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Abstract This paper considers a special case of belief updating—when an
agent learns testimonial data, or in other words, the beliefs of others on some
issue. The interest in this case is twofold: (1) the linear averaging method for
updating on testimony is somewhat popular in epistemology circles, and it is
important to assess its normative acceptability, and (2) this facilitates a more
general investigation of what it means/requires for an updating method to have
a suitable Bayesian representation (taken here as the normative standard).
The paper initially defends linear averaging against Bayesian-compatibility
concerns raised by Bradley (Soc Choice Welf 29:609–632, 2007), as well
as problems associated with multiple testimony updates. The resolution of
these issues, however, requires an extremely nuanced interpretation of the
parameters of the linear averaging model—the so-called weights of respect. We
go on to propose a role that the parameters of any ‘shortcut’ updating function
should play, by way of minimal interpretation of these parameters. The class
of updating functions that is consistent with this role, however, excludes linear
averaging, at least in its standard form.

Keywords Testimony · Linear pooling · Bayesian belief change

1 Introduction

This paper has two goals. The first, more specific goal, is to investigate one
popular method for updating belief in response to the testimony of others: the

K. Steele (B)
London School of Economics and Political Science, London, UK
e-mail: k.steele@lse.ac.uk



984 K. Steele

linear averaging (or linear pooling) method. Testimony is here understood as
another agent’s (Bayesian) beliefs, whether the beliefs concern direct experi-
ence, or a more involved inference, for instance, that there is life elsewhere in
the universe. The second goal of the paper is more general: to investigate what
it means for a belief-updating method to be viable, with respect to the Bayesian
model, which is taken here as the normative standard. The testimony case is
useful for investigating this general issue, because testimony has been treated
as a special case of learning in the literature, and has inspired alternative, not-
obviously-Bayesian, belief-updating methods, such as linear pooling.

A few words on the relevant testimony literature are in order. One point of
connection is the recent debate concerning how to resolve ‘peer disagreement’
that persists after all evidence has been shared (see, for instance, Feldman [7],
Elga [6], Christensen [3] and Kelly [13]). There is also a more formal literature
(the actual starting point for this paper) concerning models of learning that
specifically handle input data in the form of others’ probabilistic beliefs (see
Lehrer and Wagner [14], French [9], Genest and Zidek [10], Clemen and
Winkler [4]).1 In this literature too, it is assumed that agents have, as far as
possible, shared all relevant data—at the time in question, they are in ref lective
equilibrium, to use the terminology of Lehrer and Wagner [14]. We will follow
suit and restrict attention to cases where agents have shared all background
evidence, at least to the best of their knowledge. In fact, the situation can
be envisaged as one where agents update on a portion of each others’ prior
beliefs. Of course, the implicit assumption is that the agents do not have
the same prior beliefs over an entirely identical probability space, and/or the
same interpretation of the evidence, otherwise there would be no persistent
disagreement.2 Despite these differences, it is plausible that agents may yet
regard each other as epistemic peers, in the sense that they learn from aspects
of each others’ prior beliefs.3

One might be concerned about just what counts as testimony, and whether
it is really distinct from other kinds of data. Surely there are multitudes of
more and less explicit ways to learn of another’s beliefs, such as observing their
behaviour, or mere traces of their behaviour. For example, the fact that my
friend has taken her umbrella tells me something about her belief that it will

1The cited models actually play a more ambitious role; they are intended to model the process
of consensus, where a number of group members update on each others’ beliefs and arrive at the
same belief. Here we are concerned only with the proposed methods of updating, and not the
conditions under which consensus is achieved within a group.
2Likewise, there can be no ultimate disagreement if agents have the same prior probability
function and have common knowledge of each other’s posteriors, according to Aumann’s [1]
theorem.
3This is a slightly more general interpretation of ‘epistemic peer’ than in the informal peer
disagreement debate; in that debate, an epistemic peer is often taken to be someone whose beliefs
one respects equally to one’s own.
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rain. Should all these be treated as special cases of learning testimony? Perhaps
the best response to this question is: yes. Even if it is gleaned in a variety of
ways, testimony can be similarly represented as a statement of the beliefs of
others. That is, testimony is not ‘raw’ data, but is the result of an implicit initial
inference, as shown below:

event (e.g. communication) → initial inference → testimony

The general testimony problem is as follows: the agent in question has a
prior probabilistic belief function over a sigma algebra of events. The agent
receives some testimonial data at some point, i.e. they learn the beliefs,
regarding the partition B, of n other agents, the respective belief functions
being Pi, i = 1 . . . n. (These others need not entertain the same full probability
space as our agent of interest; they must merely have beliefs on B.) By way
of representation, we can construct a matrix MB with columns corresponding
to the events in B and rows corresponding to the belief functions of the
expert peers. (We can refer to this matrix as the testimony profile.) The task
is to specify the principal agent’s posterior belief function. That is, what is
an appropriate updating function FB for determining our agent’s new beliefs
across B, given their prior beliefs and the testimony profile MB? To state the
problem semi-formally, the general problem is to find plausible candidates
for:

FB: prior, MB → posterior

As suggested earlier, our guiding aim in what follows is to examine one
function FB that has become popular in both the peer disagreement and formal
consensus literature—the weighted linear average.4 Not only has testimonial
data been taken as a distinct form of data, it has also been considered worthy
of special treatment vis-à-vis updating; hence the focus on linear pooling.
Section 2 briefly comments on why this might be so.

The rest of the paper examines whether and how linear averaging may
be compatible with Bayesian updating. Section 3 argues, against Bradley [2],
that an instance of linear averaging can be considered prima facie compatible
with an instance of Bayesian conditioning. The ‘trick’ is to carefully interpret
the parameters of the averaging function, i.e., the weights of respect. Further
issues arise, however, when we turn to multiple testimony updates on different
issues. Section 4 argues that unless weights of respect are even more ‘loaded’,
linear averaging does not adequately treat testimony as incremental evidence,
such that commutativity of multiple testimony updates is assured. Sections 5
and 6 take stock of these interpretative issues regarding weights of respect;

4Weighted linear averages are prominent in the formal consensus modeling literature. (Geometric
averages are also considered in this literature and will be acknowledged in later sections of the
paper.) A crude kind of linear average is arguably the favoured solution in the peer disagreement
debate—what is referred to as the ‘equal weights’ view.
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we propose a role that the weights, or more generally, the parameters of
an updating function, should play. A class of updating functions is identified
that is consistent with this role, but the class includes only a modified version
of linear averaging, and not linear averaging proper. Some further concerns
about sequential testimony updates are acknowledged in Section 7, and the
concluding Section 8 reflects on the prospects for linear pooling and its
cousins.

2 Why not Bayesian Business as Usual?

Before turning to an examination of linear averaging for updating on testi-
mony, it is helpful to consider why alternatives to Bayesian conditionalization
might have been proposed in the first place. The aim of this section is merely to
offer some initial motivation for departures from the standard Bayesian model.

The Bayesian (on at least one reading) holds that the pooling function FB

should accord with Bayes’ formula:

P′
0(Bj) = P0(Bj|P1(Bj) = p1, P2(Bj) = p2, . . . , Pn(Bj) = pn)

= P0(P1(Bj) = p1, P2(Bj) = p2, . . . , Pn(Bj) = pn|Bj) × P0(Bj)

P0(P1(Bj) = p1, P2(Bj) = p2, . . . , Pn(Bj) = pn)

∀Bj in B.

where P0(Bj) and P′
0(Bj) are the agent’s prior and posterior for event Bj and

Pi(Bj) is witness i’s probability for event Bj (at the time in question).
The ‘problem’ with this function, or the reason some might consider it

not sufficiently user-friendly, is that the testimony of others is not combined
directly with the agent’s own probabilistic beliefs; belief change is governed,
rather, by the relevant likelihoods

P0(P1(Bj) = p1, P2(Bj) = p2, . . . , Pn(Bj) = pn|Bj)

which represent the agent’s belief that their peers would have the beliefs
specified, conditional on the truth of each event Bj in B. (The likelihoods
conditional on the falsity of each Bj also play a role, of course.) We do not
here deny that Bayesian conditioning is the most accurate way to represent
rational belief change in response to testimony, in a sufficiently detailed model;
indeed the Bayesian model is treated as the normative standard in this paper.
The point is just that the Bayesian model may be somewhat cumbersome (with
respect to the number of propositions that must be modeled) and also awkward
to use. Indeed, the Bayesian expression above treats testimony just like any
other type of evidence—an event that is merely indicative of the truth/falsity
of the events Bj under consideration.

Averaging methods may have become popular ‘shortcuts’ for updating on
testimony, precisely because, in contrast to the above, the probabilistic beliefs
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of others play a direct role in these functions. We see this by considering the
formal statement of the weighted linear average:

P′
0(Bj) = w0 × P0(Bj) + w1 × P1(Bj) + . . . + wn × Pn(Bj)

where w0, . . . , wn are interpreted as the ‘weights of respect’ assigned to all
agents involved, and are non-negative and summing to one.

The posterior belief on B for the agent in question is a linear ‘pool’ of the
actual beliefs of all agents involved. Instead of treating other agents’ beliefs
like a litmus test for determining the truth of the events Bj, the agent takes
these beliefs on board directly; the agent mixes these beliefs directly with their
own. Weighted linear averaging allows this to be done in such a way that the
beliefs of those the agent most respects have the most influence, or are most
dominant in the mix. This is, prima facie, a more natural or user-friendly way
to respond to the beliefs of others.

The popular defence for using linear averaging, in particular, to serve as the
shortcut function for updating on testimony (FB), is given mathematically in
Wagner [16]. Lehrer and Wagner [14] mount the same defence more explicitly
in the context of the updating problem as opposed to the group aggregation
problem. In short, the linear average is the only function to satisfy the Inde-
pendence of Irrelevant Alternatives condition, (IA). The appeal to IA amounts
to a multi-prof ile justification: if we consider all possible combinations of
probability functions for the agents involved, IA states that where the vector
of probabilities for a single event Bj are equivalent, the posterior belief for
Bj should be equivalent. In other words, the posterior for a single event Bj

depends just on the probabilities all agents assign to Bj, and it does not matter
what are the complete belief functions of these agents. Wagner [16] proves
that if IA alone is stipulated (under universal domain), then FB must be a
weighted linear average, with some error term. The function is restricted to
positive weights and zero error (as per the expression above) if the further
condition of Zero Preservation, (ZP), is stipulated; ZP states that if all agents
assign probability zero to some event Bj, then the posterior for Bj should also
be zero.

One might regard the above two-step explanation a bit quick, i.e. that there
is sufficient motivation for a special method for updating on testimony (which
is moreover a distinct type of information), and that this method should be
a weighted linear average, as it must satisfy IA and ZP.5 Even if one sees

5Indeed, fans of the weighted geometric average would reject the latter desiderata—IA. The
geometric averaging method has the following form:

P′
0(Bj) = normalise [P0(Bj)

w0 × P1(Bj)
w1 × . . . × Pn(Bj)

wn ]
where w0, . . . wn are non-negative and summing to one.
There is some debate about the comparative merits of linear and geometric averaging; see Genest

and Zidek [10], Clemen and Winkler [4], Shogenji [15], Jehle and Fitelson [12]. An aspect of the
debate is noted in the next section.
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little positive motivation for linear averaging, however, the fact remains that
the method has a significant presence in the literature, and it is important to
consider whether this updating approach is at least rationally permissible. To
this end, the next sections examine whether linear averaging is compatible with
the Bayesian model.

3 Single Testimony Updates: An Initial Compatibility Challenge

The task of determining whether linear averaging is compatible with Bayesian
conditionalization mostly involves working out what it means for the two
updating methods to be compatible. Our initial examination of compatibility
in this section is confined to a single testimony update in isolation.

Linear averaging is prima facie a special case of Bayesian conditionalization.
To begin with, not all Bayesian updates on testimony can be expressed as linear
averages over the relevant partition. For example, there is some Bayesian
model, yet no linear averaging model, that permits an agent the following
update:

prior [ 1/6 1/3 1/2 ] plus testimony [ 1/2 1/6 1/3 ] −→ [ 1/3 1/3 1/3 ]

On the other hand, any singular instance of linear averaging can be represented
by some Bayesian model. It is a matter of equating:

P′
0(Bj) = w0 × P0(Bj) + . . . + wn × Pn(Bj) and

P′
0(Bj) = P0(Bj|MB( j )) = P0(MB( j )|Bj) × P0(Bj)

P0(MB( j ))

If all the terms in the linear average expression are fixed, then we have the
following constraint on the Bayesian likelihood ratio (where k is a function of
the averaging weights and the priors of all concerned, including the principal
agent):

P0(MB( j )|Bj)/P0(MB( j )|¬Bj) = k

Since there are many ways for a ratio to equal some constant k, there is in
fact a one-to-many relationship between averaging updates on some specified
testimony and equivalent Bayesian updates on the same testimony. So the
averaging representation of a single testimony update under-determines the
corresponding Bayesian representation. As far as compatibility goes, so far
so good—the important thing to note here is that there is some Bayesian
model or class of models that can represent an isolated linear-averaging
update.
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So much for equating linear averaging and Bayesian models in the abstract.
The further question is whether the models are compatible vis-à-vis the real
world. Do the ‘right’ instances of these models yield equivalent posteriors, so
to speak? Bradley [2] effectively argues that there is an obvious way in which
the interpretations of the models do not line up. This section defends averaging
against Bradley’s and similar criticisms, by showing that the problem can be
dodged by attending carefully to the universal domain condition that grounds
the averaging method. There remain further problems for linear averaging, but
these must wait for the next section.

A number of authors question how ‘weights of respect’ in linear aver-
aging should be interpreted and ascertained (e.g. French [9]), but Bradley
[2] expresses a more fundamental worry about these weights: If we appeal
to the multi-profile justification of linear averaging given in the last sec-
tion, then the respect weights are constant for group members regardless of
the nature/origins of the beliefs they express, and thus the method ignores
real-world distinctions that are both salient and important in the Bayesian
setting.

In particular, Bradley argues that averaging treats independent agents
identically to dependent agents, while the Bayesian treats them differently.
Let us rehearse the argument. Following Bradley, we will keep things simple
and assume there are just two agents giving testimony to the principal agent.
The latter learns the probabilities for these two agents across partition B.
According to the Bayesian model, our agent’s new probability for one event
in B, call it b , given this new information, is:

P0(b |P1(b) = p1, P2(b) = p2)

= P0(P1(b) = p1, P2(b) = p2|b) × P0(b)

P0(P1(b) = p1, P2(b) = p2)

If the probability functions for the two consulted experts are independent
given b , and are also unconditionally independent, the above equals:

P0(P1(b) = p1|b) × P0(P2(b) = p2|b) × P0(b)

P0(P1(b) = p1) × P0(P2(b) = p2)

At the other extreme, if the probability functions for the two experts are
perfectly correlated, the expression equals:

P0(P1(b) = p1|b) × P0(b)

P0(P1(b) = p1)

Bradley notes that these two expressions will only be equal if

P0(P2(b) = p2|b)

P0(P2(b) = p2)
= 1
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which is to say that the principal agent believes one of the agents’ beliefs to
be independent not only of the other agent, but also independent of the truth.
In that case, by any reasonable interpretation of weights of respect, this agent
should be given a weight of zero in the linear averaging function.

We see from the above that if the domain of an averaging method
is any probability profile for a group, including cases where the experts
consulted have independent beliefs as well as cases where their beliefs
are thought to be dependent in some way, then the linear averaging and
Bayesian representations of testimony in the real world will only be com-
patible in special circumstances—when the set of respect weights mirrors
the situation where the beliefs of all consulted experts except one are
independent of the truth (the trivial case as far as independence versus
dependence amongst experts is concerned). This sort of restriction de-
feats the purpose of providing a model that allows an agent to update
on the beliefs of a number of other agents who they regard as epistemic
peers.

A response can be made to the criticism above, that does not involve
sacrificing the multi-profile justification of linear averaging. The trick is to
carefully specify the domain over which the IA condition must hold, and
consequently the domain over which the weights of respect are constant.
Consider the following situation: Our agent may consult Group 1, constituted
by experts whose beliefs about B are independent, or else our agent may
consult Group 2, constituted by experts whose beliefs have some pattern
of dependency. The IA/universal-domain condition effectively requires the
same respect weights be assigned to members of Group 1 (or 2), whatever
the members’ belief functions happen to be. It does not, however, require
matching respect weights across two different groups who express the same
set of probability functions, unless the testimony profiles associated with these
groups are not distinguished, but are rather part of the same domain. And this
need not be the case.

This point about the domain of a particular linear averaging function applies
more broadly than the case of independent versus (partially) dependent peer
groups. One might also be worried that the same group of experts may have
greatly different expertise with respect to different issues, and yet constant
weights of respect will not reflect this. For instance, we would not want to
assign the same respect weightings for a certain group of peers regardless
of whether we were asking them about average rainfall for the next wet
season or whether unemployment will drop. Again, the mistake here is to
think that belief profiles concerning different issues/propositions are part of
the same domain over which the justifying condition for linear averaging, IA,
applies. It must simply be stipulated that IA applies only to sets of beliefs
concerning the same event space. That is, if the partition B is being assessed,
the universal domain spans all possible (prior, testimony profile) pairs for the
group that are constituted by probability functions on B. If, on the other hand,
a different partition is in question, say C, then the universal domain would span
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a different set of (prior, testimony profile) pairs, this time probability functions
on C.6

Given the points just made, a slight change in the notation used above is in
order. Recall the general representation of the testimony problem given in the
first section:

FB : prior, MB → posterior

The use of the B index reflects the point above that the matrix of probability
functions in question pertains to a specific issue or partition—the B issue. The
updating function (in particular the respect weights) are specific to that issue,
hence FB. But we might want to make explicit the first point as well, that
the matrix is specific to a particular context—a group of peers at a particular
point with a believed pattern of dependency in their beliefs. This rich context
might be represented by the further index G ∈ G. So the testimony received
by an agent is represented MB,G, and likewise, the updating function that we
seek is FB,G. Of course, all this indexing highlights how removed testimony is
from raw experience in our model; the evidential statement MB,G is laden with
inferences about the ‘group context’ that are not explicitly modeled. To put
the point another way: it is not clear how the group context is translated into
weights of respect. We put these issues aside for the moment, but will return
to them later in Section 5.

4 Rich Event Spaces and Bayesian Compatibility

The reference above to different issues or partitions, say, B and C, raises the
further question of how linear averaging is supposed to work in a rich algebraic
setting. Unless this is clarified, averaging belief-update methods are at best
incomplete. Arguably the most natural solution is that averaging be combined
with Jeffrey-updating, such that, in response to testimonial data regarding B,

6Note that we might require that the same weights of respect apply to partitions B and B′,
where the latter is a refinement of the former. In this way, the posterior probabilities for the
events in B will be identical in each case, whether updating is performed on this coarse partition
directly, or on the refined partition. Indeed, linear averaging is championed (over geometric
averaging) for having this marginalization property. Geometric averaging, by contrast, satisfies
a different invariance property; it has what Wagner refers to as the Bayesianity property. That is,
if a geometric update with some set of respect weights is performed on a complex space B × E,
and then some ‘ordinary’ evidence Ei is learnt (via conditionalization), the posterior distribution
is the same as if the expert peers all learnt Ei first (via conditionalization), and then the principal
agent did a geometric update on B × E, with weights as before. Linear averaging does not have the
Bayesianity property, stated as such, but this may be mitigated if the weights assigned to expert
peers may change, depending on whether or not they have already learnt Ei. See, for instance,
Genest and Zidek [10], Clemen and Winkler [4], Shogenji [15] and Jehle and Fitelson [12] for
discussion of these two properties of testimony updating functions.
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probabilities are updated across this partition in line with linear averaging, and
then the probabilities of all other propositions are subsequently updated so
that probabilities conditional on the individual events of B remain constant or
‘rigid’.

It is best to illustrate with an example. Consider a simple setting where our
agent has the following prior probability function P0,D over the event space
D = B × C:

B ¬B
C 0.1 0.2

¬C 0.3 0.4

The agent meets an expert on the B partition, who has P1,B = [0.8, 0.2].
Linear pooling with, for example, weight 0.5 to this expert, gives [0.6, 0.4]
over the B partition. Clearly, however, this is not a complete specification
of the agent’s posterior probability function. This is where Jeffrey condition-
alization enters. Accordingly, the agent’s new probabilities over the entire
space are:

B ¬B

C 0.15 0.13̇
¬C 0.45 0.26̇

The two-step procedure—averaging then Jeffrey-conditionalization—can thus
be regarded a fully comprehensive belief-update rule!

We noted in the previous section that many Bayesian models yield the same
posterior distribution across B as some averaging update on B in response
to testimony. The Jeffrey-conditionalisation step can be considered a further
constraint on, or specification of, averaging updates, such that the class of
consistent Bayesian models is smaller. Alternatively, one might conceive of
the Jeffrey move as positioning linear-averaging as an extra-Bayesian process.
Learning testimony is no longer likened to gaining knowledge of a single
proposition E, as per strict Bayesian conditionalization. Rather, learning
testimony results in a change (via averaging) in the probability distribution
across some partition; the testimonial evidence itself is not explicitly modeled
as a proposition.

The analysis of rich event spaces does not, however, end here. The well-
known puzzles with Jeffrey-conditionalization—that it is not generally commu-
tative with respect to changes in probabilities on different partitions—prompt
further investigation of the proper treatment of testimony. Our earlier example
can be extended to illustrate the non-commutativity property. Recall that our
agent has already updated her beliefs with respect to B in response to the
beliefs of an expert peer on B. After this encounter, assume that the agent
meets a (different) expert on the C partition who has P2,C = [0.6, 0.4].

The obvious strategy is to apply the linear-plus-Jeffrey method a second
time around. Linear pooling, again with the assumption of weight 0.5 for
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the C-expert, gives [0.44167, 0.55833] over the C partition. Applying Jeffrey
conditionalization, we get the following posterior:

B ¬B
C 0.23383 0.20784

¬C 0.35058 0.20775

But what if the experts had made their reports in reverse order? If we assume
the same weightings should be applied to the experts, we would now get the
following transition of probability functions:

B ¬B
C 0.1 0.2

¬C 0.3 0.4
→

B ¬B
C 0.15 0.30

¬C 0.23571 0.31429
→

B ¬B
C 0.23056 0.19884

¬C 0.36230 0.20830

There is not a large difference in the posterior matrices for this particular
example. Nonetheless, the averaging-plus-Jeffrey update procedure, as con-
ceived above with fixed weightings, yields posteriors that are sensitive to the
order in which testimony is received.7

One may take the lesson here to be as follows: averaging weights of respect,
or the corresponding group context which we referred to earlier, must be
sensitive to the ordering of testimonial evidence. This is important if testimony
is to be treated as incremental evidence, as per other kinds of evidence in
Bayesian modeling. That is, past testimony on some issue should not simply
be overridden by new testimony on a different issue; the sequence of reports
should all contribute to an agent’s final beliefs about the issues in question,
such that the order in which the reports are received does not affect the
final posterior distributions. We see above that fixed weights, regardless of
the ordering of testimony updates, may result in different posteriors, if the
partitions in question are not independent. This will not do. Therefore the
group context, and thus the weights of respect assigned to experts on, say,
the B partition, must change, depending on what is already known—whether
testimony concerning, say, the C partition, has already been received.

5 Testimony as Evidence: Revisiting ‘Weights of Respect’

It is all very well to outline various cases where ‘group context’ and thus
weights of respect necessarily differ, so that linear averaging remains com-
patible with the Bayesian approach to belief updating. The obvious problem,

7Order is not important, whatever the probability updates across each partition, just in case the
partitions in question are probabilistically independent. Diaconis and Zabell [5] show, moreover,
that order may not be important for some probability updates across different partitions, even if
the partitions are not probabilistically independent. They refer to this as Jef frey independence—
the label applies to particular partitions and particular probability updates across these partitions.
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however, is that it is now very unclear what weights of respect actually amount
to, and how they should be identified or measured. As noted earlier, this has
been a topic of concern in the literature to date (see French [9]). The issues
identified in Sections 3 and 4 only make matters worse. In both cases our
recommendation was that group context must be more finely individuated
than one might initially suppose; the context depends, amongst other things,
on the perceived dependencies amongst group members’ opinions, and now
also on what has already been learnt that is not independent of the issue in
question.

We do not attempt to fully answer the question of how weights of respect
represent group context, and how the values of these weights can be ascer-
tained. What follows is, rather, a suggestion that gives some minimal sense
to group context, and its expression in terms of weights of respect or their
functional equivalents. The basic idea is that group context may be better
grasped if it is associated with a constant evidential impact for a given testimony
report. We elaborate on evidential impact below; for now, note just that if
learning experiences (here a testimony report coupled with group context)
are identified with their evidential impact, then they commute. Of course, it
may be that the group context and thus learning experience associated with
Alice’s testimony on B rightly differs, depending on whether or not Bob’s
testimony on C has already been received. That is all very well. The point here
is just that we should understand group context in such a way that when group
context is constant, the same testimonial evidence has the same impact, and
can be identif ied with a learning experience that commutes with other learning
experiences.

The notion of evidential impact and its relation to commutativity in the
Jeffrey setting can be elaborated with reference to the work of Wagner [17],
which builds on Field [8], Diaconis and Zabell [5] and Jeffrey [11]. Wagner
proves the following are suf f icient conditions for changes in probabilities
across two partitions to be commutative:

Consider the following two series of probability functions due to Jeffrey-
updates across the partitions B and C:

P →B Q →C R

P →C S →B T

The posterior probability functions R and T are identical if

β
Q
P (Bi, Bj) = βT

S (Bi, Bj) ∀Bi, Bj

and

β R
Q(Ck, Cl) = βS

P(Ck, Cl) ∀Ck, Cl

where β
Q
P (A, B) = Q(A)

Q(B)
/ P(A)

P(B)
(P being the prior, Q the posterior, and β the

‘Bayes factor’).
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Wagner’s conditions for commutativity inform the notion of identical learn-
ing experiences—two cases of learning are identical if they involve the same
evidential impact, or in other words, if they are characterized by the same set of
Bayes factors, as defined above. Understood in this way, learning experiences
commute.

Note that a change on the B partition to [b 1, b 2] followed by a change on
the C partition to [c1, c2] does not generally amount to the same sequence
of learning (only in reverse order) as a change on C to [c1, c2] followed by a
change on B to [b 1, b 2]. This is because the sets of relevant probability changes
on the partitions, as described by the Bayes factors, differ, depending on the
ordering. In the same way, we see that an averaging update on testimony
with some specified set of weights may amount to different learning events,
depending on the agent’s priors for the partition in question.8 Partly for
this reason, the weights in the linear averaging method are very difficult to
interpret.

6 An Advance on the Straight Linear Average?

The analysis of the preceding section suggests a desideratum for updating
methods that would ensure that weights of respect or their equivalents are
minimally comprehensible: they should encode a particular learning event,
given some testimony. That is, we should understand and represent group
context in such a way that the agent’s shift from prior to posterior beliefs over
the relevant partition yield the same Bayes factors for the same testimonial
input and group context, MB,G.

Recall the general form for testimony updating functions:

FB,G : prior, MB,G → posterior

Our new criterion is:

P′
0(Bi)

P′
0(Bj)

/
P0(Bi)

P0(Bj)
= ci, j ∀i, j

That is, for any two events in the B partition, the updating function, given
a testimony profile MB,G, should be such that the ratio of posteriors for the
events divided by the ratio of priors is a constant.

The above criterion is satisfied by testimony updating functions that take
the form:

P′
0,B = normalize [P0,B × f (MB,G)]

where f (MB,G) returns a function on B.

8For the subtleties, refer back to footnote 7.
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That is, the agent’s prior probability over B is pointwise multiplied by a
function (on B) of the belief profile for the group of witnesses, and then
normalized.9 (The subsequent step is Jeffrey-conditionalization.) One can see
that standard linear averaging (nor geometric averaging) fits this functional
form.

A variant of linear averaging does, however, satisfy our desideratum. Con-
sider the following:

P′
0,B = normalize [P0,B × f (MB,G)]

= normalize
[

P0,B ×
∑n

i=1
wi × Pi,B

]

where 0 ≤ wi ≤ 1 and
∑

i wi = 1.
The posterior is not the linear average of all probability functions on B,

including the agent’s prior; here it equals, rather, a weighted average of the
testimonial probabilities alone, multiplied, point-wise, by the agent’s prior, and
then normalised. If one wanted to defend this function, one might appeal to
the popular defence of averaging given in Section 2; in this case, however, the
IA and ZP properties must apply just to f (MB,G) in the above expression.
That is, if f (MB,G) must return a probability function and must satisfy the
Independence of Irrelevant Alternatives criterion, as well as Zero Preservation,
then it is a weighted linear average, as specified above. Our response to
Bradley in Section 3 would then also be relevant, not just for the general
insights about group context, but also for the clarification of the IA criterion
applied to f (MB,G).

We do not, however, wish to argue vigorously for the modified linear av-
erage method outlined above.10 There are of course many functions that have
the stated form. Rather than seeking further desiderata to pinpoint a particular
function for updating on testimony, it is more helpful just to highlight another
property common to all functions that have this form. To this end, let us first
introduce the term defer to testimony ; we define it here as ‘changing one’s
beliefs to match the aggregate testimonial input’. The aggregate testimonial
input is given by the chosen function f (MB,G). The property is as follows: only

9Presumably this functional form is both necessary and sufficient for satisfying the desideratum,
but whether it is necessary is not so obvious, and not explored here.
10Indeed, one might argue that the function should at least be modified to allow for the testimony
having varying impact, and at the extreme, no impact at all. The following would achieve this, and
indeed there would be no impact if the parameter α was set to zero (where the probability function
raised to the power of α is interpreted as a point-wise operation):

P′
0,B = normalize [P0,B × f (MB,G)] = normalize

[
P0,B ×

(∑n

i=1
wi × Pi,B

)α]
.



Testimony as Evidence 997

when the agent’s prior distribution on the partition in question, say B, is the
‘flat’ distribution (i.e. equal probabilities for all events in B), will updating on
MB,G amount to deferring to this testimonial input (in accord with the function
f ). One could say: only when the agent is maximally uncertain with respect to
some partition, do they defer, in our sense, to testimonial input.

7 Further Issues: Sequential Updating

We have thus far been considering scenarios where an agent receives, at the
one time, all the testimony on some issue B that they will ever receive. In effect,
we have avoided comparing cases where testimony about some issue B is
received en masse and cases where it is received sequentially, one individual at
a time. This section briefly discusses how attending to this distinction changes
the requirements on updating methods.

Presumably, if we were to address the issue of sequential testimony, we
would want to apply our principle of ‘same evidence and context, same
impact’. Moreover, the relation between group versus sequences of individual
testimony is most clear if the impact or the learning event associated with a
single individual’s testimony given the context can be separated out from the
impact of others’ testimony.

Such a requirement, however, amounts to an even bigger departure from
the straight linear average, and the principles that justify it (IA and ZP). The
aforementioned considerations impose the following form on our updating
method:

P′
0,B = normalize [P0,B × f1(MB,G[1] [1]) × . . . × fn(MB,G[n] [n])]

where MB,G[i] [i] is a single agent’s probability distribution over B, represented
by row i of the matrix, in context G[i] and fi(MB,G[i] [i]) returns a function on B.

An example function with the above form is:

P′
0,B = normalize [P0,B × MB,G[1]w1 × . . . × MB,G[n]wn]

where the parameters w1, . . . , wn can again be understood as weights of
respect; here they need not add to one.

This example updating function is of course very similar to geometric
averaging, but differences can be noted. A special case of geometric averaging
does match our example function—the case where the principal agent is
assigned weight zero and the weights w1 . . . wn are non-negative and summing
to one. In general, however, geometric averaging, let alone linear averaging,
does not match the example function, and is not consistent with the more basic
functional form specified above.
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8 Concluding Remarks

This paper set out to assess the normative acceptability of the weighted
linear average method for updating on testimony, given that this method has
some prominence in the literature. The guiding aim was to examine whether
linear averaging is compatible with the Bayesian model, under a suitable
interpretation of compatibility. Section 3 argued, against Bradley [2], that
linear averaging is Bayesian-compatible, at least for single testimony updates
in isolation; the key is to properly discriminate different contexts that require
different ‘weights of respect’. Section 4 considered multiple testimony updates
on different partitions. We argued that linear averaging can be Bayesian-
compatible, in the sense of treating testimony as incremental evidence; here
again, however, the compatibility rests on finely individuating contexts that
require different weights of respect.

Our investigations effectively add to an existing worry in the literature—
while linear averaging may be reconciled, in a sense, with the Bayesian model,
the weights of respect have no obvious meaning and so it is unclear how they
can be identified or measured. This worry is articulated in Section 5. We do
not offer a full solution to this problem, but propose the following: weights of
respect, or more generally, the parameters of any shortcut updating method,
are minimally comprehensible if they are identified with the testimony in
question having a particular evidential impact, sensu Wagner.

The above criterion is satisfied by updating functions that have a particular
form, described in Section 6. The straight linear average does not satisfy the
functional form, but a modified linear average does, so one might borrow from
the justification of the straight linear average in defending the modified rule.
We leave that open. On the other hand, one might seek an even more flexible
method for updating on testimony—a method that is invariant whether the
testimony on some issue is received en masse or sequentially. We address this
issue in Section 7, noting that it requires an even larger departure from the
straight linear average.

Of course, there remains a significant issue for any proposed shortcut updat-
ing method—the interpretation of weights or their functional equivalents. We
have suggested a basic role for these parameters, but of course there are still
large questions concerning how an agent may identify different contexts that
are associated with different values for these parameters. In short, the worry is
that ‘shortcut’ updating methods are only apparently shortcuts, and that there
is in fact much inferential work—determining dependencies amongst expert
peers and the issues they report on—that is not explicitly modeled. And one
could well argue that it makes more sense to model these inferences explicitly,
Bayesian-style. We leave this question hanging: Given the complications iden-
tified for interpreting weights of respect or their equivalents, is there sufficient
motivation for shortcut methods for updating on testimony?

Acknowledgements Many thanks to Richard Bradley for very helpful comments on an earlier
draft of this paper, and to Julia Staffel and Olivier Roy, who have presented excellent comments



Testimony as Evidence 999

on this paper at the FEW and Rationality and Choice Network meetings (2011) respectively. This
work was partly supported by an Internationalisation grant from the Netherlands Organisation for
Scientific Research (NWO) for the ‘Rationality and Decision Network’.

References

1. Aumann, R. J. (1976). Agreeing to disagree. The Annals of Statistics, 4(6), 1236–1239.
2. Bradley, R. (2007). Reaching a consensus. Social Choice and Welfare, 29, 609–632.
3. Christensen, D. (2007). Epistemology of disagreement: The good news. The Philosophical

Review, 116(2), 187–217.
4. Clemen, R. T., & Winkler, R. L. (1999). Combining probability distributions from experts in

risk analysis. Risk Analysis, 19(2), 187–203.
5. Diaconis, P., & Zabell, S. L. (1982). Updating subjective probability. Journal of the American

Statistical Association, 77(380), 822–830.
6. Elga, A. (2007). Reflection and disagreement. Noûs, 41(3), 478–502.
7. Feldman, R. (2007). Reasonable religious disagreements. In L. Antony (Ed.), Philosophers

without God: Meditations on atheism and the secular life (pp. 194–214). Oxford: Oxford
University Press.

8. Field, H. (1978). A note on Jeffrey conditionalization. Philosophy of Science, 45(3), 361–367.
9. French, S. (1985). Group consensus probability distributions: A critical survey. In J. M.

Bernado, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics (Vol. II,
pp. 183–197). Amsterdam: North-Holland.

10. Genest, C., & Zidek, J. V. (1986). Combining probability distributions: A critique and an
annotated bibliography. Statistical Science, 1, 114–148.

11. Jeffrey, R. (1988). Conditioning, kinematics, and exchangeability. In B. Skyrms, & W. Harper
(Eds.), Causation, chance, and credence (Vol. 1, pp. 221–255). Dordrecht: Kluwer.

12. Jehle, D., & Fitelson, B. (2009). What is the “equal weight view”? Episteme, 6(3), 280–293.
13. Kelly, T. (2005). The epistemic significance of disagreement. In J. Hawthorne, & T. Gendler

Szabo (Eds.), Oxford studies in epistemology (Vol. 1, pp. 167–196). Oxford: Oxford University
Press.

14. Lehrer, K., & Wagner, C. (1981). Rational consensus in science and society. Dordrecht: Reidel.
15. Shogenji, T. (2007). A conundrum in Bayesian epistemology of disagreement. Available online

at www.fitelson.org/few/few_07/shogenji.pdf
16. Wagner, C. (1985). On the formal properties of weighted averaging as a method of aggrega-

tion. Synthese, 62, 97–108.
17. Wagner, C. (2002). Probability kinematics and commutativity. Philosophy of Science, 69, 266–

278.

http://www.fitelson.org/few/few_07/shogenji.pdf

	Testimony as Evidence: More Problems for Linear Pooling
	Abstract
	Introduction
	Why not Bayesian Business as Usual?
	Single Testimony Updates: An Initial Compatibility Challenge
	Rich Event Spaces and Bayesian Compatibility
	Testimony as Evidence: Revisiting `Weights of Respect'
	An Advance on the Straight Linear Average?
	Further Issues: Sequential Updating
	Concluding Remarks
	References


