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Abstract The semantic paradoxes are often associated with self-reference or
referential circularity. Yablo (Analysis 53(4):251-252, 1993), however, has
shown that there are infinitary versions of the paradoxes that do not in-
volve this form of circularity. It remains an open question what relations of
reference between collections of sentences afford the structure necessary for
paradoxicality. In this essay, we lay the groundwork for a general investigation
into the nature of reference structures that support the semantic paradoxes
and the semantic hypodoxes. We develop a functionally complete infinitary
propositional language endowed with a denotation assignment and extract the
reference structural information in terms of graph-theoretic properties. We
introduce the new concepts of dangerous and precarious reference graphs,
which allows us to rigorously define the task: classify the dangerous and
precarious directed graphs purely in terms of their graph-theoretic properties.
Ungroundedness will be shown to fully characterize the precarious reference
graphs and fully characterize the dangerous finite graphs. We prove that an
undirected graph has a dangerous orientation if and only if it contains a cycle,
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providing some support for the traditional idea that cyclic structure is required
for paradoxicality. This leaves the task of classifying danger for infinite acyclic
reference graphs. We provide some compactness results, which give further
necessary conditions on danger in infinite graphs, which in conjunction with
a notion of self-containment allows us to prove that dangerous acyclic graphs
must have infinitely many vertices with infinite out-degree. But a full charac-
terization of danger remains an open question. In the appendices we relate
our results to the results given in Cook (J Symb Log 69(3):767-774,2004) and
Yablo (2006) with respect to more restricted sentences systems, which we call
F-systems.

Keywords Paradox - Hypodox - Reference structure - Circularity -
Ungroundedness - Yablo’s paradox - Liar paradox - Graph theory -
Dangerous « Precarious - F-system - Kernel

The semantic paradoxes are often associated with self-reference or referential
circularity. Yablo [13],! however, has shown that there are infinitary versions
of the paradoxes that do not involve this form of circularity.” The attempts to
purge the semantic antimonies by banning self-reference or by constructing
sophisticated hierarchies only eliminate the class of paradoxes that rely on
the circular reference structures—if cyclical reference is not essential to the
semantic paradoxes, then the acyclical paradoxes remain unscathed. It remains
an open question what relations of reference between collections of sentences
afford the structure necessary for paradoxicality. Since “circularity” has tradi-
tionally been assumed to be essential, this issue has been underrepresented in
the literature on truth and semantic paradoxes®—but it is clear that no such
theory can lay claim to comprehensiveness until this question is answered. The
resolution of this general question, then, has great import for philosophical and
mathematical accounts of truth.

In this essay, we lay the groundwork for a general investigation into the
nature of reference structures that support the semantic paradoxes (e.g. the
Liar and Yablo’s paradox) and the semantic hypodoxes (e.g. the Truth-teller).

L An early version of Yablo’s w-paradox can be found in [12, p. 340].

2Priest [8] argues that Yablo’s paradox actually does involve a form of circularity. Cook [3] argues
that the (original) quantificational version of Yablo’s paradox does indeed involve this form of
“circularity” but Cook insists that this kind of circularity (which [3] classifies as “weak fixed point
circularity”) is ubiquitous in the language of arithmetic and therefore should not be thought of
as the “culprit” involved in the paradox. Cook [3], then, goes on to show how to get rid of this
weak form of circularity by moving to an infinitary language—these are constructed by replacing
universal quantification with infinite conjunction. The existence of fixed points, in this sense,
seems to be an artifact of encoding the paradox in a language that is too weak to support genuine
infinitary constructions (e.g. the language of arithmetic)—in this way the only resource available
is “potential infinities” in the form of recursive definitions that are circular by their very nature.
By Yablo’s paradox we mean the infinitary version that does not involve (strong or weak) “fixed
point circularity”.

3 Although some preliminary investigations into paradox supporting structures have been con-
ducted in [2, 11, 13, 14] on a special class of restricted languages (see Appendix D).
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Dangerous Reference Graphs and Semantic Paradoxes 729

To this end, in Section 1 we develop a functionally complete propositional
language endowed with reference structure, which provides the sentence sys-
tems that are susceptible to paradox (hypodox). For a given sentence system
we demonstrate how to extract the reference structural information in terms
of graph-theoretic properties and introduce the notions of dangerous and
precarious reference graphs (Section 2). This allows us to rigorously define
the task: classify the dangerous and precarious directed graphs purely in terms
of their graph-theoretic properties.

We make some significant progress towards this goal. Some interesting and
useful danger (precarity) preserving operations are discussed in Section 3,
including subdivision, smoothing, and unwinding. In Section 4 we introduce
the notion of “ungroundedness”,* which will be shown to fully characterize
dangerous finite graphs and fully characterize the precarious reference graphs.
Since there are acyclic infinite reference configurations, which in spite of their
ungroundedness, are unable to support paradoxes, it seems that the essential
nature of paradox supporting reference patterns is characterized neither in
terms of circularity nor ungroundedness. Nevertheless, in Section 6 we also
prove that an undirected graph has a dangerous orientation if and only if it con-
tains a cycle. So there remains some sense in which cyclic structure is required
for paradoxicality—this result requires further philosophical interpretation.

This leaves us the task of classifying danger for infinite acyclic reference
graphs. In Section 5 we provide some compactness results, which give further
necessary conditions on danger in infinite graphs. Using the compactness re-
sults in conjunction with a notion of self-containment we prove that dangerous
acyclic graphs must have infinitely many vertices with infinite out-degree.
Overall we issue an interesting set of necessary and sufficient conditions on
the danger of infinite reference graphs. But a full characterization of danger
remains an open question.

In the appendices we tie up some loose ends, including Appendix D, where
we relate our results to some similar results given in [2, 14] with respect to
more restricted sentences systems, which we call F-systems.

1 A Functionally Complete Language of Paradox

For each set of sentence names S, we will introduce an infinitary propositional
language Lg which is functionally complete (i.e. expressively adequate in the
sense that for every function g : {0, 1} — {0, 1} there is a sentence of Lg that
expresses g). We will then endow Lg with a reference structure by adding a
layer of arbitrary denotation relations between the sentence names (i.e. the
proposition letters) and the formulae of L£g. These propositional languages
endowed with denotation relations will provide all the complexity needed for

4See [6, p. 150] and [7, p. 693].

@ Springer



730 L. Rabern et al.

our general investigation into the nature of paradox (hypodox) supporting
reference structures.

1.1 Syntax for Lg

For a set of sentence names S (of arbitrary cardinality) we define a language Ls
as follows. Lg contains the sentence names S, the nullary operators T and L,
the unary operator —, a binary operator A and the operator /. The collection
S* of well-formed sentences of Ls is given by the following definition.

— Both T and L are sentences.

— Foreacha € S, « is a sentence.

— If ¢ is a sentence, then —¢ is a sentence.

— If ¢ and ¥ are sentences, then ¢ A V¥ is a sentence.

— If /is an infinite set and {¢;};.; is a sequence of sentences, then /\,_; ¢; is a
sentence.’

— Nothing else is a sentence.

Notice that we have defined a language Lg for any given set of sentence
names S. We will often speak as if there is one language Lg but bear in mind
that we are really talking about every language Ls, unless otherwise stated.

We also define some shorthand for the language to ease our exposition. For
sentences ¢ and ¥ in ST, let ¢ v ¢ be shorthand for the sentence —(—¢ A —).
Additionally, if I is an infinite set and {¢:},c; is a sequence of sentences, we
write \/,.; ¢; as shorthand for — A\;_; —¢.

1.2 Semantics for Lg

It will help our exposition here and throughout the remainder of the paper, if
we setup a way of speaking in the metalanguage which mirrors our language
Ls.% So let’s introduce operations on the model-theoretic domain for our
language by bestowing {0, 1} with the usual boolean algebra structure. That
is, for x, y € {0, 1},

0 ifx=1
- X = . )
1 ifx=0

1 ifx=1landy=1

- XAYy= ,

0 otherwise

3Our proof of functional completeness will show that we would still get a functionally complete
language if we placed the restriction |/| < 218l on 1.

OIn particular, by using the same symbols in the object and metalanguage, manipulations are easier
to follow since the basic equivalences that are true look like they should be true. We do respect the
distinction between the metalanguage and the object language throughout, but we’ve tried to not
be overly pedantic. Our hope is that this strategy reduces the cognitive work for the reader, without
causing undue confusion. Additionally, in our judgment this convention makes the presentation
much more aesthetically pleasing.
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Dangerous Reference Graphs and Semantic Paradoxes 731

- xVy=-=(=xA-y).

Additionally, for any set / and sequence {x;};c; with x; € {0, 1} we let A\,_; x;
be 1 if each x; is 1 and zero otherwise. Similarly to x v y, we put \/,_; x; =
- /\iel X

Now we define the compositionally determined truth-value of any sentence
of Lg relative to an interpretation of the sentence names. Let a truth-value
assignment be a function v from the sentence names S to {0, 1}. Then for all
x € ST we define [x](v) for a truth-value assignment v as follows:’

- [Tlw =1,

- [Llm =0,

— Foralla € S, [¢](v) = v(a),

- Forallg € 87, [-¢](v) = =[¢](v),

- Forallg, ¢ € S*,[¢p A Y]() = [¢] (W) A [¥](v).

— If I is an infinite set and {¢;},c; is a sequence of sentences [/\,; ¢i] (v) =

/\ie] [¢:] (v).

Let Vg be the set of all truth-value assignments on S. For x € ST, we write
[x] for x’s associated function from Vg to {0, 1} (we also call this the function
induced by ).

1.3 Functional Completeness of Ls

Ls lacks both truth and falsity predicates and first-order quantification but, in
the relevant sense, there is nothing that cannot be expressed in the language.
To see that adding the truth and falsity predicates (say T and F) would not
increase expressive power, note that in the pairs (T(«), «) and (F(«) , —«) the
sentences induce the same function from truth-value assignments to {0, 1} as
their respective pair-mate. Given that the size of the set of sentence names
S can have arbitrary cardinality and that there is no restriction on the length
of sentences in S, the addition of first-order quantifiers would also not add
expressive power. Those are intuitive reasons why our expressive power would
not be increased by the addition of these familiar devices. Now we prove that
Ls is in fact expressively adequate.

Lemma 1 For any function g from Vs to {0, 1} we have a sentence ¢, € S* such
that [,] = g.

Proof Let g be a function from Vg to {0, 1}. First, if g is a constant function,
put ¢ = T if g maps everything to 1 and ¢; = L if g maps everything to 0.
Otherwise, the strategy is to first decompose g using Kronecker’s § function
and then exhibit subsentences which induce the simple parts of g. From
these subsentences we then construct the desired complex sentence. Recall

7Read “[x](v)” as “the truth-value of x relative to assignment v”.
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that Kronecker’s § is a function of two arguments (in this case two truth-
assignments), which outputs 1 if the arguments are identical and 0 otherwise.

So forr, v € Vg,
1 ifr=v
5rv= . -
0 ifr#v

Notice that for every r € Vg

g =\/ 8ngW).

veVs

since for every v distinct from r, §,,g(v) = 0 and when v justisr, §,,g(r) = 1g(r)
and g(r) plus a bunch of 0’s still equals g(r). In the equation above g(v) only
makes a difference when it equals 1, so we can restrict our focus to the v’s
where g(v) = 1. Let C = {v € Vs | g(v) = 1}. Now for each r € Vg, we see that

g =\/én.
veC

Thus it will be sufficient to construct, for each v € C, a sentence y, such that
[x»] () = 8,, for eachr € Vs.
Forvevsanda € S, let

hv. o) = o ¥fv(a)=1'
—a ifv(x)=0
Then, for v € C, define
X = [\ hwv, ).
a€eS

Note that for every v € C and for every r € Vs, [x,](r) = 3,4, since by design
[x,](r) = 1iff r = v. We have already established that for all r € Vg

g(r) = \/arvy

veC

so it follows that for all r € Vg

gr) = \/[x].

veC

Thus we may let ¢, be the sentence

\

veC

1.4 Denotation Assignments and Paradoxicality

Thus far we have defined an expressively adequate infinitary propositional
language Ls. But clearly something is lacking, since nothing yet models
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Dangerous Reference Graphs and Semantic Paradoxes 733

the notions of “reference”, in the sense of “self-reference”.® So we cannot
construct paradoxes in Lg. Consider the normal statement of the liar sentence:

(1) This sentence is not true.

Sentence (1) “references” itself since the complex demonstrative ‘this sen-
tence’ contained therein refers to sentence (1).” We have no such resources in
Ls. We have formulae like —« but there is no way to link o with —«. Another
common way to state the liar paradox is as follows.

L: L is not true.

The colon is to be read as “refers to” or “denotes”, so that ‘L’ denotes the
sentence ‘L is not true’—just as ‘this sentence’ denotes sentence (1) above. If
‘L’ denotes the sentence ‘L is not true’, then L = ‘L is not true’—compare: if
‘Cicero’ denotes Tully, then Cicero = Tully. This, then seems to be the natural
language phenomenon we need to model. We need to define a relation on
Ls between the sentence names S and the sentences ST. And the relation
should, in fact, be a function, since we do not want sentence names to denote
multiple sentences. Let’s call this a “denotation” assignment, even though it
needn’t be thought of in terms of the members of S denoting sentences—it is
just an arbitrary mapping from S to S*, which models the natural language
phenomenon. !’

8 For a paradigmatic example of self-reference consult [9], footnote 8.

9We should flag that the phrase “what a sentence refers to” is often used in two distinct ways. The
sense in which the Liar sentence “refers” to itself should not be confused with claims about what
the reference of the Liar sentence is, in the sense of its “extension” in a truth-conditional semantics.
The Liar sentence “refers” to itself due to it containing a referential device (name, demonstrative,
etc.) which refers to (designates) the Liar sentence. Everything we say here is consistent with the
Fregean doctrine that sentences refer to (designate) their truth-values—the sentence ‘A A = A’
refers to das Falsche but references A.

19Given the way we have set things up the elements of S play two important roles that may seem
to be in conflict: (i) they are genuine sentences (and arguments to the truth-value assignment v)
and (ii) they are “names” of sentences, in the sense that the denotation function d maps them to
sentences in S™. If the atomic sentences (i.e. the elements of S) “denote” sentences, then we might
expect that they should “denote” themselves. But given our setup an atomic sentence not only can
fail to “denote” itself it can “denote” any sentence whatsoever (including its own negation).

The framework in [2] has the potential conceptual advantage in that the expressions that do the
“denoting” are not genuine sentences of the formal language—they are simply names of sentences
that can occur as syntactic constituents of sentences. So if a sentence name « is a name of a sentence
but « itself isn’t a sentence then we should not expect that it denote itself.

This, however, introduces a conceptual oddity of its own. On this setup sentence names will
also play two important roles: (i) they are names of sentences and (ii) they are “truth-evaluable”
expressions. One might think that if a sentence name is not a genuine sentence then it is not truth-
evaluable—names are not true or false.

We could make our presentation more in line with the strategy of [2] without endangering
any of the results. We would simply need to introduce a truth predicate T and have our atomic
sentences be of the form "T(«)7, for all « € S. We would thereby downgrade the elements of S
from their sentential status. And the necessary equivalence in truth-value between every o« € S and
its corresponding sentence T(«) would ensure that nothing of mathematical import is impacted
(although the proofs would become significantly more complicated and messy). But given the
equivalence we find it desirable to use the simplified formulation.
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734 L. Rabern et al.
Definition 1 A denotation assignment is a function d from S to S*.

There is another feature of “reference”, which we must also account for.
If Atticus’ refers to the sentence ‘Aardvarks swim’, then Atticus is a true
sentence if and only if ‘Aardvarks swim’ is a true sentence. The liar paradox
rests on this type of inference, e.g. when we assume that L is true and then
infer that the sentence ‘L is not true’ is true, this is justified by the assumption
that ‘L’ denotes ‘L is not true’. In general, then, our denotation assignment
constrains which truth-value assignments are acceptable—the only acceptable
assignments are the ones that assign to a sentence name a value identical to the
truth-value of the sentence it denotes.

Definition 2 A truth-value assignment v is acceptable on S relative to d if and
only if for every « € S, v(a) = [d(a)](v).

With a denotation assignment layered on top of our language Ls, we can
construct paradoxes. For example, if we let S = {L} and d(L) = —L, then for
any acceptable truth assignment v we have

v(L) = [-L](v) = =[L](v) = —v(L).

This is a contradiction. L relative to d is our formal representation of
the liar paradox.' Notice that here the things that are paradoxical are not
just sentences of Lg but sets of sentences of Lg relative to a denotation
assignment—we call these pairs (S, d) sentence systems.

Definition 3 The sentence system (S, d) is paradoxical if there is no acceptable
truth-value assignment on S relative to d.

For another example, consider Yablo’s paradox.’” Let S = {Y, Y,, Y5, ...}
and for each Yy € S, let d(Yy) = N\ ok —Y;. Then every sentence Y} says that
every subsequent sentence is false:

d(Yl) ==Y, A=Y3 A=Y A -
d(Yz) ==Y3A=YsA=Y5A -
d(Y3) ==YsA=YsA=YgA---

HWhereas the common representation of the liar is “L: L is not true”, we have “d(L) = —=L”. It
should be noted that our denotation function d plays an analogous role to the relation given by “:”
in the more common formulations.

125ee [13].
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Dangerous Reference Graphs and Semantic Paradoxes 735

The set of sentences {Y7, Y, Y», ...} are paradoxical relative to d. If v is an
acceptable truth assignment, then

vV = [\ -Vl = A=Yl = A -V =\ -v).

j>k j>k j>k Jj>k
In particular, for each k,

v(Y) = =v(Yie) A\ —0(Y) = =0(Yir1) Av(Yigr) = 0.
J>k+1

Thus, 0 = v(Yy) = /\j>0 —v(Y)) = /\j>0 -0 = 1. A contradiction.

There is another class of self-referential puzzles, which don’t come out as
paradoxical on these definitions. Consider the sentence that says of itself that
itis true (i.e. the truth-teller). We represent this as the sentence system S = {7}
and d(T) = T. For any truth assignment v we have

[T]() = v(D).

So any truth assignment is acceptable. But is the correct assignment v(7) =
1 or v(T) = 0? The problem is that nothing decides one truth assignment over
the other. Unlike a paradox where we are pulled in both directions, here we
are pulled in neither direction. We will call such situations hypodoxical, since
here the truth-value is underdetermined.'

In the case of the truth-teller, the reference structure employed (i.e. self-
reference), was the same as the one employed in the liar paradox. But it could
be that the reference structures that support paradoxes are fundamentally
different from those that support hypodoxes, so it is desirable to pull these
notions apart.

Definition 4 The sentence system (S, d) is hypodoxical if there is more than
one acceptable truth-value assignment on S relative to d.

1.5 Duals of Paradox and Hypodox

Cook [2] demonstrates how to turn a paradox given in terms of conjunction
and a falsity predicate into a paradox given in terms of disjunction and a falsity
predicate.'* We provide a direct generalization of this for our more expressive
languages. Anytime we have a paradox (hypodox) we can construct a dual
of the paradox (hypodox) with isomorphic reference relations. To define this
notion of dual precisely we first need to introduce notation for substitution.

BWe adopt the term “hypodox” from [5]. Cook [2] uses the term “indeterminate” for the
analogous notion with respect to F-systems.

14See [2, pp. 771-772]. Cook limits his focus to languages with conjunction and a falsity predicate
(i.e. what we call F-systems; see Appendix D).
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736 L. Rabern et al.

Definition 5 Let S be a set of names and let ¥ € S*. Let {(a, yi)};c; S S x
S such that the o; are pairwise distinct. We write ¥ [o; = y; | i € I] for the
sentence obtained from v by replacing each o; with y;.1>

For example, for {(A;, Bi A By), (A3, ~A2)} CSxST, (A|A(—A,V
A))[Ai= BilieI]=((BiABy)A(=(Bi A By V—A)).

Definition 6 For a sentence system (S, d) the dual denotation assignment d*
on S is given by d*(«) = ~d(@)[8 = —8 | B € S].

It is not difficult to check that v is an acceptable truth assignment on S with
respect to d if and only if v* defined by v*(«) = —v(«) is an acceptable truth
assignment on S with respect to d*.

For an easy example consider Jourdain’s paradox. Let S = {J,, J,} and let d
be such that d(J,) = —J, and d(J,) = J;. So J; says that J, is false and J; says
that J; is true. There is no acceptable truth assignment for the system (S, d),
since for any acceptable truth assignment v we have

v() = [Ni](w) = v(J)) = [=L] () = =[L] () = —v(J).
Thus,
v(J)2) = ~v(J2).
Then by Definition 6 the dual of Jourdain’s paradox is given by the following:
d*(J1) = —d(J)[B = =B | B €Sl =—(==]>),

d*(J2) = =d(1)[B = =B | B € S] = ~(=J)).

We see that there is also no acceptable truth assignment for the system
(S, d*), since for any acceptable truth assignment v we have

v() = [-=ID]w) =v() = [=(==D)] @) = =[] (v) = =v(/).
And again,
v(J2) = —~v(J2).

2 Reference Graphs and Danger

With the addition of denotation assignments we now have the ability to
represent paradoxes in Lg by sentence systems (S, d). Since our overall aim
is to study the “reference structures” that support paradoxes, we need a way of
extracting reference structural information from sentence systems. Looking at
an example provides guidance on how to go about extracting this information.

15We will abuse this notation slightly in places by writing d(«)[8 = w] to represent replacing all
occurance of 8 with w even when w is not in S*.
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Dangerous Reference Graphs and Semantic Paradoxes 737

oo

Fig. 1 The reference structure of Jourdain’s paradox

Consider again Jordain’s paradox, where S = {J;, J>} and d is such that
d(J,) = —J, and d(J,) = J;. What is the reference structure supporting this
paradox? Intuitively, J; references J, and J, references Ji, so that there is a
pattern of cyclic reference (Fig. 1).

As a first pass at defining the reference structure we might simply use the
inputs and outputs of the denotation assignment. But we immediately see
that this is incorrect. On this approach there would be no sense in which
J references J,—it would only reference —J,. And if J; referenced —J,,
then there would be no cyclic reference, since the denotation assignment
doesn’t map —J, anywhere. Instead we should say that it is in virtue of the
denotation assignment mapping J; to the sentence —J,, that J; references J,.
This motivates the following definition.

Definition 7 We say that a sentence name « € S references a sentence name
B € S with respect to a denotation assignment d if the name B occurs as a
syntactic constituent of d(«).

With this definition of referencing in play the “reference structure” of
any given sentence system (S, d) is best encoded as a directed graph in the
following manner.!®

Definition 8 Let S be a set of sentence names and d a denotation assignment.
The reference graph Gs 4 is the directed graph with vertex set S and an edge
from @ € Sto B € Sif and only if o references 8.

For example, we can now represent the reference graph of the Liar paradox
as the self-loop, since d(L) = —L and L occurs as a syntactic constituent of =L
(Fig. 2).

In Yablo’s paradox every sentence Y; denotes a sentence which has all the
sentences names Y, for j > i, as syntactic constituents. So we get the result that
in the reference graph every sentence name references every “later” sentence
name (Fig. 3).

16 A directed graph is just a binary relation on a certain domain, i.e. a directed graph G is a pair
(V, E) where E is a set of ordered pairs of elements from V. For the basics of graph theory see [4].
We will do our best to not assume that the reader is familiar with graph-theoretic terminology but
a quick review of the basics may prove helpful.
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738 L. Rabern et al.

Fig. 2 The Liar graph @O

We’d like to provide necessary and sufficient conditions for paradox (hypo-
dox) supporting reference graphs. For a reference graph to “support” a para-
dox (hypodox) we mean that there is at least one paradoxical (hypodoxical)
sentence system (S, d) with that reference structure. So the self-loop is paradox
and hypodox supporting since the reference graph of both the Liar paradox
and the Truth-teller hypodox are isomorphic to the self-loop. This notion of
paradox and hypodox supporting graphs is the central concern of this essay.
We call paradox supporting graphs dangerous and hypodox supporting graphs
precarious.

Definition 9 We call a directed graph G dangerous if there exists a paradoxical
sentence system (S, d) such that G is isomorphic to Gs 4.

Definition 10 We call a directed graph G precarious if there exists a hypodox-
ical sentence system (S, d) such that G is isomorphic to Gg 4.

The problem that guides our investigation, then, is this.

Problem 1 Classify the dangerous (precarious) directed graphs.

3 Danger Preserving Operations

As a first theoretical step toward solving this problem it is useful to find
some basic graph operations that preserve danger (precarity). Having these
operations at our disposal allows us to separate the wheat from the chaff
by reducing complex graphs to simpler—yet still dangerous (precarious)—
graphs. In this way we can identify the salient properties and gain a better
understanding of the space of dangerous (precarious) graphs. We will make
use of these operations throughout the essay to help generate new paradoxes
from old ones, find counterexamples to conjectures, and for proving the later
theorems.

Fig. 3 The Yablo graph
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Fig.4 Ng(v) in red and @ ®© o o

Ng(v) in green

3.1 Important Graph-Theoretic Notions

Here we must introduce some essential graph-theoretic notions. One impor-
tant concept is that of a vertex’s neighbors. In a directed graph each vertex has
both (i) an associated set of vertices, which are the vertices it points to, (ii)
and an associated set of vertices, which are the vertices that point to it. We call
these a vertex’s out-neighbors and in-neighbors, respectively.

Definition 11 Let G be a directed graph. We write N5(v) for or the set
containing exactly the vertices x in G such that there is an edge from v to x
(v’s out-neighbors) and N (v) for the set containing exactly the vertices x in
G such that there is an edge from x to v (v’s in-neighbors) (Fig. 4).

Another important notion is that of a subgraph. Intuitively, a subgraph of a
graph is some “part” of the graph. But there are different ways to take a part
of a graph. You can either take a subset of the vertex set and thrown out some
of the edges therein or take a subset of the vertex set and retain all the edges
therein. The first is the general notion of a subgraph (i.e. part) and the latter
is the more specific concept of an induced subgraph (i.e. whole part). More
precisely these are defined as follows.

Definition 12 Let G be a directed graph. A subgraph H of G is a directed
graph with vertex set V/(H) a subset of V(G) and edge set E(H) a subset of
E(G) such that if xy € E(H), then x, y € H. An induced subgraph H of G is
a subgraph of G such that if x, y € H and xy € E(G), then xy € E(H). For
A C V(G) we write G[A] for the induced subgraph of G with vertex set A

(Fig. 5).
Now we turn to the danger preserving operations.
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AT

Fig. 5 A directed graph G, a subgraph of G with vertex set {c,e, f, g, h,i} and the graph
Gle,e, f. 8 h. 1]

3.2 Subgraphs

It seems that a graph should be dangerous (precarious) if and only if some part
of it is. We can prove that this is indeed that case. The forward implication is
obvious and the reverse implication is proved by assuming that a subgraph
of a graph is dangerous (precarious) and then demonstrating a procedure
to construct an extended denotation assignment to the whole graph while
preserving danger (precarity).

Lemma 2 Let G be a directed graph. Then G is dangerous (precarious) if and
only if some subgraph of G is dangerous (precarious).

Proof Since G is a subgraph of itself, the forward implication is immediate.
For the reverse implication, let H be a subgraph of G that is dangerous
(precarious). View V(H) as a set of sentence names and let d be a denotation
assignment on V(H) such that (V(H), d) is paradoxical (hypodoxical) and
H = Gywy.a.

We construct a denotation assignment d’ on V' (G) by employing “junk con-
junctions” J, = L A /\yE Ni Y- for each x € V(G). The denotation assignment
d’ assigns to x a sentence containing its junk conjunction—it is clear that this
gets the referencing right, but the junk sentences must be added in such a way
that they have no impact on the acceptability of truth-value assignments. For
x e V(G), let

dx)v J, ifxe V(H)

dx) = . .
J ifx ¢ V(H)

Then, by construction, G = Gy ).« and (V(G), d') is paradoxical (hypodox-
ical). Hence G is dangerous (precarious). O

For an example, consider the following version of Curry’s paradox. Put S =
{A, B}, d(A) = —=A Vv B and d(B) = L. The reference graph of (S, d) is given
in Fig. 6. By Lemma 2, we can determine that this graph is dangerous prior to
considering Curry’s paradox, since it has the self-loop as a subgraph.
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Fig. 6 The Curry graph . < @O

Above we added junk conjunctions, which did the trick because they
established the right reference relation while not affecting the acceptability of
truth-assignments on the sentence system. They were able to do this because
on every truth-assignment they got the same value, i.e. they were constant.
We would also like to be able to remove constant junk from a sentence
system, thereby eliminating certain reference relations without affecting the
acceptability of truth-assignments.

For example, for the system S = A and d(A) = A A = A we can modify d
to d'(A) = L thereby removing the reference relations without affecting the
acceptability of truth-value assignments. If this procedure is carried out for all
the constant junk in a sentence system, we will say that the system is junk-
free.!” Let’s define this notion and prove a lemma, while we are on the topic of
“junk”.

Definition 13 A sentence system (S, d) is junk-free if and only if for every o €
S, if d(@) ¢ {L, T}, then there exist truth assignments vy, v; on S such that
[d(@)](ve) = 0 and [d(e)](v1) = 1.

Since removing junk does not affect the acceptability of truth-assignments
on a system, the removal of junk preserves the paradoxicality (hypodoxicality)
of a sentence system.

Lemma 3 Let the system (S, d) be paradoxical (hypodoxical). Then there is
a denotation assignment d' on S such that (S, d') is junk-free, paradoxical
(hypodoxical) and Gs 4 is a subgraph of Gs 4.

Proof Assume (S, d) is paradoxical (hypodoxical). Let J be the set of « € S
such that there is f, € {0, 1} so that [d(«)](v) = ¢, for each v € Vs. For each
a ¢ J,letd (a) =d(a) and for a € J, let

d(@) = 1 ¥fta:0.

T ift, =1

Then, by construction, (S, d') is junk-free, paradoxical (hypodoxical) and
Gs 4 1s a subgraph of Gs 4. O

3.3 Smoothing and Subdividing
For a sentence system (S, d), intuitively, we can “simplify” it to the system

(S, d') by picking some « € S, replacing every occurance of « with d(«) and

7Note that a system that is junk-free may still include “junky disjuncts” such as in the right disjunct
of BV (A A—A).Junk-free sentence systems are merely free of constant junk.
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then removing « from S. Doing so gives rise to an additional danger preserving
operation on graphs. This is supported by the following lemma.

Lemma 4 LetS be aset and let v € S*. Let v be a truth-value assignment on S.
Let {(a;, ¥)}ie; © S x ST such that the «; are pairwise distinct. If v(e;) = [y;](v)
foreachi € I, then

[v[ei=viliel]] @ =[¥]W).

Proof This is immediate from the definition of the semantics. O

Now consider a pair (S, d) and « € S such that & does not occur as a con-
stituent of d(a). Let S'= S — {a} and for B € §" let d'(B) = d(B) [« = d(a)].
Then d’ is a denotation assignment on S'. Given a truth assignment v on S,
let v' be v restricted to §’. Then, by Lemma 4, v is acceptable on S relative
to d if and only if v’ is acceptable on S’ relative to d’. Thus the following
“smoothing” operation leaves dangerous graphs dangerous and precarious
graphs precarious.

Definition 14 Let G be a directed graph. Let y € V(G) such that yy € E(G).
The smoothing of G at y is the graph H with V(H) = V(G) —y and E(H) =
EG-y)U {ab lae N~ (y),b € N*(y)} (Fig. 7).

The reverse operation of introducing a new name doesn’t behave nicely
in general, but it does in a few interesting special cases. One is that of a
subdivision.

Definition 15 Let G be a directed graph. A subdivision of G is a graph formed

by replacing each edge xy of G with a path p,, from x to y. Note that we allow
Pxy to be length 1; that is, p,, = xy (Fig. 8).

G q ®Q ®

(a) (b)
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T
o e N,

(a) (b) (©)

Fig. 8 The Liar graph and
two subdivisions

Lemma 5 A subdivision of a directed graph G is dangerous if and only if G is."8

Proof First, assume G is dangerous and let d be a denotation assignment
on V(G) such that G = Gy()q and (V(G), d) is paradoxical. Let H be the
subdivision of G where each edge xy € E(G) is replaced with the path p,, from

1 2

. . Ky .
x to y. Say the vertices of p,, in order are x = Zyys Zyys -2 Zxy = Yo Define a

denotation assignment d’ on V(H) by

) dw)ly = 72, | wy € E(G)] ifw e V(G)

d (U)) = j+1 wy . j .

Zxy if w=zy forxy e E(G), j > 2.

By construction we have H = Gy () «. Now we will show that H is paradox-
ical with this denotation assignment. Assume not and let v’ be an acceptable
truth assignment on V (H) with respect to d’ and let v be v’ restricted to V(G).
Then for each xy € E(G) and 2 < j < k,, we have [d(zin] () = [[zgl]](v/).
Hence v/(ziy) = [[d/(ziy)]](v/) = [d'(»)](v") = v'(y) since v’ is acceptable. Thus
for w € V(G), by Lemma 4, we have v(w) = v'(w) = [d' (w)] (V') = [d(w)[y =
zzwy | wy € E(GD]]W) = [dw)] () = [d(w)](v). Whence v is acceptable on
V(G) with respect to d. This contradicts the fact that G is dangerous.

The other direction is very similar, basically we smooth at all of the sub-
division vertices. We omit the proof to avoid unnecessary tedium. O

We should mention here that the fact that subdivision preserves danger
entails that danger is preserved under homeomorphisms and thus that being
dangerous is a topological property of directed graphs. The terms “homeomor-
phism” and “topological property” are usually applied to topological spaces
and in particular undirected graphs. Even though a directed graph is not a
topological space, the straightforward generalization of the definitions gives a
useful concept.

Definition 16 Two directed graphs G and H are homeomorphic if some sub-
division of G is isomorphic to some subdivision of H.

18This also holds for precarious graphs but we omit the proof here as it turns out to be quite
nasty to write down—and in any case follows trivially from the later results about precarity
and groundedness (see Theorem 11). Similar remarks apply to precarity’s status as a topological

property.
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Lemma 6 If G and H are homeomorphic directed graphs, then G is dangerous
if and only if H is dangerous.

Proof Assume G and H are homeomorphic directed graphs and let G’ and H’
be subdivisions of G and H respectively such that G’ is isomorphic to H'. The
lemma follows by applying Lemma 5 to G and G’ and to H and H'. |

3.4 Unwinding

We give a construction that turns any finite paradoxical sentence system
into an infinite acyclic paradoxical sentence system.!” Following [2], we call
this construction unwinding the paradox (see Fig. 9).2° Cook gives a nice
description of the philosophical import of unwinding.

The notion of unwinding sheds considerable light onto the relevance of
Yablo’s paradox to debates regarding the connections between paradox
and circularity. Prior to Yablo’s discovery, semantic paradox was thought
by most to be inextricably linked to circularity. Post Yablo, however,
it is fair to say that most philosophers of language and logic think of
the infinite non-circular construction as an isolated curiosity. Unwind-
ing finite paradoxes, however, demonstrates that infinite non-circular
constructions can be associated with each instance of a wide class of
circular finite paradoxes. As a result, we might be forced to reconsider
the assumption that circularity has any fundamental connection to the
logical and philosophical problems associated with truth. [2, p. 772]

In what follows we show that an infinite non-circular construction can be
associated with each finite paradox. More precisely, we show that from any
finite paradoxocial (hypodoxical) sentence system we can get an infinite acyclic
paradoxocial (hypodoxical) sentence system that is paradoxical (hypodoxical)
for essentially the same reason.

Definition 17 Let G be a finite directed graph and let < be a total order on
V(G). Define an ordering on V(G) x N by (xy,i) < (x2, j) if and only if i < j
or i = jand x| < x,. The unwinding of G is the graph with vertex set V(G) x
N with an edge from (x1, i) to (x, j) if and only if x;x, € E(G) and (x,,1) <
(x2, ). We denote the unwinding of G with respect to the ordering < by u_(G).

Note that Cook’s [2] proof of his unwinding theorem regarding F-systems works for unwindings
of infinitary systems as well as finitary ones. The proof strategy used here does not extend to the
unwinding of all infinitary systems—the cases where it would fail in the infinite case are related to
the discussion of the elimination of self-reference (and the Uniformity Constraint) in [10].
20Cook [2] attributes the basic idea of “unwinding” to Thomas Bolander who we know (from
personal communication) also has some unpublished results on the graph-theoretic nature of
paradox supporting structures. We in turn owe the idea of unwinding to Bolander via [2].
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O—0—00—0

Fig. 9 The 3-cycle and its unwinding at various stages

Lemma 7 Let G be a finite directed graph and let < be a total order on V (G).
Then u_(G) is acyclic.

Proof Assume there is a directed cycle in u.(G) with vertices (xi,1i),
(X2, ¥1)s -« «» (X, i), (x1, i1). Then by the definition of the edge set of u_(G), we
have (x1,7;) < (x2, y1) < -+ < (X, ix) < (x1,1;), a contradiction. Hence there
is no directed cycle. O

Lemma 8 Let G be a finite directed graph and let < be a total order on
V(G). Then G is dangerous (precarious) if and only if u_(G) is dangerous
(precarious).

Proof Let d be a denotation assignment on V(G). Define a denotation assign-
ment d’ on V(G) x N as follows. For x € V(G) and k € N, put

Teox=dx)[t=@k+ D]t <x][t= @k |t>x].

That is, in the sentence d(x), we replace each ¢t € V(G) which is at most
x with (1, k+1) € V(G) x N and then replace each each ¢ € V(G) which is
greater than x with (¢, k) € V(G) x N. This gets the referencing to match the
unwinding graph.

Now for (x, k) € V(G) x N,letd'((x, k)) = A\
gV(G)xN,d’ = bl<(G).

We first show that if G is not dangerous (precarious) then u_(G) is not
dangerous (precarious). Assume G is not dangerous (precarious). Let v be

ok T, ;. Then, by construction,
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an acceptable truth assignment on V(G) with respect to d. Define a truth
assignment v’ on V(G) x N by setting v'((x, k)) = v(x). Then

[ (Cx, k) = [T 1)

=k

= N\d@) [t= v k+ 1) |t <x][t= (k) |t > x]
=k

= N\d@t=v@) |t <x][t=v() | > x]
=k

= Aldw]®)

j=k
= [d®)](v)
= ()
=/ ((x, k)

Hence v’ is acceptable with respect to d’. Hence u-(G) is not dangerous. To
see that u_(G) is not precarious, note that if v; and v, are distinct acceptable
truth assignments on V' (G), then v| and v} are distinct as well.

Now for the other direction, assume that u.(G) is not dangerous (precari-
ous). Let v’ be an acceptable truth assignment on V(G) x N with respect to d'.

We claim that for each x € V(G), we have v'((x, k1)) = v'((x, k3)) for all
ki, k, € N. Let x € V(G). Assume v'((x, k)) = 1 for some k € N and let j > k.
We have 1 =v'((x, k) = [d'((x, k))|(v) = [d (x, ) A /\k§i<j T.;](v). Hence
v'(x, ) = [d'(x, )](v') = 1. Hence for each x € V(G) we have M, € N such
that either v'((x, j)) =1 for all j> M, or v'((x, j)) =0 for all j e N. Since
G is finite, we can define M = max,cyG) My. To get a contradiction, as-
sume there is some y € V(G) and k € N such that v'((y, k)) # v'((y, M)).
Then from the above we know that &k < M, so we may let (z, j) be the
maximum such pair. But by the definition of d’, the constituents of d'((z, j))
are only pairs (x, i) with (x,i) > (z, j). By the maximality of (z, j) we have
V((x. i) = v'((x, M) for any such (x,i). Hence v'((z. ) = [d'(z, D)) =
[d ((z, M))](v) = v'((z, M)) which is the desired contradiction. This proves
the claim.

Define a truth assignment v on V(G) by letting v(x) = v'((x, 0)) for each
x € V(G). This assignment is acceptable with respect to d since

v(x) = v'((x, 0))
= [d'((x, 0N] (V")

= N\ld@it= ¢ j+ D [t <xlit= (¢ )) | > ]I
j=0
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= \d@lr = v'(@ j+ 1) [t < xllt = '@, ) | 1> x]
j=0

= \d@lt = v ) |t <xllt = V'@ ) | > x]

j=0

— /\d(x)[t =v'((1,0)) | t € V(G)]

j=0
=dx)[t = V' ((t,0) | te V(G)]
= [dx)](v).

Thus G is not dangerous. By our claim above, different acceptable truth
assignments on V(G) x N will give different acceptable truth assignments on
V(G). Hence G is not precarious either. O

4 Groundedness

Herzberger [6] introduced a notion of “groundlessness” which was meant
to capture the way in which some sentences “suffer from unconsummated
reference much like the bureaucratic regress in which each clerk endlessly
refers you to the next clerk to settle your accounts”.?! Herzberger’s idea was
that each sentence has a “domain”, where this is understood as the set of things
it is about. And some sentences have domains that include sentences, whose
domain include sentences, etc. If this chain of aboutness never ends then the

sentence is groundless.

The relation between a sentence S and its domain D(S) is sensitive to
some of the same factors that are operative in general set theory. In
case some members of D(S) themselves are sentences, they in turn will
have their own domains, which collectively can be designated D?(S):
the aggregate of the domains of all sentences in the domain of S. And
it can happen that some members of D?(S) are sentences, and so on.
Any sentence for which this process fails to terminate will be called
“groundless™: ‘S is groundless’ abbreviates ‘for each integer k, D*(S) is
nonempty’. [6]

Herzberger relies on the intuitions of “aboutness” to give content to D.
With our technology we can make the idea of a sentence domain precise. For
a given sentence system (S, d) we can understand the domain of a sentence

2lHerzberger [6, p. 150]. Of course, [7] also makes use of and rigorously defines a notion of
“groundedness” but Kripke’s definition is tied up with his definitions of jumps and fixed-points,
so its much easier to see that Herzberger’s definition is an ancestor of our definition here.
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name o € S, D(a) = N*(a) (i.e. the set of a’s out-neighbors). In general we
can define D¥(«) for each k as follows:2

D’(a) = {a},
For k > 1, D*() = N*(D*¥ Y()).

Metaphorically, if a sentence is “grounded” then that excludes the ability to
start at it and walk along references forever. And this is clearly the notion that
Herzberger is trying to capture with “groundlessness”.

Definition 18 For a system (S, d) and @ € S, « is Herzberger-groundless it and
only if for each k, D¥(«) is non-empty.

His definition, however, only captures this idea if sentences are restricted to
finite length. When we are dealing with sentences of infinite length, then there
are sentences, which are Herzberger-groundless, but which don’t involve cycles
or infinite paths. To see this consider the sentences system (S, d), where S =
{Z, X!, X1, X3, X}, X3, X3,...}and d(Z) = \io; A\ <, X and for each X,
withl < j<i,d(X j-) =X ; 41- Here Z is Herzberger-groundless since for every
natural number £k there is a chain of references of length k to the sentence name
X ,’j, so for any k, D¥(«) is non-empty. But there are no cycles and every path
emanating from Z terminates at some k (see Fig. 10).

A more useful and appropriate definition of ungroundedness, however, is
close at hand. Let’s first define a ray, which is an infinite set of vertices
connected by an infinite chain of directed edges.

Definition 19 A ray in a directed graph G is a subgraph with vertex set {v;}i<,
and edge set {(vi, viy1)}ico-

Definition 20 A directed graph G is ungrounded if it contains a ray or a
directed cycle. Otherwise G is grounded.”

Intuitively, if G is grounded, then we can obtain an acceptable truth
assignment for any denotation assignment on V(G) by repeatedly substituting
the values of constant sentences in for their names. Since we don’t make any
arbitrary choices in this process, the constructed acceptable truth assignment
should be unique. To make performing this operation infinitely many times
precise we will apply Zorn’s lemma. Later we will use a similar proof idea to
prove a more general result.

20ras: DK(@) = NT(NT(NT ... Nt(«))), where the Nt is iterated k times.
23 An anonymous referee suggests the following equivalent definition of ungrounded: a directed
graph G is ungrounded if G has a subgraph H in which every vertex has positive out-degree.
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Fig. 10 The black hole graph

Zorn’s Lemma Every partially ordered set, in which every chain (i.e. totally
ordered subset) has an upper bound, contains at least one maximal element.

Definition 21 Let G be a directed graph. We say that A € V(G) is self-
contained in G if there are no edges in G directed from A to G — A.

Lemma 9 If a directed graph G is grounded, then it is not dangerous and not
precarious.

Proof Assume G is grounded. Let d be a denotation assignment on V(G)
such that G = Gy().4. We will show that there is a unique acceptable truth
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assignment on V(G) with respect to d. Since d was arbitrary, it follows that G
is not dangerous and not precarious.

For A C V(G) which is self-contained in G, let d4 be d restricted to A.
Then d 4 is a denotation assignment on A. If A has a unique acceptable truth
assignment with respect to d 4, then we call this truth assignment v4 and call
the pair (A, v4) solved.

Let X be the collection of all solved pairs. Define a partial order < on X by
(A,va) < (B,vp)ifand onlyif A C B and vy is vp restricted to A.

To apply Zorn’s lemma to (X, <), we need to show that X # ¢ and that
every chain in (X, <) has an upper bound. Since (4, vy) € X we see that
X # 0. Now let (A, v4,) < (A2,v4,) < --- be an arbitrary chain in (X, <).
Put U = |J,., Ai. Plainly, U is self-contained in G. For u € U, let h(u) be the
smallesti > O such that u € A;. Now, foru € U, let vy (1) = v 4,,, (). We claim
that (U, vy) is an upper bound for the chain. By definition A; € U and v,
i1s vy restricted to A; for each i > 0. It remains to be shown that vy is the
unique acceptable truth assignment on U with respect to dy. Assume vy is not
acceptable and pick u € U with h(u) minimal such that vy (u) # [dy@)](vy).
Put B = Apqy. Then

vp(u) = vyu) # [dy@](vy) = [dpw)](vp) = vp(u).

This is a contradiction. Hence vy is acceptable. To see that vy is unique,
assume there is a different acceptable truth assignment on U with respect to
dy, call it vp. Take u € U with h(u) minimal such that vy (1) # vo(u). Again
put B = Ajy,. Then vp restricted to B is an acceptable truth assignment on B
with respect to dp which is different from vp. This is a contradiction. Thus we
conclude that (U, vy) is an upper bound for the chain.

Applying Zorn’s lemma gives us a solved pair (M, vy) which is maximal
in (X, <). We will show that M = V(G) and hence vy, is the desired unique
acceptable truth assignment on V(G) with respect to d. So assume M # V(G).
PutJ =V(G) — M.

First assume that there is some z € J such that T = M U {z} is self-
contained. Since T is self-contained, d(z) involves only elements of M. Thus,
letting vr(x) = vy (x) for each x € M and vr(z) =d(@)[x = vu(x) | x € M]
makes v7 the unique acceptable truth assignment on 7" with respect to dr. We
conclude that (7, vr) € X and (M, vy) < (T, vr) contradicting the maximality
of (M, UM).

Thus we may assume that N*(z) N J # @ foreach z € J. Pick zo € J. Fork >
0,let zx € N*(zx_1) N J.Since G is acyclic, zgz1z2 - - - is aray in G contradicting
the fact that G is grounded. Whence M = V(G) and the proof is complete. O

Lemma 10 If a directed graph G contains a directed cycle, then it is both
dangerous and precarious.

Proof By Lemma 2, we can assume that G is a directed cycle. Let V(G) =
{vi, ..., vi}. Let d be a denotation assignment on V(G) with d(v;) = —w;y for
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i < k,d(vg) =—v; if kis odd and d(vk) = vy if k is even. Then G = Gy ().« and
(V(G), d) is paradoxical. Hence G is dangerous. To see that G is precarious,
just consider the denotation assignment & on V(G) with d'(v;) = viy fori < k
and d(vr) = v;. Both the truth assignment setting all the v; to 1 and the truth
assiggment setting all the v; to 0 are acceptable. O

Theorem 11 A directed graph G is precarious if and only if it is ungrounded.

Proof Lemma 9 gives the forward implication. For the reverse implication, by
Lemmas 2 and 10 we only need to consider the case of G being a ray with
vertex set {v;}i<,. Let d be a denotation assignment on V(G) with d(v;) = vj4.
Then G = Gy(g).q and (V(G), d) is hypodoxical because we get two acceptable
truth-value assignments by setting all the v; to 1 or setting all the v; to 0. O

Corollary 12 If a directed graph is dangerous then it is precarious.
In the finite case, we get the following complete characterization of danger.

Corollary 13 Let G be a finite directed graph. The following are equivalent:

(a) G is dangerous;

(b) G is precarious;

(c) G contains a directed cycle;

(d) G contains a subdivision of the Liar graph.

The results above exhaust the relations between ungroundedness, cyclicity,
precarity and danger; that is, there are ungrounded graphs that are not
dangerous (the ray in Fig. 11), precarious graphs that are not dangerous (again
the ray in Fig. 11) and dangerous graphs that contain no cycle (the Yablo graph
in Fig. 3).

Definition 22 A homomorphism from a directed graph G to a directed graph
H is a function f:V(G) — V(H) such that if xy € E(G), then f(x)f(y) €
E(H).If fis abijection, and f~!: V(H) — V(G) is a homomorphism, the we
call f an isomorphism. Additionally, we call the graph with vertex set f(V(G))
and edge set { f(x) f(y) | xy € E(G)} the homomorphic image of G under f.

In Fig. 12 we see an example of a non-isomorphic homomorphic image. Ad-
ditionally, since a path of length one is neither precarious nor dangerous, this
example shows that taking of a homomorphic image can introduce precarity

Fig. 11 A ray
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Fig. 12 The Liar graphisa

homomorphic image of the @ @ @O

path of length one
(a) (b)

and danger. However, precarity cannot be lost by taking a homomorphic image
as the next lemma shows.

Lemma 14 Let G be a directed graph. Then G is precarious if and only if every
homomorphic image of G is precarious.

Proof Since G is a homomorphic image of itself, the reverse implication is
trivial. To prove the forward implication, assume G is precarious. Then, by
Theorem 11 G contains a directed cycle or a ray. Let H be a homomorphic
image of G and let f: V(G) — V(H) be a homomorphism. If there is a
directed path between x, y € V(G), then we cannot have f(x) = f(y), for
otherwise H would contain a directed cycle and hence be precarious. In
particular, G cannot contain a directed cycle. Thus G contains a ray {v;}i<,-
If f(vi)) = f(v)) fori # j, then H contains a directed cycle and we are done.
Otherwise H contains a ray and we are done. O

Conjecture 15 Let G be a directed graph. Then G is dangerous if and only if
every homomorphic image of G is dangerous.

5 Compactness and Dangerous Tails
5.1 Locally Finite Graphs

Using the compactness theorem of first-order logic, we will show that graphs
for which N*(v) is finite for every vertex v are not dangerous.

Godel Compactness A set of first-order sentences has a model if and only if
every finite subset of it has a model.

To apply this theorem we need to be careful since a first-order sentence
must have finite length. The following generalization of Lemma 1 gives us the
control over the lengths of sentences that we need.

Definition 23 For v € Vsand I C S, let

vl = {u € Vs | Vaes_ru(@) = v(@)} .

Definition 24 Let g be a function from Vg to {0, 1}. We say that g is independent
of I C Sif g is constant on v’ for each v € Vs.
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Note that every such function is independent of the empty set.

Lemma 16 For any function g from Vs to {0, 1} and any I C S of which g is
independent, there exists a sentence {g | € S with the following properties:

— no sentence name from I appears in g 1,

- {g,l =&
— g1 has finite length if S — I is finite.

Proof Let g be a function from Vg to {0, 1}. First, if g is a constant function,
put ¢, ; = T if g maps everything to 1 and ¢, ; = L if g maps everything to 0.
Otherwise S — [ has at least one element and we proceed as follows. Let
B = {v € Vg | Vgcsv(a) = 0}. Note that g is completely determined by its values
on the elements of B.
Forv e vsanda € S, let

o if via) =1

PO =1 v =0

Let C={v e B | g(v)=1}. For v € C, define
w= /\ P a.
aeS—1
Note that x,(r) = g(r)if r = vand x,(r) = 0if r # v. Let {; ; be the sentence
\ %
veC

Then, for any r € Vg, we have

[e.11(r) = ﬂ\/ xvﬂ " =\l = [x]0) = gr).

veC veC

Hence ¢ ; = g. Now the length of ¢, ; is at most |C||S — I| < |B||S - I| <
215=1|S — I|. Thus ¢, ; has finite length if S — I is finite. O

Lemma 17 Let G be a directed graph such that N5(v)| is finite for every v €
V(G). If G is dangerous then some finite subraph of G is dangerous.

Proof Assume that no finite subgraph of G is dangerous and let d be a
denotation assignment on V(G) such that G = Gy(g).q4. For each v € V(G),
put I, = V(G) — Né(v). Construct a first order language £ as follows. The
constants of £ are the vertices of G together with T and L. The axioms are the
following.

- T#1
- x=Tvx=_1foreachx e V(G),
- X ={[aw).1, for each x € V(G).
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Fig. 13 A graph with sink x
and source y @——70

By Lemma 16 each of the sentences is of finite length. Note that a model
of the language is an acceptable truth assignment on V(G) relative to d. Since
no finite subgraph of G is dangerous, every finite subset of the axioms has
a model. Thus, by compactness, the whole language has a model and hence
(V(G), d) is not paradoxical. Since d was arbitrary, we conclude that G is not
dangerous.?* O

Corollary 18 Any directed acyclic graph G such that [N£(v)| is finite for every
v € V(G) is not dangerous.

Proof Combine Corollary 13 and Lemma 17. O
5.2 Topological Sorting

Now we show that if G is an acyclic directed graph then its vertices can be
ordered left to right such that edges only go to the right.

Definition 25 Let G be a directed graph. A vertex v € V(G) is called a sink if
N{(v) is empty and a source if N (v) is empty (Fig. 13).
Definition 26 Let G be a directed graph. A fopological sort on G is a total
ordering < of V(G) such thatif (a,b) € E(G),thena < b.

We prove the following easy lemma for completeness.
Lemma 19 If G is a finite directed acyclic graph, then G has a topological sort.
24The proof technique used here is very similar to the compactness-based proof of the De Bruijn-
Erdos coloring theorem [1] stating that an infinite graph can be k-colored if and only if each of
its finite subgraphs can be k-colored. Lemma 17 can also be proved (as can the De Bruijn-Erdos

theorem) by directly applying Zorn’s lemma as we need to do in the more complicated results
below.
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Proof Assume (to reach a contradiction) that the lemma is false and let G be a
counterexample with the minimum number of vertices. Since G is finite it has
a source v. By minimality G — v has a topological sort {vy, ..., v,}. But then
{v, vy, ..., v} is a topological sort of G. This is a contradiction. O

Lemma 20 Let G be an directed acyclic graph. Then G has a topological sort.

Proof We construct a first order language £ and apply the compactness
theorem. Let the elements of V(G) be the constants of £ and let R be L’s
only relation symbol. Define the axioms of £ as follows.

—  =(a = b) for all distinct a, b € V(G),

— aRb forall (a,b) € E(G),

— aRb — —(bRa) foralla,b € V(G),

— aRbVvbRava=0>bforalla,b € V(G),

— (aRb AbRc)— aRcforalla,b,c e V(G).

Let A be a finite subset of the axioms. Let C be the set of all constants
appearing in some axiom of A. Create A’ from A by adding in all axioms
involving only the elements of C. Then A’ is still finite and if A" has a model,
so does A. Put H = G[C(]. Since H is finite and acyclic it has a topological sort
<. Letting < be the interpretation of R gives a model of A" and hence A.

Thus, by the compactness theorem, the entire set of axioms has a model.
The interpretation of R in this model is the desired topological sort. O

5.3 Dangerous Tails

Lemma 21 Let G be a directed graph. If for every induced subgraph H of G
there exists ) = C C V(H) which is self-contained in H such that G[C] is not
dangerous, then G is not dangerous.

Proof Assume that for every induced subgraph H of G there exists ¥ = C C
V' (H) which is self-contained in H such that G[(] is not dangerous. Let d be
a denotation assignment on V(G) such that G = Gy ()4 We will show that
there is an acceptable truth assignment on V(G) with respect to d. Since d was
arbitrary, it follows that G is not dangerous.

For A C V(G) which is self-contained in G, let d 4 be d restricted to A. Then
d 4 is a denotation assignment on A. If A has an acceptable truth assignment
with respect to d 4, then we pick an acceptable truth assignment v4 and call the
pair (A, vy) solved.

Let X be the collection of all solved pairs. Define a partial order < on X by
(A,va) < (B,vp)ifand onlyif A C B and vy is vp restricted to A.

To apply Zorn’s lemma to (X, <), we need to show that X # ¢ and that
every chain in (X, <) has an upper bound. Since (4, vy) € X we see that X # ¢.
Now let (A1, v4,) < (A2,v4,) < --- be an arbitrary chain in (X, <). Put U =
Ui~ Ai. Plainly, U is self-contained in G. For u € U, let h(u) be the smallest
i > 0 such that u € A;. Now, for u € U, let vy(u) = va,, (u). We claim that
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(U, vy) is an upper bound for the chain. By definition A; € U and vy, is vy
restricted to A; for each i > 0. It remains to be shown that vy is an acceptable
truth assignment on U with respect to dy. Assume vy is not acceptable and
pick u € U with h(u) minimal such that vy (u) # [dy@)](vy). Put B = Apq.
Then

vp(u) = vyu) # [dy @] (vy) = [dew)](vp) = vp(u).

This is a contradiction. Hence vy is acceptable. Thus we conclude that
(U, vy) is an upper bound for the chain.

Applying Zorn’s lemma gives us a solved pair (M, vy) which is maximal in
(X, <). We will show that M = V(G) and hence vy, is the desired acceptable
truth assignment on V(G) with respect to d. So assume M # V(G). Put H =
G — M. By assumption, we have ¥ # C € V(H) which is self-contained in H
such that G[C] is not dangerous. Put B = M U C. Note that B is self-contained.
Since C is not dangerous, we can extend vy, to an acceptable truth assignment
vp on B with respect to dg. But then (B,vp) € X and (B, vp) > (M, vy)
contradicting the maximality of (M, vy). Hence M = V(G) and the proof is
complete. O

A good way to get self-contained sets in an acyclic graph is to topological
sort the graph and take all vertices “to the right” of a given vertex. To make
this precise we introduce the concept of a tail.

Definition 27 Let G be a directed acyclic graph and let < be a topological
sort on G. For z € V(G), the z-tail of G (with respect to <) is the subgraph
induced on {x € V(G) | x > z}. An induced subgraph of G that is a z-tail for
some z € V(G) is called a tail of G.

Lemma 22 Let G be a directed acyclic graph and let < be a topological sort on
G. If every induced subgraph of G has a tail which is not dangerous, then G is
not dangerous.

Proof Let H be an arbitrary induced subgraph of G. We need to show that
there exists ¥ # A C V(H) which is self-contained in H such that G[A] is not
dangerous. Pick z € V(H) such that the z-tail of H is not dangerous. Let 7,
be the z-tail of H. Note that 77 is self-contained. Thus, if 7, is non-empty,
then we are done. Hence we may assume that 7 is empty. But then x < z for
every x € V(H). Hence z is a sink in H and in particular, {z} is a non-empty,
self-contained set which induces a non-dangerous graph. This completes the
proof. ]

Corollary 23 If G is a dangerous directed acyclic graph, then |N{(v)| is infinite
for infinitely many v € V(G).

Proof Let G be a directed acyclic graph G such that | N{(v)| is infinite for only
finitely many v € V(G). By Lemma 20 G has a topological sort <. Let H be an
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arbitrary induced subgraph of G. Since there are only finitely many v € V(H)
with |N2(v)| infinite, there is a largest (under the order <) such vertex zy.
Then the zy-tail of H has no vertices with infinite out degree and hence is
not dangerous by Lemma 17. Thus every induced subgraph of G has a non-
dangerous tail. Applying Lemma 22 finishes the proof. O

6 Reciprocity and Underlying Graphs

Let S={A,, A,,...} and d(A;) = ~A;+;. Then the reference graph of the
sentence system (S, d) is the ray and we know that this is precarious but not
dangerous from above. Intuitively, in the reference graph we have an edge
from A; to A, because d(A,) is “a function of” of A,.% In this case, fixing the
value of A, determines what the value of A; must be. But it is also true that
fixing the value of A; determines what the value of A, must be—so A; and A,
are reciprocal. Looking at it this way, we would want to see an edge going in
both directions. We can capture these intuitive ideas by considering necessary
and sufficient conditions for danger on the underlying undirected graph of a
directed graph G.

Definition 28 Let G be a directed graph. The underlying undirected graph of
G is the graph U(G) with vertex set V(G) and an edge between x, y € V(G)
for each xy € E(G) and yx € E(G). We also call G an orientation of U(G).%°

It turns out that we can completely classify the undirected graphs which have
dangerous orientations—they are precisely the ones containing a cycle.

Theorem 24 A graph has a dangerous orientation if and only if it contains a
cycle.

Proof The reverse direction is easy, since if F is a graph that contains a cycle
we may orient the edges of the cycle clockwise and the other edges arbitrarily
and conclude that the orientation is dangerous using Lemma 10.

For the forward direction, assume G is a directed graph such that U (G) is
acyclic. Let d be a denotation assignment on V(G) such that G = Gy(g).4. By
Lemma 3 we may assume that there is no “junk”; that is, for every x € V(G),
if d(x) ¢ {_L, T}, then there exist truth assignments vy, v; on V(G) such that
[d(x)](vo) = 0 and [d(x)](v;) = 1. Also, without loss of generality, we may
assume that ¢/ (G) is connected.

For A C V(G), call x € A interior to A if x has no edges to G — A. The
set of interior vertices of A is the interior of A and is denoted Z(A). Let the

2This intuitive idea of “dependence” can only be taken so far. In Appendix C we show that
defining a graph based on “dependence” turns out to be useless in general.

26Note that if G contains a cycle of length two through vertices x and y—such as in Jourdain’s
paradox—then U/ (G) will have two edges between x and y.
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exterior vertices of A be E(A) = A —Z(A). Call A C V(G) tame if U(G[A])
is connected and for each x € £(A) we have N*(x) N A = (. Additionally, let
d 4 be d restricted to A. We need to extend the notion of acceptable truth
assignment as follows. A function v from A to {0, 1} is called acceptable on
A relative to d 4 if for each y € Z(A) we have [da(y)](v) = v(y). This is well-
defined since d 4 (y) involves only elements of A by the definition of Z(A).

Now, for tame A C V(G) we call the pair (A,va) solved if vy is an
acceptable truth assignment (in the extended sense above) on A with respect
to d 4. Let X be the set of all solved pairs in G. Define a partial ordering on X
by (A, v4) < (B, vp)ifand only if A C B and v4 is vp restricted to A.

To apply Zorn’s lemma to (X, <), we need to show that X # ¢ and that
every chain in (X, <) has an upper bound. Since (4, vy) € X we see that X # ¢.
Now let (A1, v4,) < (A2,v4,) < --- be an arbitrary chain in (X, <). Put U =
U= Ai. Plainly, A; € U for eachi > 1.

Now we show that U is tame. Let a, b € U. Then we have i, and i, such
that a € A;, and b € A,,. Let i be the maximum of i, and i,. Then a,b € A;.
Since A; is tame, U(G[A;]) is connected. Hence there is a path between a and
b in U(G[U]). Since a and b were arbitrary elements of U, we conclude that
U(G[U]) is connected. Since an exterior vertex of U must be exterior in each
A; that contains it, we see that N*(x) N U = ¢ for each x € £(U). Whence U
is tame.

We claim that if u € Z(U), then u € Z(A;) for some i > 1. Pick k such that
ue Ag. If Nt(w) N (U — Ayg) is empty then we have u € Z(Ag). Otherwise we
may pick y € N*(u) N (U — Ay). Since u is in the interior of U, y € A; for
some j> k. But A;is tame and u € A, so we must have either u € Z(A}) or
N*(u) N Aj=¢. The latter is impossible since uy € G[A;]. Hence u € Z(A)).
This proves the claim.

Now we construct an acceptable truth assignment vy on U. For u € U,
let k, be minimal such that u € Ay, and let vy(u) = v4,, (). We claim that
(U, vy) is a solved pair. By definition vg4, is vy restricted to A; for each
i > 1. Thus it only remains to show that vy is an acceptable truth assignment
on U. Take y € Z(U) and let r > 1 be minimal such that y € Z(A,). Then
[duD)](vy) = [da, ()] (va,) = va,(¥) = vy(y) since v,, is acceptable on A,.
Hence vy is acceptable on U and thus (U, vy) is a solved pair.

Thus every chain in (X, <) has an upper bound and Zorn’s lemma gives
us a maximal element (M, vy) € X. If M = V(G), then vy, is an acceptable
truth assignment on V(G) with respect to d and we are done. Thus assume
that M # V(G).

First if £(M) # @ then pick z € E(M). Put M'= MU N*(z). Then z €
Z(M"). Since U(G[M]) is connected and U(G) is acyclic we see that for each
x € E(M’) we have N*t(x) N M’ = (. Additionally, it is clear that U(G[M'])
is connected. Hence M’ is tame. Since there is no “junk” we can define
an acceptable truth assignment v’ on M’ by letting v'(x) = vy (x) for x €
M and choosing the values of v on NT(z) so that [d(2)](V) = vm(2).
But then (M’,v') € X and (M’,v") > (M, vy) contradicting the maximality
of (M, vym).

@ Springer



Dangerous Reference Graphs and Semantic Paradoxes 759

Hence we may assume that M =Z(M). If M # @, then since U(G) is
connected we have z € V(G) — M and y € M such that zy € E(G). If M =0,
then pick z € V(G) arbitrarily. Put M’ = M U {z} U N*(z). Since U(G[M])
is connected and U(G) is acyclic we see that for each x € £(M’) we have
Ntx)N M = @.1f M = @, thenU(G[M']) is clearly connected, otherwise since
zy € E(G) we see that U(G[M']) is connected. Hence M’ is tame. Extend vy
to a truth assignment v’ on M’ by letting v'(x) = 0 for each x € N*(z) — {y}
and letting v'(z) be the resulting forced value. But then (M’,v) € X, and
(M',v") > (M, vy), which contradicts the maximality of (M, vy).

Thus V(G) = M, and vy, is an acceptable truth assignment on V(G). Hence
G is not dangerous. O

The philosophical implications of this theorem remain to be determined.
But it seems that there is some sense in which cyclic structure is required for
paradoxicality.

Appendix A: The Global Function

We briefly mention an equivalent formulation of a paradoxical (hypodoxical)
pair in terms of fixed points of functions.

Definition 29 Let S be a set of sentence names. Any function f:Vs — Vg
gives rise to a denotation assignment d; on S as follows. For each o € S, let
fo : Vs = {0, 1} be given by f,(v) = f(v)(@). Then put ds(a) = ¢y, for each
a€S.

Going the other direction, for a denotation assignment d on S the global
function Fs4:Vs — Vs is given by Fs 4(v)(«) = [d(@)](v). Note that these
constructions are inverses of each other; thatis, Fs 4, = fand dr, = d.

Lemma 25 Let S be a set of sentence names and d a denotation assignment on S.
The pair (S, d) is paradoxical (hypodoxical) if and only if Fs 4 has zero (more
than one) fixed point.

Proof Just note that v € Vg is a fixed point of Fg, if and only if v(a) =
Fs.a(w)(@) = [d(e)](v) if and only if v is a acceptable truth assignment on S
with respect to d. O

This formulation is quite useful for constructing examples. Let S be the
natural numbers N. We can write each point x € [0, 1] as a binary decimal
0.b1b,bs -, and so any function f from the unit interval to itself gives rise
to a denotation assignment d ; on 8.7 Moreover, if f has no fixed points, then
d y is paradoxical.

?TFor definiteness, for x € [0, 1) we take the (unique) binary decimal representation with infinitely
many zeros and for x = 1 we take 0.11111.... Since this mapping is not surjective, there are some
functions from truth value assignments to truth value assignments that are not represented as a
function from [0, 1] to [0, 1].
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Appendix B: Subdivisions of Yablo?

As we saw in Corollary 13, a finite directed graph is dangerous if and only if it
contains a subgraph homeomorphic to the Liar graph. It is tempting to think
that a simple topological characterization might work in the infinite case as
well. The obvious candidate to try is the Yablo graph. However, the following
example gives a dangerous graph with no subgraph homeomorphic to the Liar
graph and no subgraph homeormorphic to the Yablo graph.

Consider the following setup. Let S = {A,, A,, As,... By, By, B3, ...} and
for each A; € S,let d(A;) = B; and for each B; € S, let d(B;) = /\j>i —A;. So
each A; says that B; is true, while each B; says all the A are false, for j > i.

d(Ay) = By, d(B)) = —Ay A=Az A—A4A ...
d(Az) = B, d(By) = —A3 A=A A—As A L.

d(As3) = B3, d(B3) = —As N—As A=A A ...

There is no acceptable truth assignment for (S, d), since if v is an acceptable
truth assignment, then

v(A;) = [Bi](v) = v(B))
and
vB)=[/\ -4l = A\l-Alw) = \ -[4]@) = A\ -vd)= \ ~v(B).

J>i J>i J>i J>i J>i
In particular, for each i,

v(B) = —v(Biy) A J\ —v(B)) = —v(Bi1) A v(Biy) = 0.

it
Thus,
0=uv(Bo) =\ -v(B)=/\-0=1

j>0 >0

Appendix C: Dependence and Reference

Given a denotation assignment d on a set S, we might try to define what
it means for @ € S to “depend on” 8 € S. In the above we took a purely
syntactic route with reference. We note that if @ does not reference g, then
surely o does not “depend on” $ in any direct sense. Can we get a semantic
notion of dependence that gives rise to a meaningful dependence structure?
The following is the natural definition to try.
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Definition 30 Let d be a denotation assignment on a set S. We say that o €
S depends on B € S if there exist truth assignments vy, v, on S which differ
only on B such that [d(«)](vi) # [d(@)](v2). The dependence graph of Ds 4 is
the graph with vertex set S and an edge from « € S to 8 € S if and only if «
depends on 8.

It is not difficult to see that the dependence graph and the reference graph
coincide for the F-systems studied by Cook and Yablo (see Appendix D).
Also, the dependence graph is meaningful for finite sentence systems. How-
ever, when we move to the infinite, we can get situations where infinitely
many values of v must be changed in order to change [d(«)](v) for a given
a. In particular, we can get paradoxes with the Yablo graph as reference
graph which have a dependence graph with no edges at all. In these cases,
we cannot tell anything useful about the possibility of a paradox by looking at
the dependence graph. We give two examples of this phenomenon.

For the first example, consider a countably infinite list of sentences, where
each one is true if and only if infinitely many of the sentences after it are false.
We can encode this in a sentence system as follows. Let S = {A,, A,, ...}
and define a denotation assignment d on S by d(Ax) ==\, \;5; Aj, for
each k. We leave it as an exercise to check that this is indeed a paradox. The
dependence graph has no edges because for any truth assignment, toggling the
value of a single sentence will not affect the truth-value of any other sentence.

The second example is based on the fact that flipping only finitely many
bits in the binary representation of a real number cannot change it from being
rational to irrational or vice-versa. Let [0, 1] € R denote the unit interval. The
function f: [0, 1] — [0, 1] given by f(x) = 0 if x is irrational and f(x) = v/2/2
if x is rational has no fixed point since 0 is rational and +/2/2 is irrational.
Using the results about the global function in Appendix A this gives rise
to a paradox. However, the paradox is not very interesting since it contains
cycles. But we can easily remove the cycles and get a paradox with the same
irrational flavor. To this end, let S = {S;}«~., be a set of sentence names. For
each k < w define a function Ay : Vg — [0, 1] by letting hx(v) be the binary
decimal 0.v(Sgy1)v(Sk2)v(Sks3).... Now for each k < w define a function
8k : Vs — {0, 1} as follows. For v € Vg, let

1 if hi(s) € Q and the k-th digit of the binary decimal form of ‘22 is1,
0 otherwise.

8k(s)= {

Now by Lemma 16, for each k < w we have y; € ST involving no element of
{So, S1, ..., Sk} such that y,(v) = gk(v) for each v € Vs. Let d be a denotation
assignment on S such that d(Sy) = yx.

We claim that (S, d) is paradoxical. Assume (to reach a contradiction) that
we have a truth-value assignment v € Vg which is acceptable on S with respect
to d. Let y = 0.v(Sp)v(S1)v(S2) . ... Note that if y € Q, then hi(v) € Q for all
k and if y ¢ Q, then hi(v) € Q. Now, v is acceptable, so v(Sx) = d(Sk)(v) =
vk (v) = gk(v). Hence y = 0.go(v)g1(v)g2(v) .... If y € Q, then gx(v) = 1 if and
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only if the k-th digit of the reduced binary form of ¥? is 1. Thus y = %2 ¢ Q.
This is a contradiction. Thus we must have y ¢ Q. But then g«(v) = 0 for all &,
so y = 0 € Q. Again this is a contradiction.

Appendix D: F-Systems

It is instructive to apply our terminology to the type of sentence systems
that have been investigated most in the literature—we call these F-systems.?
Intuitively, F-systems are sentence systems which are restricted in such a way
that all the sentences can only say that other sentences in the system are false.
For [2] the language L p and his denotation function § give rise to an F-system,
since the only well-formed sentences of L p are (possibly infinite) conjunctions
of negations.”” The motivation for theorists to restrict their attention to the
reference structures inherent in F-systems, we take it, is because both the
Liar paradox and Yablo’s paradox can be represented by F-systems.** But
there are many paradoxical systems such as Jourdain’s and Curry’s, which are
not F-systems—and many hypodoxical systems such as the Truth-teller, which
are not F-systems. For these reasons we have focused on the more inclusive
language Ls and the general class of sentence systems. F-systems, however,
are a subset of the general class of sentence systems discussed throughout this
essay, defined as follows.

Definition 31 Let G be a sink-free directed graph. The pair Fg = (V(G), d)
where d(x) = /\yeN+(x) —y for each x € V(G) is called the F-system on G. Note
that by construction Gy (G)qs = G.

It turns out that F-system paradoxicality and hypodoxicality can be charac-
terized in graph-theoretic terms.

Definition 32 Let G be a directed graph. We call A € V(G) independent if
G[ A] is edgeless.

28We should note that we started this project in 2006 completely oblivious to the fact that there
was any literature relating graph theory to the reference relations involved in paradox—except for
the brief discussion in [14]. That paper in conjunction with the issue raised in [13] was the impetus
for this project. We faintly recall being informed of [2] in 2008 by Andy McGonigal (during a
late night conversation at the Phoenix). We have since adopted some of Cook’s terminology (e.g.
“denotation assignment” and “sentence name”) and the overall presentation has benefited by
comparing and contrasting his presentation with our own. We include this appendix to make note
of the relations between that paper and this one.

2Note that Lp is not functionally complete in the way our Lg is (see Section 1.3). Lp has
conjunction, a class of sentence names S = {«;};c1, a falsity predicate F and the only well-formed
sentences in S* are (unrestricted) conjunctions of the form Nicr F(@p). So, clearly, there is a
function g from Vg to {0, 1} such that there is no sentence ¢; € S™ such that [tel =&

30 As pointed out by the anonymous referee, another nicety of the F-system setup is that a graph is
either paradoxical, determinate, or indeterminate (in Cook’s terminology); whereas in our setup
any dangerous graph is precarious as well.
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Definition 33 Let G be a directed graph. A kernel in G is an independent set
of vertices K € V(G) such that each vertex in V(G) — K has an edge into K.

Definition 34 Let X be a set. For any A € X, we call the function 14 : X —
{0, 1} given by

1 ifxe A

lat) = {0 ifx g A

the characteristic function of A on X.

Lemma 26 (Cook) Let G be a sink-free directed graph. Then there is a bijection
h between the kernels of G and the acceptable truth assignments on F¢ given by
h(K) = k.

Proof We first need to show that & maps kernels to acceptable truth assign-
ments. So, let K be a kernel and let v = h(K). Then for any x € V(G) we have

[l =1 A\ o= A —vm.

YeNT(x) YENT(x)

Since K is independent, if x € K, then N*(x) C V(G) — K and hence we
have [d(x)](v) = 1 = v(x). Since each vertex in V(G) — K has an edge into K,
if x € V(G) — K we have [d(x)](v) = 0 = v(x). Thus v is acceptable on V(G).

Next we check that 4 is injective. So, let K;, K, be kernels in G such that
h(K) = h(K3). Then 1k, = 1k, and hence K| = K». Thus 4 is injective.

It remains to check that £ is surjective. So, let v be an acceptable truth
assignment on Fg. Put K = {x € V(G) | v(x) = 1}. Since v is acceptable, we
see that K must be independent. Now, pick x € V(G) — K. Since v(x) = 0 and
G is sink-free, for some y € N*(x) we must have v(y) = 1 and hence y € K.
Thus K is a kernel in G. By definition we have 4(K) = v. Hence 4 is surjective.

O

Lemma 26 immediately implies Cook’s graph theoretical characterization of
F-system paradox.

Theorem 27 (Cook) Let G be a sink-free directed graph. Then F is paradoxi-
cal if and only if G has no kernel.

Additionally, we get a graph theoretical characterization of F-system hypodox.

Theorem 28 (Cook) Let G be a sink-free directed graph. Then F¢ is hypodox-
ical if and only if G has more than one kernel.

Since a directed graph G is dangerous (precarious) if Fg is a paradox
(hypodox) we get the following corollaries.
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Corollary 29 If G is a sink-free directed graph with no kernel, then G is
dangerous.

Corollary 30 If G is a sink-free directed graph with more than one kernel, then
G is precarious.

Yablo [14] gave some sufficient conditions for an F-system to be paradoxi-
cal. In light of Cook’s theorem above we can view these as sufficient conditions
for a sink-free directed graph to have no kernel. Here we give a generalization
of Yablo’s conditions.

Definition 35 Let A be an infinite set. We say that B C A is cofinite in A if
A — B is a finite set.

Lemma 31 Fixn > 1. Let G be an acyclic sink-free directed graph such that for
any n dif ferent vertices x1, X, ..., X, € V(QG) the set Ulsis" Nt (x;) is cofinite
in V(G). Then G contains no kernel.’!

Proof Assume the lemma is false and let K be a kernel in G. Since G is acyclic
and sink-free, it must be infinite. Also, since G is acyclic, Lemma 20 gives us a
topological sort < on V(G).

First assume K is finite. Then we have z € V(G) such that for each x > z,
x ¢ K. But then since z ¢ K, we must have y € K such that zy € E(G) and
hence y > z. This is a contradiction.

Hence K is infinite. Thus we may choose different xy, x,, ..., x, € K. By
hypothesis, D = |J,_;.,, N"(x;) is cofinite in V(G). But since K is independent,
K € V(G) — D and hence K is finite. This final contradiction completes the
proof. ]

The case n = 1 gives Yablo’s condition.

Corollary 32 (Yablo) Let G be an acyclic sink-free directed graph such that for
every x € A the set N*(x) is cofinite in V(G), then G contains no kernel.

Lemma 31 is more powerful than Yablo’s condition which can be seen by
considering the following example. Let p; denote the i-th prime number, so
po =2, p1 =3, pp =5, etc. Let G be the directed graph with vertex set N and
an edge from a to b if and only if a < b and b # p’ for any n € N. That is,
a has an edge to every natural that is not a power of the a-th prime number.
Since there are infinitely many powers of each prime number, no vertex in G
has cofinite out degree. Hence Yablo’s condition does not apply. But for any
a,b e Nwitha # b and m, n > 1 we have p} # p}’ and hence N*(a) U N*(b)

3t is actually enough to assume there there is some A € V(G) which is cofinite in V' (G) such that
for any n different vertices x, xa, ..., X, € A the set Ulil—iﬂ N7 (x;) is cofinite in V(G).
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is cofinite in V(G). Thus we may apply Lemma 31 to conclude that G has no
kernel and hence Fg is paradoxical.

We can also use our general necessary conditions for a graph to be danger-
ous to conclude that certain directed graphs must contain kernels.

Corollary 33 Let G be a sink-free directed graph. Each of the following is a
sufficient condition for G to contain a kernel.

—  The underlying undirected graph of G is acyclic.
— Gis acyclic and only finitely many vertices have infinite out degree.
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