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Abstract The present work is motivated by two questions. (1) What should
an intuitionistic epistemic logic look like? (2) How should one interpret the
knowledge operator in a Kripke-model for it? In what follows we outline an
answer to (2) and give a model-theoretic definition of the operator K. This
will shed some light also on (1), since it turns out that K, defined as we do,
fulfills the properties of a necessity operator for a normal modal logic. The
interest of our construction also lies in a better insight into the intuitionistic
solution to Fitch’s paradox, which is discussed in the third section. In particular
we examine, in the light of our definition, DeVidi and Solomon’s proposal
of formulating the verification thesis as φ → ¬¬Kφ. We show, as our main
result, that this definition excapes the paradox, though it is validated only
under restrictive conditions on the models.

Keywords Intuitionistic logic · Epistemic logic · Fitch’s paradox ·
Kripke models

1 Introduction

Epistemic concepts are deeply entrenched in intuitionistic logic. They are at
the heart of the usual explanation of truth as provability by an ideal reasoner.
Intuitionistic Kripke models (IKM) provide a model-theoretic characterization
of these logics, usually presented in epistemic words. More specifically, these
models are based on partially ordered structures, intuitively representing the
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evolutionary process of the (monotonically) growing informational state of an
ideal agent.

Considering that IKMs are based on simple relational structures similar to
the models of classical modal logic, it is puzzling why the seemingly natural
issue of investigating an intuitionistic epistemic logic based on these models
has not been deeply explored thus far.1

This question is made more critical by the debate over Fitch’s paradox
of knowability, which constitutes the main philosophical thrust of this paper
(Section 4). Fitch’s paradox is usually presented as a reductio of the
verificationist claim that every truth is knowable to the much more problematic
claim that every truth is known. It has been argued from many sides that this
reductio can be blocked, in a principled way, if one reasons according to the
rules of intuitionistic logic.2 An IKM-based approach will help to clarify the
rationale behind this claim and better explore its consequences. Such a claim
has already been made and investigated by DeVidi and Solomon [3], inspiring
the present work. However, DeVidi and Solomon’s analysis focuses mainly
on the behaviour of the logical constants in IKMs; they do not formulate
any explicit semantics for the knowledge operator K. The question of how
knowledge of an agent should be interpreted remains open, as well as the
question of how K interacts with logical operators.

The present work fills this gap by defining, in Section 3, a semantics for the
K operator that reads Kφ as “φ is the case in all the informational expansions
of the agent’s present state that are consistent with its evolution”. The agent
is supposed to be able to discard, as possible epistemic alternatives, (i) all the
states containing less information than the actual one and (ii) all the states in
which information has been acquired in a different order. Eliminating the (i)
states amounts to supposing that the agent is fully aware of the information she
holds (but not necessarily of whatever happens in the world), while discarding
the (ii) states amounts to perfect recall. K will represent the knowledge of an
ideal agent (who is logically omniscient). The most important thing to stress
is that, even in this limit case of perfection, the collapse of knowability into
actual knowledge can be blocked in a principled way, and relevant claims
on the intuitionistic notion of knowledge can be model-theoretically justified.
Although I am not persuaded of the decisiveness of the intuitionistic answer to
Fitch’s paradox, nevertheless the technical achievement of the present paper
should offer clarifications, and a more stable basis for discussion and for
further refinements.

The second section will be devoted to investigating several, more general
questions. The first is whether, and to what extent, using the explicit knowledge
operator K is useful in intuitionistic logic and reasoning. The second is whether

1This is probably due to the attitude of the intuitionistic tradition, favoring the more “constructive”
proof-theoretic semantics. This attitude is reflected as well in the philosophical applications of
intuitionistic epistemic logics.
2The paradox is derived by means of classical epistemic logic.
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IKMs are a correct semantic tool to express the meaning of a knowledge
operator, as well as whether they can be a useful explanatory tool. The third
is whether the structure of an intuitionistic epistemic logic should be a normal
one. I will show that the way I define the accessibility relation underlying K
satisfies the conditions for normality as isolated in Bozic and Dosen [1] (with
further refinements by Wolter and Zakharyaschev [13]). In this way, all the
soundness and completeness results for a normal modal intuitionistic calculus
will also hold for my definition.

In the Appendix, I present a short summary of all the basic model-theoretic
definitions and results that are needed to make this work self-contained.

2 The Ideal Reasoner and the Empirical World

The intuitionistic notion of truth is often presented, in a Brouwerian account,
as provability in principle by an ideal mathematician or reasoner. Here, I wish to
consider the case of the ideal reasoner confronted by a world where contingent
facts occur. One can then ask the basic question whether being true and being
known should be understood as two different concepts for her, where truth
and meaning are characterized by the intuitionistic logical operators. Tennant
[7] has classified a negative answer to this question as a form of hard anti-
realism. Nevertheless, it seems intuitive that, if intuitionistic logic should serve
for modeling not only mathematical discourse but also empirical reasoning,3

then such a distinction is unavoidable.
Intuitionistic truth is intended, I have said, as provability in principle or, in

empirical discourse, as verifiability in principle. Such a notion of truth has the
epistemic flavour of implicit knowledge: something is true whenever the ideal
reasoner can verify it, given unbounded resources of calculating power, time,
memory, etc. Implicit knowledge is to be distinguished from explicit. Explicit
knowledge, even for an ideal reasoner, concerns data the reasoner already has;
it cannot be about contingent future facts or unobserved ones.4 Even for an
ideal reasoner, one cannot equate explicit knowledge and truth.

This contrast, between the explicit and implicit information available to
an ideal reasoner, seems to be deeply entrenched in IKMs. These models
consist of partially ordered sets of points that represent possible informational
states.5 Some formulae in these states are satisfied (or better forced; see the

3A large part of the anti-realist tradition coming out of M. Dummett’s works in the ’70s fore-
shadows these applications.
4In a recent paper [9] J. van Benthem also hints at these two different notions of implicit/explicit
knowledge to be found in IKMs. He suggests that the second one could be regarded as a notion of
“seeing that”.
5Strictly speaking, IKMs are pre-orders: i.e., they are ref lexive and transitive. For the purposes of
the present paper, I will focus on partial orders, where the relation is also anti-symmetric. These
states contain all the (intuitionistic) logical theorems, and they are closed under intuitionistic
logical consequence.
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definition in the Appendix) only by reference to the present informational
state. For other formulae, satisfaction is tested with respect to other (upper)
states. Atomic propositions are formulae of the first kind. Formulae involving
negations or implications are formulae of the second kind. Propositional atoms
can easily be regarded as the basic factual information that an agent can know
by an explicit act of seeing.

The partial ordering of the states in these models intuitively represents the
evolutionary process of the monotonically increasing informational states of an
ideal reasoner. Moreover, the ordering of informational states in an empirical
context can be seen as a kind of temporal process: upper states are possible
future states and there might also be, in a partial ordering, unrelated states
representing alternative, non-actual situations that the agent could have faced.

What about the knowledge operator and its semantics? If one defines it in
the usual way (φ is known by an ideal reasoner whenever it is either satisfied
or forced in all of the states that are epistemically accessible to her), then the
generalization rule is sound, and it will give rise to a normal modal logic that
validates the Kripke axiom K (�(φ → ψ) → �φ → �ψ). Such features make
the agent logically omniscient, but this need not be a big problem in this case:
after all, we are dealing with an ideal reasoner.6

Another important question is whether explicit knowledge should validate
other, usual axioms of classical epistemic logic such as T (Kφ → φ), 4 (Kφ →
KKφ), and 5 (¬Kφ → K¬Kφ). In the case of T and of 4 (also known as
the axiom of positive introspection), the answer is affirmative: the explicit
knowledge of an agent in some given state is likely to imply truth at the same
time and be positively introspective. Since axioms T and 4 also express these
conditions in the intuitionistic semantics (see the Appendix), they must be
valid. The case of 5, the axiom of negative introspection, is more complicated,
but one thing is clear: due to the presence of negation, the informal reading of
this axiom does not correspond to the semantic condition intended by negative
introspection in a classical framework (if Kφ is not forced [in a state], then it is
not forced in any accessible state) but to a stronger condition: under a temporal
reading, it says intuitively that if φ will never be known, then it is known that
it will never be known.7 The definition of the epistemic operator offered here
will invalidate both 5 and the weaker standard semantic condition for negative

6The problem of logical omniscience is a major issue in classical epistemic logic and is the source
of a vast literature. In the typical case of an agent having only limited computational resources,
the agent is unlikely to know all logical theorems and all of the logical consequences of her
knowledge base. However, one can suppose, as suggested by J. Hintikka and reaffirmed by
others, that logical omniscience is not a real problem when dealing with an ideal agent possessing
unlimited computational resources. In our case, the ideal agent can be regarded as a sort of perfect,
instantaneous, intuitionistic theorem-prover, whose only indecision lies with unestablished factual
content.
7The antecedent of 5 does not say what may happen if Kφ is not forced in a particular state but
is at a later one. In other words, in principle 5 could be valid even if the classical condition for
negative introspection is not satisfied.
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introspection. However, it is better to postpone a more detailed discussion of
this point until after the definition of K.

3 IKMs and Knowledge

Given the previous interpretation of what is represented in a Kripke model,
epistemic accessibility may be defined in many ways. In Section 3.2, I will
introduce my proposal. Before that, it will be useful to recapitulate the basic
model-theoretic semantics for intuitionistic modal logic. The reader may also
refer to Bozic and Dosen [1] or Wolter and Zakharyaschev [13].

3.1 Frames and Models

The class HK of frames for intuitionistic modal logic contains, as its elements,
bi-relational expansions of the mono-relational Kripke frames for intuitionistic
propositional calculus.

Definition 3.1 (Frames and Models) A frame for HK is a triple F = (W, R≤,

RM), where W is a non-empty domain and R≤ and RM are subsets of W × W
fulfilling the following conditions:

(1) R≤ is a pre-order on W (i.e., it is reflexive and transitive).
(2) R≤ RM ⊆ RM R≤.8

(2) is a necessary and sufficient condition to ensure monotonicity (see the
Appendix), guaranteeing that our models extend (monotonic) IKMs for
propositional calculus. A model is a couple M = (F, V), where F is a frame
for HK and V is a function from the set of propositional variables into P(W)

such that:

(3) For all w, v ∈ W such that wR≤v and for all propositional variables p, if
w ∈ V(p) then v ∈ V(p).

A non-classical notion of satisfaction |=i, called the forcing relation, is
defined as follows:9

1. w |=i p iff w ∈ V(p) .
2. w |=i φ ∧ ψ iff w |=i φ and w |=i ψ .
3. w |=i φ ∨ ψ iff w |=i φ or w |=i ψ .
4. w |=i φ → ψ iff for all v such that wR≤v, if v |=i φ then v |=i ψ .
5. w |=i ¬φ iff for all v such that wR≤v, v �|=i φ .
6. w |=i �φ iff for all v such that wRMv, v |=i φ .

8Expressions of the form R1 R2 indicate composition, also written as R1 ◦ R2: i.e., wR1 R2v iff
there is some z such that wR1z and zR2v.
9I will adopt the superscript i (“intuitionistic”) in order to distinguish this notion from the classical
one. I will omit superscripts wherever no confusion is possible.
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The clause for � gives the truth conditions for any universal modal operator
the language may contain, such as metaphysical necessity, knowledge, belief or
other.

3.2 The Knowledge Operator

Many alternatives are available for defining the knowledge operator K based
on this general semantics. A naive one identifies the epistemic accessibility
relation with the pre-ordering relation R≤, thus yielding the following semantic
definition:

(K1) w |=i Kφ iff for all w′, such that wR≤w′, w′ |=i φ.

In this case, truth and knowledge are conflated due to monotonicity (i.e. if
wR≤v and w |=i φ then v |=i φ), as the hard anti-realist would desire.

Truth and knowledge are not conflated only if some epistemically accessible
states are not accessible by the R≤ relation. When one reads R≤ as a temporal
relation, there should be some epistemically accessible states that are not
possible future states. A stronger claim would be that the class of epistemically
accessible states is wider than the class of temporally (or causally) accessible
states, even for an ideal reasoner. This seems reasonable enough. Given that
informational states cannot take into account all the external features of the
world, some might be conceivable as consistent with the actual world, while
still not attainable, because the course of events has, unnoticed to the agent,
already dismissed them .

My suggestion is that the agent should consider as epistemic alternatives all
the informational upgrades consistent with her state (not only actual future
states) except for those having a different history: after all, the agent is
supposed to be able to keep track of the way and the order in which she ac-
quired information.

In order to implement such an intuition, one must first consider the notion
of informational equivalence among states, defined as:

Definition 3.2 (Informational Equivalence ≡) Two states in a model, w and
v, are informationally equivalent (w ≡ v) iff for all atomic p, w ∈ V(p) iff v ∈
V(p).

In other words, two states are informationally equivalent when they force
the same basic propositions. Let Pr(w) denote the set of R≤-predecessors
of state w, including w. Then the informal intuition can be rephrased more
precisely as:

Definition 3.3 (RK) wRKv, iff there is a bijective function f from Pr(w) into
a downward closed (w.r.t. R≤)10 subset of Pr(v), such that, for all z ∈ Pr(w),
f (z) ≡ z.

10One can say that a set X is downward closed iff whenever x ∈ X and yR≤x, y ∈ X.
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Fig. 1 The failure of 5

One can then give, based on RK, the usual semantic clause for the K
operator.

(K) w |=i Kφ iff, for all w′ such that wRKw′, w′ |=i φ.

Now, the only epistemic alternatives for a state w are those which may be
reached by prolongating a path isomorphic to the one which actually leads to
w. As noted earlier, the order in which information is acquired counts,11 and
this imposes perfect recall. Weaker mnemonic capacities can be attributed to
the agent by relaxing the condition of similarity between histories. (Isomor-
phism is, indeed, a strong one.)

It is easy to verify that the relation RK, thus defined, is such that R≤ ⊆ RK

and satisfies the basic property of an RM-relation for intuitionistic normal
modal logic, as defined in Section 3.1. The only thing still to be verified is
R≤ RK ⊆ RK R≤ (see Lemmas 1 and 2, Appendix). Suppose that wR≤ RKv.
Then, for some z, wR≤zRKv. This implies that Pr(z) is isomorphic to a
downward closed subset of Pr(v). Since wR≤z, the same obviously holds for
Pr(w), and thus wRKv. By the reflexivity of R≤, the result is established.12

With this definition in hand, one can return to the additional axioms for
epistemic logic (D, T, 4, and 5). It is easy to verify that the relation RK is
serial, reflexive, and transitive, and thus validates axioms D, T, and 4 (see
Appendix). It follows that this notion of knowledge is factive (Axiom T) and
satisfies positive introspection (Axiom 4). On the other hand, Axiom 5 fails.
This can be illustrated by the failure of the canonical property defined by this
axiom (see Appendix A.1);13 or, more simply, by the example shown in Fig. 1.

11Indeed, suppose that a state w forces both p and q, but has just one predecessor forcing q but not
forcing p. Then, those informational extensions of w whose predecessors force p before forcing q
are automatically excluded.
12For completeness sake, one should also note that this property is trivially satisfied in the case
where RK = R≤, for it consists in the identity R≤ R≤ = R≤ R≤.
13Our relation is also not Euclidean: that is to say, it does not satisfy the canonical property defined
by 5 in classical modal logic.
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In the model presented in Fig. 1, (i) w0 |=i ¬Kp (since w0 �|=i Kp and w0
has no strict successors). However, (ii) w2 �|=i ¬Kp (since w2 |=i Kp), and (iii)
w0 RKw2. Together, (ii) and (iii) imply (iv) w0 �|=i K¬Kp. Thus, by (i) and (iv),
one obtains w0 �|=i ¬Kp → K¬Kp.14

As hinted earlier (Section 2), this axiom is not strictly related to the standard
semantic condition for negative introspection.15 This condition, i.e. “if Kφ is
not forced at some state, then it is not forced at any accessible state”, also fails
in my model, for the simple reason that the agent considers some informational
upgrades as open possibilities. Failure of negative introspection is a sensible
concern, given that we are considering an ideal reasoner; but that failure is
justified in the case of explicit knowledge. There is, indeed, an asymmetry
with respect to positive introspection, which prescribes that the agent should
be aware of what she explicitly sees. This seems reasonable. Being aware that
one does not explicitly see something is a more complicated matter, for one
may believe it anyway or find it very likely.16

4 Knowability and Fitch’s Paradox

One of the most debated topics linking intuitionistic logic to the notions of
knowledge and knowability has been, for the last two decades, Fitch’s paradox
of knowability. It consists of a modal argument leading from the apparently
innocent assumptions that every truth is possibly known (VT) ∀φ(φ → Kφ),
and that there is some unknown truth (NO) ∃φ(φ ∧ ¬Kφ), to the stronger and
counterintuitive conclusion that every truth is known (AK) ∀φ(φ → Kφ).17

The use of propositional quantifiers is dispensable in formulating the paradox,
nonetheless it is helpful in order to understand the scope of the intuitionistic
solution (see Williamson [11]). I will take the license to use quantifiers also
later on (e.g. on p. 16), where needed for the sake of explanation, even if they
are not part our modal propositional language.

14One may easily observe from this counterexample the failure of the B axiom φ → K¬K¬φ.
Nevertheless, the failure of a Brouwerian axiom in an intuitionistic system is less problematic than
it may seem at first sight (see footnote 20 for an explanation). One may further notice that the
defined relation is clearly not symmetric: i.e., it does not satisfy the canonical property defined by
B in classical modal logic.
15In order to produce a counterexample to 5, one needs to find a case where p is not known and
will never be known in any possible future informational upgrade, even while this fact remain
hidden to the ideal knower, who considers as an open possibility a state in which she knows p.
The reader will note that this model still does not satisfy the condition for 5: i.e., condition (d) in
the Appendix. According to this condition, if one wants to secure 5 at state w, then every RM-
accessible state should have RM access back to an R≤ successor to w—which does not happen in
my model. This condition seems unrelated with being Euclidian: i.e., the property defined by 5 in
classical modal logic.
16For the same reason, Hintikka [6] discards the axiom of negative introspection.
17(VT) is shorthand for verif ication thesis. (NO) stands for non-omniscience and (AK) for actual
knowledge.
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4.1 Intuitionistic Perspectives on the Fitch Paradox

The paradox is usually presented in the following derivation.

1. ∃φ(φ ∧ ¬Kφ) (NO)
2. ∀φ (φ → Kφ) (VT)
3. (p ∧ ¬Kp) instantiation of (NO)
4. ((p ∧ ¬Kp) → K(p ∧ ¬Kp)) (by 2 and 3)
5. K(p ∧ ¬Kp) MP
6. (Kp ∧ K¬Kp) distribution of K over ∧
7. (Kp ∧ ¬Kp) by T on the second conjunct
8. ⊥ by 7 and ⊥ ↔ ⊥
9. ¬∃p (p ∧ ¬Kp) ¬-intro, discharge 1

10. ∀p ¬(p ∧ ¬Kp) definition of ∃
11. ∀p (p → Kp) definition of →

This derivation is generally perceived as presenting a paradox for verifi-
cationism, when (VT) is taken to be a correct representation of the verifi-
cationist principle according to which every truth is knowable.18

T. Williamson (see Williamson [10, 11, 12]) inaugurated the revision of
Fitch’s derivation via intuitionistic logic in the 1980s. The usual strategy for
this approach involves blocking one or more steps of the derivation for a
simple logico-philosophical reason: a verificationist (or anti-realist) logic stricto
sensu should be weaker than classical logic, which lacks certain fundamental
constructive aspects. The formulation of the verification thesis should then be
considered meaningful only within a constructive framework, of which intu-
itionistic logic is one. However, Fitch’s derivation adopts classical logic, along
with its theorems and inference rules. The crucial point raised by Williamson
is that the step from 10 to 11 is not intuitionistically justified. Therefore, the
conclusion (11) ought not to be considered a blow for verificationism.

The usual objections to this type of solution claim that other, paradoxical
consequences can be derived if one is using only intuitionistically sound
inference rules. Intuitionistic counter-objections claim that all these other
consequences are paradoxical or counterintuitive only under a classical reading
but are perfectly acceptable under an intuitionistic one. It is not my purpose
here to go into the whole discussion of possible counter-objections, going
to the nth degree of refinement. Far more important is that amind all the
controversy, there is no common ground nor shared semantics of the modal
operators involved, especially the knowledge operator. I think that the model-
theoretic interpretation of K illustrated in the previous section can be a useful
tool for clarification. As mentioned in the introduction, DeVidi and Solomon
[3] sketched a move in this direction, but without defining K.

18The equation of the formal (VT) with the verificationist principle is hotly debated. I myself find
it very problematic. However, a discussion at this point would lead too far away from the principal
focus here.
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In analyzing Fitch’s derivation, the intuitionist agrees in toto with what
concerns the derivation of a contradiction and the consequent discharging of
(NO) ∃ψ (ψ ∧ ¬Kψ), which generates ¬∃ψ (ψ ∧ ¬Kψ) and, subsequently,
∀ψ¬(ψ ∧ ¬Kψ). Thus, the intuitionistically minded philosopher is disposed
to agree for all proposition φ that, given the intuitionistic sense of the negation
(and of the conditional), it is not the case that φ is true and not known. What
she counters is the derivation, from this, of the thesis of actual knowledge (AK)
∀ψ (ψ → Kψ). She claims that, instead, we can only derive

(AK’) ∀ψ (ψ → ¬¬Kψ)

which is classically, but not intuitionistically, equivalent to (AK).
The classically-minded reply claims that (AK’) is just as problematic as

(AK), for it would mean that, for all φ, if φ is true, then it is not true that
φ is not known. For them, this is counterintuitive to the same degree. This is
not the only problem: other intuitionistically derivable formulae seem likewise
highly problematic:

1. ¬Kφ → ¬φ.
2. ¬Kφ ↔ ¬φ.
3. ¬(¬Kφ ∧ ¬K¬φ).

On the other hand, DeVidi and Solomon [3] write that these problems are due
to a faulty reading of negation, so that (AK’) should rather be understood, by a
constructive reading, as saying that it is not possible to find some truth which is
unknowable; or else, by a proof-theoretic turn, that, for all φ, given a proof of φ,
an absurdity follows from Kφ implying an absurdity. Under the same reading,
(1), (2), and (3) all become plausible.19 DeVidi and Solomon suggested that, if
we consider Kripke models and their semantics, it is immediately obvious that
Kφ and ¬¬Kφ have two, very different meanings. Indeed, given the model-
theoretical meaning of double negation in this context, we can even consider
(AK’), by itself, as a plausible formulation of the verification thesis.20

One can analyze these claims using the definition of the knowledge operator
that I have offered. First, note that φ → Kφ can easily be falsified. Indeed, in

19The constructive reading (1) corresponds to “if knowing φ is absurd (i.e., impossible) then φ

is also absurd (i.e., impossible)”, which is more acceptable than the classical reading, according
to which ignorance entails falsity. The converse of (1) is even more plausible, making (2) also
acceptable. Meanwhile, (3) does not say that one should either know φ or its negation, but rather
that it is absurd (impossible) that both knowing φ and knowing ¬φ entails an absurdity.
20Indeed, if we interpret R≤ as a modal relation, then double negation should be read classically
as �, and thus ¬¬φ stands for the impossibility of the impossibility of φ. Under this reading of
double negation, Axiom B of modal logic φ → �  φ corresponds to the intuitionistically valid
law φ → ¬¬φ. This is precisely the reason why O. Becker named this modal axiom after L.E.J.
Brouwer (see Goldblatt [5], p. 315). Double negation may thus be seen as a strong possibility
operator.
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the preceding section ¬Kp → K¬Kp, which is an instance of this schema, was
falsified. Second, note that φ → ¬¬Kφ can also be falsified.21

In general, if RK were arbitrarily defined, the conditions for the validity of
(AK’) would be given by the following

Theorem 1 Let HAK’ be the class of Kripke frames for intuitionistic modal logic
fulf illing the condition

∀w∀v
(
wR≤v → ∃z

(
vR≤z ∧ ∀y

(
zRK y → wR≤y

)))

Then for any frame F
F |=i φ → ¬¬Kφ if f F ∈ HAK’

Proof See Appendix A.3. ��

But in the case of the RK we are working with the situation is more
complicated, since this relation is defined on a pre-given IKM and thus the
question now is whether there is a class of models defining (AK’). Finding a
necessary and sufficient condition for validity is more complex in this case.22

Nevertheless, it is possible to isolate a class MAK’ of models in which φ →
¬¬Kφ is valid but φ → Kφ is not. Theorem 2 gives a sufficiency condition for
(AK’) to be satisfied and for the anti-realist claim to be justified. This condition
is motivated by the first-order translation of (AK’); by the counterexample
offered in footnote 21; and, in particular, by the fact that this counterexample
seems at least as strong as J.P. Burgess’ discovery principle. The discovery
principle was so named in Burgess [2] and represents the temporal version
of (VT): i.e., φ → F Kφ, which says that every truth will, sooner or later, be
known. The result stated in the theorem is based on the following lemma.

Lemma 1 Let w be a point in a model such that, for every point v, if wRKv then
v ≡ w. Then, for every formula φ:

(1) w |=i φ if f ∀v such that wRKv, v |=i φ

(2) w �|=i φ if f ∀v such that wRKv, v �|=i φ

Proof See Appendix A.3. ��

From this lemma, the following theorem is derived.

21One just needs to consider a two-dimensional model based on the domain N × N, where
(n, k)R≤(n′, k′) iff n = n′ and k ≤N k′ (≤N is the usual ordering on natural numbers). Given
a propositional letter p, define V(p) as the set of (n, m) such that n ≥N 1 and m ≥N n. Then,
clearly, (0, 0) |= ¬p. At the same time, one can see that (0, 0) �|= ¬¬K¬p, since, at every (0, i), the
alternative (i + 1, i + 1) is accessible, although clearly (i + 1, i + 1) �|= ¬p (for (i + 1, i + 2) |= p).
22The hard task consists in showing that a given condition is necessary for (AK’) to be valid. In the
case of frames, e.g. in Theorem 1, this is done by proving that when the condition fails in a frame
one can define a falsifying model based on the same frame. But when working on a class of given
models one cannot so easily find a falsifying valuation.
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Fig. 2 Falsification of
φ → Kφ

Theorem 2 Let MAK’ be the subclass of models fulf illing the following condition.

∀w∀v
(
wR≤v → ∃z

(
vR≤z ∧ ∀z′ (zRKz′ → z′ ≡ z

)))

Then

|=i
MAK’ φ → ¬¬Kφ

Proof See Appendix A.3. ��

It is possible to show that the schema φ → Kφ can be falsified within the
class MAK’. This is the case of the model presented in Fig. 2. This model
fulfills the conditions of Theorem 2 for the simple reason that all successors
of w1,1 and w2,1 are informationally equivalent to these states, and there are no
epistemic alternatives. One may observe that w1,0 |=i ¬q and, since w1,0 RKw2,0
and w2,0 �|=i ¬q, then w1,0 �|=i K¬q. But, as I showed via the preceding result
(although it is also directly verifiable), one concludes that w1,0 |=i ¬¬K¬q.

As I mentioned, the condition on MAK’ is very strong. Despite the fact that
it is not necessary for (AK’) to hold (see Appendix),23 available counterex-
amples are cases in which RK stops branching at some point. These too are
cases in which every sort of indecision about empirical facts ends up being
settled, and that seems, as an assumption, at least as optimistic as the discovery
principle. As stressed by Burgess, this last is rather a theological principle and
is far from the anti-realist spirit. Finding a necessary condition for validating
(AK’), and not (AK), would thus be relevant for testing its possible acceptance
by an anti-realist.

Inside the class MAK’, one can also reconsider the other “bad” conse-
quences: i.e.,

1. ¬Kφ → ¬φ.
2. ¬Kφ ↔ ¬φ.
3. ¬(¬Kφ ∧ ¬K¬φ).

23The necessity of this condition for (AK’) has been an open question until the last stages of the
review process. I owe to Sebastian Enqvist a negative answer and the counterexample given in the
Appendix.
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In the semantics presented here, the condition imposed on MAK’ is also a
sufficient condition for (1): i.e., states in a MAK’-model where, for all informa-
tional upgrades, Kφ is never forced are states in which φ is also never forced.

Point (2) is an immediate consequence of (1) and of the converse of
factivity T; and it holds also in this class of models. More importantly, (3)
is a consequence of (2), since (¬Kφ ∧ ¬K¬φ) would be, by substitution of
equivalents, equivalent to the contradiction (¬φ ∧ ¬¬φ). One can prove that
(3) is also valid in the class MAK’. Consider an arbitrary point w in a MAK’-
model. There are two possible options. In the first, for some v such that wR≤v,
v |=i φ. In this case, by the defining condition of MAK’-models, there is also a
v′ such that vR≤v′ and v′ |=i Kφ. Thus it follows that w �|=i ¬Kφ (since wR≤v)
and, more generally, (i) w �|=i ¬K¬φ ∧ ¬Kφ. In the second, for all v such that
wR≤v, v �|=i φ. This implies, by the definition of negation, that w |=i ¬φ and, by
the condition on MAK’ models, that there is a z such that wR≤z and z |=i K¬φ.
Thus, w �|=i ¬K¬φ (since wR≤z), and then (i) w �|=i ¬K¬φ ∧ ¬Kφ.

In both cases w satisfies (i) and, since w was arbitrarily chosen, one
concludes that, for all v in every MAK’ model, v �|=i ¬K¬φ ∧ ¬Kφ. Finally, this
implies that ¬(¬K¬φ ∧ ¬Kφ) is valid in MAK’.

4.2 Building a Bridge

When considering two essentially different paradigms, such as classical and
intuitionistic logic, it is easy to take King Solomon’s position, following the
Quinean motto according to which changes in logic are changes in meaning.
At the same time, mutual comprehension is often possible, especially when
translations are available; and this is the case with Gödel’s translation of
intuitionistic propositional logic into classical modal logic. Moreover, Kripke
models represent a common semantic basis of interpretation for both lan-
guages. The Appendix includes a well-known translation (∗) between the
intuitionistic modal language with only one modal operator (taken to be the
K operator) and the language of classical modal logic with two operators.24

Since I interpreted the relation R≤ of intuitionistic Kripke models as a
temporal relation, it is natural to read �≤ (see the Appendix) as the temporal
operator G (the dual of F), signifying “it will always be the case that”. In the
Appendix, I introduce the system S4S4, for which the translation (∗) preserves
the theorems of the intuitionistic epistemic logic: i.e.,

�HS4 φ iff �S4S4 φ∗

24For the purposes of this paper, the translation of interest is the one given in Bozic and Dosen
[1]. More advanced and general mathematical results about classical bi-modal companions of
intuitionistic modal logics can be found in a work specifically dedicated to this topic: Wolter and
Zakharyaschev [13].
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Given canonicity, it also preserves deducibility for an arbitrary set � of
formulae

� �HS4 φ iff �∗ �S4S4 φ∗

This technical result has an important consequence for the debate between
the intuitionist and the classical logician: every hypothesis φ formulated by
the intuitionist logician can be rephrased by the classical logician as φ∗ in a
temporal-epistemic language given by the following fragment L∗ of the bi-
modal language.

L∗ ::= Gp | G¬ψ | φ ∧ ψ | φ ∨ ψ | G(φ → ψ) | Kψ

Moreover, if one translates back from classical into intuitionistic language, the
only propositions that the intuitionistic logician would accept as valid are the
theorems of S4S4 which belong to L∗. In order to obtain an intuitionistically
sound argument, one should translate the premises of the classical argument in
the same way.

Thus, if one formulates the verif ication thesis as φ → ¬¬Kφ then, for every
φ, one should (by classical logic) accept his translation, i.e. the schema

G
(
φ∗ → GF Kφ∗)

For example, given an atomic p, applying the knowability principle to it yields
G(Gp → GF KGp). The translation process can also shed light on the non-
omniscience hypothesis in Fitch’s derivation. In fact, that fundamental premise
cannot be formulated as (NO) φ ∧ ¬Kφ. If non-omniscience were represented
by this formula, this would constitute a possible objection to the intuitionistic
solution, since even the new version of the verification thesis presented here
(φ → ¬¬Kφ) would lead to a contradiction, if taken in conjunction with
ψ ∧ ¬Kψ . More precisely, it can easily be seen that substitution yields (ψ ∧
¬Kψ) → ¬¬K(ψ ∧ ¬Kψ), and that the consequent is likewise contradictory.
The intuitionistic logician would thus be forced to deny non-omniscience.

This problem is discussed in Williamson [11, 12]. Williamson’s suggestion is
that the intuitionistic logician should claim that ∃ψ(ψ ∧ ¬Kψ) is not a good
formulation for non-omniscience in Fitch’s derivation. He suggests replacing it
with:

(NO’) ¬∀φ(φ → Kφ).

This formulation is, on a classical but not on an intuitionistic approach,
equivalent to the first. The two formulations are also clearly distinguishable
from the point of view of Kripke semantics. If one interprets (NO) as saying
that there is a formula φ such that φ ∧ ¬Kφ, and (NO’) as saying that it is
not always the case that φ → Kφ, then it is clear that (NO) has (NO’) as a
consequence. Conversely, (NO’) is verified in the class of MAK’ models (i.e.,
there can be a point w and a formula ψ such that w |= φ and w �|= Kφ), whereas
there is no w and no φ in these models such that w |= φ and w |= ¬Kφ. Thus,
(NO’) does not have (NO) as a consequence.
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Given the translation (∗), we should translate φ ∧ ¬Kφ by:

φ∗ ∧ G¬Kφ∗

and, in the special case of atomic propositions, by:

Gp ∧ G¬KGp

Such a formula represents, for the classical logician, a strong assumption about
knowability. It means that there is a formula which will always be true, such
that the agent will never know that it will always be true. While this assumption
implies non-omniscience, it is much stronger than it and should rather be read
as claiming a less obvious epistemic pessimism.

Because of that, a problem remains for the intuitionistic solution: how,
intuitionistically, to formulate the non-omniscience assumption, according to
which there is an unknown truth: say, φ. It seems that one can only formulate
this meta-linguistically, by saying that φ is forced at some point where Kφ is
not forced. This fact will be problematic for many. It is probably one of the
reasons why J. van Benthem wrote, in van Benthem [8], that trying to solve
this paradox by weakening the logic is almost like turning down the volume of
the radio so as not to hear the bad news.

5 Conclusions

The goal of this paper was to provide a plausible semantics for the knowledge
operator, based on IKMs. I argued that the K operator introduced is well-
behaved, in some relevant sense, with respect to the features one may reason-
ably attribute to an ideal intuitionistic reasoner. The agent’s knowledge turns
out to be robust in relation to basic informational data but does not collapse
into truth. It fulfills the general conditions of a normal intuitionistic modal
logic. As explained in the beginning, the agent is assumed to be equipped
with perfect recall and unlimited computational abilities and resources. This
makes sense from the perspective of an ideal reasoner and that reasoner’s
informational state: having a perfect memory (in the sense of Definition 2.3)
makes it plausible, in the case of IKMs, that all the future temporal alternatives
are also epistemic ones. Discarding such a requirement would possibly allow
one to discard certain temporal alternatives from the set of epistemic ones
and so deviate to a non-normal modal logic. This will be desirable for those
who find that ideal features imposed by normality, like logical omniscience,
are highly problematic. Possible weakenings of these ideal conditions could be
an interesting topic for further research.

Nevertheless, the study of idealized limit cases is useful, at least in some
circumstances, one of which is the discussion on Fitch’s paradox. I was able
to show that, even under idealized capacities of the agent (given suitable as-
sumptions relating temporal ordering and epistemic accessibility), knowability,
if expressed by (AK’), need not entail actual knowledge (AK). The question
remains open whether all of that makes a case for the intuitionistic approach
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to Fitch’s paradox; but it can be, nevertheless, a useful means of clarification.
Indeed, my definition of K, together with a previously existing translation of
intuitionistic epistemic logic into classical temporal-epistemic logic (Section 4
and Appendix), allows a mutual understanding, within a common semantics,
for both the classical/realist logician and the intuitionistic/anti-realist one.

One of the main philosophical objections faced by an intuitionistic ap-
proach to Fitch’s paradox (and similar problems) concerns its expressiveness.
Intuitionistic semantics seem too poor to model certain aspects of common
discourse. First of all, true propositions that are verified at any point remain
true forever. This is reasonable when one speaks about the informational
data of an ideal agent; or if one supposes that propositions, once true, are
true forever. It may, however, be a problem if one wishes to deal with
contingent or ephemeral25 truths, such as “it is raining”. Such truths are in
common, even ubiquitous, linguistic use. A related problem is the intuitionistic
meaning of negation: the reading of ¬φ as “φ will never be true”, or “it is
impossible for φ to be true”, or “φ implies a contradiction” makes sense in
mathematical discourse; but it seems inappropriate for most everyday uses of
negation in propositions like “there is no milk”. From the point of view of
possible applications, one may hope for more refined semantic approaches to
be articulated, able to model many finer aspects of a constructivist empirical
reasoning.
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Appendix

A.1 Intuitionistic Modal Logic

A system HK of intuitionistic normal modal logic, with an operator �, was
presented in Bozic and Dosen [1], based on the following language L, where �

is a set of propositional variables:

L = � | ¬φ | φ ∨ ψ | φ ∧ ψ | φ → ψ | �φ

The operator � is not introduced, nor is it defined as ¬�¬.26

25The use of this adjective here reflects that of Burgess [2].
26Indeed, the two modal operators � and  are not interdefinable in a way that preserves their
usual universal/existential meaning, due to the peculiar role of negation in intuitionistic logic. For
this reason Bozic and Dosen [1] deals separately with axiomatic systems HK� with � (our HK),
HK� with �, and HK� with both � and � as primitive operators.
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The system HK consists of a first group of axiom schemata H1–H10 of
Heyting’s intuitionistic propositional calculus (H) along with the additional
modal axiom K.

(H1) φ → (ψ → φ)

(H2) (φ → (ψ → ζ )) → ((φ → ψ) → (φ → ζ ))

(H3) (ζ → φ) → ((ζ → ψ) → (ζ → φ ∧ ψ))

(H4) φ ∧ ψ → φ

(H5) φ ∧ ψ → ψ

(H6) φ → φ ∨ ψ

(H7) ψ → φ ∨ ψ

(H8) (φ → ζ ) → ((ψ → ζ ) → (φ ∨ ψ → ζ ))

(H9) (φ → ¬ψ) → (ψ → ¬φ)

(H10) ¬φ → (φ → ψ)

(K) �(φ → ψ) → (�φ → �ψ)

with the following inference rules:

(Subst) If � φ then � φσ

(MP) If � φ → ψ and � φ then � ψ

(�-gen) If � φ then � �φ

where φσ is any formula obtained from φ by uniform substitution. The abbre-
viation �HK φ (or, for an arbitrary system �, �� φ ) means that φ is a theorem
of HK (of �). Moreover, given a logic � and a set of formulae � ∪ {φ}, we say
that φ is �-deducible from � (written � �� φ) iff φ is a theorem of �, (�� φ),
or there are formulae ψ1, . . . , ψn ∈ � such that �� (ψ1 ∧ · · · ∧ ψn) → φ.

A set of formulae � is �-consistent if not every formula is �-deducible
from it. Otherwise it is �-inconsistent. It is not difficult to show that � is �-
inconsistent iff � �� ⊥, where ⊥ stands for the negation of a theorem: e.g.,
¬(φ → φ) (we will also use �, standing for ¬⊥).

Given the semantics introduced in Section 3.2, it can be shown, as in the
propositional case, that the crucial condition of monotonicity (also called
intuitionistic heredity) holds.27

Lemma 2 (Monotonicity) In every model M = (W, R≤, RM, V), for every
w, v ∈ W, if w |=i φ and wR≤v, then v |=i φ

Proof See Bozic and Dosen [1]. ��

27More specifically, the condition (2) R≤ RM ⊆ RM R≤ is necessary and sufficient to preserve
monotonicity.
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The notions of validity and logical consequence, with respect to the forcing
relation |=i, are defined as in classical logic. In particular, if S is a class of frames
contained in HK, then one should write |=i

S φ for “φ is valid in S” and � |=i
S φ

for “φ is a consequence, in the class S, of the set � of formulae”. The following
completeness result was proven in Bozic and Dosen [1].

Theorem 3 (Completeness) Consider the set of formulae � and a formula φ.
Then, the following holds:

� �HK φ if and only if � |=i
HK φ

The right-to-left part of the demonstration is a usual completeness-via-
canonicity one. The points in the canonical model are saturated sets of formu-
lae here. (They need not be maximally consistent sets as in the classical case.)
The following definitions introduce some key concepts.

Definition 5.1 (Deductive Closure) Let Cl(	) := {φ | 	 �� φ}. A set 	 of
formulae is deductively closed w.r.t. a logic � iff Cl(	) = 	.

Definition 5.2 (Disjunction Property) A set of formulae 	 has the disjunction
property iff for every couple of formulae φ, ψ , if φ ∨ ψ ∈ 	, then either φ ∈ 	

or ψ ∈ 	.

Definition 5.3 (Saturation) A set of formulae 	 is saturated iff:

(i) 	 is consistent.
(ii) 	 is deductively closed.

(iii) 	 has the disjunction property.

An important result, analogous to Lindenbaum’s Lemma, is the following:

Lemma 3 (Saturability) Let � be a logic containing H1-H10, 	 be a set of
formulae, and φ be a formula such that 	 ��� φ. Then, there is a saturated set
	+ such that 	 ⊆ 	+ and 	+ ��� φ.

We can then introduce the fundamental notion of a canonical model.

Definition 5.4 The canonical model for HK is the couple MHK = (FHK,

V HK), where FHK = (W HK, RHK≤ , RHK
M ) is defined as follows:

(1) W HK := {	 | 	 is saturated w.r.t. HK}.
(2) �RHK≤ 
 iff � ⊆ 
.
(3) �RHK

M 
 iff �� ⊆ 
 where �� := {φ | �φ ∈ �}
and V HK(p) = {� | p ∈ �}.
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It is not difficult to verify that FHK is a HK-frame and that the definition of
V HK is a good one: i.e., it respects monotonicity.

(a) If �RHK≤ 
, then � ∈ V HK(p) implies 
 ∈ V HK(p).

The completeness proof goes through the following truth lemma.

Lemma 4 (Truth Lemma) In the canonical model for HK, for every � and ev-
ery φ one has:

MHK, � |=i φ if f φ ∈ �

Completeness results for some extensions of HK are given in Dosen [4]. We
consider some axioms holding in most systems of classical modal logic, when
� is taken as an epistemic operator.

(D) �φ → ¬�¬φ

(T) �φ → φ

(4) �φ → ��φ

(5) ¬�φ → �¬�φ

along with the following systems:

1 HD = HK + D
2 HT = HK + T
3 HS4 = HK + T + 4
4 HS5 = HK + T + 4 + 5

Completeness results for these systems are given by the following theorem.

Theorem 4 (Completeness) HD, HT, HS4 and HS5 are sound and complete
respectively in the following classes of frames HD, HT, HS4 and HS5:

(a) HD is the class of frames where RM is serial.
(b) HT is the class of frames where RM is ref lexive.
(c) HS4 is the class of frames where RM is ref lexive and transitive.
(d) HS5 is the class of frames where RM is ref lexive, transitive, and satisf ies

the f irst-order condition ∀x, y(xRM R≤y → ∃t(xR≤t ∧ yRM R≤t)).

A.2 Embedding HK into Classical Bimodal Logic

It is a well-known result that intuitionistic propositional logic H can be
embedded into the system S4 of classical modal logic, via a translation (∗) from
the language of propositional logic into the language of modal logic such that:

�H φ iff �S4 φ∗

This translation can easily be extended into one that translates from intuition-
istic modal language to classical bi-modal language, as was shown by Bozic and
Dosen [1] and developed further in Wolter and Zakharyaschev [13].
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The intuition behind it is that a Kripke frame F = (W, R≤, RM) for intu-
itionistic modal logic can also serve as the basis for a model M = (W, R≤,

RM, Vc) of classical modal logic with two modalities—call them �≤ and �M—
where Vc is a classical valuation on possible worlds that can be extended to
a classical satisfaction relation |=c (the superscript c is adopted in order to
distinguish the classical from the intuitionistic satisfaction relation), where the
satisfaction clauses for modalities are, as usual:

(a) w |=c �≤φ iff for all w′, such that wR≤w′, w′ |=c φ

(b) w |=c �Mφ iff for all w′, such that wRMw′, w′ |=c φ

The following result defines (in classical terms) the class of the HK-frames
among other Kripke frames.

Theorem 5 (HK-Frames) Let F = (W, R≤, RM) be a bi-relational frame. Then:

F |=c �M�≤φ → �≤�Mφ if f R≤ RM ⊆ RM R≤

Proof Easy (see Bozic and Dosen [1]). ��

We are mainly interested in the following system S4S4:

P All tautologies of classical propositional calculus.
�≤1 �≤(φ → ψ) → �≤φ → �≤ψ

�≤2 �≤φ → φ

�≤3 �≤φ → �≤�≤φ

�M1 �M(φ → ψ) → �Mφ → �Mψ

S4K �M�≤φ → �≤�Mφ

�M2 �Mφ → φ

�M3 �Mφ → �M�Mφ

with the usual rules of modus ponens, substitution, and generalization for both
modalities.

This system is easily shown to be classically sound and complete with respect
to the class of HS4-frames. This result can be derived from Theorem 5 and the
canonicity of the axioms of S4.28 Now, consider the following translation ∗:

p∗ = �≤ p

(φ ∧ ψ)∗ = φ∗ ∧ ψ∗

(φ ∨ ψ)∗ = φ∗ ∨ ψ∗

(φ → ψ)∗ = �≤(φ∗ → ψ∗)

(¬φ)∗ = �≤¬φ∗

(�φ)∗ = �Mφ∗

28This result is a simple extension of the characterization of HK-frames given in Bozic and Dosen
[1].
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In the following lemmata, M will be a HK-model, and M∗ will be a classical
bi-relational model based on the same frame.

Lemma 5 If, for every w and every p, M, w |=i p if f M∗, w |=c p∗, then for
every φ M, w |=i φ if f M∗, w |=c φ∗

Proof The proof is done by induction on the complexity of formulae (see Bozic
and Dosen [1]). ��

Given this, the following theorem can be proven (see Bozic and Dosen [1]):

Theorem 6 Consider the class HK of bi-relational frames for intuitionistic
modal logic. Then:

|=i
HK φ if f |=c

HK φ∗

This result can be extended in a straightforward way in order to obtain:

Corollary 1 Given the class HS4:

|=i
HS4 φ if f |=c

HS4 φ∗

Given these equivalences along with the completeness results for intuition-
istic and classical modal logic, the following result is immediate:

Theorem 7

�HS4 φ if f �S4S4 φ∗

If we take �≤ to be the temporal operator G and �M to be the epistemic K
this theorem provides the translation discussed in Section 4.

A.3 Theorems of Section 4.1

Proof of Theorem 1 The right-to-left direction can be proved by contraposi-
tion. Suppose that φ → ¬¬Kφ is not valid. Then, for some w, (a) w |= φ and
w �|= ¬¬Kφ. This means that for some v such that wR≤v, v |= ¬Kφ. Thus, for
all z such that vR≤z, z �|= Kφ, i.e. that for some y such that zRK y, (b) y �|= φ.
But, by the condition on HAK’ we have that, for at least some of these y, (c)
wR≤y and a contradiction would follow from (a), (b), (c) and the condition of
monotonicity.

For the left-to-right direction, suppose that the condition of HAK’ does
not hold. This means that there are w and v such that wR≤v and for all z
such that vR≤z (this set is non empty because R≤ is reflexive) there is a y
such that zRK y and y is not a R≤-successor of w. We can define V(p) :=
{x | x is a R≤-successor of w} (V(p) respects the condition 3 of Section 3.1, so
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the model obtained is an IKM). It is straightforward to check that w |= p but
w �|= ¬¬Kp, because v |= ¬Kp. So the formula φ → ¬¬Kφ is not valid. ��

Proof of Lemma 1 The proof works by induction from the complexity of φ.
The direction (⇐) of (1) and (2) is already given by the reflexivity of RK. For
the direction (⇒) one may proceed as follows.

(a) If φ = p, then the result follows immediately from the definition of RK

and from the condition on the accessible states.
(b) If φ = ¬ψ then, for what concerns (1), if w |=i φ then w �|=i ψ ; and thus,

by the induction hypothesis, for every v such that wRKv, one finds that
v �|=i ψ . It follows from the definition of RK that, for every v′, if vR≤v′
then wRKv′; and, by consequence, v′ �|=i ψ . This implies by the clause on
negation that v |=i ¬ψ ; and so the result is proved.

For what concerns (2), if w �|=i ¬ψ , there are two possible cases. In the first,
w |=i ψ and, by the induction hypothesis, for every v such that wRKv, v |=i ψ .
Thus, it holds a fortiori that v �|=i ¬ψ . In the second, w �|=i ψ , which implies,
by the induction hypothesis, that, for every v such that wRKv, v �|=i ψ . Since
w �|=i ¬ψ , one must also conclude that there is some z such that wR≤z and
z |=i ψ . Since R≤ ⊆ RK, one also concludes that wRKz, and so one derives a
contradiction.

(c) φ = ψ ∧ ζ . Immediate.
(d) φ = ψ ∨ ζ . Immediate.
(e) φ = ψ → ζ . If w |=i ψ → ζ , then we could have w |=i ψ and w |=i ζ . This

will be the case, by the induction hypothesis, for every v which is RK-
accessible, and which should then satisfy v |=i ψ → ζ . Otherwise w �|=i ψ ;
but this implies, by the induction hypothesis, that, for every v which is RK-
accessible, and thus for every one of its successors, v �|=i ψ . This further
implies, by the forcing clause, that v |=i ψ → ζ .

For what concerns (2), if w �|=i ψ → ζ , there are two possible cases. The first
is that w |=i ψ and w �|=i ζ ; this implies, by the induction hypothesis, that, for
all RK-accessible v, v |=i ψ and v �|=i ζ . Thus, v �|=i ψ → ζ . On the other hand,
if w �|=i ψ and w �|=i ζ , then we have, by the induction hypothesis, that for all
v which are RK-accessible from w, v �|=i ψ ; this implies a fortiori that, for all
v which are R≤-accessible from w, v �|=i ψ and w |=i ψ → ζ , which contradicts
the hypothesis.

(f) φ = Kψ . For what concerns (1), if w |=i Kψ then, by Axiom 4, w |=i

KKψ and, for all v such that wRKv, w |=i Kψ .

In the case of (2), if w �|=i Kψ then, again, there are two possible cases. The
first is that w |=i ψ ; but then, by the induction hypothesis, every accessible
v is such that v |=i ψ ; and this implies, by the satisfaction clause of K, that
w |=i Kψ , thereby yielding a contradiction. Otherwise w �|=i ψ ; then; for every
accessible v, v �|=i ψ and, since the accessibility relation is reflexive, v �|=i Kψ .
This is what we set out to prove. ��
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From this the following result follows

Proof of Theorem 2 Given a point w and a formula φ, there are two possible
cases. In the first, w |=i φ; then, from the supposed condition, for all v such
that wR≤v, there exists some z such that vR≤z and such that every point RK-
accessible from z is equivalent to z. Moreover, z |=i φ by the monotonicity
condition, and thus, from point (1) of the preceding lemma, one finds that z |=i

Kφ. Thus one proves that every successor v of w has a successor z satisfying
Kφ; and this implies, by the satisfaction clause of negation, that w |=i ¬¬Kφ.

Otherwise, if w �|=i φ, then either it is the case that every R≤-successor v is
such that v �|=i φ, from which it follows that w |=i φ → ¬¬Kφ ; or else there is
some v such that v |=i φ. One can then reproduce the same reasoning from the
preceding point in order to find some R≤-successor z such that z |=i Kφ, thus
implying that w |=i ¬¬Kφ. Thus the proof is complete. ��

The last proof, due to Sebastian Enqvist, is a counterexample showing a
model not in MAK’ which validates φ → ¬¬Kφ (but not φ → Kφ).

The condition on MAK’ is not necessary for (AK’) Let p1, p2 . . . be an enu-
merated set of propositional variables. Consider a model M consisting of the
following components:

• W consists of all pairs (0,0), (0,1), (0,2) . . . and all pairs (1,0), (1,1), (1,2) . . .
• R≤ is defined by setting (i, j)R≤(k, l) iff i = k and j ≤ l
• The valuation V makes true, at each world (0, n) with n ≥ 1, precisely

the propositional variables in the set {p1, . . . , pn}, and makes true no
propositional variables at all at any point either of the form (1, n) or (0, 0).

This model is not in the class MAK’: for we have (0, 0)R≤(0, 0) but for
any n ≥ 0 there is some n′, say n + 1, such that (0, n)RK(0, n′) but clearly
not (0, n) ≡ (0, n′). However, the formula φ → ¬¬Kφ is valid in this model.
Indeed, supposing that (i, n) |= φ, we can show that (i, n) |= ¬¬Kφ and the
result follows a fortiori. There are two cases to consider.

(a) i = 0. Then (0, m)R≤(0, m + 1) and it is easy to see that if (0, m + 1)

RK(z, z′) then we must have z = 0 and z′ ≥ m + 1 (since pm+1 is true
at (0, m) but false at any world with first component 1). So (0, m + 1)

R≤(z, z′) and then (0, n)R≤(z, z′). Thus, by monotonicity (z, z′) |= φ. This
shows that (0, m + 1) |= Kφ and so, since (0, m)R≤(0, m + 1) it is not the
case that (0, m) |= ¬Kφ, which is what we wanted to prove.

(b) i = 1. Then (1, m)R≤(1, m + 1), and it is easy to show that if (1, m + 1)

RK(z, z′) we must have z = 1 and z′ ≤ m + 1. We shall use the fact that in
any model, if xRK y, then y cannot have fewer predecessors than x. Since
m + 1 > 0, Pr((1, m + 1)) has at least two members, hence we cannot
have z = 0 since any predecessors of (z, z′) would then have to have first
component 0, and there is only one such world in W that satisfies the same
atomic formulas as (1, m + 1), namely (0, 0). Also, if we had z′ < m + 1,
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then (z, z′) = (1, z′) would have to have fewer predecessors than (1, m +
1). So we know that z = 1 and z′ ≥ m + 1. Hence (1, m + 1)R≤(z, z′) and
so (1, m)R≤(z, z′). So, by monotonicity, we have (z, z′) |= φ. This shows
that (1, m + 1) |= Kφ, and so it is not the case that (1, m) |= ¬Kφ, which
is what we wanted to prove.

So the model validates φ → ¬¬Kφ even though it does not satisfy the condi-
tion of the class MAK’. However, it does not validate φ → Kφ: ¬p1 is true at
(1, 0), but (1, 0)RK(0, 0) and ¬p1 is false at (0, 0), so K¬p1 is false at (1, 0). ��
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