a canonical product morphism f ⊗ g : A ⊗ B → X ⊗ Y , such that (f ⊗ g) ◦ (f ′ ⊗ g′) =
(f ◦ f ′) ⊗ (g ◦ g′).
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in parallel. Taking this point of view, it is helpful to regard processes of the form
I → A, where I is the monoidal unit in C, as states, associated with ways of prepar-
ing the system A. Similarly, we regard processes of the form a : A → I as “effects”,
or measurement-outcomes. We shall henceforth adhere to the convention of denot-
ing states by lower-case Greek letters α, β, ... and effects, lower-case Roman letters
a, b, ....

In any monoidal category, one can regard endomorphisms s ∈ C(I, I ) as “scalars”
acting on elements of C(A, B) by sx = s ⊗ x. In every monoidal category, C(I, I ) is
a commutative monoid, even if C is not symmetric. When C(I, I ) is isomorphic to a
particular monoid S, we shall say that C is a symmetric monoidal category over S.

2.1 Compact Closed Categories

A dual for an object A of a symmetric monoidal category C is an object B and two
morphisms, the unit, η : I → B ⊗ A (not to be confused with the tensor unit I) and
the co-unit, ε : A ⊗ B → I , such that

A
1A⊗η �� A ⊗ B ⊗ A

ε⊗1A �� A = 1A

B
η⊗1B �� B ⊗ A ⊗ B

1B⊗ε �� B = 1B.

(1)

Duals are unique up to a canonical isomorphism. Indeed, if (B1, η1, ε1) and
(B2, η2, ε2) are duals for A, then φ := (1B2 ⊗ ε1)◦ (η2 ⊗1B1) : B1 → B2 has inverse
φ−1 = (1B1 ⊗ ε2)◦ (η1 ⊗1B2); moreover, η2 = (φ ⊗1A)◦η1. Some, for example the
authors of [17], use the term compact structure to refer to what we are calling a dual,
i.e., a particular choice of (A′, ηA, εA) for a given object A ∈ C or, when applied to a
category, a particular choice of dual for each object.

A symmetric monoidal category C is compact closed2 if for every object A in the
category, there is a dual, (A′, ηA, εA), where A′ is an object of the category.3 As thus
defined, compact closedness is a property of the SMC C, not an additional struc-
ture: it requires the existence of at least one dual for each object, but not the explicit
specification of a distinguished one. The alternative definition of compact closed cat-
egory, which differs only in requiring a choice of duals be specified [32], is perhaps
more common. Owing to the uniqueness up to isomorphism mentioned above, the
various possible choices of duals are largely—but not entirely—equivalent. A com-
pact structure is said to be degenerate iff A′ = A; a compact closed category C with
a distinguished compact structure is said to be degenerate if every object’s compact
structure is degenerate. This does depend on an explicit choice of duals, and thus
imposes some non-trivial structure4 beyond compact closure. This is the setting that
will most interest us below.

2Sometimes just compact.
3We use the notation A′, rather than the more standard A∗, for the designated dual of an object in a compact
closed category, because we wish to reserve the latter to denote, specifically, the dual space of a vector
space.
4The self-dual setting requires some additional coherence conditions; see [40]
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Remark 1 If (A′, ηA, εA) and (B ′, ηB, εB) are duals for objects A, B ∈ C, then we
can construct a canonical dual (A′ ⊗ B ′, ηAB, εAB) for A ⊗ B by setting ηAB =
τ ◦ (ηA ⊗ ηB) and εAB = (ηA ⊗ ηB) ◦ τ−1, where

τ = 1A′ ⊗ σAB′ ⊗ 1B : (A′ ⊗ A) ⊗ (B ′ ⊗ B)  (A′ ⊗ B ′) ⊗ (A ⊗ B).

Since all duals are isomorphic we are free to assume that A ⊗ B has this particular
dual.

In any compact closed category, an assignment A �→ A′ extends to a contravariant
functor (−)′ : Cop → C, called the adjoint, taking morphisms φ : A → B to
φ′ : B ′ → A′ defined by:

B ′ ηA⊗1B′ ��

φ′

��

A′ ⊗ A ⊗ B ′

1A′⊗φ⊗1B′
��

A′ A′ ⊗ B ⊗ B ′.
1A′⊗εB

��

(2)

The functor ′ is nearly involutive, in that there are natural isomorphisms wA :
A′′ → A. To say that ′ is involutive is just to say that A′′ = A and φ = φ′′; note that
this does not imply that wA = 1A.

Remark 2 In the classic treatment of coherence for compact closed categories
in [32], one has that σ ◦ ηA = (1A ⊗ wA) ◦ ηA′ ; a similar condition holds
for ε ([32], eq. (6.4)ff.). In the case of a degenerate category, this implies
that

σ ◦ ηA = (1A ⊗ wA) ◦ ηA. (3)

It is easy to show that if the units—or, equivalently, co-units—are symmetric, in the
sense that, for every object A ∈ C, ηA = σA,A ◦ ηA or, equivalently, εA = εA ◦ σA,A,
then the the functor ′ is involutive. However the converse does not necessarily hold,
unless wA = 1A. In general, it is not clear what coherence requirements are appro-
priate for the degenerate categories we consider, nor whether the functors involved
are always strict. Therefore, in Section 5 we will establish explicitly that the invo-
lutiveness of the adjoint is equivalent to the symmetry of the unit and co-unit
for the compact closed categories of convex operational models considered in this
paper.

Remark 3 For an arbitrary degenerate compact closed category, there is no guaran-
tee that ηA will be symmetric. (We thank Peter Selinger (P. Selinger 2010, personal
communication. See also [40]) for supplying a nice example involving a category
of plane tangles). Thus, it is a non-trivial constraint on such a category that the
canonical adjoint be an involution. This will be important below.
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2.2 Daggers

A dagger category [1, 39] is a category C together with an involutive functor (−)† :
Cop → C that acts as the identity on objects. That is, A† = A for all A ∈ C, and, if
f ∈ C(A, B), then f † ∈ C(B, A), with

(g ◦ f )† = f † ◦ g† and f †† = f

for all f ∈ C(A, B) and g ∈ C(B, C).5 We say that f is unitary iff f † = f −1.
A dagger-monoidal category is a symmetric monoidal category with a dagger such
that (i) all the canonical isomorphisms defining the symmetric monoidal structure are
unitary, and (ii)

(f ⊗ g)† = f † ⊗ g†

for all morphisms f and g in C. Finally, a dagger-monoidal category C is dagger
compact if it is compact closed and

ηA = σA,A′ ◦ ε
†
A

for every A, i.e.:
A ⊗ A′

σ

��

I

ε
†
A ����������
ηA

����������

A′ ⊗ A

commutes. In the case of a degenerate compact closed category, the canonical
adjoint ′ functions as a dagger if it is involutive. However, as remarked above, this is
a nontrivial condition.

In the work of Abramsky and Coecke [1], a symmetric monoidal category is
interpreted as a physical theory, in which a morphism α : I → A is interpreted as a
state on the system A, and a morphism b = β† : A → I is understood as the regis-
tration of an effect (e.g., a measurement outcome) on A. The scalar β† ◦ α : I → I

is understood, somewhat figuratively in the abstract setting, as the “probability” that
the given effect will occur when the given state obtains.6 This raises the obvious
question of how to implement the compelling idea that probabilities should be iden-
tified with real numbers in the interval [0, 1] without passing through Hilbert space.
One way to do this is simply to posit a mapping p : C(I, I ) → [0, 1], whereby the
scalars of C can be interpreted probabilistically. Another is to examine the symmetric
monoidal possibilities in cases in which the category consists, ab initio, of concretely
described probabilistic models of a reasonably simple and general sort. In this paper,
we concentrate on this second strategy. As a first step, in the next section we describe
the kinds of concrete probabilistic models we have in mind.

5Those new to categories should note that a functor from Cop to C is sometimes called a contravariant
functor from C → C; the description we have just given (minus the involutiveness condition) defines this
notion without reference to Cop .
6We can be more precise here: given a dagger-compact category of states and processes C, any dagger-
monoidal functor from C to FDHilb, the category of finite dimensional Hilbert spaces, will send the scalar
β† ◦ α to the inner product 〈β | α〉.
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3 Convex Operational Models and their Duals

The more traditional approach to modeling probabilistic physical theories [16, 35]
begins by associating to each individual physical (or other probabilistic) system a
triple (X, �, p)—sometimes called a Mackey triple—where � is a set of possible
states, X is a set of possible measurement-outcomes, and p : X×� → [0, 1] assigns
to each pair (x, s) the probability, p(x, s), that x will occur, if measured, when the
system’s state is s.

This minimal apparatus can be “linearized” in a natural way. The probability func-
tion p gives us a mapping � → [0, 1]X, namely s �→ p(·, s). We can plausibly
identify each state s ∈ � with its image under this mapping (thus identifying states if
they cannot be distinguished statistically by the outcomes in X). Having done so, let
 denote the point-wise closed, hence compact, convex hull of � ⊆ [0, 1]X, repre-
senting the set of possible probabilistic mixtures of states in �. Every measurement
outcome x ∈ X can be represented by the affine functional ax :  → [0, 1], given
by ax(α) = α(x) for all α ∈ . More broadly, we can regard any affine functional
a :  → [0, 1] as representing a mathematically possible measurement outcome,
having probability a(α) in state α ∈ . Such functionals are called effects in the
literature.

In general, the (mixed) state space  we have just constructed will have infinite
affine dimension. Accordingly, for the next few paragraphs, we suspend our standing
finite-dimensionality assumption. Now, any compact convex set  can be embedded,
in a canonical way, as a base for the positive cone V+() of a regularly ordered
linear V () [4]. This means that every ρ ∈ V+() has the form ρ = tα for a unique
scalar t ≥ 0 and a unique vector α ∈  (hence,  spans V ()). This space V ()

is complete in a natural norm, the base norm, the unit ball of which is given by the
closed convex hull of ∪−. Moreover, V () has the following universal property:
every bounded affine mapping L :  → M, where M is any real Banach space,
extends uniquely to a bounded linear mapping L : V () → M.

In particular, every affine functional on —in particular, every effect—extends
uniquely to a linear functional in V ()∗. In particular, there is a unique unit
functional u ∈ V ()∗ such that u(α) = 1 for α ∈ , and  =
u−1

 (1) ∩ V+(). Thus, effects correspond to positive functionals a ∈ V ()∗ with
0 ≤ a ≤ u.

One often regards any effect a ∈ V ()∗ as a bona fide measurement outcome.
This is the point of view, e.g., of [8, 9]. However, we may sometimes wish to privilege
certain effects as “physically accessible”. This suggests the following more general
formulation:

Definition 4 A convex operational model (COM) is a triple (A, A#, uA) where

(i) A is a complete base-normed space with (strictly positive) unit functional uA,
and

(ii) A# is a weak-∗ dense subspace of A∗, ordered by a chosen regular cone A#+ ⊆
A∗+ containing uA.

An effect on A is a functional a ∈ A#+ with a ≤ uA.
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Henceforth, where no ambiguity seems likely, we write A for the triple
(A, A#, uA). Also, we now revert, for the balance of this paper, to our standing
assumption that all COMs are finite-dimensional. In this case, the weak-∗ density
assumption above simply says that A# = A∗ as vector spaces. Even in this situa-
tion, however, the chosen cone A#+ will generally be smaller than the dual cone A∗+,
so the positive cone (A#)∗+ will in general be larger than A+. It is useful to regard
normalized elements of the former cone as mathematically consistent probability
assignments on the effects in A#, from which the model singles out those in A+ as
physically possible. In the special case in which A#+ = A∗+—as, e.g., in the case of
quantum systems—we shall say that the COM A is saturated.

Example 5 Let E be a finite set, thought of as the outcome set for a discrete classical
experiment. Take A = R

E , with A+ the cone of non-negative functions on E, and
let uA(f ) = ∑

x∈E f (x). Then  = u−1(1) is simply the set of probability weights
on E. Geometrically, this last is a simplex. In finite dimensions, every simplex has
this form. Accordingly, we say a COM is classical iff its normalized state space is a
simplex.

Example 6 Let H be a finite-dimensional complex Hilbert space, and let A = Lh(H),
the space of Hermitian operators a : H → H, with the usual positive cone, i.e, A+
consists of all Hermitian operators of the form a†a. Let uA(a) = Tr(a). Then A

is the convex set of density operators on H, i.e., the usual space of mixed quantum
states.

Example 7 Let (X, �, p) be any Mackey triple. Construct the state-space  and the
associated ordered Banach space V () as described above. Letting A#+ be the cone
in V ∗() generated by the evaluation functionals ax , x ∈ X, we have a convex
operational model. This will be finite-dimensional iff the span of (the image of) � in
R

X is finite dimensional.

3.1 Processes as Positive Mappings

Definition 8 A morphism of COMs from (A, A#, uA) to (B, B#, uB) is a positive
linear map φ : A → B such that the usual linear adjoint map φ∗ : B∗ → A∗ is
positive with respect to the designated cones A#+ and B#+.

The set of morphisms of COMs from A to B is clearly a sub-cone of L+(A, B). It is
clear that the composition of two mappings of COMs is again a mapping of COMs,
so that COMs form a concrete category.

Definition 9 Let A and B be COMs. A process from A to B is a morphism φ :
A → B such that, for every state α ∈ A, uB(φ(α)) ≤ 1, or, equivalently,
if φ∗(uB) ≤ uA.

If φ : A → B is a process, we can regard uB(φ(α)) as the probability that the
process represented by φ occurs. If we regard R as an COM with uR the identity



510 H. Barnum et al.

mapping on R, this is consistent with our understanding of a(α) as the probability
of the effect a : A → R occurring. Notice that a positive linear map φ : R → A

is a process if and only if φ(1) is a sub-normalized state, while a positive functional
f : A → R is a process if and only if f ∈ A#+ and f ≤ uA−in other words, if
and only if f is an effect. Finally, since A is compact, uA(φ(α)) attains a maximum
value, say M on A. M−1φ is a process, so every morphism of COMs is a positive
multiple of a process.

3.2 Bipartite States and Composite Systems

Given two separate systems, represented by COMs A and B, we should expect that
any state of the composite system AB will induce a joint probability assignment
p(a, b) on pairs of effects a ∈ A#, b ∈ B#. If the two systems can be prepared
independently, we should also suppose that, for any two states α ∈ A and β ∈ B ,
the product state α ⊗ β, given by (α ⊗ β)(a, b) = α(a)β(b), will be a legitimate
joint state. Finally, if the two systems do not interact, the choice of measurement
made on A ought not to influence the statistics of measurement outcomes on B,
and vice versa. This latter “no-signaling” condition is equivalent [44] to the condi-
tion that the joint probability assignment p extends to a bilinear form on A# × B#,
normalized so that p(uA, uB) = 1. Abstractly, then, one makes the following
definition.

Definition 10 A (normalized, non-signaling) bipartite state between convex opera-
tional models A and B is a bilinear form ω : A# × B# → R that is positive, in the
sense that ω(a, b) ≥ 0 for all effects a ∈ A# and b ∈ B#, and normalized (satisfies
ω(uA, uB) = 1).

Implicit in this definition is the assumption, lately called local tomography [18],
that a joint state is determined by the joint probabilities it assigns to measure-
ment outcomes associated with the local systems A and B. As has been pointed
out by many authors, e.g. [6, 15, 33], this condition is violated in both real and
quaternionic quantum theory, and can therefore be made to serve as an axiom sep-
arating standard complex QM from these. A more general notion of non-signaling
bipartite state would merely associate, rather than identify, each such state with a
positive bilinear form on A# ×B#. See the remarks following Definition 11 for more
on this.

It is clear that any product ω = α ⊗ β of normalized states α ∈ A and β ∈ B

defines a non-signaling state; hence, so do convex combinations of product states.
Non-signaling states arising in this way, as mixtures of product states, are said to
be separable or unentangled. An entangled non-signaling state is one that is not
a convex combination of product states. Many of the basic properties of entangled
quantum states actually hold for entangled states in this much more general setting
[8, 33].

The space B(A#, B#) of all bilinear forms on A# × B#, ordered by the cone of
all positive bilinear forms, is the maximal tensor product, A ⊗max B , of A and B.
This notation is reasonable, since (in finite dimensions), B(A#, B#) is one model of



Categories of Convex Operational Models 511

the tensor product (A#)∗ ⊗ (B#)∗—thus, of the vector-space tensor product A ⊗ B .7

Ordering A ⊗ B instead by the generally much smaller cone of unentangled states,
that is, the cone generated by the product states, gives the minimal tensor product,
A⊗min B . It is important to note that these coincide only when A or B is classical [8].
If A and B are quantum state spaces, then the cone of bipartite density matrices for
the composite system lies properly between the maximal and minimal cones. This
indicates the need for something more general:

Definition 11 A (locally tomographic) composite of COMs A and B is a convex
operational model (AB, (AB)#, uAB), such that AB ⊆ B(A#, B#), with uAB =
uA ⊗ uB , α ⊗ β ∈ (AB)+ for all α ∈ A+, β ∈ B+, and a ⊗ b ∈ (AB)#+ for all
a ∈ A#+, b ∈ B#+.

It is worth stressing that there are perfectly reasonable theories that are not locally
tomographic. Indeed, one of these is quantum mechanics over the real, rather than
complex, scalars. We might more generally define a composite in the wide sense of
COMs A and B to be a COM (AB, (AB)#, uAB), together with (i) a positive linear
embedding (injection) i : A ⊗min B → AB , and (ii) a positive map r : AB →
A ⊗max B , surjective as a linear map, such that for all a ∈ A#, b ∈ B#,

r(i(α ⊗ β))(a, b) = a(α)b(β),

i.e., r ◦ i is the canonical embedding of A ⊗min B in A ⊗max B . However, we shall
make no use of this extra generality here. Accordingly, we assume henceforth that all
composites are locally tomographic, as per Definition 11 above.

3.3 Conditioning and Remote Evaluation

A bipartite state ω on A and B gives rise to a positive linear mapping ω̂ : A# → B

with
b(ω̂(a)) = ω(a, b)

for all a ∈ A# and b ∈ B#; dually, a bipartite effect f ∈ (AB)# gives rise to a linear
map f̂ : A → B#, given by f̂ (α)(β) = f (α ⊗ β), and subject to f (α) ≤ uB for all
α ∈ A.

The marginals of ω are given by ωB = ω̂(uA) and ωA = ω̂∗(uB). Note that ω

is normalized iff uB(ω̂(uA)) = 1. We can define the conditional states of A and B
given (respectively) effects b ∈ [0, uB] and a ∈ [0, uA] by

ωA|b := ω̂∗(b)

ωB(b)
and ωB|a := ω̂(a)

ωA(a)

provided the marginal probabilities ωB(b) and ωA(a) are non-zero. Accordingly, we
refer to ω̂(a) as the un-normalized conditional state. Notice that the linear adjoint,
ω̂∗ : B# → A, of ω̂ represents the same state, but evaluated in the opposite order:
ω̂∗(b)(a) = ω̂(a)(b) = ω(a, b).

7This is a straightforward extension of the definition in [13] to the context of possibly non-saturated
models.
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Lemma 12 (Remote Evaluation 1) Let A,B and C be convex operational models. For
any bipartite effect on f ∈ (AB)∗ and any bipartite state ω ∈ BC, and for any state
α ∈ A,

(f ⊗ −)(α ⊗ ω) = ω̂(f̂ (α)).

Proof It is straightforward that this holds where f and ω are a product effect and
a product state, respectively. Since these generate (AB)∗ and AB, the result follows.

Operationally, this says that one can implement the transformation ω̂ ◦ f̂ by
preparing the tripartite system ABC in state α ⊗ ω, where α ∈ A is the “input”
state to be processed, and then making a measurement on AB, of which f is a possi-
ble outcome: the un-normalized conditional state of C, given the effect f on AB, is
exactly ω̂(f̂ (α)). Thus, the process φ := ω̂ ◦ f̂ : A → C becomes a special case of
conditioning. In [9], we have called this protocol remote evaluation. Note that con-
clusive, or post-selected, teleportation arises as the special case of remote evaluation
in which, up to some specified isomorphism, C  A and ω̂◦ f̂  1A. We shall return
to this point below.

4 Categories of Convex Operational Models

We now wish to chart some connections between the two approaches outlined
above. In the first place, we will bring some category-theoretic order to the concepts
developed in the preceding section.

Since morphisms of COMs compose, we can define a category Com of all convex
operational models and COM morphisms. As described in Section 3.1, the hom-sets
Com(A, B) are themselves cones. Let I denote the COM R with its standard cone
and order unit, i.e. I = (R,R, 1).

Definition 13 A category of COMs is a subcategory C of Com such that: (i) C(A, B)

is a (regular) sub-cone of the cone Com+(A, B); (ii) C contains the distinguished
COM I; (iii) C(I, A)  A; and (iv) C(A, I )  A#. We call a such a category finite-
dimensional if all state spaces A ∈ C are finite dimensional.

A more general definition would require only that C(A, B) be some set of pro-
cesses, in the sense of Definition 9, between A and B. However, we should like to be
able to construct random mixtures of processes, so C(A, B) should at least be convex.
Allowing for the taking of limits as a reasonable idealization, it is plausible to take
C(A, B) also to be closed. Finally, one should require that, if φ : A → B is a phys-
ically valid process, then so is tφ for any t ∈ [0, 1]–this reflecting the possibility of
attenuating a process (as, for instance, by some filter that admits only a fraction t of
incident systems, but otherwise leaves systems unchanged, or by in some other way
conditioning its occurrence on an event assigned a probability less than 1). This much
given, the physically meaningful processes between two systems should generate a
closed, convex, pointed cone of positive mappings, as per Definition 13.
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In [8, 9, 12], a probabilistic theory is defined, rather loosely, to be any class of
COMs (or “probabilistic models”) that is equipped with some device, or devices, for
forming composite systems. Tightening this up considerably, we make the following
definition.

Definition 14 A monoidal category of COMs is a category of COMs equipped with
a monoidal structure, such that (i) the monoidal unit is the COM I; (ii) for every
A, B ∈ C, A ⊗ B is a non-signaling composite in the sense of Definition 11.

While Definition 14 does not require it, in the rest of the paper we will assume
that all monoidal categories of COMs are symmetric monoidal, and (in accordance
with our standing assumtion), finite dimensional.

As an example, the category FDCom of all finite-dimensional convex opera-
tional models and positive mappings can be made into a monoidal category in two
ways, using either the maximal or the minimal tensor product. Another example is
the “box-world” considered, e.g., in [22, 41]: here, state spaces are constructed by
forming maximal tensor products of basic systems, the normalized state spaces of
which are two-dimensional squares. Another example is afforded by the category of
quantum-mechanical systems, represented as the self-adjoint parts of complex matrix
algebras. Here, the appropriate monoidal product of two systems A and B is what
is sometimes referred to as the “spatial” tensor product, obtained by forming tensor
products of the Hilbert spaces on which the A and B act, and taking the self-adjoint
operators on this space.

4.1 Remote Evaluation Again

We now reformulate the conditioning maps and remote evaluation protocol dis-
cussed above in purely categorical terms. In fact, both make sense in any symmetric
monoidal category C. Suppose, then, that ω : I → B ⊗ A is a “bipartite state”,
i.e, a state of the composite system B ⊗ A. Then there is a canonical mapping
ω̂ : C(B, I ) → C(I, A) given by

I
ω ��

ω̂(b)
����

��
��

��
��

� B ⊗ A

b⊗1A

��
A

(4)

Dually, if f ∈ C(A ⊗ B, I ), there is a natural mapping f̂ : C(I, A) → C(B, I )

given by

B
α⊗1B ��

f̂ (α)
����

��
��

��
��

� A ⊗ B

f

��
I

. (5)

Note that if C is already a category of COMs, then ω̂ and f̂ are exactly the maps dis-
cussed in the last section. This has a simple but important corollary, namely, that these
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maps are indeed morphisms of COMs. Another consequence is that any monoidal
category of COMs is closed under conditioning – that is, if ω is a normalized bipar-
tite state of such a theory, belonging, say, to a composite system AB, then for every
effect a on A and b on B, the composite states ωB|a and ωA|b are indeed states of A
and B, respectively (as opposed to merely being elements of (A#)∗ and (B#)∗).8

The remote evaluation protocol of Lemma 12 also has a purely category-theoretic
formulation:

Lemma 15 (Remote Evaluation 2) Let ω : I → B ⊗ C and f : A ⊗ B → I in C.
Then

ω̂(f̂ (α)) = (f ⊗ 1C) ◦ (1A ⊗ ω) ◦ α = (f ⊗ 1C) ◦ (α ⊗ ω) (6)

for all α ∈ C(I, A). Dually, for every β ∈ C(I, B), we have

ω̂∗(f̂ ∗(β)) = (1A ⊗ f ) ◦ (ω ⊗ β). (7)

Proof We prove (6), the proof of (7) being similar. Tensoring the diagram (5) with C
(on the right) gives the right-hand triangle in the diagram below. Applying (4) to com-
pute ω̂(f̂ (α)) gives the lower triangle. The square commutes by the bifunctoriality
of the tensor.

A
1A⊗ω �� A ⊗ B ⊗ C

f ⊗1C

�����������������

C

I

α

��

ω ��

ω̂(f̂ (α))
		

B ⊗ C

α⊗1B⊗1C

��

f̂ (α)⊗1C

�����������������

Chasing around the diagram gives the desired result.

Suppose that, in the preceding lemma, ω(1) ∈ A ⊗ B is a normalized state, and
f : B ⊗ C → I is an effect, i.e, 0 ≤ f ≤ uBC . Then, in operational terms, the
Lemma says that the mapping ω̂ ◦ f̂ is represented, within the category C, by the
composite morphism (f ⊗ 1C) ◦ (1A ⊗ ω).9 In other words: preparing BC in joint
state ω, and then measuring AB and obtaining f, guarantees that the “un-normalized
conditional state” of C is ω̂(f̂ (α)), where α is the state of A.

Remark 16 An important point here is that any process that factors as ω̂ ◦ f̂ can be
simulated by a remote evaluation protocol, using what amounts to classical condi-
tioning–in particular, without need to invoke any mysterious “collapse” of the state,
or for that matter, any other physical dynamics at all.

8This is closely related to the notion of regular composite introduced in [9].
9Technically we are relying on the isomorphisms between A ∼= C(I, A) and A# ∼= C(A, I ) to guarantee
that the internal representation of ω̂ ◦ f̂ defines the right linear map.
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4.2 Teleportation, Conditional Dynamics and Compact Closure

Suppose that, in the remote evaluation protocol of Lemma 15, we have C = A.
Suppose further that the mapping ω̂ : B# → A has a right inverse — that is, suppose
there exists a positive linear map r̂ : A → B# such that ω̂ ◦ r̂ = 1A. Then we can
re-scale r̂ to obtain an effect f on A ⊗ B by

f (α, β) = ĉr(α)(β),

for a small enough positive constant c. Upon obtaining the result f in a measurement
on A⊗B when the composite system is in state α⊗ω, the un-normalized conditional
state of C is:

ω̂(f̂ (α)) = cα.

The normalized conditional state will be exactly α. This is what is meant, in quantum-
information theory, by a conclusive, correction-free teleportation protocol. Adopting
this language, we will say that it is possible to teleport system A through system B if
and only if there exists such a pair ω̂, r̂ .

If ω̂ is in fact an isomorphism A# ∼= B , then r̂ = ω̂−1, and system B can also be
teleported through system A. When this is the case, Lemma 15 tells us that ω : I →
B ⊗ A and f : A ⊗ B → I with f̂ = ω̂−1, provide respectively a unit and co-unit
making (B, ω, f ) a dual for A. Thus, a compact closed category of COMs is exactly
one in which every system A is paired with a second system B = A′, in such a way
that each system can be teleported through the other.

Proposition 17 Let C be a monoidal category of COMs. The following are
equivalent.

(a) C is compact closed.
(b) Every A ∈ C can be teleported through some B ∈ C, which in turn can be

teleported through A.
(c) Every morphism in C has the form ω̂◦ f̂ for some bipartite state ω and bipartite

effect f.

Proof The equivalence of (a) and (b) is clear from the preceding discussion. To see
that these are in turn equivalent to (c), suppose first that (a) holds, and let (A′, ηA, eA)

be the dual for A. Suppose that φ : A → B is a morphism in C, and define ωφ =
(1A′ ⊗ φ) ◦ ηA. By Remote Evaluation (Lemma 15), we have

ω̂φ(êA(α)) = (eA ⊗ 1B) ◦ (1A ⊗ ωφ) ◦ α

for every α ∈ C(I, A). Since C is compact closed, the following diagram commutes:

A
1A ��

1A⊗ηA 

������������ A
φ �� B

A ⊗ A′ ⊗ A
1A⊗1A′⊗φ��

eA⊗1A

��

A ⊗ A′ ⊗ B ,

eA⊗1B

��
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and hence ω̂φ(êA(α)) = φ(α). Since C(I, A) ∼= A we have φ = ω̂φ ◦ êA as required.
Conversely, if (c) holds, then for each A, the identity mapping 1A factors as ω̂A ◦ f̂A

for some ωA ∈ B ⊗ A and some f ∈ A ⊗ B . It follows that ω̂A = f̂ −1
A , so this gives

us a compact closed structure.

5 Weakly Self-Dual Theories

In a compact closed category C, the internal adjoint ′ : C → C described in
Section 3.1 establishes an isomorphism C  Cop. In particular, for every object A in
the category, understood as a “physical system”, there is a distinguished isomorphism
between the system’s state space C(I, A) and the space C(A, I ) of effects.

In contrast, a convex operational model A is not generally isomorphic to its dual.
Indeed, there is a type issue: A has, by definition, a distinguished unit functional uA ∈
A#; in order for A# to be treated as a COM, one would need to privilege a state αo ∈ A

to serve as an order unit on A#. Only in special cases is there a natural way of doing
so.10 Beyond this, there is the more fundamental problem that, geometrically, the
cones A+ and A#+ are generally not isomorphic. This said, those convex operational
models that are order-isomorphic to their duals are of considerable interest – not
only because both classical and quantum systems exhibit this sort of self-duality, but
because it appears to be a strong constraint, in some measure characteristic of these
theories.

5.1 Weak vs Strong Self-Duality

A finite-dimensional ordered vector space A (or its cone, A+) is said to be self-dual
iff there exists an inner product–that is, a positive-definite, hence also symmetric and
non-degenerate, bilinear form 〈 , 〉 – on A such that

A+ = A+ := {a ∈ A|〈a, x〉 ≥ 0 ∀x ∈ A+}.
In this case, we have A  A∗, as ordered spaces, via the canonical isomorphism a �→
〈a, .〉. A celebrated theorem of Koecher and Vinberg [21, 28, 42] states that if A+ is
both self-dual and homogeneous, meaning that the group of order-automorphisms of
A acts transitively on the interior of A+, then A is isomorphic, as an ordered space,
to a formally real Jordan algebra ordered by its cone of squares. The Jordan-von
Neumann-Wigner [26] classification of such algebras then puts us within hailing
distance of quantum mechanics.

Definition 18 A COM (A, A#, uA) is weakly self-dual (WSD) iff there exists an
order-isomorphism φ : A  A#. We shall say that A is symmetrically self-dual iff φ

can be so chosen that φ(α)(β) = φ(β)(α) for all α, β ∈ A.

10When the state space is sufficiently symmetric, there may be a natural choice of state invariant under the
symmetry group. For example, if the base-preserving automorphisms act transitively on the pure states,
the state obtained by group-averaging is the natural choice.



Categories of Convex Operational Models 517

Note that, for a given linear map φ : A → A#, the bilinear form 〈α, β〉 := φ(α)(β)

is non-degenerate iff φ is a linear isomorphism, and symmetric iff φ = φ∗. If we
don’t require saturation, any finite-dimensional ordered linear space A can serve as
the state space for a weakly self-dual COM, simply by setting (A#)+ = φ(A+) for
some nonsingular positive linear mapping A → A∗, and taking any point in the
interior of (A#)+ for uA. However in the saturated case, weak self-duality is a real
constraint on the geometry of the state cone, although strong self-duality is an even
stronger one.

Note that, for a given linear map φ : A → A#, the bilinear form 〈α, β〉 := φ(α)(β)

is non-degenerate iff φ is a linear isomorphism, and symmetric iff φ = φ∗. Thus, A
will be self-dual, in the classical sense described above, iff 〈 , 〉 is positive-definite,
and A# = A∗, i.e, A is saturated. To emphasize the distinction, we shall henceforth
refer to this situation as strong self-duality.

If φ : A  A# is an order-isomorphism implementing A’s self-duality, then φ−1 :
A#  A defines an un-normalized bipartite non-signaling state γ in A ⊗max A with
φ−1 = γ̂ —that is, γ (a, b) = φ−1(a)(b). Following [12], we shall call such a state
an isomorphism state. It is shown in [12] that such a state is necessarily pure in
A⊗max B .11 In this language, A is WSD iff A⊗max B contains an isomorphism state.

Example 19 Let A be the convex operational model of a basic quantum-mechanical
system, i.e., the space of self-adjoint operators associated with the system’s Hilbert
space H. The standard maximally entangled state on A⊗A is the pure state associated
with the unit vector

� = 1√
d

∑

i

xi ⊗ xi

where {x1, ..., xn} is an orthonormal basis for H. Using this, one has a mapping

R : T �→ RT := (T ⊗ 1)P�

taking operators T : H → H to operators B(H ⊗ H). It is a basic result, due to Choi
and, independently, Jamiolkowski, that this is a linear isomorphism, taking the cone
of completely positive maps on B(H) onto the cone of positive operators on H ⊗ H.
Note that R−1 maps [31] ρ to Tρ where the latter is given by

〈x|Tρ(σ)y〉 = dTr(ρ((|y〉〈x|) ⊗ σT ))

where |y〉〈x| is the operator z �→ 〈z, x〉y, and the transpose is defined relative to the
chosen orthonormal basis. This gives us a state γ ∈ A⊗A with γ̂ : A∗  A, namely,

γ̂ (a)(b) = Tr(P�(a ⊗ b)) = Tr(P�(a ⊗ 1)(1 ⊗ b)).

5.2 Categories of Self-dual COMs

Let C be a monoidal category of COMs, as described in Section 4. There is a distinc-
tion between requiring that a state space A ∈ C be weakly self-dual, which implies

11Strictly speaking, [12] deals with the case in which A and B are saturated, but the proof is easily extended
to the general case.



518 H. Barnum et al.

only that there exist an order-isomorphism A#  A —an isomorphism in Ordlin—
and requiring that this correspond to an (un-normalized) state γ ∈ (AA)+, hence, to
an element of C(I, A⊗A). We now focus on categories in which this latter condition
holds for every system.

Definition 20 A symmetric monoidal category C of COMs is weakly self-dual
(WSD) iff for every A ∈ C, there exists a pair (γA, fA) consisting of a bipartite state
γA ∈ A ⊗ A and a positive functional fA ∈ (A ⊗ A)# = C(A ⊗ A, I) (a multiple
of an effect) such that (i) γA is an isomorphism state, and (ii) f̂A = γ̂ −1

A . If γA can
be chosen to be symmetric for every A ∈ C, we shall say that C is symmetrically
self-dual (SSD).

Note that this is stronger than merely requiring every COM A ∈ C to be weakly
self-dual. Equivalently, we may say that category C of COMs is WSD iff every system
can be equipped with a designated conclusive, correction-free teleportation protocol
γA ∈ A ⊗ A, fA ∈ (A ⊗ A)#, whereby A can be teleported “through itself”. Thus, by
Proposition 17, we have:

Theorem 21 A monoidal category C of convex operational models is weakly self-
dual iff it is compact closed, and can be equipped with a compact structure such that
A′ = A for all objects A ∈ C.

Recall that any morphism φ in a compact closed category has a categorial adjoint,
φ′. In the context of a WSD category of COMs, this has a useful interpretation in
terms of the linear adjoint, φ∗:

Lemma 22 Let C be any WSD category of ASPs, regarded as compact closed as
above. Let φ : A → B . Then the canonical adjoint mapping φ′ : B → A is
given by

φ′ = (f̂B ◦ φ ◦ γ̂A)∗ = γ̂ ∗
A ◦ φ∗ ◦ f̂ ∗

B

Proof We must show that, for any β ∈ B – that is, any β ∈ C(I, B) – we have
φ′(β) := φ∗ ◦ β = γ̂ ∗

A(φ∗(f̂ ∗
B(β))), where φ∗ : B# → A# is the linear adjoint. Let

ω := (1A ⊗ φ) ◦ γA : I → A ⊗ B . Then we have

φ′(β) = φ′ ◦ β

= (1A ⊗ fB) ◦ (1A ⊗ φ ⊗ 1B) ◦ (γA ⊗ 1B) ◦ β

= (1A ⊗ fB) ◦ (1A ⊗ φ ⊗ β) ◦ γA

= (1A ⊗ (fB ◦ (1B ⊗ β))) ◦ ((1A ⊗ φ) ◦ γA)

= (1A ⊗ f̂ ∗(β)) ◦ ω)

= ω̂∗(f̂ ∗
B(β)).
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Now, for any b : B → I , we have

ω̂∗(b) = ̂(σB,B ◦ ω)(b)

= (1A ⊗ b) ◦ ω

= (1A ⊗ b) ◦ (1A ⊗ φ) ◦ γA

= (1A ⊗ (b ◦ φ)) ◦ γA

= (1A ⊗ φ∗(b)) ◦ γA

= γ̂ ∗
A(φ∗(b)).

With b = f̂ ∗
B(β), this gives the desired result.

Corollary 23 For all A ∈ C, f ′
A = σA,A ◦ γA.

Proof Note first that f ∗
A(1) = fA ∈ (A ⊗ A)#. Thus, the preceding Lemma gives us

f ′
A(1) = (γ̂ ∗

A⊗A ◦ f ∗
A ◦ f̂ ∗

I )(1)

Since fI = f ∗
I = 1I , we have

f ′
A(1) = (γ̂ ∗

A ⊗ γ̂ ∗
A)(fA).

Thus, for every a, b ∈ A#, we have

f ′
A(1)(a, b) = (γ̂ ∗

A ⊗ γ̂ ∗
A)(fA)(a, b)

= fA(γ̂A(a), γ̂A(b))

= f̂ ∗
A(γ̂A(b))(γ̂ ∗

A(a))

= b(γ̂ ∗
A(a))

= γA(b, a)

= (σ ◦ γA)(a, b).

Theorem 24 Let C be a symmetrically self-dual monoidal category of COMs. Then
C is dagger compact with † given by the canonical adjoint ′ : Cop → C.

Proof By Theorem 21, C is degenerate compact closed, with a compact structure
on A ∈ C given by (A, γA, fA), where γA is symmetric. Define (·)† : Cop → C by
(·)† = (·)′; then (·)† is a monoidal functor which is the identity on objects. Since
σ ′

A,B = σ−1
A,B in any compact closed category, C is dagger-monoidal. That f

†
A =

σA,A ◦ γA is immediate from Corollary 23.

Lemma 25 For all A, let τA : A → A be the order-isomorphism given by

τA := γ̂A ◦ f̂ ∗
A.

Then, for all φ ∈ C(A, B), we have

φ′′ = τ−1
B ◦ φ ◦ τA.
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Proof Notice first that τ−1
B = (γ̂B ◦ f̂ ∗

B)−1 = γ̂ ∗
B ◦ f̂B . By Lemma 22, we have

φ′′ = (f̂A ◦ φ′ ◦ γ̂B)∗ = (f̂A ◦ (f̂B ◦ φ ◦ γ̂A)∗ ◦ γ̂B)∗

= γ̂ ∗
B ◦ (f̂B ◦ φ ◦ γ̂A)∗∗ ◦ f̂ ∗

A

= (γ̂ ∗
B ◦ f̂B) ◦ φ ◦ (γ̂A ◦ f̂ ∗

A)

= τ−1
B ◦ φ ◦ τA

Corollary 26 Let φ : A → B with φ′′ = φ. Then φ ◦ τA = τB ◦ φ.

Theorem 27 For any object A in a weakly self-dual category C of convex operational
models, the following are equivalent: (i) φ′′ = φ for all φ ∈ C(A, A), (ii) τA = 1A,
and (iii) fA and γA are symmetric as a bilinear forms.

Proof (i) implies (ii): From (i), and the fact that the morphisms in C(A, B) are
a basis for L(A, B), (·)′′ is the identity map. Let Ei, Fj be bases of the spaces
L(A, A),L(B, B) of linear maps on vector spaces A,B respectively. Then the maps
X �→ FjXEi , where X ∈ L(A, B), are a basis for the space of linear maps from
L(A, B) to itself. Using this fact, we can expand the map (·)′′ : φ �→ τ−1

B ◦ φ ◦ τA,
which is a map from L(A, B) to itself, in a basis Mij : φ �→ FjXEi where
E0 = 1B, F0 = 1A. By the uniqueness of expansions in bases and the fact that (·)′′
is the identity map, we get τA = 1A, τB = 1B .
(ii) implies (iii): By (ii) we have τA := γ̂A ◦ f̂ ∗

A = 1A, so f̂ ∗
A = γ̂ −1

A = f̂A. Since
f (a, b) ≡ f̂ (a)(b) ≡ f̂ ∗(b)(a), f̂ ∗

A = f̂A is equivalent to symmetry of fA. Symme-
try of γA then follows from the fact that γA = f −1

A .
(iii) implies (i): If fA (hence, also γA) are symmetric, then we have f ∗

A = fA, whence,
τA = γA ◦ f̂A = 1A; thus, by Lemma 25, φ′′ = φ for all φ ∈ C(A, A).

Applying Theorem 24, we now have the

Corollary 28 A WSD monoidal category of COMs is dagger compact with respect
to the canonical adjoint ′ : Cop → C, if and only if it is symmetrically
self-dual.

Theorem 27 tells us that if C is a saturated weakly self-dual theory in which ′
is an involution, then the interior of A+ is a domain of positivity in the sense of
Koecher [30]. If we further suppose that every irreducible state space in C is homo-
geneous, meaning that G(A+) acts transitively on the interior of A+ for every A ∈ C
(a condition one can motivate physically in several ways, e.g., [12, 45]), then we
are close to requiring that every state space in C be a formally real (also called
Euclidean) Jordan algebra [28, 42]. This line of thought will be pursued in a sequel to
this paper.
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6 Conclusion

We began with the observation that compact closure, and still more, dagger compact-
ness, represent strong constraints on a physical theory, thought of as a symmetric
monoidal category of “systems” and “processes”. Our results cast some light on
the operational (or, if one prefers, the physical) content of these assumptions in the
concrete—but still very general—context of probabilistic (or convex operational)
theories. In particular, we have seen that, in probabilistic theories qua categories
of COMs, compact closure amounts to the condition that all processes–that is, all
dynamics–can be induced by the kind of conditioning that occurs in a teleportation-
like protocol. Indeed, in such a theory, a process between systems A and B amounts
to a choice of bipartite state on A ⊗ B . Finally, we have established that for weakly
self-dual theories symmetric weak self-duality implies the existence of a dagger
compatible with the compact closed structure. As in the special case of quantum
mechanics, a dagger amounts to reversing the order of conditioning.

Several directions for further study suggest themselves. It would be interesting to
identify necessary and sufficient conditions for the COM representations discussed in
Section 4.1 to yield finite dimensional models–and, equally, one would like to know
how far the other results of Sections 4 and 5 extend to infinite-dimensional systems.
Our definition of category of weakly self-dual state spaces assumes the existence of a
state that induces, by conditioning, an isomorphism from the state cone to the effect
cone, and an effect inducing its inverse; but as we noted, it would be interesting to
investigate conditions under which this follows just from weak self-duality of the
objects. As mentioned at the end of Section 5, the consequences of homogeneity of
the state-spaces should also be explored.

Perhaps the most urgent task, though, is to identify operational and category-
theoretic conditions equivalent to the strong self-duality of a probabilistic theory.12

Acknowledgments HB and AW wish to thank Samson Abramsky and Bob Coecke for enabling them to
visit the Oxford University Computing Laboratory in November 2009, where some of this work was done,
and for helpful discussions during that time. The authors also wish to thank Peter Selinger for helpful
discussions. RD was supported by EPSRC postdoctoral research fellowship EP/E04006/1. HB’s research
was supported by Perimeter Institute for Theoretical Physics; work at Perimeter Institute is supported in
part by the Government of Canada through Industry Canada and by the Province of Ontario through the
Ministry of Research and Innovation.

References

1. Abramsky, S., & Coecke, B. (2004). A categorical semantics of quantum protocols. In Proceedings
of the 19th annual IEEE symposium on logic in computer science: LICS 2004 (pp. 415–425). IEEE
Computer Science Press. Also arXiv:0402130v5 [quant-ph/].

2. Abramsky, S., & Coecke, B. (2008). Categorical quantum mechanics. In K. Engesser, D. Gabbay, D.
Lehman (Eds.), Handbook of quantum logic and quantum structures II. Amsterdam: Elsevier.

12See [37, 46] for some recent progress on this question.

http://arxiv.org/pdf/quant-ph/0402130.pdf


522 H. Barnum et al.

3. Abramsky, S., & Duncan, R. (2006). A categorical quantum logic. Mathematical Structures in
Computer Science, 16, 486–489.

4. Alfsen, E.M. (1971). Compact convex sets and boundary integrals. Springer.
5. Alfsen, E.M., & Shultz, F.W. (2002). State spaces of operator algebras: basic theory, orientations,

and C∗-products. Boston: Birkhauser.
6. Araki, H. (1980). On a characterization of the state space of quantum mechanics. Communications in

Mathematical Physics, 75(1980), 1–24.
7. Baez, J. (2004). Quantum quandaries: a category-theoretic perspective. quant-ph/0404040.
8. Barnum, H., Barrett, J., Leifer, M., Wilce, A. (2007). Generalized no-broadcasting theorem. Physical

Review Letters, 99, 24051.
9. Barnum, H., Barrett, J., Leifer, M., Wilce, A. (2008). Teleportation in general probabilistic theo-

ries. In S. Abramsky & M. Mislove (Eds.), Mathematical foundations of information flow. American
Mathematical Society. 2012 also arXiv:0805.3553.

10. Barnum, H., Dahlsten, O., Leifer, M., Toner, B. (2008). Nonclassicality without entanglement enables
bit commitment. In Proc. IEEE information theory workshop, Porto, May 2008 (pp. 386–390). Also
arXiv: 0803.1264.

11. Barnum, H., Fuchs, C., Renes, J., Wilce, A. (2005). Influence-free states on compound quantum
systems. quant-ph/0507108.

12. Barnum, H., Gaebler, P., Wilce, A. (2009). Ensemble steering, weak self-duality and the structure of
probabilistic theories. arXiv:0912.5532.

13. Barnum, H., & Wilce, A. (2011). Information processing in convex operational theories. Electronic
Notes in Theoretical Computer Science, 270, 3–15. Also arXiv:0908.2352.

14. Barnum, H., & Wilce, A. (2009). Ordered linear spaces and categories as frameworks for information-
processing characterizations of quantum and classical theory. arXiv:0908.2354.

15. Barrett, J. (2007). Information processing in general probabilistic theories. Physical Reviews A, 75,
032304. Also arXiv:0.508211 [quant-ph/].

16. Beltrametti, E., & Cassinelli, G. (1980). The logic of quantum mechanics. Academic Press.
17. Coecke, B., Paquette, E.O., Pavlovic, D. (2009). Classical and quantum structuralism. In I. Mackie

& S. Gay (Eds.), Semantic techniques for quantum computation (pp. 29–69). Cambridge University
Press.

18. d’Ariano, G.M. (2006). How to derive the Hilbert-space formulation of quantum mechanics from
purely operational axioms. arXiv.org:0603011 [quant-ph/].

19. Davies, E.B., & Lewis, J.T. (1970). An operational approach to quantum probability. Communications
in Mathematical Physics, 17, 239–260.

20. Edwards, C.M. (1970). The operational approach to algebraic quantum theory I. Communications in
Mathematical Physics, 16, 207–230.
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