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Abstract The fundamental principle of the theory of possible worlds is that a propo-
sition p is possible if and only if there is a possible world at which p is true. In this
paper we present a valid derivation of this principle from a more general theory in
which possible worlds are defined rather than taken as primitive. The general theory
uses a primitive modality and axiomatizes abstract objects, properties, and proposi-
tions. We then show that this general theory has very small models and hence that
its ontological commitments—and, therefore, those of the fundamental principle of
world theory—are minimal.

Keywords Possible worlds · Modality · Modal logic · Object theory

1 Introduction

The fundamental principle of the theory of possible worlds can be expressed as
follows, where p stands for a sentence or proposition:

The Equivalence Principle
It is possible that p if and only if there is a possible world at which p is true.

The left-to-right direction of the Equivalence Principle effectively requires that every
metaphysical possibility is realized at some world. It therefore constitutes a sort of
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plenitude principle that ensures there are “no gaps in logical space...where a world
might have been, but isn’t” (Lewis [8], 86). In the presence of modal claims such as
that there might have been talking donkeys or that there might have been million carat
diamonds, the left-to-right direction guarantees the existence of worlds where there
are talking donkeys or million carat diamonds. This direction, therefore, allows one
to derive the existence of non-actual possible worlds from claims of the form: p is
false but possibly true.1 The right-to-left direction of the Equivalence Principle seals
the connection between worlds and possibilities by ensuring that anything true at
some world is in fact a genuine metaphysical possibility.

We can express the Equivalence Principle in a formally precise way if we use the
modal language of a hybrid logic containing primitive symbols p, q , . . . , a necessity
operator (�), variables w, v, . . . ranging over worlds, and sentences of the form
‘w |= p’ that assert p is true at w.2 For the moment, it doesn’t really matter whether
the symbols p, q, . . . are sentence letters or variables ranging over propositions. What
matters is that statements of the form w |= p are governed by an axiom of Coherence
which asserts that the negation of p is true at w if and only if it is not the case that
p is true at w:

Co (w |= ¬p) ↔ (¬w |= p)

If we now add to this basis the usual definition of the possibility operator ‘♦’, we can
then express the Equivalence Principle formally as follows:

EP ♦p ↔ ∃w(w |= p)

Note that, given Coherence and some basic modal and propositional logic, the
Equivalence Principle is equivalent to:

The Leibniz Principle
It is necessary that p if and only if p is true at every possible world.

More formally, in terms of the language at hand:

LP �p ↔ ∀w(w |= p)

1Assuming, of course, (a) that whenever q is true at w but not at w′, then w �= w′, and (b) that when-
ever q is false, then q is false at the actual world w∗. Given these assumptions, we can prove that there
are nonactual possible worlds if we consider some false but possibly true sentence or propositions p.
Since p is possibly true, there is a world, say w1, at which it is true, by the left-to-right direction of the
Equivalence Principle. But since p is false, then by (b), it is false at w∗. So by (a), w1 isn’t the actual
world w∗.
2In this paper, the symbol ‘|=’ is used both as a metalinguistic symbol with its usual model theoretic
meaning as well as an object language symbol indicating truth at a world. It is always abundantly clear
from the surrounding context which is intended.



The Fundamental Theorem of World Theory 335

Given this equivalence between the two principles,3 one can take either principle as
a basic axiom and derive the other. In what follows, however, our focus will be on
EP rather than LP, as the former involves an explicit existence claim about possible
worlds that is independent of Coherence.

One of the most interesting and important philosophical questions is: Independent
of any particular modal beliefs about what is or is not possible, what are the ontolog-
ical commitments of EP? Since EP does not wear its commitments on its sleeve, a
natural way of approaching the question is to reframe it thus: What are the smallest
models in which EP is true?

If the variables p, q, . . . are interpreted as sentential letters for which one can
substitute complex sentences ϕ, then it is already known that EP is true in any model
of any standard language for a hybrid modal logic that contains a modal operator and
world quantifiers (see, e.g., [3]). Taking the semantic values of sentences as usual
to be sets of possible worlds, all that is needed is a single primitive possible world
w so that {w} can serve as the value of every true sentence and the empty set ∅ as
the value of every false sentence. Sentences w |= ϕ are then interpreted to be true
just in case the semantic value of ‘w’ is a member of the semantic value of ϕ. So
endorsing EP commits one only to an ontology with a single possible world, although
of course the domain of worlds might grow significantly if we add our modal beliefs
as assumptions to the logic.

When the symbols p, q, . . . are interpreted as variables ranging over proposi-
tions, then the smallest models in which EP is true include a domain of propositions.
Of course, if the domain of propositions is allowed to be empty, then since EP is,
under this interpretation, an (implicit) universally quantified claim, it would be vacu-
ously true. The smallest model in which EP is non-vacuously true requires a domain
with just two propositions p and ¬p (assuming the domain of propositions is closed
under negation). We can then easily construct a 3-element model of EP containing
two propositions and one possible world w: take p to be true at w (and hence ¬p to
be false at w) and the extension of ‘|=’ to be {〈w, p〉}.

Consequently, no matter how we interpret the symbols p, q, . . ., the ontological
commitments of the Equivalence Principle per se are meager. This, indeed, is part of
the philosophical attraction of the principle. It expresses a fundamental relationship
between possibilities and worlds that when spelled out formally, doesn’t entail any
significant ontological claims in the absence of the data (i.e., in the absence of our
modal beliefs about what is possibly true).

3 Here is a derivation of EP from LP:

1. �¬p ↔ ∀w(w |= ¬p) Instance of LP, with ¬p substituted for p.
2. �¬p ↔ ∀w¬(w |= p) From 1 and Co.
3. ¬�¬p ↔ ¬∀w¬(w |= p) From 2 by basic propositional logic.
4. ♦p ↔ ∃w(w |= p) From 3 and the interdefinability of �/♦, ∀/∃.

To show the converse and, hence, that EP is equivalent to LP, substitute ¬p for p in EP and follow
reasoning similar to the above.
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However, there are two ways in which one can endorse the Equivalence Principle.
The first way is to take the Equivalence Principle in one of its forms as fundamental
or axiomatic. Thus far, we’ve been examining the ontological implications of such a
position. The second way is to derive the Equivalence Principle as a theorem from a
more general theory in which possible worlds are defined rather than primitive. Our
interest in what follows is in examining the resources needed to do this. Note that we
are not talking about deriving the Equivalence Principle from one of its equivalent
forms; nor are we talking about deriving it from axioms that already quantify over
primitive possible worlds. Rather, what interests us here is finding more fundamental
principles that imply the Equivalence Principle in one of its forms as a consequence.
If that can be done, then the focus of the question of ontological commitment moves
from EP proper to the more general theory.

Most possible world theorists take one of the above forms of the Equivalence
Principle as basic and give no thought whatsoever to the idea of deriving it as a the-
orem of a more general theory. Thus, Kripke [6, 7] takes the Leibniz Principle as the
fundamental insight underlying his interpretation of modal languages with sentential
letters and alethic modal operators. But he doesn’t introduce a hybrid language con-
taining both modal operators and quantifiers over worlds in the attempt to derive the
Leibniz Principle. Lewis asserts the left-to-right direction of the Equivalence Prin-
ciple using ‘ways a world could be’ instead of propositions, for he says “absolutely
every way that a world could possibly be is a way that some world is” ([8], 2, 71, 86).
But there is no derivation of this principle from his other principles; rather, as Lewis
acknowledges (87), under his identification of ways worlds could be with worlds
themselves, the principle is rendered trivial.4

Most other philosophers who work with possible worlds take some form of the
Equivalence Principle to be such a truism that they rarely bother to explicitly endorse
it, much less attempt to derive it. This is true, for example, of almost all of the abstrac-
tionists about possible worlds, such as Adams [1], Plantinga [15, 44–46], Stalnaker
[20], Chisholm [5], Pollock [17], Prior [18], and Sider [19, 299]. A notable exception
is the attempted derivation in Plantinga [16] though, unfortunately, his attempt failed
in various ways.5 The basic problem for the abstractionists about worlds is that, in
order to prove the existence of the actual world, one has to ensure the existence of

4More specifically, it becomes the principle that every world is identical with some world. Likewise it is
rendered trivial if ways are identified with propositions, which in turn are identified with sets of worlds—
it becomes the principle that every nonempty set of worlds is identical with some nonempty set of worlds.
By contrast, the Equivalence Principle seems to postulate a substantive connection between genuine meta-
physical possibilities and the existence of possible worlds, and what makes the connection between the
two substantive is their conceptual independence.
5Plantinga’s attempted derivation rests on: (a) an unspecified theory of propositions that includes at least
one strong existence principle (namely, that for any set S of propositions, there is a proposition, ∧S, that
is the conjunction of the propositions in S); (b) no formal identity conditions for propositions, which in
particular means there is no guarantee that there is a unique actual world [9]; (c) a fragment of set theory
that includes the axioms of Pairing, Union, and Choice (which entail an infinite ontology of sets); (d) the
(highly problematic) thesis that for any proposition p, there is a set Ap of propositions that are possible
and entail p; and (e) an unjustified modal principle (namely, that the conjunction ∧B of any “maximal”
chain B of propositions in Ap is possible). For further details regarding (c)–(e) see Menzel [11].
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some sort of construct—a large conjunction or set of propositions, for example—
that implies all and only the true propositions. And to ensure that there is a distinct
possible world corresponding to each distinct possibility, one has to have a mecha-
nism in place for generating similar constructs, each of which implies all and only
those propositions that would have been true had things been otherwise in some way.
As soon as one asserts principles strong enough to guarantee the existence of such
constructs, there are issues to confront: in the case of conjunctive propositions, issues
about the existence and identity of such propositions, and in the case where sets are
employed, issues concerning the strength of the set-theoretic principles needed, such
as whether they commit one to an infinite domain or raise the specter of Russellian
paradoxes concerning sets of propositions.6

To the best of our knowledge, the literature contains only one successful attempt
to prove EP. Using the resources of his theory of abstract objects, Zalta [21, 84]
derives LP and, in [22] (109), offers a one-line proof sketch of EP as a corollary to
LP, citing only “contraposition and modal negation”. It should be noted that in those
theorems, the symbols p, q, . . . were construed as propositional variables, not
sentence letters.

However, in the works just cited, several interesting research issues are not
addressed:

• No direct proof of EP is ever developed, and the proof of LP is, at best, a sketch
that takes some shortcuts.

• The derivation of LP takes place in a context in which the full resources of the
theory of abstract objects are available—no attempt is made to isolate only those
resources needed for the proof of EP, thus leaving open the question of which
minimal group of axioms are needed for a direct proof of EP.

• No attempt is made to identify the smallest model of those axioms needed for
the proof of EP, thus leaving open the question of the minimum ontological
commitments of the theory.

The goals of the present paper, therefore, are to improve and advance this research in
several ways:

• We produce a direct proof of EP, in which the symbols p, q, . . . are interpreted
as variables ranging over propositions.

• We extract from the proof of EP a list of only the axioms required for the proof.
• We develop a minimal theory based upon those axioms and investigate the

smallest models of the theory, thereby identifying its minimal ontological
commitments.

These results prepare the ground for future research. For one of the fundamental
questions of the theory of possible worlds is, what is the epistemological justification
for the Equivalence Principle? Though our attempt to answer this question will be
reserved for another occasion, the present investigations will enhance one’s ability

6See Menzel [14]. See also Chihara [4], in particular regarding the significant threat of paradox implicit
in Plantinga’s world theory.
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to develop an answer and evaluate the various alternatives. The developments in this
paper will bring out into the open the minimal resources needed for a proof of EP.
When such resources are clarified, philosophers will be able to compare the present
approach to the theory of possible worlds with that of others.

2 Object Theory and Possible Worlds

Our derivation of EP will be presented in detail in Section 3. But since we already
know what axioms are used in the derivation, we present in this section only the
the core theory containing those axioms (and the language and definitions needed to
express them). This theory constitutes a monadic subtheory of the axiomatic theory
of abstract objects of Zalta [21, 23]. For purposes here, the theory divides naturally
into two parts, a logical core, which we will refer to as monadic object theory, or
MOT, for short, and the addition of a comprehension schema (OC) to this core. The
theory MOT + OC is called MOTC. In Section 4, we construct models that reveal
the minimal ontological commitments of MOTC by laying out its model theory and
showing that the theory has very small models.

2.1 The Languages of Monadic Object Theory

Languages for MOT A language L for MOT contains the usual logical apparatus of
monadic second-order quantified modal logic including the logical operators ¬, →,
∀, and � and denumerably many individual variables, denumerably many 0-place
predicate variables, and denumerably many 1-place predicate variables; the operators
∧, ∨, ↔, ∃, and ♦ are defined as usual. Informally, the three classes of variable
range over objects, propositions, and properties, respectively. The actual shapes of
these variables are irrelevant; the metavariables x, y, and z (possibly with numerical
subscripts) will range over individual variables; likewise p, q , r , and F , G, H will
range over 0- and 1-place predicates, respectively. Lower case Greek letters may be
used as metavariables as well, typically when a variable is needed to range over more
than one syntactic class. Additionally, L contains a distinguished 1-place predicate
constant A! which, intuitively, expresses the property of being an abstract object.
L may also contain any (countable) number of individual constants and individual
predicates which, for purposes here, we will indicate by means of the lower case
metavariables a and P . (We will also use boldface variables for semantic entities, but
these latter don’t make an appearance until Section 4.) Henceforth we shall assume
that L refers to a specific language for MOT.

A Grammar for the Languages In addition to this more or less standard lexicon,
the grammar for L introduces a rich array of complex predicates that, intuitively,
denote logically complex propositions and properties. However, only those formulas
deemed predicable can be used to form such predicates—indeed, such formulas will
themselves serve as the complex 0-place predicates; more standard λ-notation will
be used to form complex 1-place predicates, where some notion of variable binding
is needed. Object theory also introduces a new primitive mode of predication, called
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encoding. Like exemplification, encoding is not expressed by means of an explicit
predicate but structurally by means of a new type of atomic formula; specifically,
in addition to familiar formulas like Fx, L also includes formulas like xF . Those
of the former sort can be read as “x exemplifies F ” and those of the latter sort as
“x encodes F ”.7 These features force us to define the grammar for L rather more
delicately than for most standard higher-order languages; notably, our grammar must
define six notions—term, predicate, formula, predicable, subformula, and free in—
by means of a simultaneous recursion. As the last two are ancillary only, we separate
the clauses in their definition from those of the first four for the sake of readability.

1. Every individual constant or individual variable is a term.

• If x is an individual variable, then the occurrence of x itself in x is free in x.

2. Every 0-place (1-place) predicate variable or predicate constant π is a 0-place
(1-place) ( primitive) predicate.

• If π is a predicate variable, then the occurrence of π itself in π is free in π .

3. If π is a 0-place primitive predicate, then π is an (atomic) formula and π is
predicable. If τ is a term and π is a 1-place predicate, then πτ and τπ are
(atomic) formulas and πτ is predicable.

• If τ is an individual variable, then (i) the rightmost occurrence of τ in πτ is
free in πτ and the leftmost occurrence of τ is free in τπ , and (ii) every free
occurrence of a variable in π is a free occurrence in πτ and τπ .

• Every formula is a subformula of itself.

4. If ϕ is predicable, then ϕ is a 0-place predicate.
5. If ϕ and ψ are (predicable) formulas, then ¬ϕ, �ϕ, and (ϕ → ψ) are

(predicable) formulas.8

• Every occurrence of a variable that is free in ϕ is free in ¬ϕ and �ϕ;
likewise, every occurrence of a variable that is free in ϕ or ψ is free in
(ϕ → ψ).

• ϕ and its subformulas are subformulas of ¬ϕ and �ϕ; ϕ and ψ and their
subformulas are subformulas of (ϕ → ψ).

6. If ϕ is a formula and α any variable, then ∀αϕ is a (quantified) formula. If in
addition (i) ϕ is predicable, (ii) α is an individual variable and (iii) there is no
free occurrence of α in any 1-place predicate occurring in ϕ or in any quantified
subformula of ϕ, then ∀αϕ is predicable.

• Every free occurrence of a variable other than α in ϕ is a free occurrence of
that variable in ∀αϕ.

• ϕ and its subformulas are subformulas of ∀αϕ.

7In full object theory with n-place predicates and n-place exemplification formulas, encoding formulas
are always monadic and the predicate in a well-formed encoding formula is always unary.
8We will follow standard practice and drop outer parentheses when the conditional is the main connective.
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7. If (i) ϕ is predicable, (ii) x is any individual variable, and (iii) there is no free
occurrence of x either in any 1-place predicate occurring in ϕ or in any quantified
subformula of ϕ, then [λx ϕ] is a 1-place (λ-)predicate.

• Every free occurrence of a variable other than x in ϕ is a free occurrence in
[λx ϕ].

8. Nothing is predicable, or free in something, or a term, a predicate, a formula,
or a subformula of something unless it can be so demonstrated by the clauses
above.9

Given the presence of complex predicates, the notion of substitutability that is needed
for stating a number of axiom schemas has to be expressed a bit more generally than
usual. Towards this end, let us say that two expressions are of the same type if both
are terms, both are 0-place predicates, or both are 1-place predicates, and let ϕα

τ be
the result of replacing every free occurrence of α in ϕ with an occurrence of τ . Given
this, say that a term or predicate τ is substitutable for the variable α in ϕ if (a) τ
and α are of the same type, and (b) every free occurrence of a variable β in τ is still
free in ϕα

τ .

2.2 MOT: Logical Axioms, Definitions, and Proofs

Basic Logical Axioms The basic logical axioms of MOT consist of the axioms
of classical S5 modal propositional logic and classical monadic second-order

9The exclusion of encoding formulas in clause 3 is required to avoid the paradoxes of object theory
(see [21], pp. 158–160) and the restriction to individual variables in clauses 6(ii) and 7(ii) and the restric-
tions concerning free occurrences of individual variables in λ-predicates in clauses 6(iii) and 7(iii) all arise
out of certain properties of the logical structure of relations. We believe both of these restrictions can be
justified on philosophical grounds (for the latter, see [13]). By contrast, the restriction on free occurrences
of variables in quantified subformulas in clauses 6(iii) and 7(iii) is forced upon on us by our monadic
framework and might appear to impose severe expressive restrictions on our framework, as they rule out
such formulas as ∀x∀y(Fy∧Gx) from serving as (proposition denoting) predicates and such 1-place pred-
icates as [λx ∀y(Fy → Gx)]. More generally, say that a formula ϕ satisfies the scope condition if neither
ϕ itself nor any of its subformulas is a quantified formula containing a free occurrence of a variable. Then
we can put the matter thus: many useful and seemingly innocuous formulas fail to satisfy the scope con-
dition and, hence, are neither predicable nor can be used to form predicates. The clauses might therefore
appear at first sight to impose a serious (and somewhat embarrassing) limitation on the expressiveness of
our framework. But the situation is not so dire. In the case of formulas involving no modal operators, at
least, in virtue of our λ-conversion principle and well-known normal form theorems of propositional and
predicate logic, it is always possible to to a convert a formula θ that violates the scope condition into a
logically equivalent formula that does not. (For example, the non-predicable formula above is equivalent
to ∀yFy ∧ ∀xGx and the formula in the illegitimate λ-predicate above is equivalent to ∃yFy → Gx.)
Moreover, in virtue of the validity of the Barcan schema and its converse the basic logic of MOT and basic
principles of modal propositional logic, the same sort of conversion is possible for many modal formulas.
(The proof of this is tedious but straightforward.) Only those formulas in which a universal (existential)
quantifier is in the scope of a possibility (necessity) operator is the conversion not always possible in
virtue of the general invalidity of ♦∀xϕ ↔ ∀x♦ϕ (�∃xϕ ↔ ∃x�ϕ). (Our thanks to a referee for point-
ing out that we had omitted consideration of the modal case in an earlier draft.) Note, however, that these
restrictions on occurrences of free variables disappear entirely in full object theory.
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quantification theory (without identity). For clarity, we express the universal instan-
tiation axiom explicitly—every instance of the following is an axiom:

UI ∀αϕ → ϕα
τ , where α is any variable, and τ is substitutable for α in ϕ.

Recall that all predicable formulas are 0-place predicates and so can be substituted
for universally quantified propositional variables.

The Logic of Abstraction In general, abstraction principles say that the n-place rela-
tion (n ≥ 0) defined by a certain condition ϕ is true of n objects y1, ..., yn just in case
the condition holds of (alternatively, is satisfied by) those objects:

� [λx1...xn ϕ]y1...yn ↔ ϕ
x1...xn
y1...yn , where each yi substitutable for xi in ϕ.

This principle—often also known as λ-conversion—is in fact included in full object
theory for all n ≥ 0. In the case where n = 0, the principle reduces to [λ ϕ] ↔ ϕ,
which asserts that the proposition [λ ϕ] is true just in case ϕ.10 In the language L
of MOT developed here, where our concern is primarily with the derivation of EP
and the minimal commitments of that derivation, we do not need to quantify over
n-place relations generally, but only propositions and properties. Hence, we need
only 0- and 1-place complex predicates. However, it is also the case that, for our
purposes here, complex 0-place predicates have simply been identified with the
conditions that define them—viz., predicable formulas—which renders the 0-place
abstraction principle trivial. Consequently, we only need the 1-place case:

�1 [λx ϕ]y ↔ ϕx
y , where y is substitutable for x in ϕ.

Informally, that is, �1 says that an object y exemplifies the property being such that
ϕ just in case ϕ holds of y.

Definition of Identity for Objects As noted,L does not include identity as a primitive;
rather, identity is a defined notion in object theory. In fact, there are is a separate
definition for each of the three basic logical types in MOT: objects, properties and
propositions. We first define identity for objects.

Abstract objects can be thought of as pure objects of thought—the properties they
encode are the ones by which we conceive of them. Thus, different objects of thought
have to differ in some respect. Hence, abstract objects, qua pure objects of thought,
are taken to be identical just in case they encode the same properties:

IdA! x =A! y =df A!x ∧ A!y ∧�∀F(xF ↔ yF )

The distinction between ordinary and abstract objects does not play a role in the
derivation of EP. However, as the identity conditions for ordinary objects in object

10We introduce ‘is true’ into the reading because truth is the 0-place case of exemplification. In full object
theory, these 0-place λ-predicates prove useful in applications other than the theory of truth, e.g., in the
theory of belief.
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theory are quite different than those for abstract objects, for the sake of complete-
ness once again it is good to state them explicitly. To this end we introduce a defined
predicate ‘O!′ which, intuitively, expresses the property of being an “ordinary”
object:11

O! O!x =df ¬A!x
Ordinary objects are then defined to be identical just in case they necessarily
exemplify all of the same properties:

IdO! x =O! y =df O!x ∧O!y ∧�∀F(Fx ↔ Fy)

Identity for objects generally can now be defined as the disjunction of these IdA!
and IdO!:

Id x = y =df x =A! y ∨ x =O! y

Definition of Identity for Properties and Propositions One of monadic object
theory’s virtues is its ability to provide identity conditions for properties and propo-
sitions that do not require them to be identical if necessarily coextensive. To state the
definitions, note that there is no condition on λ-predicates [λx ϕ] requiring x to occur
free in ϕ. Thus, in particular, for every proposition p, there is the propositional prop-
erty [λx p] of p expressing, intuitively, the property being such that p is true. Given
this, we have the following definitions:

Id1 F = G =df �∀x(xF ↔ xG)

Id0 p = q =df [λy p] = [λy q]
Id1 tells us that properties are identical if encoded by the same abstract objects. The
intuition here is that, if properties F and G are distinct, then there is a pure object of
thought that encodes the one but not the other. And if there isn’t a pure object that
encodes F without encoding G, then there is nothing in their nature to distinguish
them and, hence, F and G must be identical. Id0, in turn, tells us that propositions
are identical if their property correlates are.

Principles of Identity It is straightforward to prove that, on the above definitions, the
reflexivity of identity falls out as a theorem:12

Ref ∀α(α = α), for any variable α.

11This departs from previous developments of object theory, which almost always start with a primitive
predicate ”E!” (expressing the property being concrete) and which define an ordinary object as one which
is possibly concrete and an abstract object as one that couldn’t possibly be concrete. However, for the
present development, it simplifies matters to simply take A! as primitive and define ordinary objects as
those that are not abstract, thereby eliminating the need for a concreteness predicate E!.
12The proof is by cases. In the first case, when α is the variable x, then use a disjunctive syllogism starting
with the fact that A!x ∨ O!x, i.e., by definition O!, A!x ∨ ¬A!x. The second and third cases, when α is
the variable F or α is the variable p, the proof is trivial.
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The indiscernibility of identicals, restricted to ordinary objects, are also theorems of
MOT,13 However, it is convenient to state the principle generally for all entities:

Ind α = β → (ϕ → ϕ′), where β is substitutable for α in ϕ, and ϕ′ is the result
of replacing zero or more free occurrences of α in ϕ with occurrences of β.

We note that an instance of Ind for propositions only is used in the derivation of EP.
We also include a “reducibility” schema for λ-predicates that avoids intuitively

unnecessary multiplication of properties.

Red [λx Fx] = F

Logical Axioms for Encoding Recall that the intuition behind abstract objects is that
they are objects of pure thought; the properties such an object encodes are thus con-
stitutive of the object. One aspect of this idea has been captured in the definition IdA!
of identity for abstract objects. A second aspect, however, is modal: it cannot be a
mere matter of happenstance that an abstract object encodes the properties it does.
Otherwise put, encoding is rigid; any property an abstract object happens to encode
is one that it encodes necessarily:

RE xF → �xF

Moreover, being an abstract object cannot itself be a mere matter of happenstance;
thus:

�A! A!x → �A!x
Finally, whereas both abstract objects and non-abstract, or ordinary, objects such as
those typically given in experience exemplify properties, only abstract encode them.
This property of abstract objects is in fact not needed in the derivation of EP but we
include it here for the sake of completeness:14

AE xF → A!x

Proofs and Theorems A proof in MOT is understood as usual as a sequence of for-
mulas consisting of either logical axioms (as given in this Section 2.2) or formulas
that follow from preceding formulas in the sequence by a rule of inference: Modus
Ponens, Generalization, and Necessitation in the following form:

RN �ϕ follows from ϕ.

A formula ϕ is a theorem of MOT (�
MOT

ϕ) if there is a proof in MOT whose last
member is ϕ. Note that, where α is any variable, all instances of the first- and second-
order Barcan schema ♦∃αϕ → ∃α♦ϕ and the Buridan schema ♦∀αϕ → ∀α♦ϕ are
theorems of MOT; indeed, they are derivable in the basic logic alone.

13A proof sketch of the principle for ordinary objects is given in fn 31.
14In previous versions of object theory, where abstract objects are defined as ¬♦E!x and ordinary objects,
O!x, are defined as ♦E!x, the following was taken as an axiom: O!x → �¬∃FxF . This axiom is
equivalent to AE.
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For any set 
 of formulas of L, we will say that ϕ is provable in MOT from 


(written 
�
MOT

ϕ) if there are formulas ψ1, ..., ψn ∈ 
 such that

�
MOT

(ψ1 ∧ ... ∧ ψn) → ϕ.

For purposes below we note the following two theorems of MOT:15

(1) ♦xF → �xF

(2) ♦A!x → A!x

2.3 MOTC—MOT with Object Comprehension

The fundamental principle of object theory is Object Comprehension. This is a sort
of plenitude principle for abstract objects: it captures the idea that any possible
conceptualization corresponds exactly to a (unique) abstract object. More exactly:
necessarily, for any condition ϕ on properties, there is an abstract object that encodes
exactly the properties satisfying ϕ:

OC �∃x(A!x ∧ ∀F(xF ↔ ϕ)), where x not free in ϕ.

We have not here counted OC among the logical principles of MOT for two reasons:
The question of logical status of comprehension principles (notably, Frege’s Axiom
V) is a controversial one, to say the least. In fact, we believe one can reasonably argue
for OC’s logicality but we will not contest the matter here. More to the point for
present purposes, however, OC is not logically valid in the rather simplified model
theory for L that we develop in Section 4.1. Thus, for present purposes, we present
Object Comprehension as a non-logical, or proper, axiom schema.

Theorems of MOTC Let MOTC be MOT+OC, i.e., MOT supplemented with the
Object Comprehension schema. In the special case of the provability of a formula ϕ

from 
 where 
 consists of zero or more instances of OC, we say simply that ϕ is
provable in MOTC, or that ϕ is a theorem of MOTC, and we may alternatively write
�

MOTC
ϕ.

2.4 World Theory

A simple but powerful theory of possible worlds falls out of the axioms of object
theory by means of a few definitions. As noted above, L contains predicates of the
form [λx p]—intuitively, expressing the propositional property being such that p is
true. By Object Comprehension (OC) there will be abstract objects that encode only
such properties; these are the situations:

Sit Situation(x) =df A!x ∧ ∀F(xF → ∃p(F =[λy p]))

15For (1), note that, by RE and RN, we have �(xF → �xF) and by basic modal logic ♦xF → ♦�xF .
By the characteristic S5 schema we have ♦�xF → �xF . So (1) follows by a hypothetical syllogism. (2)
is derived similarly, albeit with an application of the T schema as well.
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Next we say that a proposition p is true at a situation (or other abstract object) x just
in case x encodes [λy p]:

Tr x |= p =df x[λy p]
Finally, we say that a situation x is a possible world if it could be the case that all and
only the truths are true at x:

PW World(x) =df Situation(x) ∧ ♦∀p(x |=p ↔ p).16

Since worlds are situations, they are abstract objects (by Sit), and so the identity
of worlds reduces to the identity of abstract objects—they are identical whenever
they encode the same properties. Since they are situations, and hence encode only
propositional properties, they are identical whenever the same propositions are true
at them (by Sit and Tr).

3 Deriving the Equivalence Principle

We begin this section by noting that, in MOT, the use of restricted world variables is
defined notation; specifically:

∀wϕ =df ∀x(World(x) → ϕ)

∃wϕ =df ∃x(World(x) ∧ ϕ)

3.1 The Derivation

MOTC is the minimal general theory that is required to systematize the expressions
and inferences used in the derivation of EP. To derive EP in MOTC, we first derive
the left-to-right direction and then the right-to-left direction.

(=⇒) We prove the left-to-right direction ♦p → ∃w(w |= p) in MOTC by
hypothetical syllogism in two stages:

Stage A: Show that �
MOTC

♦p → ♦∃w(w |= p).
Stage B: Show that �

MOTC
♦∃w(w |= p) → ∃w(w |= p).

Stage A Our strategy is first to show that �� → �(p → ∃w(w |= p)) is a theorem
of MOT, where �� is a particular instance of OC. By basic modal logic, it will
follow that �� → (♦p → ♦∃w(w |= p)) is a theorem of MOT and, hence, by
definition, that ♦p → ♦∃w(w |= p) is a theorem of MOTC.

16To remove an ambiguity, we take |= to bind more tightly than the connectives. Thus, x |=r ↔ r is to be
parsed as (x |= r) ↔ r . To represent the claim that x makes the proposition r ↔ r true, we would write
x |= (r ↔ r).
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We begin with the following assumption:

�: ∃x(A!x ∧ ∀F(xF ↔ ∃q(q ∧ F =[λy q])))
� asserts that there exists an abstract object that encodes all and only the “true”
propositional properties, i.e., only those properties F such that, for some true propo-
sition q , F is the property being such that q is true. Our first task is to show that,
from this assumption, p → ∃w(w |= p) follows.

So assume p. Let a be an arbitrary object instantiating �; that is, assume:

(3) A!a ∧ ∀F(aF ↔ ∃q(q ∧ F =[λy q]))
We will show that a is a possible world where p is true. To do so, the definitions PW
and Tr tell us we must establish:

(4) Situation(a)
(5) ♦∀q(a |=q ↔ q)

(6) a |= p

To establish (4), the definition Sit requires that we establish A!a ∧ ∀F(aF →
∃q(F =[λy q])). We’ve already established the left conjunct, A!a, since it is the first
conjunct of (3). Now assume aG, for conditional proof. By (3), ∃q(q ∧G=[λy q]).
A fortiori, ∃q(G = [λy q]). So by conditional proof, aG → ∃q(G = [λy q]). By
Generalization, we infer the right conjunct.

To establish (5), we first establish ∀q(a |= q ↔ q) and then apply the ♦ version
of the T schema (i.e., χ → ♦χ). Assume a |= r (i.e., a[λy r]), where r is an arbitrary
proposition. Then by the right conjunct of (3), ∃q(q ∧ [λy r] = [λy q]). Let s be
an arbitrary such proposition. Then we know that s and [λy r] = [λy s], and so by
definition Id0, r = s. But since s is true, we know by Ind that r is.17 Hence, we
have established a |= r → r . Now assume r . By Ref, [λy r] = [λy r], so we have
r ∧ [λy r]=[λy r]. So ∃q(q ∧ [λy r]=[λy q]). Hence, by the right conjunct of (3),
it follows that a[λy r], i.e., a |= r . Hence, we have established r → a |= r . So we
may conclude a |= r ↔ r and so, as r was arbitrary, ∀q(a |=q ↔ q). Thus, by the
T schema, ♦∀q(a |=q ↔ q).

To establish (6), we simply note that it follows from the combination of our
assumption that p and the claim that ∀q(a |= q ↔ q), which we established as an
intermediate step in the argument for (5).

So from our assumption (3) we have established (4), (5), and (6) and, hence,
from them, that World(a) ∧ a |= p and, therefore, that ∃x(World(x) ∧ x |= p),
i.e., ∃w(w |= p). So by conditional proof, p → ∃w(w |= p). Since we’ve proved
this conditional from an instance of �, and the conditional doesn’t contain an occur-
rence of ‘a’, it follows from �. Therefore, by conditional proof again, we have
shown:

(7) � → (p → ∃w(w |= p))

17A bit more exactly, we are using the (derivable) instance s = r → (s → r) of Ind for propositions
here.
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By RN we infer:

(8) �(� → (p → ∃w(w |= p)))

and thence, by some basic modal logic,18 we have:

(9) �� → (♦p → ♦∃w(w |= p))

But, as noted above, �� is an instance of OC and, hence, we have shown that
♦p → ♦∃w(w |= p) is a theorem of MOTC. This concludes Stage A.

Stage B We begin this stage by assuming ♦∃w(w |= p); our goal is to show
∃w(w |= p). Eliminating the restricted variable w in our assumption, we
have ♦∃x(World(x) ∧ x |= p). By the Barcan Formula, it follows that
∃x♦(World(x) ∧ x |= p). Let a be such an object; that is assume

(10) ♦(World(a) ∧ a |= p).

Since the conjuncts of a possibly true conjunction are possible, it follows that
♦World(a) ∧ ♦a |= p. We now establish that each possibility is a non-modal fact.

To see that ♦World(a) implies World(a), assume the former. Then, by PW and
Sit, ♦(A!a ∧ ∀F(aF → ∃p(F =[λy p])) ∧ ♦∀p(a |=p ↔ p)). Since the conjuncts
of a possibly true conjunction are possible, it follows that:

(11) ♦A!a ∧ ♦∀F(aF → ∃p(F =[λy p])) ∧ ♦♦∀p(a |= p ↔ p)

To derive World(a) from (11), we need to show, by the definitions PW and Sit,
that:

(12) A!a
(13) ∀F(aF → ∃p(F =[λy p]))
(14) ♦∀p(a |= p ↔ p)

(12) follows from the first conjunct of (11), by our theorem (2). To derive (13), con-
sider the second conjunct of (11). By the Buridan schema, the second conjunct of (11)
immediately implies ∀F♦(aF → ∃p(F =[λy p])); call this statement . Now let G
be an arbitrary property and assume aG, for conditional proof. �aG follows by RE.
By instantiating  to G, it follows that ♦(aG → ∃p(G = [λy p])). Hence, applying
some basic modal logic to the two preceding results we have ♦∃p(G = [λy p]). It is
separately provable in MOT that, for any property H , ♦∃p(H = [λyp]) → ∃p(H =
[λy p]).19 Hence, from the preceding result, ∃p(G = [λy p]) follows. Thus, by con-
ditional proof, we infer that aG → ∃p(G = [λy p]). As G was arbitrary, we may
conclude: ∀F(aF → ∃p(F =[λy p])). Finally, note that (14) follows from the third
conjunct of (11) by the characteristic schema of S4, which is derivable in S5. So we
have established ♦∀p(a |= p ↔ p).

18Specifically, the theorems �(q → (r → s)) → (�q → �(r → s)) and �(r → s) → (♦r → ♦s).
19The consequent follows quickly from the antecedent by applying, in order, the Barcan formula, the
definition Id1 of property identity, and the characteristic S5 schema.
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So from ♦World(a) we have established (12), (13), and (14) and, hence, World(a).
Next we show that ♦a |= p → a |= p. Note that ♦a |= p, by definition Tr,

means ♦a[λy p]. By (1) it follows that �a[λy p]. And by the T schema, it follows
that a[λy p], i.e., a |= p.

So, from (10), we’ve established World(a) ∧ a |= p and, hence, we may infer
∃x(World(x)∧ x |= p). And, once again, as this result does not involve our arbitrary
instance a, we may infer that it follows from (10)’s generalization ∃x♦(World(x)x |=
p) which, recall, we had inferred from ♦∃x(World(x) ∧ x |= p), i.e., reintroduc-
ing our restricted variable, ♦∃w(w |= p). By conditional proof we conclude that
♦∃w(w |= p) → ∃w(w |= p). Combining Stages A and B, we have shown that
♦p → ∃w(w |= p) is a theorem of MOTC.

(⇐=) We now show that the right-to-left direction of EP is a theorem of MOT
(hence of MOTC). So assume ∃w(w |= p), i.e., ∃x(World(x) ∧ x |= p). Let a be
such an object:

(15) World(a) ∧ a |= p

From the left conjunct we have by definition PW that ♦∀q(a |= q ↔ q). By the
Buridan schema, we have ∀q♦(a |=q ↔ q) and hence, in particular, ♦(a |=p ↔ p)

and so, a fortiori, ♦(a |= p → p). But by (15) we have a |= p and hence, by RE,
�a |= p. Since it is a theorem of basic modal logic that (♦(ϕ → ψ) ∧�ϕ) → ♦ψ ,
we have ♦p. So we have deduced ♦p from (15). As this conclusion does not involve
the arbitrary world a, we may conclude that ♦p follows from ∃x(World(x)∧x |= p).
By conditional proof it follows that ∃w(w |= p) → ♦p. We note that our reasoning
was entirely in MOT (since we invoked no instances of OC) and, hence, trivially,
in MOTC. Putting together our proofs of the left-to-right and right-to-left directions
have shown that EP is a theorem of MOTC.

Inspection of the above derivation shows that MOTC offers two special axioms
that play a key role in the proof of EP: the logical axiom RE and an instance of the
principle of Object Comprehension OC. The other axioms presented in Section 2.2
that are used in the proof can be found in any second-order quantified modal logic
with identity, propositions (defined as 0-place relations), and λ-expressions.20 Inter-
estingly, although the properties denoted by λ-expressions play critical roles in the
proof, the λ-abstraction principle �1 that governs those concepts is not itself used in
the proof. But we have included this principle because we want to systematize the
concepts that play these critical roles.

3.2 Other Consequences

Given that EP is a theorem of MOTC, we can prove that there are non-actual possible
worlds with the following two steps. First we define:

Actual(x) =df ∀p(x |=p → p)

20The only qualification that needs to be made here is that our formulation of Ind, though identical in
form to the usual principle of identity substitution, is stated in terms of defined notions of identity.
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Second, we assert that there are propositions that are false but possibly true:

∃p(¬p & ♦p)

This last claim is not provable in MOTC, for reasons that we discuss in more detail
in the next section. (Specifically, it will be shown that MOTC is true in a model
with just one primitive possible world and two propositions. In such models, all true
propositions are necessarily true and all false propositions are necessarily false.)

Once we have the definition Actual(x) and the claim that there are contingently
false propositions, it follows from EP that:

∃x(World(x) ∧ ¬Actual(x)).

For if q is some false but possibly true proposition, then by EP there is a world, say
w1, where it is true, i.e., such that w1 |= q . But by hypothesis, q is false, and so w1
is not actual.

Our derivation of EP in the previous subsection offers some evidence that the
other theorems of world theory derived in Zalta [21, 22] are still derivable in the more
limited context of MOTC. For example, it is of significant philosophical interest to
verify that one can still derive the claim that there is a unique actual world.21 It is
also provable that every world w is maximal, i.e., that ∀p(w |= p ∨ w |= ¬p),
and that every world w is consistent, i.e., that ¬∃p(w |= p ∧ w |= ¬p). From
these two theorems, it is easy to establish that every world w is coherent, i.e., that
∀p(w |= ¬p ↔ ¬w |= p).22 Since truth at a world (|=) is coherent and the 0-place
predicate ‘¬q’ also denotes the negation of the proposition q , we can derive the
equivalence of EP and LP as we did in footnote 3, by universally instantiating ¬q
for p in the first line of both directions of the proof. So, our proof of EP yields LP
as a corollary.

4 MOTC and Ontological Commitment

Our proof of EP in the previous section appears to use some heavy-duty logical and
metaphysical machinery. But appearances can be deceiving. We now turn to the ques-
tion: What are the smallest models of MOTC? After a preliminary definition, we
lay out the model theory of our language L. We then construct the smallest model
of MOTC. Finally, we contruct the smallest non-trivial model of the theory. These

21The derivation proceeds from the following instance of OC:

∃x(A!x ∧ ∀F(xF ↔ ∃p(p ∧ F =[λy p])))
To complete the proof, call such an object b and then show that b is a world, that b is actual, and that
anything else y that is an actual world is identical to b.
22Here’s how. (→) Let w and q be any world and proposition, respectively, and assume w |= ¬q. It
follows by w’s consistency that ¬(w |= q). (←) Assume ¬w |= q. Then by w’s maximality, it follows
that w |= ¬q.



350 C. Menzel, E.N. Zalta

models reveal the minimal ontological commitments of MOTC and, hence, the
minimal ontological commitments needed to derive EP as a theorem.

4.1 Model Theory for L

An interpretation I for L can be thought of as a 7-tuple 〈D,W,P,Op, ex, en,V〉
such that:

1. D and W are non-empty sets (“objects” and “worlds”, respectively) where the
latter contains a distinguished element w∗ (the “actual” world). D is the union of
two mutually disjoint sets A (the domain of abstract objects) and O (the domain
of ordinary objects); A must be nonempty.

2. P is the union of two mutually disjoint, nonempty sets P0 (the domain of
propositions) and P1 (the domain of properties), the latter of which contains a
distinguished element p∗.

3. Op is a set of logical operations neg, cond, univ, nec, vac, plug described more
fully below.

4. The exemplification extension function, ex, is a total function on W × P that
maps W×P0 into {0, 1} and W×P1 into ℘(D). In particular, we set the exempli-
fication extension of the distinguished property p∗ to be the set A at every world:
ex(w, p∗) = A, for all w ∈ W. (ex is subject to further constraints described
below.)

5. The encoding extension function, en, maps P1 into ℘(A) in such a way that,
(i) for distinct a1, a2 ∈ A, there is a p1 ∈ P1 such that a1 ∈ en(p1) iff
a2 �∈ en(p1); and (ii) for distinct p1, p2 ∈ P1, en(p1) �= en(p2). (Condition (i)
ensures that distinct abstract objects cannot encode the same properties and con-
dition (ii) ensures that distinct properties cannot be encoded by the same abstract
objects.)

6. The valuation function V maps each term of L to a member of D, each 0-place
primitive predicate of L to a member of P0, and each 1-place primitive predicate
of L to a member of P1;23 in particular, we stipulate that V(A!) = p∗.

Intuitively, P ∪ D and Op together can be thought of as an algebra, where the ele-
ments of P are generated from an initial set of primitive properties, propositions, and
objects by the operations in Op [2, 10, 21]. All of these operations (with the excep-
tion of vac) correspond semantically to the syntactic operations whereby complex
formulas are constructed from the primitive lexicon of L. Specifically, the opera-
tion plug : P1 × D −→ P0 corresponds to the formation of an atomic formula
from a 1-place predicate; thus, intuitively, plug(r, a) is the atomic “singular” propo-
sition that a exemplifies r. For 0 ≤ i ≤ 1, the operations neg : Pi −→ Pi ,
cond : Pi × Pi −→ Pi , univ : P1 −→ P0, and nec : Pi −→ Pi are semantic
counterparts of the usual logical operators of quantified modal logic. And for each

23To avoid variable assignments, we are treating variables as “quantifiable constants” and assigning them
fixed values via V. This does not substantially affect the metatheory. See, e.g., [12].
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proposition r, the operation vac : P0 −→ P1—which is stipulated to be one-to-one—
generates the “propositional property” being such that r. These latter properties, as
we’ve seen, are critical to the definition of possible worlds in object theory.

Given the logical structure of properties and propositions determined by these
operations, ex, in turn, must assign exemplification extensions systematically in a
way that reflects this structure. Specifically, for r0, s0 ∈ P0 and r1, s1 ∈ P1:

E1. ex(w, plug(r1, a)) = 1 iff a ∈ ex(w, r1)

E2. ex(w, neg(r0)) = 1 − ex(w, r0)

ex(w, neg(r1)) = D \ ex(w, r1)

E3. ex(w, cond(r0, s0)) = max{1 − ex(w, r0), ex(w, s0)}
ex(w, cond(r1, s1)) = (D \ ex(w, r1)) ∪ ex(w, s1)

E4. ex(w, nec(r0)) = min{ex(w′, r0) | w′ ∈ W}
ex(w, nec(r1)) = ⋂{ex(w′, r1) | w′ ∈ W}

E5. ex(w, univ(r1)) = 1 iff ex(w, r1) = D

E6. ex(w, vac(r0)) =
{

D if ex(w, r0) = 1
∅ otherwise

In contrast to these conditions on the exemplification extension function ex, the
encoding extension function en has two features: (a) it is not relativized to worlds,
and (b) there are no systematic connections between the encoding extensions of prop-
erties and their logical structure—e.g., an object can encode the conditional property
cond(r1, s1) without encoding either neg(r1) or s1.

Valuation and Truth The valuation function V for terms and primitive predicates of L
determines a unique function V that extends V so as to assign semantic values to the
non-primitive predicates of L recursively in accordance with their form. Specifically,
for terms and primitive predicates α, V(α) = V(α); and for the rest:

V1. V([λx ρx]) = V(ρ), for 1-place predicates ρ of L
V(πτ) = plug(V(π),V(τ ))

V2. V(¬ϕ) = neg(V(ϕ))

V([λx ¬ϕ]) = neg(V([λx ϕ])), if x occurs free in ϕ

V3. V(ϕ → ψ) = cond(V(ϕ),V(ψ))

V([λx ϕ → ψ]) = cond(V([λx ϕ]),V([λx ψ])), if x is free in ϕ → ψ

V4. V(�ϕ) = nec(V(ϕ))

V([λx �ϕ]) = nec(V([λx ϕ])), if x is free in ϕ

V5. V(∀xϕ) = univ(V([λx ϕ]))24

V6. V([λx ϕ]) = vac(V(ϕ)), if x is not free in ϕ.

24Note that the coordination betweeen condition 6(iii) on the construction of predicable quantified formu-
las and condition 7(iii) on the construction of λ-predicates in the grammar for L in Section 2.1 guarantees
that ∀xϕ is predicable if and only if [λx ϕ] is a 1-place predicate of L. This clause would be illegitmate
otherwise.
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The truth of a formula ϕ at a world w under an interpretation I = 〈D,W,P,
Op, ex, en,V〉, written w |=I ϕ, is defined more or less as usual in a possible world
semantics with a fixed domain of individuals, except that the truth conditions for
0- and 1-place atomic formulas are given in terms of the relevant extensions of the
denotations of their component predicates:

T1. w |=I π iff ex(w,V(π)) = 1
w |=I ρτ iff V(τ ) ∈ ex(w,V(ρ))

w |=I τρ iff V(τ ) ∈ en(V(ρ)).

The clauses for the Boolean and modal operators are as usual:

T2. |=I ¬ϕ iff, w �|=I ϕ

T3. w |=I ϕ → ψ iff w �|=I ϕ or w |=I ψ

T4. |=I �ϕ iff, for all w ∈ W, w |=I ϕ.

As we are doing without separate variable assignments the quantificational clauses
take on a slightly different form than in most definitions of truth. If α is a variable
and e ∈ D ∪ P, let Vα

e be the valuation function that differs from V (at most) in that
it assigns entity e to the variable α. That is, Vα

e (β) = V(β) for terms and primitive
predicates β �= α and Vα

e (α) = e. Now let Iα
e = 〈D,W,P,Op, ex, en,Vα

e 〉. Then
we have:

T5. w |=I ∀xϕ iff, for all a ∈ D, w |=Ix
a ϕ

w |=I ∀Fϕ iff, for all pi ∈ Pi , w |=IF
pi
ϕ, for i-place predicate variables F

(i ∈ {0, 1}).
With these definitions, we may define the truth of a formula ϕ under an interpretation
I, written |=I ϕ, as w∗ |=I ϕ. ϕ is then logically true, written |= ϕ, if and only if
|=I ϕ, for all interpretations I.

4.2 The Smallest Models of MOTC

The abstraction principle �1 together with the definitions Id0 and Id1 of identity for
propositions and properties, respectively, are consistent both with the thesis that nec-
essarily equivalent properties and propositions are identical and with the thesis that
they are distinct. Our own philosophical intuitions lean toward the latter. However,
because EP makes no assumptions either way on this issue, in the smallest models of
the fragment of object theory needed to derive EP, necessarily coextensional proper-
ties and propositions are identified. In the Appendix we show that all instances of the
schema �1 are logically true.

Note also that for any given interpretation I of L, there is no condition on its
set A of “abstract objects” beyond non-emptiness. There is therefore no guarantee
that, for any condition ϕ on properties, there will be an abstract object in A that
encodes (i.e., that is in the encoding extension of) exactly the properties satisfying ϕ.
Consequently, in contrast to the axioms of MOT, not all instances of OC are logically
true relative to our model theory.
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With this in mind, we can construct a smallest model of MOTC, and thus a smallest
interpretation of L, in which all instances of OC are true. Such a model contains only
one world, two properties (complements of each other), two propositions (negations
of each other), and four abstract objects (one for each of the four sets of properties).
This is because the smallest interpretation of L requires that there be at least two
properties (the universal property and the empty property) and at least two propo-
sitions (the True and the False). OC in turn requires that there be four abstract
objects—intuitively, for each set of properties, the object that encodes exactly the
properties in that set.

We don’t plan to define these smallest models formally, as they trivialize
modality—since there is only one possible world, the modal operators are rendered
otiose. That is, �ϕ, ♦ϕ, and ϕ are all equivalent in the model, for all ϕ. In addi-
tion, these models collapse materially equivalent properties and materially equivalent
propositions. These facts explain why the claim ∃p(¬p & ♦p) is not true in the
smallest model of MOTC, since ¬p and �¬p have the same truth value.

But once we add this latter claim, MOTC can only be true in non-trivial mod-
els, that is, models in which necessary truth and necessary falsity do not collapse
into mere truth and falsity. By adding the assertion that there are contingently false
propositions, non-trivial models are forced to contain both contingently true and
contingently false propositions, as well as necessarily true and necessarily false
propositions. Thus, such models will contain nonactual possible worlds. Moreover,
non-trivial models will also include properties that are contingently true (false) of
everything and properties necessarily true (false) of everything. Thus, such mod-
els will include as many abstract objects as there are expressible sets of properties.
(This will make OC true.)

Although the general model theory of L doesn’t force us to identify properties
and propositions whenever they are necessarily equivalent, this is something one can
do to define the smallest non-trivial models of MOTC. Specifically, any such model
contains:

• four propositions: one of which is contingently true, one contingently false, one
necessarily true, and one necessarily false;

• four corresponding properties: one contingently true of everything, one contin-
gently false of everything, one necessarily true of everything, and one necessarily
false of everything;

• two possible worlds, one of which is nonactual; and
• sixteen abstract objects.

This, we claim, is all that is (non-trivially) presupposed by MOTC. In particu-
lar, we do not include any contingent objects in the model, as the existence of
contingent beings is not required by logic. Note also that our work earlier in the
paper establishes that the two possible worlds can be identified with certain abstract
objects. However, for the model-theoretic purposes of this section, we don’t make
this identification explicit. (See Section 5, especially footnote 29, for the explicit
identification.)
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4.3 The Smallest Non-Trivial Models of MOTC

A smallest non-trivial model of MOTC, in a language L, is an interpretation I∗ =
〈D,W,P,Op, ex, en,V〉 for L such that:

• D = A ∪ O, where O = ∅, A = ℘(P1) and P1 is defined as below;
• W = {w0,w1} (i.e., two primitive “possible worlds”) and w∗ = w0;
• P = P0∪P1, where P0 = {p0, p0, q0, q0}, P1 = {p1, p1, q1, q1},25 and p∗ = p1;
• Op is as specified below;
• ex(w, p0) = 1 and ex(w, p0) = 0, for w ∈ W

ex(w0, q0) = ex(w1, q0) = 1; ex(w1, q0) = ex(w0, q0) = 0
ex(w, p1) = D and ex(w, p1) = ∅, for w ∈ W
ex(w0, q1) = ex(w1, q1) = D; ex(w1, q1) = ex(w0, q1) = ∅;

• en(r) = {a ∈ A | r ∈ a};
• V is any mapping on the terms and primitive predicates of L that comports with

clause 6 in the definition of an interpretation.

Thus, our model contains two worlds in which different sets of propositions are true
(notably, q0 is true at w0—by stipulation, the “actual” world w∗ of the model—
and false in w1) and hence it is non-trivial. P, as noted, contains four properties
and four propositions. Intuitively (and as reflected by the definition of ex), p0 is a
necessarily true proposition (indeed, the only one), q0 is a contingent proposition,
and p0 and q0 are their complements. Thus, p0 is impossible and q0 is also contingent
but, at any world, is true if and only if q0 is false. Likewise, p1 is a property that
necessarily holds of everything, q1 a property that contingently holds (or fails to hold)
of everything, and p1 and q1 are their complements.

As noted, there are no ordinary objects in the model; the domain D consists
solely of abstract objects, which are themselves represented simply as sets of
properties—each abstract object is simply identified with the set of properties it
encodes (as reflected in the definition of en). We believe this comports well with
I∗’s being a simplest non-trivial model, as we do not believe that the existence of
contingent individuals is a matter of logic and hence such individuals can be omitted
from a simplest model. D, then, consists of the sixteen abstract objects there can be,
given our initial stock of four properties. Note that the non-world-relative definition
of en ensures that encoding is rigid and hence the truth of the principle RE. The fact
that abstract objects are simply sets in the model ensures that both condition (i)—that
distinct abstract objects do not encode exactly the same properties—and condition
(ii)—that distinct properties are not encoded by exactly the same abstract objects—
of the definition of en are met. Moreover, because there are no ordinary objects,
we can identify the property p1 with the property of being abstract. For p1 holds of
everything—hence, of exactly the abstract objects—at every world. This is reflected
in the definition of V.

25As will be seen below, r indicates the negation of the property or proposition r.
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Finally, we need to specify the operators in Op. The central challenge here is to
specify the operators so that they satisfy the constraints imposed by the definition
of an interpretation for L. Specifically, we need to show that (i) every non-primitive
predicate denotes a property or proposition in P whose logical form comports with
the grammatical form of the predicate, and (ii) that the extension of every property
or proposition is determined appropriately by its logical form.

To begin, then, note that three of our operators—neg, cond, and nec—are defined
on all of P. Accordingly, for i ∈ {0, 1}, we have:

• neg(ri ) = ri , for ri ∈ {pi , qi}
neg(ri ) = ri , for ri ∈ {pi , qi}.

• nec(pi ) = pi

nec(qi ) = nec(qi ) = nec(pi ) = pi .26

• cond(pi , ri) = ri , for ri ∈ Pi

cond(pi , ri) = pi , for ri ∈ Pi

cond(qi , pi) = cond(qi , qi) = pi

cond(qi , pi) = cond(qi , qi) = qi

cond(qi , pi) = cond(qi , qi) = pi

cond(qi , pi) = cond(qi , qi) = qi

Unlike the preceding operations, the remaining operations—vac, univ, and plug—
yield values in domains other than the domains of their arguments. To facilitate their
definition, for our properties p1, p1, q1, q1, respectively, let us say that the corre-
sponding propositions are p0, p0, q0, q0, respectively. Then, where r1 is any of our
properties and r0 its corresponding proposition, we have:

• vac(r0) = r1;
• univ(r1) = r0;
• plug(r1, a) = r0, for all a ∈ D.

That is, the property r1 can be identified with the property vac(r0) of being such
that r0. (Note that this means that vac is one-to-one, as required.) The proposition
r0 can be identified with the proposition univ(r1) that everything exemplifies the
property r1. And, given how we have assigned exemplification extensions to our four
properties, for all a ∈ D, the proposition plug(r1, a) that a exemplifies r1 can be
identified, for every a, with the corresponding proposition r0.27

To illustrate the construction, consider the following complex predicate:

(16) [λx ∀yPy → ¬Qx],

26That is, the proposition that the necessarily true proposition is necessary is the necessarily true proposi-
tion; the proposition that r is necessary, where r is either of our contingent propositions or the impossible
proposition, is simply the impossible proposition; analogously for properties.
27This element of the construction in fact reflects an important theorem of object theory, namely, that
there are distinct abstract objects that exemplify all the same properties. In our simplest model, this in fact
happens to be true of all pairs of distinct abstract objects.
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Then, where V(P ) = p1 and V(Q) = q1, we may apply our definition of V for
λ-predicates to identify the denotation of this predicate as follows:

V([λx ∀yPy → ¬Qx]) = cond(V([λx ∀yPy]),V([λx ¬Qx]))
= cond(vac(V([λ ∀yPy])), neg(V([λx Qx])))
= cond(vac(univ(V([λy Py]))), neg(V(Q)))

= cond(vac(univ(V(P ))), neg(q1))

= cond(vac(univ(p1)), q1)

= cond(vac(p0), q1)

= cond(p1, q1)

= q1

We have therefore shown that our construction I∗ is an interpretation of L. All
seven elements of an interpretation have been specifically identified and, as our
example above should sufficiently illustrate, every complex 1-place predicate of our
language denotes one of the four properties in the interpretation and every complex
0-place predication of our language denotes one of the four propositions.

Since we have shown in the Appendix that all the axioms of MOT are valid, it
follows that they are all true in I∗. It therefore only remains to be shown that all
instances of OC are also true in I∗. But this is immediate. For OC says that there
is a unique abstract object for any definable collection of properties. But, in our
construction, every collection of properties determines a unique abstract object, since
the set of abstract objects is simply identified with the set of all sets of properties.28

5 Concluding Observations

In the foregoing, we have derived EP, the fundamental principle of world theory,
from the general principles of (a minimal version of) object theory. Within object the-
ory, worlds have a clearly defined nature that is given by the definition PW, which
reveals them to be abstract objects that encode properties. As abstract objects, they
also have clear identity conditions as given by IdA! and clear existence conditions
as given by EP. The proof of EP utilizes the comprehension principle OC and we
included the abstraction principle �1 in our minimal object theory because it sys-
tematizes the properties that play a crucial role in the proof. All of these principles
might seem to have serious ontological commitments when considered jointly. But
our work shows that this is not the case. The general principles of object theory
have minimal ontological commitments. Indeed, given our object-theoretic definition

28Note that paradox is avoided here because, in our model, properties are primitive entities and are not
identified with sets of objects in the domain of the model. Hence, there can be fewer properties than there
are sets of objects.
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of possible worlds, we may suppose that in the smallest model of MOTC, the sin-
gle possible world is one of the four abstract objects, and in the smallest non-trivial
models of MOTC, the two possible worlds are among the sixteen abstract objects.29

This further reduces the ontological commitments of MOTC and, hence, of EP. So
we have a proof of EP that preserves it as an unrestricted plenitude principle com-
mitted only to small, finite domain, no matter whether one takes it as an axiom
as most world theorists do or derives it from more general principles as we have
done.

Of course, when we apply the above theory to our modal beliefs, the ontology of
properties, propositions, and abstract objects, and thus, possible worlds, will grow. It
is only by committing ourselves to a large body of data—specifically, a large body
of false but possibly true propositions—that we become committed to the existence
of a large body of nonactual possible worlds. But, of course, this is no fault of our
theory. Indeed, it is precisely when we add those beliefs that our results become epis-
temologically significant. For in light of our work, we don’t need, for each possible
world in the ontology, special evidence for the existence of that world. Instead, we
can cite EP as the principle that justifies our belief in the nonactual worlds that cor-
respond to false, but possibly true, propositions. In turn, the justification of EP is
grounded in the axioms of MOTC, and in particular, OC and RE. Thus, the episte-
mological justification for belief in possible worlds rests on two special principles of
MOTC.

We conclude with one final observation, namely, that metaphysical questions con-
cerning such matters as the ontological commitments of EP, the nature of possible
worlds and what it means for a proposition to be true at a world simply have no def-
inite meaning until one has a theory precise enough to answer them. In this paper
we have provided such a theory. As other theories of possible worlds are founded
upon similarly rigorous bases, philosophers will be in a better position to develop
meaningful comparisons between them.
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Appendix: A Soundness Theorem for MOT

In this Appendix it will be shown that MOT is sound, i.e., that all instances of the
schema �1 and all of the remaining logical axioms and rules of MOT found in
Section 2.2 are true in every interpretation of L. (As noted above, we are not arguing
here that OC is a logical truth and hence we have not added conditions to the model
theory for L that guarantee its validity.)

The Validity of the Basic Logic As our model theory is classical, our basic apparatus
of classical propositional logic and second-order monadic quantification theory is
unproblematically valid. That all the axioms of S5 are valid follows from the fact that
no accessibility restrictions are placed on worlds in an interpretation. Moreoever, it is
easy to verify by a straightforward induction that, if ϕ is valid, i.e., true at the actual
world of every interpretation, then ϕ is true at every world of every interpretation
of L. Hence, if ϕ is valid, so is �ϕ. Consequently, the rule of Necessitation RN is
sound.

The Validity of λ-Conversion Next we show that all instances of our 1-place abstrac-
tion principle �1 are valid. Actually, however, we will show something stronger,
namely, that every instance of �1 is true at every world of every interpretation. More
exactly, where WI is the set of “worlds” of an interpretation I, we will show:

Lemma 1 For every 1-place predicate [λx ϕ] and term τ of L, and for every
interpretation I of L, w |=I [λx ϕ]τ iff w |=I ϕx

τ , for every w ∈ WI .

We need no corresponding lemma for 0-place predicates, of course, because
0-place predicates are also formulas of L. This eliminates the need for λ-predicates
of the form [λ ϕ] and, hence, the need to prove the validity of a 0-place abstrac-
tion principle, [λ ϕ] ↔ ϕ. However, because of the semantic interplay of 0- and
1-place predicates, particularly in condition V6, there is still a corresponding model
theoretic fact about 0-place predicates ϕ that we need to establish in concert with
Lemma 1, viz., that such predicates are semantically “harmonious”, i.e., that the truth
value of the proposition that a 0-place predicate ϕ denotes qua predicate walks in
lockstep with the truth value of ϕ qua formula from world to world. More exactly,
say that a 0-place predicate ϕ is harmonious in an interpretation I of L just in case
ex(w,V(ϕ)) = 1 iff w |=I ϕ, for all w ∈ WI . Then we need also to show:

Lemma 0 All 0-place predicates are harmonious in all interpretations of L.

So let I = 〈W,P,D,Op, ex, en,V〉 be an arbitrary interpretation. The first task
is to show that every predicate of L has a well-defined denotation of the appropri-
ate arity. That denotations have the appropriate arity follows from the fact that, if an
i-place predicate π (i ∈ {0, 1}) has a denotation V(π) at all, it is a member of Pi.
That all such predicates do in fact have unique denotations follows from the fact that
(i) every λ-predicate fits exactly one of the semantic clauses V1–V6 in the specifi-
cation of V in Section 4.1, (ii) the denotations of the primitive predicates of L are
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well-defined, and (iii) all of the logical functions in terms of which the denotations
of predicates are defined are total on their given domains. These facts are easily, if
somewhat tediously, verified.

Given that the predicates of L all denote appropriately, we now need to show that
our two lemmas hold. Given the semantic interplay of 0- and 1-place predicates just
noted, we must prove this by induction on predicable formulas ϕ simultaneously for
both lemmas. We begin with a simple fact about 1-place predicates with vacuous
λ-operators30 that we appeal to at several points below:

Fact 1 Let [λx ϕ] be a 1-place predicate such that x does not occur free in ϕ and
suppose that ϕ is harmonious in I. Then, for any term τ , w |=I [λxϕ]τ iff w |=I ϕx

τ ,
for all w ∈ W.

Proof Fact 1 follows directly by the semantics of the vac operator: w |=I [λx ϕ]τ
iff V(τ ) ∈ ex(w,V([λx ϕ])) (by T1) iff V(τ ) ∈ ex(w, vac(V(ϕ))) (by V6). But
the latter is the case only if ex(w, vac(V(ϕ))) �= ∅; and by E6, that means
ex(w, vac(V(ϕ))) = D, in which case V(τ ) ∈ ex(w, vac(V(ϕ))). So the latter is the
case iff ex(w, vac(V(ϕ))) = D which, by E6 again, is so iff ex(w,V(ϕ)) = 1 and
hence, given that ϕ is harmonious, iff w |=I ϕ, i.e., as ϕ = ϕx

τ (since x does not
occur in ϕ), iff w |=I ϕx

τ .

Now for the proof of our lemmas. We first prove that atomic formulas ϕ are har-
monious. In the case where ϕ is simply a 0-place atomic formula (i.e., a primitive
0-place predicate) π , the result is immediate by T1. For 1-place atomic formulas
ρτ , we have: ex(w,V(ρτ)) = 1 iff ex(w, plug(V(ρ),V(τ ))) = 1 (by V1) iff
V(τ ) ∈ ext(w,V(ρ)) (by E1) iff w |=I ρτ (by T1).

Now for the atomic case of Lemma 1. We first consider the case where ϕ is either a
0-place atomic formula π or a 1-place atomic formula ρσ , where σ is not the variable
x. Then in either case—the latter by clause 7 of the grammar for L—if [λx ϕ] is
a 1-place predicate, x does not occur free in ρ and hence in ϕ. But we have just
established that, in either case, ϕ is harmonious. Hence, by Fact 1, w |=I [λx ϕ]τ
iff w |=I ϕx

τ . So suppose instead that ϕ is a 1-place atomic formula ρx. Then we
have: w |=I [λx ρx]τ iff V(τ ) ∈ ex(w,V([λx ρx])) (by E1) iff V(τ ) ∈ ex(w,V(ρ))

(by V1) iff w |=I ρτ (by T1), i.e., w |=I ρxxτ .
Assuming now ϕ is of the form ¬ψ and that the lemmas hold for ψ :

ex(w,V(¬ψ)) = 1 iff ex(w, neg(V(ψ))) = 1 (by V2) iff ex(w,V(ψ)) = 0 (by E2)
iff w �|=I ψ (by our induction hypothesis) iff w |=I ¬ψ , i.e., ¬ψ is harmonious.
And for the case of Lemma 1: If x does not occur free in ψ , then, as we have
just shown that ¬ψ is harmonious, our result is immediate by Fact 1. So suppose
x does occur free in ψ . Then w |=I [λx ¬ψ]τ iff V(τ ) ∈ ex(w,V([λx ¬ψ])) iff
V(τ ) ∈ ex(w, neg(V([λx ψ]))) (by V2) iff V(τ ) ∈ D \ ex(w,V([λx ψ])) (by E2)

30Such predicates, recall, denote “propositional” properties, which are critical to the object theoretic
analysis of worlds.
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iff V(τ ) �∈ ex(w,V([λx ψ])) iff w �|=I [λx ψ]τ (by T1) iff (by our hypothesis)
w �|=I ψx

τ iff w |=I ¬ψx
τ (by T2).

Assuming ϕ is of the form ψ → θ and our lemmas hold for ψ and θ :
ex(w,V(ψ → θ)) = 1 iff ex(w, cond(V(ψ),V(θ))) = 1 (by V3) iff max{1 −
ex(w,V(ψ)), ex(w,V(θ))} = 1 (by E3) iff ex(w,V(ψ)) = 0 or ex(w,V(θ)) = 1
(by T3) iff w �|=I ψ or w |=I θ (by our induction hypothesis) iff w |=I ψ → θ ,
i.e., ψ → θ is harmonious. For the case of Lemma 1: Given the preceding and
Fact 1, our result is immediate if x does not occur free in ψ → θ , so suppose
it does: w |=I [λx ψ → θ ]τ iff V(τ ) ∈ ex(w,V([λx ψ → θ ])) iff V(τ ) ∈
ex(w, cond(V([λx ψ]),V([λx θ ]))) (by V3) iff V(τ ) ∈ (D \ ex(w,V([λx ψ]))) ∪
ex(w,V([λx θ ])) (by E3) iff V(τ ) �∈ ex(w,V([λx ψ])) or V(τ ) ∈ ex(w,V([λx θ ]))
iff w �|=I [λx ψ]τ or w |=I [λx θ ]τ iff (by our hypothesis) w �|=I ψx

τ or w |=I θxτ
iff w |=I ψx

τ → θxτ (by T3) iff w |=I (ψ → θ)xτ .
Assuming ϕ is of the form �ψ and that the lemmas hold for ψ : ex(w,V(�ψ)) =

1 iff ex(w, nec(V(ψ))) = 1 (by V4) iff min{ex(u,V(ψ)) | u ∈ W}) = 1 (by E4)
iff, for all u ∈ W, ex(u,V(ψ)) = 1 iff, for all u ∈ W, u |=I ψ (by our induction
hypothesis) iff w |=I �ψ (by T4). For the case of Lemma 1, assuming again, given
Fact 1 and the harmoniousness of �ψ just established, that x occurs free in ψ : w |=I
[λx �ψ]τ iff V(τ ) ∈ ex(w,V([λx �ψ])) iff V(τ ) ∈ ex(w, nec(V([λx ψ]))) (by
V4) iff V(τ ) ∈ ⋂{ex(w,V([λx ψ])) : w ∈ W} (by E4) iff, for all u ∈ W, V(τ ) ∈
ex(u,V([λx ψ])) iff, for all u ∈ W, u |=I [λx ψ]τ iff (by our induction hypothesis),
for all u ∈ W, |=I ψx

τ iff w |=I �ψx
τ (by T4).

Finally, we have the quantifier case. Assuming that ϕ is of the form ∀yψ and the
lemmas hold for ψ and formulas of equal or lesser complexity: ex(w,V(∀yψ)) = 1
iff ex(w, univ(V([λyψ]))) = 1 (by V5) iff ex(w,V([λyψ])) = D (by E5) iff, for all

a ∈ D, a ∈ ex(w,V([λy ψ])) iff, for all a ∈ D, Vy
a(y) ∈ ex(w,Vy

a([λy ψ])) iff, for
all a ∈ D, w |=Iy

a
[λy ψ]y iff for all a ∈ D, w |=Iy

a
ψ (by our induction hypothesis)

iff w |=I ∀yψ (by T5), i.e., ∀yψ is harmonious. But now the needed instance of
Lemma 1 follows as well by Fact 1. For by clause 7 of the grammar for L, x cannot
occur free in ∀yψ in a 1-place predicate of the form [λx ∀yψ]. So there is nothing
more to prove in this case.

So we have shown that Lemmas 0 and 1 hold. From the latter, it follows that, for
all w ∈ W, w |=I [λx ϕ]τ ↔ ϕx

τ and so in particular, w∗ |=I [λx ϕ]τ ↔ ϕx
τ . Since

our interpretation I was chosen arbitrarily, we conclude that all instances of �1 are
valid.

The Validity of the Identity Principles The schema Ind has instances of several forms
depending on whether α and β are object variables or predicate variables. In the
former case, when we unpack the definition Id, instances of Ind are of the form:

(17) (x =A! y ∨ x =O! y) → (ϕ → ϕ′).

We shall therefore prove the validity of (all instances of) (17) by proving the validity
of the schemas:

(18) x =O! y → (ϕ → ϕ′)
(19) x =A! y → (ϕ → ϕ′).
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(ϕ′ in each case here is of course to be understood appropriately for the given
schema.) We shall then demonstrate the validity of Ind generally by proving the
validity of those instances where α and β are predicate variables, i.e.,

(20) F = G → (ϕ → ϕ′)
(21) p = q → (ϕ → ϕ′).

All instances of (18) are in fact theorems of MOT, a proof of which is left for
a footnote.31 Beyond axioms of classical quantification theory and our underlying
propositional modal logic, the proof appeals only to the axiom AE, whose validity is
established below. It follows that (18) is valid.

The validity of (19) is trivial. Suppose ‘x =A! y’ is true in some interpretation
and the values of those variables are abstract objects a and b, respectively. By IdA!,
this means that a and b encode the same properties. But clause 5(i) of the definition
of an interpretation in Section 4.1 for L guarantees that abstract objects that encode
the same properties are genuinely identical. Hence, as the denotations of variables
are fixed in all contexts, by clause 6 of the definition of an interpretation, variables
denoting the same abstract object can be substituted one for the other salva veritate.
(19), therefore, is valid. Hence, so is (17).

The validity of (20) is also trivial. For suppose ‘F = G’ holds for arbitrary prop-
erties p1 and q1, respectively. By Id1 this means that p1 and q1 are encoded by the
same abstract objects. But clause 5(ii) guarantees that properties that are encoded
by the same abstract objects are genuinely identical. So again variables denoting the
same property can be substituted one for the other salva veritate. (20), therefore, is
valid.

Given the validity of (20), the validity of (21) follows directly. Suppose ‘p = q’
holds in a given interpretation I, for arbitrary propositions p0 and q0, respectively. By
definition Id0, this means that ‘[λxp] = [λx q]’ holds. By clause V6 in the definition
of the denotation function for I and the fact shown in the preceding paragraph that

31The proof is by induction on the complexity of ϕ. The atomic exemplification case follows immediately
from the definitions O! and IdO! and the atomic encoding case follows from O! and AE which together
yield ¬zF for all ordinary objects z. The boolean cases are straightforward. So assume that Ind holds
for formulas of complexity less than that of ϕ = ∀αψ . Then in particular x =O! y → (ψ → ψ ′). If
α is x or y then, in either case, the only instances of Ind for ∀αψ are those in which ∀αψ = (∀αψ)′,
rendering Ind trivial in those cases. So assume α is neither. Then by the rule of Generalization we have
∀α(x =O! y → (ψ → ψ ′)). Since α does not occur free in x =O! y (see its definition IdO!), we
have x =O! y → ∀α(ψ → ψ ′)) by a simple theorem of classical quantification theory and so by ∀-
distribution we have x =O! y → (∀αψ → ∀αψ ′). Since ∀αψ ′ = (∀αψ)′ given that α is neither x nor
y, our result follows. For the modal case, assuming once again that Ind holds for formulas of complexity
less than that of ϕ = �ψ , we have in particular x =O! y → (ψ → ψ ′). By RN and two applica-
tions of �-distribution, we have �(x =O! y) → (�ψ → �ψ ′). By the definition IdO! of =O!, the
antecedent here, unpacked, is �(O!x ∧ O!y ∧ �∀F(Fx ↔ Fy)), which by basic modal logic is equiv-
alent to �O!x ∧ �O!y ∧ ��∀F(Fx ↔ Fy). By O! and (2) we have as a theorem O!x → �O!x.
From this and a bit of modal logic, in particular, instances of the T and S4 schemas, the preceding
conjunction is equivalent to O!x ∧ O!y ∧ �∀F(Fx ↔ Fy), i.e., x =O! y. Thus, substituting for
�(x =O! y) above, we have x =O! y → (�ψ → �ψ ′) and hence, as �ψ ′ = (�ψ)′, we have our
result.
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‘=’ indicates genuine identity for properties, this means that vac(p0) and vac(q0) are
identical. By the condition in the definition of an interpretation that the vac operation
is one-to-one, it follows that p0 and q0 are themselves genuinely identical. Hence,
‘p’ and ‘q’ will be substitutable salve veritate in I, i.e., (21) is valid. Since therefore,
we have established the validity of (17), (20), and (21), we have thereby established
the validity of Ind.

Finally, the validity of the reducibility principle Red is immediate from clause V1
in the definition of the denotation function.

The Validity of the Logical Principles for Abstract Objects The validity of the prin-
ciple RE follows in virtue of clause T1 in the definition of truth in an interpretation
in Section 4.1 and the fact that the encoding extension function en is not defined rel-
ative to worlds. The validity of �A! is guaranteed by clause 4 in the definition of an
interpretation, which stipulates that the extension of the distinguished property p∗ at
every world is the set A of abstract objects, and clause 6, which stipulates that p∗ is
the denotation of A!. And, finally, the validity of AE is guaranteed by the condition
in clause 5 in the definition of an interpretation, which stipulates that the encoding
function maps each property to a subset of the set A of abstract objects.
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21. Zalta, E.N. (1983). Abstract objects: An introduction to axiomatic metaphysics. Dordrecht: D. Reidel.
22. Zalta, E.N. (1991). A theory of situations. In J. Barwise, J. Gawron, G. Plotkin, S. Tutiya (Eds.),

Situation theory and its applications (pp. 81–111). Stanford: CSLI Publications.
23. Zalta, E.N. (1993). Twenty-five basic theorems in situation and world theory. Journal of Philosophical

Logic, 22, 385–428.


	The Fundamental Theorem of World Theory
	Abstract
	Introduction
	Object Theory and Possible Worlds
	The Languages of Monadic Object Theory
	Languages for MOT
	A Grammar for the Languages


	MOT: Logical Axioms, Definitions, and Proofs
	Basic Logical Axioms
	The Logic of Abstraction
	Definition of Identity for Objects
	Definition of Identity for Properties and Propositions
	Principles of Identity
	Logical Axioms for Encoding
	Proofs and Theorems


	MOTC—MOT with Object Comprehension
	Theorems of MOTC

	World Theory

	Deriving the Equivalence Principle
	The Derivation
	bold0mu mumu (-3mu)(-3mu)dotted(-3mu)(-3mu)(-3mu)(-3mu)
	Stage A
	Stage B
	bold0mu mumu (-3mu)(-3mu)dotted(-3mu)(-3mu)(-3mu)(-3mu)


	Other Consequences

	MOTC and Ontological Commitment
	Model Theory for L
	Valuation and Truth

	The Smallest Models of MOTC
	The Smallest Non-Trivial Models of MOTC

	Concluding Observations
	Acknowledgments
	
	The Validity of the Basic Logic
	The Validity of -Conversion
	The Validity of the Identity Principles
	The Validity of the Logical Principles for Abstract Objects



	References


