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Abstract Naive speakers find some logical contradictions acceptable, specifi-
cally borderline contradictions involving vague predicates such as Joe is and
isn’t tall. In a recent paper, Cobreros et al. (J Philos Logic, 2012) suggest a
pragmatic account of the acceptability of borderline contradictions. We show,
however, that the pragmatic account predicts the wrong truth conditions for
some examples with disjunction. As a remedy, we propose a semantic analysis
instead. The analysis is close to a variant of fuzzy logic, but conjunction and
disjunction are interpreted as intensional operators.
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1 Introduction

The phenomenon of vagueness has many facets. One important aspect is the
existence of borderline cases. We focus on one fact that is particularly interest-
ing from an empirical, linguistic perspective: In some cases, sentences that
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seem to correspond to contradictions in classical logic are actually not judged
contradictory when they involve borderline cases. Examples of this type
illustrated by (1) have been discussed as least since [8]. Recently a number
of experimental studies have brought the issue to the forefront [1, 9, 10]. These
studies confirm that many ordinary speakers are in fact disposed to accept
contradictions of a certain kind, exemplified by the following:

(1) John is tall and not tall.

Following Ripley, we refer to examples like (1) as borderline contradictions
in the following. Both [1] and [9] show that borderline contradictions have the
highest acceptability precisely for borderline cases: e.g. (1) is most acceptable if
John’s height is 5′11′′—the borderline height for a Western man to be tall. The
question then arises for any view on vagueness how to account for speakers’
acceptance of borderline contradictions. Should such dispositions be dismissed
as merely confused? Should they be given a semantic account by which contra-
dictions come out true? Should they be given a account in linguistic pragmatics
by which they are false but highly assertible? Or should we find yet some
other way?

In this paper we shall review a pragmatic account of the phenomenon
recently offered by Pablo Cobreros, Paul Egré, David Ripley and Robert van
Rooij [3]. Cobreros et al. operate with three different notions of satisfaction:
strict, classical, and tolerant truth (which inter alia allows them to assert
an approximation to an ordinary tolerance principle), and use the interplay
between these modes of evaluations for a pragmatic account of borderline
contradictions. In Section 2, we present the details of the proposal, and show
that it faces a problem with sentences that have a borderline contradiction as
one part, but contain additional material. Cobreros et al.’s pragmatic proposal
would evaluate either the entire sentence strictly or non-strictly. But, we show
that there are examples where the intuitively available interpretation is one
where the sentence, so to speak, is in part evaluated strictly and in part non-
strictly. The pragmatic analysis doesn’t allow for this, because it operates at the
sentence level. In Section 3, we propose a semantic analysis that remedies the
problem. Instead of building on a choice of evaluation, the semantic analysis
assumes (a) a multivalued logic, and (b) a semantics of conjunction that is not
fully truth-conditional, but contains a modal component: if the two conjuncts
are necessarily at least a partial contradiction, their conjunction will be fully
true. In Section 3, we also discuss further relevant examples that test our
proposal, but conclude that the judgment on the examples is impossible to
ascertain. Section 4 presents our conclusions.

2 The Pragmatic Proposal for Borderline Contradictions

Cobreros et al. [3], hereafter CERvR, present a framework that uses three
notions of truth for sentences involving vague predicates: in addition to the
classical notion of truth, a notion of tolerant truth and a notion of strict truth.
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They then apply this framework to borderline contradictions. Specifically,
they combine their different notions of truth with the Strongest Meaning
Hypothesis of [4], which predicts that a natural language sentence would be
evaluated by a speaker relative to the most restrictive evaluation function
that would allow it to be true. CERvR show that in basic cases their proposal
predicts the acceptability of borderline contradictions. In this section, we
briefly introduce their framework and show how it applies to basic borderline
contradictions. We then go on to demonstrate that the proposal doesn’t extend
to more complex sentences involving borderline contradictions.

Consider first the three notions of truth in CERvR, which they attribute to
unpublished work by van Rooij. They denote the classical notion of truth with
[[]]c, while they use [[]]t for the tolerant notion of truth and [[]]s for its dual, the
strict notion. The three notions of truth stand in an entailment hierarchy: Strict
truth entails classical truth, and classical truth entails tolerant truth. In the
formal definitions of strict, classical, and tolerant truth, provided below, the
binary relation ∼P is taken to hold between individuals x and y iff x and y are
indistinguishable with respect to their membership in predicate P.

• Classical Truth:

(ci) [[Pa]]c = 1 iff [[a]]c ∈ I(P)

(cii) [[¬φ]]c = 1 iff [[φ]]c = 0
(ciii) [[φ ∨ ψ]]c = 1 iff [[φ]]c = 1 or [[ψ]]c = 1
(civ) [[φ ∧ ψ]]c = 1 iff [[φ]]c = 1 and [[ψ]]c = 1

• Tolerant Truth:

(ti) [[Pa]]t = 1 iff ∃x[x∼P [[a]]c &[[P]]c
(x) = 1]

(tii) [[¬φ]]t = 1 iff [[φ]]s = 0
(tiii) [[φ ∨ ψ]]t = 1 iff [[φ]]t = 1 or [[ψ]]t = 1
(tiv) [[φ ∧ ψ]]t = 1 iff [[φ]]t = 1 and [[ψ]]t = 1

• Strict Truth:

(si) [[Pa]]s = 1 iff ∀x[x∼P [[a]]c → [[P]]c
(x) = 1]

(sii) [[¬φ]]s = 1 iff [[φ]]t = 0
(siii) [[φ ∨ ψ]]s = 1 iff [[φ]]s = 1 or [[ψ]]s = 1
(siv) [[φ ∧ ψ]]s = 1 iff [[φ]]s = 1 and [[ψ]]s = 1

Clauses (ci)–(civ) are taken from the standard treatments of first-order
predicate logic: an atomic formula Pa is classically true if and only if a denotes
an element of I(P), the extension of P relative to model M, and (cii-civ) pro-
vide the familiar recursive definitions of the semantics. The basic definition of
tolerant truth, (ti), is given in terms of the relation ∼P: a predicate P tolerantly
holds of an individual constant a if and only if there is an individual x which
is indistinguishable from a’s value with respect to the applicability of P (that
is, x ∼P [[a]]c), such that Px is classically-true. P strictly holds of an individual
constant a if every individual x that is P-indistinguishable from a is such that
Px classically holds. The duality that holds between [[]]t and [[]]s is evident from
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(tii) and (sii): for any formula φ, [[φ]]t = 1 if and only if [[¬φ]]s = 0, and [[φ]]s = 1
iff [[¬φ]]t = 0.

First consider the predictions of the proposal for a borderline statement
such as (2).

(2) A 5′11′′-tall man is tall.

In this case, P would be the predicate tall and a a constant denoting an
individual of height 5′11′′. Since a is a borderline case of tallness by assumption,
there must be an x with x∼P [[a]]c and x ∈ [[P]], but also a y with y∼P [[a]]c and
y /∈ [[P]]. In other words, P holds tolerantly, but not strictly, of a when a is a
borderline case of P. The classical truth value of Pa, however, could be either
true or false. CERvR now assume a pragmatic principle in addition to the three
notions of truth: the Strongest Meaning Hypothesis (SMH) of [4]. Applied to
the cases at hand, the SMH states that speakers judge a sentence according
to the strongest notion of truth for which there exists a possible scenario that
makes it true. The SMH predicts that (2) must be evaluated relative to the
strict notion of truth, because there is a possible scenario where Pa is strictly
true, namely one where the average height of men is low enough to make 5′11′′
definitely tall. In this way, the SMH predicts that (2) should be judged false in
the actual scenario where a is a borderline case. This prediction is the desired
result for (2): experimental data of [1, 9] and others confirm that speakers
judge borderline cases such as (2) overwhelmingly false (see also [2] for similar
findings).

CERvR’s proposal also accounts for the difference between acceptable
borderline contradictions like (3a) and less acceptable contradictory non-
borderline conjunctions such as (3b):

(3) a. A 5′11′′ tall man is and isn’t tall.
b. A 6′ 4′′ tall man is and isn’t tall.

For the sake of illustration, continue to assume that a man standing 5′11′′
qualifies as a borderline case of tallness, while a height of 6′4′′ constitutes a
clear case of tallness. On CERvR’s system, this means that 5′11′′ sits near the
border between the classical extension of P and its anti-extension. So, given
an individual a whose height is 5′11′′, and given that a is standing in a sorites
series, there is a P-indistinguishable x from a which belongs to the classical
extension of P, and there is also a P-indistinguishable x from a which does not
belong to the classical extension P. As just discussed, this qualifies a both as
tolerantly-tall and as tolerantly not-tall, making [[Pa ∧ ¬Pa]]t = 1. By contrast,
if b ’s height of 6′4′′ is great enough to make every indistinguishable individual
x a classical case of P, then b qualifies as strictly tall. And owing to the
duality that holds between strict truth and tolerant truth, [[Pb ]]s = 1 guarantees
that [[¬Pb ]]t = 0, and therefore [[Pb ∧ ¬Pb ]]t = 0. So for any predicate P, the
contradiction Px ∧ ¬Px will be false for those xs of whom P holds strictly,
even when the contradiction is evaluated under the tolerant notion of truth.
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The reason is that whenever one of the individual conjuncts that make up the
contradiction holds strictly, the other conjunct, the negation of the first, will be
tolerantly false.

Of course, it is only tolerant truth that can validate a contradiction in
CERvR’s system, and as discussed in the previous paragraph, the contradiction
holds tolerantly only for borderline cases. So, to account for the acceptability
of contradictions in borderline cases, CERvR invoke the SMH, namely, the
provision that among a set of available interpretations (available notions of
truth in this case), one is to select the logically strongest interpretation that
can be true in at least one model. In the case of contradictions, this is the
tolerant notion of truth, for on the stronger two notions, the classical and the
strict, a contradiction can never have a value other than false. But in other
cases the SMH will impose a stronger requirement. Take the expression Pa
for example. As is dictated by the SMH, Pa will be evaluated according to the
strongest non-trivially-false notion of truth. Since there are models in which
Pa is strictly true, the strongest such notion will be the strict notion. But of
course, Pa is strictly true only if a is a strict case of P; if a is a borderline case,
then we expect Pa to be unacceptable. So the prediction is that while neither
Pa nor ¬Pa are acceptable for a borderline case a, the conjunction Pa ∧ ¬Pa
is acceptable. This prediction is actually confirmed in the recent experimental
work of [1], whose proposal also relies on the SMH, but in combination with a
supervaluationary semantic platform instead.

While CERvR’s proposal can account for basic cases of borderline contra-
dictions, the account doesn’t extend to some slightly more complex examples.
Consider (4), where a borderline contradiction occurs within a disjunction.

(4) Joe either is and isn’t tall or Joe has red hair.

CERvR predict (4) to be equivalent to just Joe has red hair; because it is logically
possible for Joe to have red hair, sentence (4) is not a classical contradiction,
and must therefore be evaluated strictly, under the SMH. But because the first
disjunct is false under strict evaluation, this makes (4) equivalent to Joe has
red hair. The prediction, then, is that (4) is judged false if Joe is a blond 5′11′′-
tall man.

But to the extent that tall and not tall is interpreted as of borderline height,
(4) seems to be equivalent to Joe is either of borderline tall height or he has red
hair. To see that this is the desired interpretation, consider cases where we con-
clude from (4) that Joe is of intermediate height once we learn that he couldn’t
have red hair. For example, if we had to identify Joe in a group of people
who all have black hair, and we know that (4) holds, then we would conclude
that Joe must be one of the people in the group of intermediate height.

This intuition finds support in experimental studies reported in [12], where
MTurk participants were shown an illustration of five men varying in height
and also in degree of wealth (the latter indicated using dollar signs, ranging
from poor ($) to rich ($$$$$)). The results show a significantly higher rate of
assent (45.7 %) to (5) when the blond men in the picture are of borderline
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height, but vary in richness, than when they are all poor but vary in tallness
(12.8 %).

(5) Every blond man is either rich or tall and not tall.

In the former scenario, all the blond men qualify as ‘tall and not tall’, since they
are each of borderline height, and so they all verify the disjunctive predicate,
regardless of their degree of wealth. By contrast, the latter scenario shows only
poor men, so none of them satisfy the disjunct ‘rich’. The disjunctive predicate
can only be satisfied if each of the men satisfies the predicate ‘tall and not tall’,
and since the men are shown to vary in height, this condition is not met.

The reason that (4) and (5) are problematic for CERvR has to do with
the pragmatic nature of the proposal. The SMH is a principle of linguistic
pragmatics and therefore is applied at the sentence level.1 Though one of
the disjuncts in (4) and (5) is a classical contradiction, the full sentences are
not. The SMH predicts, then, that only the strict interpretation can apply and
therefore the complex disjuncts, the borderline contradictions, are interpreted
as contradictory, contrary to what is suggested by the experimental evidence.
It therefore seems necessary to evaluate sentences in part relative to strict
evaluation and in part relative to the tolerant notion of truth.

In sum, while the predictions of CERvR’s system fit the empirical findings
regarding the acceptability of simple vague expressions, including contradic-
tions, the predictions seem to depart from what is observed in cases where
the contradictions are themselves disjoined with logically independent propo-
sitions. We have seen that, under the SMH, contradictions are evaluated on the
tolerant notion of truth, since tolerant truth is the strongest mode of evaluation
that can assign contradictions non-false interpretations. But once a logically-
independent proposition is introduced as a disjunct to the contradiction, the
SMH will favor the strict notion of truth, since for any expressions φ and ψ ,
there will be models in which [[(φ ∧ ¬φ) ∨ ψ]]s = 1, namely those models in
which [[ψ]]s = 1. In the next section we offer a semantic analysis that overcomes
this problem.

3 The Semantic Proposal

In the previous section, we discussed a problem with CERvR’s proposal. The
problem stems from the pragmatic perspective: CERvR apply only one evalua-
tion held constant for an entire sentence. In this section, we develop a semantic
alternative that is more flexible. We present our proposal in two parts: It is
based on a multivalued logic which we introduce first. The new idea of our

1The criticism we offer is directed at cervr’s proposal as it is presented in the main body of their
paper. In their footnote 19, however, cervr suggest the possibility of applying the SMH below the
sentence level, though they do not pursue this suggestion in detail (see also [11]).
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proposal is to add to this multivalued logic two new semantic operators, � and
�, that we intend to model the behavior of natural language disjunction and
conjunction better than any ∨ and ∧ of multivalued logic.

3.1 Multi-Valued Logic

The language of the logic under consideration is, like that of basic multi-valued
logic, identical to first-order predicate calculus. We therefore skip defining
the (familiar) language, and proceed to review the semantics of basic fuzzy
logic (e.g. [6]).2 We skip the definition of the language since the well-formed
formulas are exactly those of classical predicate calculus, and for simplicity
we restrict our attention to 1-place predicates only. The interpretation of each
predicate letter P is designated as a function I(P) : D → [0, 1]. Now,

(6) let v be a function from well-formed formulas to the interval [0, 1],
then
(i) for any model M, predicate letter P, and term t, vM(Pt) =

IM(P)(I(t)) if t is a constant symbol, and IM(P)(g(t)) if t is a
variable symbol (where g is the assignment function)

(ii) vM(¬φ) = 1 − vM(φ)

(iii) vM(φ ∨ ψ) = max(vM(φ), vM(ψ))

(iv) vM(φ ∧ ψ) = min(vM(φ), vM(ψ))

It is fairly obvious that this multi-valued logic will not predict the acceptability
of borderline contradictions, since the highest degree of truth they can reach is
0.5. This feature is not specific to the multi-valued logic just defined, but holds
rather generally of truth functional multi-valued logic (see [10] for discussion).

3.2 Intensional Conjunction and Disjunction

We add to the logic two new binary operators: � and �. These, we propose,
capture the properties of disjunction and conjunction in natural language. The
definitions of the two operators are based on the observation that for formulas
expressing a borderline contradiction φ ∧ ¬φ the range of possible truth values
is not the full range [0, 1], but only the subset [0, 0.5]. The operators � and
� are defined so as to utilize the full range [0, 1] whenever possible. This is
accomplished by scaling the range of truth values to extend from 0 to 1 as
illustrated in the following graphic. The following graph shows the truth value
of a borderline contradiction a ∧ ¬a (broken line) and of a � ¬a (continu-
ous line). We assume in the graph that M = [0, 1] and VM(a) = M for any
M ∈ [0, 1].

2We chose to review fuzzy logic for presentational purposes only; the semantics we propose does
not depend of the specific form of the multi=valued logic.
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To achieve this scaling effect, we evaluate the acceptability of each formula
based not only on its truth-value, but also on how true the formula is within
the range of values that it can have. In order to do this, we identify for each
formula a pair of values that correspond to the truest and the falsest that the
formula can be. These we call, respectively, the ceiling (c) and the floor (f), and
we define them in (C) and (F) below. The definitions use the mathematical
concepts of supremum (sup) and infimum (inf) of a set. The supremum of a set
S is defined as the smallest number that is greater than or equal to any element
of S, and the infimum is the greatest number smaller than or equal to any
element of S. Note that if a set S has a maximum and/or a minimum, max(S) =
sup(S) and min(S) = inf(S), but that every bounded set of real numbers has a
supremum and an infimum.

(7) (C) c(�) = sup{k : for some model M, vM(�) = k}
(F) f(�) = inf{k : for some model M, vM(�) = k}

The ceiling (or floor) of a formula � is the highest (or lowest) degree of truth
it can get: take all the values k for which at least one model M is such that
vM(�) = k, then the greatest such k is said to be the ceiling of �, and the
smallest is said to be the floor of �.3 We now define the value-range of a for-
mula � as the interval [f(�), c(�)]. The value-range of an atomic proposition
like Pa, for example, is [0, 1], because there are models in which a is a full
member of P, and there are models in which a is a full non-member of P. But
the value-range of a formula of the form φ ∨ ¬φ will be [0.5, 1], since no model
can give φ ∨ ¬φ a value less than 0.5. Similarly, the value-range of φ ∧ ¬φ is
[0, 0.5].

The new operators � and � have the same syntax as ∧ and ∨, but a different
semantics. Informally, the semantics can be described as tracking the truth-
value of the formula relative to its value-range: given a certain such range, the
semantics measures how much truer the formula is than its floor (the falsest it

3Strictly speaking, the supremum of a set S of numbers may be the smallest number that is higher
than any number in S, and analogously for infimum. However, in view of Theorem 2, since for any
formula φ and any number i in [0, 1], φ takes i in some model, we need not worry that the sup and
inf are values not actually taken.
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can get), and divides that by its full value-range. The semantics is formalized
as follows:

(8) v(φ � ψ) =
⎧
⎨

⎩

v(φ ∧ ψ) if c(φ ∧ ψ) = f(φ ∧ ψ)

v(φ ∧ ψ) − f(φ ∧ ψ)

c(φ ∧ ψ) − f(φ ∧ ψ)
otherwise

(9) v(φ � ψ) =
⎧
⎨

⎩

v(φ ∨ ψ) if c(φ ∨ ψ) = f(φ ∨ ψ)

v(φ ∨ ψ) − f(φ ∨ ψ)

c(φ ∨ ψ) − f(φ ∨ ψ)
otherwise

As already mentioned, the main difference between � and � and their truth-
functional counterparts ∧ and ∨ is that � and � make sure that the range
of possible truth values of their result includes both 0 and 1 whenever this is
possible. Both functions, � and �, accomplish this by scaling up the range of
possible truth values. Such scaling is impossible only if the range of possible
truth values of a formula is only a single point and in this case, the value
remains the single dot. On a classical view, the range of truth-values for con-
tradictions like Pa ∧ ¬Pa and tautologies like Pa ∨ ¬Pa is only a single dot.
But on a multi-valued approach, the intervals can have non-zero length: [0, 0.5]
for borderline contradictions and [0.5, 1] for corresponding tautologies. So, the
rescaling has an effect in multi-valued semantics.4

In our illustration of the system, we hereafter focus on models where the
atomic propositions of the language—i.e. simple predications of the form
Pa, Qb , etc.—are in their totality fully vague and independent as defined as
follows:

Definition A set of models M for language L is fully vague and independent
if and only if for any set of atomic propositions {p1, · · · , pn}, and for any set
of truth values {t1, · · · , tn} ⊆ [0, 1], that there is a model M such that vM(p1) =
t1, vM(p2), . . . , vM(pn) = tn.

For linguistic applications, the full vagueness and independence assumption
likely only hold for a subset of all atomic propositions: Concepts like even num-
ber may not be vague and concepts like tall and giant may not be independent

4Our semantics is recursive, although not compositional on vM. By switching to a more abstract
semantic value, a function from models to valuations, we do get a compositional semantics.
Let μ(φ be the function from the set of models M into [0, 1] with μ(φ)(M) = vM(φ)).
Let c(μ(φ)) = sup{k : for some model M, μ(φ)(M) = k}.
Let f(μ(φ)) = inf{k : for some model M, μ(φ)(M) = k}.
Clearly, the values of the c and f functions are determined by their arguments alone. Then there

is a function r� such that μ(φ � ψ) = r�(μ(φ), μ(ψ)). Define r� such that

r�(m, m′)(M) = min(m(M), m′(M)) − f(min(m, m′))
c(min(m, m′)) − f(min(m, m′))

where m, m′ are meanings (values of μ). Similarly for �.
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of each other. Our system can, of course, be applied in such linguistically
realistic models as well. However, the system’s logical properties are likely
to differ from the ones we explore below outside the subset of the language
that only consists of fully vague and independent atomic propositions and their
logical combinations.

An interesting logical property of fully vague and independent models is
illustrated by the following graph. We consider here the case of just one atomic
formula a with models M = [0, 1] where VM(a) = M for any M ∈ M. As the
graph illustrates, for φ from a � ¬a, (a � ¬a) � a, and (a � ¬a) � ¬(a � ¬a)

the set of M with VM(φ) = x can differ: e.g. VM(a � ¬a) = 0 has two solutions,
but VM((a � ¬a) � a) = 0 has three. But the set of solutions of VM(φ) = x
remains always finite for any x ∈ [0, 1]. This is a more general property: for any
sentence φ, VM(φ) = x can never have infinitely many solutions as we prove
below. This entails then that no φ is constant and, therefore, that no sentence
is always true in a fully vague and independent model.

The following is the central theorem for fully vague and independent
models: In the definitions of � and �, the special case of the floor and ceiling
being identical is covered. The following theorem shows that this special case
is unnecessary for fully vague and independent models—the possible values of
any formula in the system are always some non-trivial interval.

Theorem If M is a fully vague and independent set of models for language L,
then for any sentence φ, the set {VM(φ) | M ∈ M} is equal to an interval [a, b ]
with a < b.

Proof Assume that there are n atomic formulae, a1, . . . , an that occur in φ.
The assumption that M is fully vague and independent entails, that, without
loss of generality, we can assume that the set of models be M = [0, 1]n and that
VM(ai) = Mi for all M ∈ M and i ∈ {1, . . . , n}. Let μ be the Lebesgue-measure
on M with μ(M) = 1.

We now show by induction over the structure of the formula that for
any well-formed formula φ there exist a, b ∈ [0, 1] with a < b such that
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the three conditions (i)–(iii) hold. From condition (i), the theorem follows
straightforwardly.

(i) ∀ x ∈ [a, b ]∃ M ∈ M : VM(φ) = x
(ii) μ({M ∈ M | VM(φ) = x}) = 0

(iii) M �→ VM(φ) is a continuous function from M = [0, 1]n to [0, 1]
In the base case, φ is an atomic formula ai and {M ∈ M | VM(φ) = x} =

{M ∈ M | Mi = x}, so (i)–(iii) evidently hold.
If φ is a complex sentence, either φ = ¬α or it’s made up of α and β

conjoined by one of the four binary operators �, �, ∨, and ∧. If φ = ¬α, then
{M ∈ M | VM(φ) = x} = {M ∈ M | VM(α) = 1 − x}, and therefore (i) and (ii)
hold by the inductive hypothesis. Similarly (iii) follows from the induction
hypothesis because VM(φ) = 1 − VM(α). Among the binary operators, � can
be treated analogously to � and ∨ analogously to ∧. We consider only the
cases of ∧ and � in detail.

Condition (iii) holds for ∧ because the function M �→ VM(α ∧ β) has as
its value min(VM(α), VM(β)) and the minimum of two functions that are
continuous is also continuous.

Condition (ii) for ∧ follows because for any y ∈ [0, 1] the following holds by
induction hypothesis and basic assumptions of measure theory:

μ({M ∈ M | VM(α ∧ β) = y})
= μ({M ∈ M | VM(α) = y & VM(β) > y})

+ μ({M ∈ M | VM(α) ≥ y & VM(β) = y})
≤ μ({M ∈ M | VM(α) = y}) + μ({M ∈ M | VM(β) = y})
= 0

Now set a = inf{x ∈ [0, 1] | ∃M ∈ M VM(α ∧ β) = x} and b = sup{x ∈
[0, 1] | ∃M ∈ M VM(α ∧ β) = x}. If a = b , then the set {M ∈ M | VM(α ∧
β) = a} would be M, but this cannot be because we just saw that μ({M ∈ M |
VM(α ∨ β) = a}) = 0, while μ(M) = 1. Hence a < b must hold.

Because M is a closed set and M �→ VM(α ∧ β) is continuos in M, infimum
and supremum of M �→ VM(α ∧ β) must be actually attained—i.e. there must
be Ma, Mb ∈ M with VMa(α ∧ β) = a and VMb (α ∧ β) = b . Furthermore, for
any x ∈ (a, b) there must also be at least one M ∈ M with VM(α ∧ β) = x
because of the continuity of the function M �→ VM(α ∧ β). This establishes
that condition (i) holds for α ∧ β.

Finally from the result for ∧ it follows that (i), (ii), and (iii) also hold for
φ = α � β. Namely VM(α � β) is a linear function of VM(α ∧ β) because the
image of M �→ VM(α ∧ β) is an interval [a, b ] with b > a. ��

Corollary If M is fully vague and independent, any formula φ where the
highest level binary operator is � or �, has [0,1] as its image under VMφ

for M.
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Proof The unary operator ¬ can be ignored since {VM(¬ψ) | M ∈ M} = [0, 1]
if {VM(ψ) | M ∈ M} = [0, 1]. Hence, we can assume φ = α � β or φ = α � β.
But the theorem entails that there are a < b such that {VM(α ∨ β) | M ∈ M} =
[a, b ] or {VM(α ∧ β) | M ∈ M} = [a, b ]. From the definition of � and � the
corollary then follows. ��

Now, let a logical truth be a sentence that under any valuation takes only
designated truth values. Any partition of the set of truth values must consist of a
non-empty set D of designated values and a non-empty set N of non-designated
truth values. D and N must be mutually exclusive and jointly exhaustive.

Corollary If M is fully vague and independent, there are no logical truths in L
where the highest level, binary operator is � or �. Proof: Since every sentence
where the highest level, binary operator is � or � takes every truth value, no
sentence takes only designated values, whatever they are.

The predictions of the system we propose are similar to those of CERvR:
we predict not just the acceptability of borderline contradictions, but also the
unacceptability of the conjuncts that make them. The reason is that while
contradictions are evaluated in the range [0, 0.5], the conjuncts that comprise
them are each evaluated in the full range of truth-values. When v(Pa) = 0.5,
in borderline cases that is, Pa and ¬Pa will each be half-true relative to the
range [0, 1]. Suppose now that some designated value d divides acceptable
expressions from unacceptable ones, i.e. � is acceptable only if v(�) ≥ d. If
d is set at any value greater than 0.5, say 0.7, then neither Pa nor ¬Pa will be
acceptable when a is a borderline case, because each is mapped to 0.5 by the
valuation function v, and 0.5 < d. But when they are conjoined together by the
operator �, the resulting formula will be mapped to 1 by v:

v(Pa � ¬Pa) = v(Pa ∧ ¬Pa) − f(Pa ∧ ¬Pa)

c(Pa ∧ ¬Pa) − f(Pa ∧ ¬Pa)

= 0.5 − 0
0.5 − 0

= 1

The proposal also differs from the multi-valued logic presented above on the
disjunction of a borderline proposition with its negation. Serchuk et al. [13]
show that, empirically, classical tautologies like (10) are not always judged
true.

(10) Joe is tall or not tall.

Specifically, if Joe is of borderline height, (10) is on average judged to be fully
true. The multivalued logic we are considering predicts that the truth value of
Pa ∨ ¬Pa could be minimally 0.5 and maximally 1.0. In actual fact, though,
(11) is far less acceptable than its negation if Joe is of borderline height. This
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is not predicted by the definition of ∨. But, with the new disjunction � the
expression Pa � ¬Pa can have truth value 0, because � is defined so as to
scale the [0.5, 1] range of Pa ∨ ¬Pa to the [0, 1] interval.

We now show how our account handles the cases that we think are prob-
lematic for CERvR, namely the cases where contradictions and tautologies are
embedded in larger expressions, e.g. our example (5), repeated here as (11):

(11) Every blond man is either rich or tall and not tall.

To simplify the discussion, let us put aside the quantificational element in (11)
and focus on the proposition (φ � ¬φ) � ψ .5 Let us also assume that v(φ) = 0.5
and v(ψ) = 0 (Joe is of borderline height, and he is poor). On CERvR’s account,
this expression must be evaluated strictly, because there are models in which
the logically independent proposition ψ is strictly true. But since ψ happens to
be false in M, the truth of the expression will rest on the truth of φ ∧ ¬φ, and
since the evaluation of truth is strict, the entire expression will come out false.
On the system presented here, the acceptability of the expression will equal
the acceptability of the contradiction, which will in turn be acceptable when φ

is a borderline case:

v((φ � ¬φ) � ψ) = v((φ � ¬φ) ∨ ψ) − f((φ � ¬φ) ∨ ψ)

c((φ � ¬φ) ∨ ψ) − f((φ � ¬φ) ∨ ψ)

= v((φ � ¬φ) ∨ ψ) − 0
1 − 0

= v((φ � ¬φ) ∨ ψ)

= v(φ � ¬φ) (since v(ψ) = 0)

A few other predictions are worth noting: we no longer assign φ � φ and
φ � ¬φ the same status in borderline cases. Kamp [7], Fine [5] and others have
criticized fuzzy logic for assigning the same truth-value to these conjunctions in
the borderline range—when v(φ) = 0.5, both conjuncts will have the value 0.5.
The proposed approach makes different predictions: φ � φ will be acceptable
whenever φ itself is acceptable because adding φ in a conjunction will have no
effect on the value-range of the formula, but conjoining φ with its negation will
shrink the value-range to [0,0.5], and as was already demonstrated, this makes
the contradiction more acceptable than any of φ, ¬φ, φ � φ, and ¬φ � ¬φ.
We also predict a difference between the acceptability of Pa � ¬Pa on the
one hand, and Pa � ¬Qa on the other. In fuzzy logic, these two formulae
are assigned the same truth-value whenever Pa and Qa are both half-true.
But if Pa and Qa are logically-independent, the value-range of the second

5A more suitable English example of this proposition would be “John is either rich or tall and not
tall”. But since the cited experiments used sentences like (11), we chose to use quantified sentences
as examples here, but to ignore the quantifier in our discussion of the logic. We hope that future
experimental work will show whether non-quantificational sentences behave in the same way.
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formula will be [0, 1], rather than [0, 0.5]. So, given a designated value d > 0.5,
we predict Pa � ¬Qa to be unacceptable, but we predict the contradiction
Pa � ¬Pa to be acceptable. This result was tested and verified empirically
by [10].6

There is another reason for keeping the designated value d above 0.5.
Consider a case where vM(Pa) = 0.3 and vM(Pb) = 0.5. If d was 0.3, we would
predict that the sentence Pa � ¬Pb be assertable, because it has value 0.3.
This, however, is undesirable because a has property P to a lesser degree
than b . Generally, this problematic set-up can only arise if d ≤ 0.5; the set-up
requires that

(i) v(Pa � ¬Pb) ≥ d, and
(ii) v(Pa) ≤ v(Pb).

From (i) we get v(Pa) ≥ d and v(¬Pb) ≥ d, that is

(iii) v(Pa) ≥ d
(iv) 1 − v(Pb) ≥ d

Combining (ii) and (iv) produces 1 − v(Pa) ≥ d, which, when added to (iii)
gives use

(v) v(Pa) + (1 − v(Pa)) ≥ 2d
1 ≥ 2d
0.5 ≥ d

It is therefore necessary for d to be no greater than 0.5 if this undesirable
outcome were to arise. Setting d strictly above 0.5 will overcome it, since it will
make the conjunction unassertable.

Finally, we can define a natural notion of logical consequence as follows:
Let ψ be a logical consequence of � iff in every model M there is at least one
sentence φ ∈ � such that vM(φ) ≤ vM(ψ).

Logical consequence in fully vague and independent models is almost as
thin as logical truth, but not quite. Negation is classical, and hence we have
φ |= ¬¬φ as well as ¬¬φ |= φ.

Because φ � ¬φ has value 1 when φ has value 0.5, it has a higher value
than both φ and ¬φ, and so φ � ψ �|= φ and φ � ψ �|= ψ—i.e. conjunction
elimination is not valid. Similarly, since φ � ¬φ has value 0 when φ has value
0.5, it has a lower value than both φ and ¬φ, and so φ �|= φ � ψ and ψ �|= φ � ψ .

The ex falso quodlibet consequence φ, ¬φ |= ψ, doesn’t hold in fully vague
and independent models. But, notice that because of the failure of conjunction
elimination, we could add the rule φ, ¬φ |= ψ, without inconsistency. Hence,
the logic of L is not paraconsistent.

6From a computational point of view, the proposed semantics looks rather complex. But since it,
by current empirical findings, models usage well, verdicts about computational complexity should
best be suspended for the time being.
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Note, finally, that although conjunction introduction and disjunction elim-
ination both fail, the other halves, conjunction introduction and disjunction
elimination hold.

Theorem The following hold in L if the highest level, binary operator of φ, ψ ,
and ξ is � or �:

(a) φ, ψ |= φ � ψ

(b) If φ |= ξ and ψ |= ξ , then φ � ψ |= ξ .

Proof Consider first (a). Let M ∈ M be arbitrary. The first corollary
above entails c(φ ∧ ψ) = 0. Hence vM(φ � ψ) = vM(φ∧ψ)

c(φ∧ψ)
, which is greater

than or equal to vM(φ ∧ ψ) because c(φ ∧ ψ) ∈ (0, 1]). Because vM(φ ∧ ψ) =
min(vM(φ), vM(ψ)), it follows that vM(φ � ψ) ≥ vM(φ) or vM(φ � ψ) ≥ vM(ψ).
The proof of (b) is analogous. ��

4 Conclusion

We have shown that examples like (12) (= (4) above) are problematic for the
approach to borderline contradictions based on linguistic pragmatics of CERvR.

(12) Joe is and isn’t tall or Joe has red hair.

CERvR’s proposal predicts (12) to be false even in a situation where its first dis-
junct Joe is and isn’t tall is judged true. To remedy the problem, we developed
a semantic proposal to account for borderline contradictions. The proposal is
based on new, intensional entries for disjunction as � and conjunction as �.

Our proposal predicts an interesting difference between formulas like
(φ � ¬φ) � ψ and (φ � ψ) � ¬φ, where φ is a borderline statement and ψ is
logically independent of φ. As we showed above, our proposal predicts that
(φ � ¬φ) � ψ be judged true. However, it doesn’t make the same prediction
for (φ � ψ) � ¬φ: because φ ∨ ψ has the full range [0, 1] of potential truth
values, and therefore φ � ψ is predicted to have the same truth value as φ ∨ ψ .
But, then (φ � ψ) � ¬φ also has the full range [0, 1] of possible truth values,
and therefore it means the same as (φ � ψ) � ¬φ. We found it difficult to come
up with natural language examples to test this prediction. Sentences like Joe is
tall or has red hair and he is not tall are so awkward that it does not seem
possible to pass reliable judgments on them.
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