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Abstract We study belief change in the branching-time structures introduced
in Bonanno (Artif Intell 171:144–160, 2007). First, we identify a property of
branching-time frames that is equivalent (when the set of states is finite) to
AGM-consistency, which is defined as follows. A frame is AGM-consistent
if the partial belief revision function associated with an arbitrary state-instant
pair and an arbitrary model based on that frame can be extended to a full belief
revision function that satisfies the AGM postulates. Second, we provide a set
of modal axioms that characterize the class of AGM-consistent frames within
the modal logic introduced in Bonanno (Artif Intell 171:144–160, 2007). Third,
we introduce a generalization of AGM belief revision functions that allows
a clear statement of principles of iterated belief revision and discuss iterated
revision both semantically and syntactically.

Keywords Branching time · Belief revision · Information ·
Iterated belief revision · Plausibility ordering

1 Introduction

The seminal contributions of Hintikka [16] and Alchourrón, Gärdenfors and
Makinson (AGM) [1] have given rise to two separate strands in the literature,
one dealing with static belief and the other with belief revision. The analysis
of static belief is carried out within the framework of modal logic and Kripke
[20] structures, while in the AGM approach beliefs are represented as sets of
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formulas and belief revision as a function that associates with a set of for-
mulas K (thought of as the initial beliefs) and formula φ (thought of as new
information) a new belief set K∗

φ representing the revised beliefs. In [4] a new
framework was proposed aimed at bringing the AGM theory of belief revision
within the scope of modal logic by representing the AGM postulates as axioms
in a modal language. Since belief revision deals with the interaction of belief
and information over time, the proposed framework was based on branching-
time temporal logic. Besides the next-time temporal operator, the logic con-
tained a modal operator for belief and a modal operator for information. In this
paper we further develop the analysis of [4] by establishing a stronger corre-
spondence between the proposed logic and the AGM theory. In particular, we
characterize the conditions under which the “partial” belief revision function
induced at a state-time pair (by an arbitrary interpretation of a branching-
time belief revision frame) can be extended to a full belief revision function
satisfying the AGM postulates. This is done both semantically (Proposition 6)
and syntactically (Proposition 9). We also generalize (Sections 5 and 6) the
AGM belief revision functions to iterated belief revision functions and show
that well-known principles of iterated belief revision can be represented as
modal axioms. The remainder of this section provides an intuitive review of
the branching-time structures introduced in [4] and a more detailed account of
the main results.

Static beliefs are usually modeled semantically by means of Kripke frames
〈�,B〉, where � is a set of states (or possible worlds) and B is a binary
relation on �. The interpretation of ωBω′ is that at state ω the agent considers
state ω′ possible. If S is a set of atomic formulas, one obtains a model based
on the frame 〈�,B〉 by adding a valuation V : S → 2� which specifies, for
each atomic formula p, the set of states at which p is true. Rules are then
given for determining the truth set of an arbitrary formula φ and the agent
is said to believe φ at a state ω if and only if φ is true at every state that
she considers possible at ω (that is, if φ is true at every state ω′ such that
ωBω′). The natural way to extend this approach to belief change would be to
consider a sequence {〈�,B0〉 , 〈�,B1〉 , ..., 〈�,Bt〉 , ...} of Kripke frames, where
Bt represents the beliefs of the agent at time t. However, such an extension
is not sufficient to provide a bridge to the AGM theory of belief revision for
two reasons: (1) the stimulus prompting the change in beliefs (which in the
AGM theory is an informational input) is not modeled explicitly and (2) some
of the AGM postulates require a comparison between the revised belief sets
that arise in response to different informational inputs. In order to take care
of the latter issue, in [4] branching-time frames were used, where an instant
t can have multiple immediate successors. The former issue was dealt with
by associating with each instant t not only a belief relation Bt but also an
information relation It (on the set of states �). The interpretation of ωItω

′
is that at state ω and according to the information received by the agent at
time t, state ω′ is a possibility. In a model based on the frame, at a state-instant
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pair (ω, t) the agent believes a formula φ if -as usual–φ is true at every state
ω′ such that ωBtω

′; on the other hand, the agent is said to be informed that
ψ if the truth set of ψ , denoted by ‖ψ‖ , coincides with set of states that are
reachable from ω by means of the relation It (that is, if ω′ ∈ ‖ψ‖ if and only if
ωItω

′). This requirement captures the notion that the agent is informed that,
and only that, ψ is the case. This semantic condition was used before in the
literature to capture the notion that “all the agent knows is that ψ ” [17, 22].
Thus, in a model based on a branching-time belief revision frame each state-
instant pair (ω, t) gives rise to an “initial” belief set K (the set of formulas
that the agent believes at (ω, t)) and a collection of potential informational
inputs (the formulas of which the agent is informed at the immediate successors
of instant t and at state ω) together with the associated new beliefs. Hence
each state-instant pair (ω, t) induces a “partial” belief revision function (partial
in the sense that not every formula is a potential informational input). We
investigate under what conditions such a partial belief revision function can be
extended to a “full” AGM belief revision function (full in the sense that the
AGM functions consider every formula as a potential informational input).
We show (Proposition 6) that a necessary and sufficient condition—when the
set of states � is finite—is that there exist a total pre-order R of � that
rationalizes belief revision at (ω, t), in the sense that both at instant t and
at its immediate successors (and at state ω) the states that the agent considers
possible (according to the belief relations) are the R-maximal states among
the ones that are compatible with the information received. We also provide a
property on frames that is equivalent to the existence of such a total pre-order
and is directly verifiable on the frame itself. We use the expression “AGM-
consistent” to refer to a frame that satisfies any of these three equivalent
properties.

In Section 4 we turn to the associated modal logic introduced in [4] and
provide a set of axioms that characterizes the class of AGM-consistent
branching-time belief revision frames (Proposition 9). Finally, in Sections 5
and 6, we address the issue of iterated belief revision. First, we discuss the
semantic and syntactic modal correspondents of some well-known principles
of iterated belief revision. Then we introduce a generalization of AGM belief
revision functions that can be used to model iterated revision and show that
every model based on an AGM-consistent branching-time frame gives rise to
such an iterated belief revision function. One advantage of the iterated belief
revision functions is that they allow a precise formulation of what an epistemic
state is and how an informational input transforms a epistemic state into a
new one.

The paper is organized as follows. In the next section we briefly review
the AGM theory of belief revision [1], while in Section 3 we review the
branching-time belief revision frames introduced in [4] and establish the link
between such frames and AGM belief revision functions through the notion
of interpretation or model. The main result of this section is Proposition 6
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which establishes three equivalent properties of branching-time belief revision
frames, one of which is the ability to extend the partial belief revision function
induced (at a state-instant pair) by an arbitrary interpretation of the frame
to a full AGM belief revision function. In Section 4 we turn to the modal
logic introduced in [4], which is the syntactic counterpart of the branching-
time belief revision frames, and in Proposition 9 we provide an axiomatic
characterization of the class of AGM-consistent frames. Sections 5 and 6 are
devoted to a discussion of iterated belief revision and the last section discusses
related literature. All the proof are given in the Appendix.

The original contribution of this paper is contained in Propositions 6 and 9.
To the best of our knowledge, the definition of iterated belief revision function
put forward in Section 6 is also new.

2 AGM Belief Revision Functions

In this section we briefly review the AGM theory of belief revision [1].1 Let �

be the set of formulas of a propositional language based on a countable set S of
atomic formulas (or sentence letters).2 Given a subset K ⊆ �, its PL-deductive
closure [K]PL (where ‘PL’ stands for Propositional Logic) is defined as follows:
ψ ∈ [K]PL if and only if there exist φ1, ..., φn ∈ K (with n ≥ 0) such that (φ1 ∧
... ∧ φn) → ψ is a tautology (that is, a theorem of Propositional Logic). A set
K ⊆ � is consistent if [K]PL �= � (equivalently, if there is no formula φ such
that both φ and ¬φ belong to [K]PL). A set K ⊆ � is deductively closed if
K = [K]PL. A belief set is a set K ⊆ � which is deductively closed.

Let K be a consistent belief set representing the agent’s initial beliefs and let
� ⊆ � be a set of formulas representing possible items of information. A belief
revision function based on K is a function BK : � → 2� (where 2� denotes
the set of subsets of �) that associates with every formula ψ ∈ � (thought of
as new information) a set BK(ψ) ⊆ � (thought of as the revised beliefs).3 If
� �= � we call BK a partial belief revision function, while if � = � then BK is
called a full belief revision function.

Definition 1 Let BK : � → 2� be a (partial) belief revision function and
B∗

K : � → 2� a full belief revision function. We say that B∗
K is an extension of

BK if, for every ψ ∈ �, B∗
K(ψ) = BK(ψ).

1For a more detailed account see [14, 37].
2Thus � is defined recursively as follows: if p ∈ S then p ∈ � and if φ,ψ ∈ � then ¬φ ∈ � and

(φ ∨ ψ) ∈ �. The connectives ∧ and → are defined as ususal: φ ∧ ψ
def= ¬(¬φ ∨ ¬ψ) and φ →

ψ
def= ¬φ ∨ ψ .

3In the literature it is common to use the notation K ∗ ψ or K∗
ψ instead of BK(ψ), but for our

purposes the latter notation is clearer.
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Definition 2 A full belief revision function is called an AGM revision function
if it satisfies the following properties, known as the AGM postulates: ∀φ,

ψ ∈ �,

(AGM1) BK(φ) = [BK(φ)]PL

(AGM2) φ ∈ BK(φ)

(AGM3) BK(φ) ⊆ [K ∪ {φ}]PL

(AGM4) if ¬φ /∈ K, then [K ∪ {φ}]PL ⊆ BK(φ)

(AGM5) BK(φ) = � if and only if φ is a contradiction
(AGM6) if φ ↔ ψ is a tautology then BK(φ) = BK(ψ)

(AGM7) BK(φ ∧ ψ) ⊆ [BK(φ) ∪ {ψ}]PL

(AGM8) if ¬ψ /∈ BK(φ), then [BK(φ) ∪ {ψ}]PL ⊆ BK(φ ∧ ψ).

AGM1 requires the revised belief set to be deductively closed.
AGM2 requires that the information be believed.
AGM3 says that beliefs should be revised minimally, in the sense

that no new formula should be added unless it can be
deduced from the information received and the initial
beliefs.4

AGM4 says that if the information received is compatible with
the initial beliefs, then any formula that can be deduced
from the information and the initial beliefs should be part
of the revised beliefs.

AGM5 requires the revised beliefs to be consistent, unless the
information φ is a contradiction (that is, ¬φ is a tautol-
ogy).

AGM6 requires that if φ is propositionally equivalent to ψ then
the result of revising by φ be identical to the result of
revising by ψ .

AGM7 and AGM8 are a generalization of AGM3 and AGM4 that

“applies to iterated changes of belief. The idea is that if BK(φ) is a revision
of K [prompted by φ] and BK(φ) is to be changed by adding further
sentences, such a change should be made by using expansions of BK(φ)

whenever possible. More generally, the minimal change of K to include
both φ and ψ (that is, BK(φ ∧ ψ)) ought to be the same as the expansion
of BK(φ) by ψ , so long as ψ does not contradict the beliefs in BK(φ)”
(Gärdenfors [14], p. 55; notation changed to match ours).

4Note that, for every formula ψ , ψ ∈ [K ∪ {φ}]PL if and only if (φ → ψ) ∈ K (since, by hypothesis,
K = [K]PL).
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3 Branching-time Belief Revision Frames and Models

We now turn to the semantic frames introduced in [4], which provide a way
of modeling the evolution of an agent’s beliefs over time in response to
informational inputs, and establish a connection between these frames and the
AGM belief revision functions.

A next-time branching frame is a pair 〈T, �〉 where T is a set of instants and
� is a binary relation on T satisfying the following properties: ∀t1, t2, t3 ∈ T,

1. if t1 � t3 and t2 � t3 then t1 = t2,
2. if 〈t1, ..., tn〉 is a sequence in T with ti � ti+1, for every i = 1, ..., n − 1, then

tn �= t1.

The interpretation of t1 � t2 is that t2 is an immediate successor of t1 or t1 is
the immediate predecessor of t2 : every instant has at most a unique immediate
predecessor but can have several immediate successors. We denote the set of
immediate successors of t ∈ T by t�, that is, t� = {

t′ ∈ T : t � t′
}
.

A branching-time belief-information frame is a tuple 〈T, �, �, {It,Bt}t∈T〉
where 〈T, �〉 is a next-time branching frame, � is a set of states and, for every
t ∈ T, It and Bt are binary relations on � , the first representing information
and the latter beliefs. The interpretation of ωItω

′ is that at state ω and time
t—according to the information received—it is possible that the true state is
ω′. On the other hand, the interpretation of ωBtω

′ is that at state ω and time
t, in light of the information received, the agent considers state ω′ possible (an
alternative expression is “ω′ is a doxastic alternative to ω at time t”). We shall
use the following notation:

It(ω) = {
ω′ ∈ � : ωItω

′} and, similarly, Bt(ω) = {
ω′ ∈ � : ωBtω

′} .

Thus It(ω) is the set of states that are reachable from ω according to the
relation It and similarly for Bt(ω).

Definition 3 A branching-time belief revision frame is a frame 〈T, �, �,

{It,Bt}t∈T〉 that satisfies the following properties: ∀ω ∈ �, ∀t, t′, t′′ ∈ T:

1. Bt(ω) ⊆ It(ω)

2. Bt(ω) �= ∅

3. if t � t′, t � t′′ and It′(ω) = It′′(ω) then Bt′(ω) = Bt′′(ω)

4. if t � t′ and Bt(ω) ∩ It′(ω) �= ∅ then Bt′(ω) = Bt(ω) ∩ It′(ω).

Property 1 says that information is believed and Property 2 that beliefs are
consistent. The two together imply that It(ω) �= ∅, that is, that information
itself is consistent.5

5Thus we rule out inconsistent information. As pointed out in [12], it is not clear how one could
be informed of a contradiction or, at least, how one could treat a contradiction as information.
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Property 3 requires that at any two instants that share the same immediate
predecessor, if information is the same then beliefs must be the same. That is,
differences in beliefs must be due to differences in information.

Property 4 is called the ‘Qualitative Bayes Rule’ (QBR) in [4], based on
the following observation. In a probabilistic setting, let Pω,t be the probability
measure over a set of states � representing the agent’s probabilistic beliefs at
state ω and instant t, let F ⊆ � be an event representing the information re-
ceived by the agent at a later instant t′ and let Pω,t′ be the posterior probability
measure representing the revised beliefs at state ω and instant t′. Bayes’ rule
requires that, if Pω,t(F) > 0, then, for every event E ⊆ �, Pω,t′(E) = Pω,t(E∩F)

Pω,t(F)
.

Bayes’ rule thus implies the following (where supp(P) denotes the support of
the probability measure P):

if supp
(
Pω,t

) ∩ F �= ∅, then supp
(
Pω,t′

) = supp
(
Pω,t

) ∩ F.

If we set Bt(ω) = supp(Pω,t), F = It′(ω), with t � t′, and Bt′(ω) = supp(Pω,t′)

then we get Property 4. Thus in a probabilistic setting the proposition “the
agent believes that φ” would be interpreted as “the agent assigns probability 1
to the set of states where φ is true”.

Figure 1 shows a branching-time belief revision frame. For simplicity, in all
the figures we assume that, for every instant t, the information relation It is

t 0
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t
4 t
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α β γ

β γ

δ ε
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α γ

β ε δ

α
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δ
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γ ε
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Fig. 1 A branching-time belief revision frame
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an equivalence relation (whose equivalence classes are denoted by rectangles)
and the belief relation Bt is transitive and euclidean.6 An arrow from ω to ω′
means that ω′ ∈ Bt(ω) (or ωBtω

′, that is, ω′ is reachable from ω according to the
relation Bt). Note, however, that none of the results below require It to be an
equivalence relation (in particular, veridicality of information is not assumed),
nor do they require Bt to be transitive and euclidean.

For example, in Fig. 1 at state α and instant t3 the agent is informed that the
true state is either α, γ or ε (It3(α) = {α, γ, ε}) and (incorrectly) believes that
it is either γ or ε (Bt3(α) = {γ, ε}). At the next instant t4 (and still at state α)
the agent is now informed that the true state is either α or ε (It4(α) = {α, ε})
and forms the revised (and still incorrect) belief that the true state is ε. On
the other hand, t5 is an alternative next instant to t3 and at t5 (and still at
state α) the agent’s information is It5(α) = {α, δ} and she forms the revised
(and now correct) belief that the true state is α (Bt5(α) = {α}). Note that all
the properties of Definition 3 are satisfied. In particular the Qualitative Bayes
Rule is satisfied everywhere: sometimes vacuously (as is the case at state α and
instants t3 and t5 where Bt3(α) ∩ It5(α) = ∅) and sometimes non-trivially (as is
the case at state α and instants t3 and t4 where Bt3(α) ∩ It4(α) = Bt4(α) = {ε}).

Given a branching-time belief revision frame one obtains a model based on
it by adding a valuation that associates with every atomic proposition p the
set of states at which p is true. Note that, by defining a valuation this way,
we frame the problem as one of belief revision, since the truth value of an
atomic proposition depends only on the state and not on the time.7 Let S be
a countable set of atomic formulas and � the set of propositional formulas
built from S. Given a frame F = 〈T, �, �, {It,Bt}t∈T〉, a model based on (or an
interpretation of ) F is obtained by adding to F a valuation V : S → 2�.8 Truth
of an arbitrary formula φ ∈ � at state ω in model M is denoted by ω |=M φ

and is defined recursively as follows:

(1) for p ∈ S, ω |=M p if and only if ω ∈ V(p),
(2) ω |=M ¬φ if and only if ω �|=M φ, and
(3) ω |=M (φ ∨ ψ) if and only if either ω |=M φ or ω |=M ψ (or both).

The truth set of formula φ in model M is denoted by ‖φ‖M; thus ‖φ‖M =
{ω ∈ � : ω |=M φ}.

In a given model, the truth of each formula is thus time-independent, that
is, the state is sufficient to determine truth (indeed, this is the essence of belief

6Bt is transitive if ω′ ∈ Bt(ω) implies that Bt(ω
′) ⊆ Bt(ω); it is euclidean if ω′ ∈ Bt(ω) implies that

Bt(ω) ⊆ Bt(ω
′). Property 2 of Definition 3 is usually referred to as seriality.

7The branching-time structures of Definition 3 can be used to describe either a situation where the
objective facts describing the world do not change—so that only the beliefs of the agent change
over time—or a situation where both the facts and the doxastic state of the agent change. In the
literature the first situation is called belief revision, while the latter is called belief update: see [19].
In this paper we restrict attention to belief revision.
8If instead of belief revision we were interested in belief update, then we would need to define a
valuation as a function V : S → 2�×T .
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revision as opposed to belief update). Nevertheless, beliefs and information
may change over time. For example, while an atomic formula p may be true
at state ω (and thus at any state-instant pair (ω, t), for every instant t), the
agent may believe ¬p at state ω and instant t1 and then—upon being informed
that p—switch to believing p at state ω and instant t2 (with t2 an immediate
successor of t1). Similarly, what information the agent receives will depend not
only on the state but also on time. In other words, if t �= t′ typically the relation
Bt will be different from Bt′ (similarly, It will be different from It′).

Definition 4 Given a model M = 〈T, �, �, {It,Bt}t∈T , V〉, a state ω ∈ �, an
instant t ∈ T and formulas φ, ψ ∈ � we say that

• at (ω, t) the agent is informed that ψ if and only if It(ω) = ‖ψ‖M,
• at (ω, t) the agent believes that φ if and only if Bt(ω) ⊆ ‖φ‖M .

Note that for information we require equality of the two sets (as explained
in the Introduction, this captures the idea of ‘being informed precisely that ψ ’
and corresponds to the notion of ‘only knowing’ introduced in [17, 22]), while
for belief we use the standard requirement that Bt(ω) be a subset of the truth
set of a formula.

Given a model M and a state-instant pair (ω, t), according to Definition 4
we can associate with (ω, t) a belief set and a (typically partial) belief revision
function as follows. Let

KM,ω,t = {
φ ∈ � : Bt(ω) ⊆ ‖φ‖M

}
, (1)

denote the set of formulas that the agent believes at (ω, t), that is, his (initial)
belief set at (ω, t). It is straightforward to show that KM,ω,t is a consistent and
deductively closed set. Let

�M,ω,t = {
ψ ∈ � : ‖ψ‖M = It′(ω) for some t′ ∈ t�

}
(2)

be the possible items of information that the agent might receive next time
(that is, at some immediate successor of t: recall that t� = {t′ ∈ T : t � t′} ).
Finally let BKM,ω,t : �M,ω,t → 2� be defined as9

BKM,ω,t(ψ) = {
φ ∈ � : Bt′(ω) ⊆ ‖φ‖M for t′ ∈ t� with It′(ω) = ‖ψ‖M

}
. (3)

That is, if at the immediate successor t′ of t the agent is informed that ψ

(It′(ω) = ‖ψ‖M), then his revised belief set is given by the set of formulas that
he believes at (ω, t′):

{
φ ∈ � : Bt′(ω) ⊆ ‖φ‖M

}
.

For example, consider a model of the frame illustrated in Fig. 1 above where,
for some atomic formulas p1, p2, p3 and q, V(p1) = {α, γ, δ} = It1(α), V(p2) =
{α, δ, ε} = It2(α), V(p3) = {α, γ, ε} = It3(α) and V(q) = {γ }. Then the initial
beliefs at (α, t0) are given by the (consistent and deductively closed) set Kα,t0 =
{φ ∈ � : β |= φ}. The set �α,t0 of potential informational inputs at (α, t0) is

9This function is well defined because of Property 3 of Definition 3.
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rather small; for example, while p1, p2, p3 ∈ �α,t0 , (p1 ∨ p2) /∈ �α,t0 . Thus the
associated belief revision function BKα,t0

is a partial belief revision function.
As an example we have that ¬q, p3 ∈ BKα,t0

(p2) [because It2(α) = ‖p2‖ and
Bt2(α) = {ε} ⊆ ‖¬q‖ ∩ ‖p3‖]; thus, since ¬q, ¬p3 ∈ Kα,t0 [because Bt0(α) = {β}
and β |= ¬q and β |= ¬p3], the agent initially believes both ¬q and ¬p3 and,
upon being informed that p2 (at (α, t2)) she revises her beliefs by retaining
the belief that ¬q but switching from believing that ¬p3 to believing that p3.
A natural question to ask is whether this partial belief revision function is
compatible with the AGM postulates, in the sense that there exists a full belief
revision function B∗

K that satisfies the AGM postulates and is an extension
of BKα,t0

(see Definition 1). In this case the answer is negative. This can be
proved as follows. To simplify the notation we shall drop the subscripts a, t0;
thus we write K instead of Kα,t0 , BK instead of BKα,t0

, etc. Suppose that B∗
K

is an AGM extension of BK. Then, since p2 ∈ BK(p1) and p2 ∈ BK(p2) (and
BK(p1) = B∗

K(p1) and BK(p2) = B∗
K(p2)) it follows that10

p2 ∈ B∗
K (p1 ∨ p2) . (4)

Thus B∗
K((p1 ∨ p2) ∧ p2) = B∗

K(p1 ∨ p2).11 Since (p1 ∨ p2) ∧ p2 is equivalent
to p2, by AGM6 B∗

K((p1 ∨ p2) ∧ p2) = B∗
K(p2). Thus (since BK(p2) = B∗

K(p2))

B∗
K(p1 ∨ p2) = BK(p2). (5)

Since p3 ∈ BK(p2),
[
BK(p2) ∪ {p3}

]PL = [
BK(p2)

]PL = BK(p2). (6)

[It is straightforward to show that, for every ψ ∈ �, BK(ψ) is deductively
closed.] Furthermore, by Eq. 5, p3 ∈ B∗

K(p1 ∨ p2). Since (p1 ∨ p2) is not a con-
tradiction, by AGM5 B∗

K(p1 ∨ p2) is consistent and thus ¬p3 /∈ B∗
K(p1 ∨ p2).

Hence, by AGM7 and AGM8, B∗
K((p1 ∨ p2) ∧ p3) = [

B∗
K((p1 ∨ p2) ∪ {p3}

]PL

and, by Eq. 5, the latter is equal to
[
BK(p2) ∪ {p3}

]PL which, in turn, by Eq. 6,
is equal to BK(p2). Thus

B∗
K((p1 ∨ p2) ∧ p3) = BK(p2). (7)

Since (p1 ∨ p2) ∧ p3 is equivalent to p3, by AGM6 B∗
K((p1 ∨ p2) ∧ p3) =

B∗
K(p3). Thus, by Eq. 7,

B∗
K(p3) = BK(p2). (8)

10 This is a consequence of the following result, which is proved in the Appendix (Lemma 13). Let
K be a consistent belief set and BK : � → 2� an AGM belief revision function. Let φ,ψ, χ ∈ �

be such that χ ∈ BK(φ) and χ ∈ BK(ψ). Then χ ∈ BK(φ ∨ ψ).
11Proof by AGM1, B∗

K(p1 ∨ p2) = [
B∗

K(p1 ∨ p2)
]PL. By AGM5, since (p1 ∨ p2) is not a

contradiction, B∗
K(p1 ∨ p2) �= �. Thus, since p2 ∈ B∗

K(p1 ∨ p2), ¬p2 /∈ B∗
K(p1 ∨ p2). Hence,

by AGM7 and AGM8, B∗
K((p1 ∨ p2) ∧ p2) = [

B∗
K(p1 ∨ p2) ∪ {p2}

]PL = [
B∗

K(p1 ∨ p2)
]PL =

B∗
K(p1 ∨ p2). ��
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Since B∗
K is an extension of BK, B∗

K(p3) = BK(p3). It follows from this and
Eq. 8 that BK(p3) = BK(p2), yielding a contradiction, since ¬q ∈ BK(p2) but
¬q /∈ BK(p3).

In view of the above example, a natural question to ask is whether there
exists a property of branching-time belief revision frames that guarantees that
the partial belief revision functions generated by models based on frames that
satisfy that property are compatible with the AGM postulates.12 The notion
of compatibility with the AGM postulates is made precise in the following
definition.

Definition 5 A branching-time belief revision frame F = 〈T, �, �, {It,

Bt}t∈T〉 is AGM-consistent at (ω, t) ∈ � × T if, for every model M = 〈F, V〉
based on it, the associated belief revision function BKM,ω,t (see Eq. 3 above)
can be extended (see Definition 1) to a full AGM belief revision function (see
Definition 2).

We showed above that the branching-time belief revision frame illustrated
in Fig. 1 is not AGM consistent at (α, t0).

The following proposition, which is proved in the Appendix, builds on
results given in [6] and [15].13 Note that the Qualitative Bayes Rule (Property
4 of Definition 3) is necessary for the validity of Proposition 6.

A total pre-order of � is a binary relation R ⊆ � × � which is complete
(∀ω, ω′ ∈ �, either ωRω′ or ω′ Rω) and transitive (∀ω, ω′, ω′′ ∈ �, if ωRω′ and
ω′ Rω′′ then ωRω′′ ). We shall interpret ωRω′ as “state ω is at least as plausible
as state ω′”. Given a total pre-order R of � and a subset E ⊆ �, let

bestR E
def= {

ω ∈ E : ωRω′, ∀ω′ ∈ E
}
.

12Why is this a desirable property? By Definition 4, a state-instant pair (ω, t) in a model identifies
(1) the agent’s current beliefs, (2) the possible items of information to be received and (3) the
agent’s disposition to revise her beliefs in response to those informational inputs. An introspective
agent would naturally be worried about the consistency of her disposition to revise her beliefs. In
the example just described, by considering counterfactual informational inputs, such as (p1 ∨ p2 ∨
p3), and her hypothetical response to them, the agent would be able to uncover an inconsistency
in her disposition to revise her beliefs in response to the actual informational inputs p1 , p2 and
p3. The notion of AMG-consistency defined below guarantees that no inconsistecies could be
detected by contemplating hypothetical information in addition to the actual information.
13Both [6] and [15] deal with choice functions f : E → 2�, where E is a collection of subsets of �,
satisfying the property that if E �= ∅ then ∅ �= f (E) ⊆ E. Choice functions are used in economics
to represent the choices made by an individual when faced with possible menus of alternatives. In
[15] a necessary and sufficient condition is given for the rationalizability of a choice function in
terms of a preference relation and in [6] choice functions are shown to be interpretable in terms of
one-shot belief revision. In the proof given in the Appendix more details are given on how results
in [6] and [15] can be extended to branching-time belief revision frames to obtain Proposition 6.
In particular, the Qualitative Bayes Rule plays a crucial role.
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Thus bestR E is the set of states in E that are most plausible according to R.14

Proposition 6 Let F = 〈T, �, �, {It,Bt}t∈T〉 be a branching-time belief revi-
sion frame where � is f inite and let (ω, t) ∈ � × T. Then the following con-
ditions are equivalent:

(a) F is AGM consistent at (ω, t).
(b) There exists a total pre-order Rω,t of � that rationalizes the agent’s beliefs

at t and at the immediate successors of t (and state ω) in the sense that

b1. Bt(ω) = bestRω,t It(ω), and
b2. for every t′ ∈ T such that t � t′,Bt′(ω) = bestRω,t It′(ω).

(c) ∀u0, u1, ..., un ∈ t� with un = u0 (recall that t� is the set of immediate
successors of t),

if Iuk−1(ω) ∩ Buk(ω) �= ∅, ∀k = 1, ..., n,

then Iuk−1(ω) ∩ Buk(ω) = Buk−1(ω) ∩ Iuk(ω), ∀k = 1, ..., n. (PLS)

A frame that satisfies Property (b) of Proposition 6 is said to be ratio-
nalizable at (ω, t) and we say that the total pre-order Rω,t rationalizes belief
revision at (ω, t). The branching-time belief revision frame illustrated in Fig. 1
is not rationalizable at (α, t0). In fact, suppose that there is a total pre-order
Rα,t0 that satisfies (b .1) and (b .2). Let Pα,t0 be the corresponding strict order
(thus ωPα,t0ω

′ if and only if ωRα,t0ω
′ and not ω′ Rα,t0ω ). Then, since γ ∈ It1(α)

and {δ} = Bt1(α) = bestRα,t0
It1(α), δPα,t0γ ; similarly, since δ ∈ It2(α) and {ε} =

Bt2(α) = bestRα,t0
It2(α), εPα,t0δ. Hence, by transitivity, εPα,t0γ . However, from

{γ, ε} = Bt3(α) = bestRα,t0
It3(α) we get that γ Rα,t0ε, yielding a contradiction.

Since the frame is not rationalizable at (α, t0), it follows from Proposition 6
that it is not AGM-consistent at (α, t0), a fact that was proved directly above.

Property PLS of part (c) of Proposition 6 gives a condition on the frame
which is necessary and sufficient for the frame to be rationalizable at (ω, t).
To verify that the frame of Fig. 1 fails to satisfy Property PLS at (α, t0),
let u0 = u3 = t1, u1 = t3 and u2 = t2. Then It1(α) ∩ Bt3(α) = {γ } �= ∅, It3(α) ∩
Bt2(α) = {ε} �= ∅ and It2(α) ∩ Bt1(α) = {δ} �= ∅, but Bt1(α) ∩ It3(α) = ∅ and
thus Bt1(α) ∩ It3(α) �= It1(α) ∩ Bt3(α).

Definition 7 A branching-time belief revision frame is AGM-consistent if it is
AGM consistent at every state-instant pair (ω, t).

14In the literature sometimes the total pre-order is denoted by � and the set {ω ∈ E : ω � ω′,∀ω′ ∈
E} is referred to as the set of maximal elements of E, while some other times the total pre-order
is denoted by � and the set {ω ∈ E : ω � ω′,∀ω′ ∈ E} is referred to as the set of minimal elements
of E. In order to avoid confusion, we denote the relation by R and refer to the best elements of a
set.
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Thus, by Proposition 6, a frame where � is finite is AGM-consistent if and
only if it is rationalizable at every state-instant pair (ω, t). Property PLS of part
(c) of Proposition 6 provides a way of verifying directly on the frame whether
the frame is AGM-consistent.

In an AGM-consistent frame, for every state-instant pair (ω, t), belief
revision can be rationalized by a plausibility ordering of the set of states, in the
sense that at t and at the immediate successors of t (and a state ω) the states that
the agent considers doxastically possible (that is, according to her beliefs) are
the most plausible among the ones that are compatible with the information
received. Figure 2 shows an AGM-consistent branching-time belief revision
frame. For example, belief revision at (α, t0) is rationalized by the total pre-
order Rα,t0 generated by the strict total order β Pα,t0δPα,t0γ Pα,t0α:

Rα,t0 = {(α, α), (β, α), (β, β), (β, γ ), (β, δ), (δ, α), (δ, γ ), (δ, δ), (γ, γ ), (γ, α)}.
Note that, by Proposition 6, AGM-consistency of a frame at a state-instant

pair (ω, t) requires the existence of at least one total pre-order that rationalizes
belief revision at (ω, t). Typically, there may be several such total pre-orders.
For instance, in the frame of Fig. 2 at (α, t0) another possible total pre-order
(besides the one mentioned above) is the pre-order R′ generated by the strict
total order β P′

α,t0γ P′
α,t0αP′

α,t0δ.

t 0

t 2
t
1

t
3

t
4

α β γ δ

α β

β δ

α γ γ δ

α γ

β δ

β γ δα

Fig. 2 An AGM-consistent frame
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Remark 8 In an AGM-consistent frame, it is possible that, if t′ is an immediate
successor of t, any plausibility ordering of � that rationalizes belief revision at
(ω, t′) is necessarily different from any plausibility ordering that rationalizes
belief revision at (ω, t). For example, in the frame of Fig. 2 any total pre-
order that rationalizes belief revision at (α, t0) must be such that γ is strictly
more plausible than α,15 whereas any total pre-order that rationalizes belief
revision at (α, t2) must be such that α is strictly more plausible than γ .16 Thus
the ranking of α and γ is reversed upon moving from (α, t0) to (α, t2).

Note also that, for a given instant t, if ω and ω′ are different states any total
pre-order that rationalizes belief revision at (ω, t) may be necessarily different
from any total pre-order that rationalizes belief revision at (ω′, t). For example,
in Fig. 2, any total pre-order that rationalizes belief revision at (β, t2) must be
such that β is strictly more plausible than δ,17 whereas any total pre-order that
rationalizes belief revision at (δ, t2) must be such that δ is strictly more plausible
than β.18

We now turn to a modal-logic characterization of AGM-consistent
branching-time belief revision frames.

4 A Temporal Logic for Belief Revision

To define the notion of AGM-consistency it was sufficient to consider propo-
sitional models based on a given branching-time belief revision frame; that is,
the language of propositional logic was sufficient. In this section we turn to
the more expressive language introduced in [4]—in which belief, information
and time are explicitly introduced in the syntax—and provide a syntactic
characterization of AGM-consistent belief revision frames within this richer
language.

The language contains the following modal operators: the next-time oper-
ator ©, the belief operator B, the information operator I and the “all state”
operator A. The intended interpretation is as follows:

©φ “at every next instant it will be the case that φ”
Bφ “the agent believes that φ”
Iφ “the agent is informed that φ”
Aφ “it is true at every state that φ”.

15Because Bt1 (α) = {γ } and It1 (α) = {α, γ }.
16Because Bt3 (α) = {α} and It3 (α) = {α, γ }. For example, belief revision at (α, t2) is rationalized by
the total pre-order Rα,t2 = {(α, α), (α, γ ), (α, δ), (β, α), (β, β), (β, γ ), (β, δ), (δ, δ), (δ, γ ), (γ, γ )},
that is, by the stict total order β Pα,t2 αPα,t2 δPα,t2 γ .
17Because Because Bt3 (β) = {β} and It3 (β) = {β, δ}.
18Because Because Bt3 (δ) = {δ} and It3 (δ) = {β, δ}. For example, belief revision at (β, t2) is
rationalized by the total pre-order generated by the strict total order β Pβ,t2 αPβ,t2 γ Pβ,t2 δ, while
belief revision at (δ, t2) is rationalized the total pre-order generated by the strict total order
δPδ,t2 β Pδ,t2 γ Pδ,t2 α.
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The link between the semantics of branching-time belief revision frames and
the syntactic language is again given by the addition of a valuation to a frame.
As in the previous section, a valuation is a function V : S → 2� which specifies,
for every atomic formula p ∈ S the set of states at which p is true. While
for propositional (or Boolean, or non-modal) formulas, states are sufficient to
determine truth, the same is not true for modal formulas, since—for instance—
there can be a state ω and two different instants t1 and t2 such that at (ω, t1) the
agent believes a formula φ while at (ω, t2) she does not, that is, Bφ is true at
(ω, t1) but false at (ω, t2). Thus for this more expressive modal language truth
of formulas needs to be defined at state-instant pairs (ω, t).19 This is done as
follows.

Fix a model M = 〈T, �, �, {It,Bt}t∈T , V〉 as defined in the previous sec-
tion, where V : S → 2� is a valuation. Given a state ω, an instant t and a
formula φ, we write (ω, t) |=M φ to denote that φ is true at (ω, t) in model M.
Let ‖φ‖M ⊆ � × T denote the truth set of φ, that is, ‖φ‖M = {(ω, t) ∈ � × T :
(ω, t) |=M φ} and let ‖φ‖M,t ⊆ � denote the set of states at which φ is true at
instant t, that is, ‖φ‖M,t = {ω ∈ � : (ω, t) |=M φ}. Truth at a state-instant pair
(ω, t) is defined recursively as follows.

if p ∈ S (ω, t) |= p if and only if ω ∈ V(p).

(ω, t) |= ¬φ if and only if (ω, t) � φ.

(ω, t) |= φ ∨ ψ if and only if either (ω, t) |= φ or (ω, t) |= ψ (or both).
(ω, t) |= ©φ if and only if (ω, t′) |= φ for every t′ such that t � t′.
(ω, t) |= Bφ if and only if Bt(ω) ⊆ ‖φ‖M,t, that is, if (ω′, t) |= φ for all

ω′ ∈ Bt(ω).

(ω, t) |= Iφ if and only if φ is Boolean and It(ω) = ‖φ‖M,t, that is, if

(1) (ω′, t) |= φ for all ω′ ∈ It(ω), and
(2) if (ω′, t) |= φ then ω′ ∈ It(ω).

(ω, t) |= Aφ if and only if ‖φ‖M,t = �, that is, if (ω′, t) |= φ for all ω′ ∈ �.

Note that, while the other modal operators apply to arbitrary formulas, the
information operator is restricted to apply only to Boolean formulas, that is
formulas that do not contain modal operators. Boolean formulas represent
facts and information is restricted to be about facts.20 We stress again that,
while the truth condition for the operator B is the standard one, the truth
condition for the operator I is non-standard: instead of simply requiring that
It(ω) ⊆ ‖φ‖M,t we require equality: It(ω) = ‖φ‖M,t (the reason for this was

19It is shown in [4] (Proposition 5, p. 148) that if φ is a Boolean formula then its truth is determined
only by the state, that is, for every ω ∈ � and t, t′ ∈ T, (ω, t) |= φ if and only if (ω, t′) |= φ.
However, even if φ is Boolean, it is possible to have (ω, t) |= Bφ and (ω, t′) �|= Bφ, that is, the
individual might believe φ at state ω and instant t but not believe φ at the same state but at a
different instant t′. Indeed this is the essence of the notion of belief change over time.
20A similar (in fact, stronger) restriction is imposed in [21] (p. 175) in the context of dynamic
doxastic logic.
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explained in the Introduction; for further details see [4], where the role of the
“all state" operator is also discussed).

A formula φ is valid in a model if ‖φ‖M = � × T, that is, if φ is true at every
state-instant pair (ω, t). A formula φ is valid in a frame if it is valid in every
model based on it. A property of frames characterizes (or is characterized by)
an axiom if the axiom is valid in every frame that satisfies the property and,
conversely, if the frame violates the property then there is a model based on
that frame and a state-instant pair at which the axiom is falsified.

Let � be an abbreviation for ¬ © ¬ (thus (ω, t) |=M �φ if and only if
(ω, t′) |=M φ for some t′ such that t � t′);21 furthermore, let

∧

j=1,...,m
φ j denote

the formula (φ1 ∧ ... ∧ φm). In the following proposition (which is proved in the
Appendix) all the formulas are restricted to be Boolean, that is, formulas that
do not contain any modal operators.

Proposition 9 The class of AGM-consistent branching-time belief revision
frames is characterized by the following axioms (in Axiom 5 we let φ0 = φn and
χ0 = χn):

1. Iφ → Bφ

2. Bφ → ¬B¬φ

3. �(Iψ ∧ Bφ) → ©(Iψ → Bφ)

4a. (¬B¬φ ∧ Bψ) → ©(Iφ → Bψ)

4b. ¬B¬(φ ∧ ¬ψ) → ©(Iφ → ¬Bψ)

5.
∧

j=1,...,n
� (

Iφ j∧¬B¬φ j−1∧Bχ j

) →
∧

j=1,...,n
©

(
(Iφ j → B(φ j−1 → χ j−1)) ∧ (Iφ j−1 → B(φ j → χ j))

)

Axiom 1, which corresponds to Property 1 of Definition 3, says that informa-
tion is believed (if informed that φ the agent believes that φ) and Axiom 2 says
that beliefs are consistent (it corresponds to Property 2 of Definition 3). Axiom
3 corresponds to Property 3 of Definition 3, according to which differences
in beliefs at immediate successors of an instant must be due to differences in
information: if there is a next instant at which the agent is informed that ψ and
believes that φ then at every next instant it must be the case that, if informed
that ψ , she believes that φ. Axioms 4a and 4b provide a characterization of
Property 4 of Definition 3 (the Qualitative Bayes Rule); the first says that if
the agent considers φ possible and believes that ψ , then at any next instant
at which she is informed that φ she must continue to believe that ψ ; the
second says that if the agent considers φ and ¬ψ possible, then at any next
instant at which she is informed that φ she cannot believe that ψ . Axiom 5

21In [4] the symbol ♦ was used as a short-hand for ¬ © ¬. However, in temporal logic ♦φ is used
with the different meaning of ‘eventually φ’. Thus, to avoid confusion, we have switched to the
symbol �.
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characterizes Property PLS of Proposition 6, which is necessary and sufficient
for local rationalizability by a total-preorder.

In the next two sections we show that branching-time belief revision frames,
and the associated modal language discussed in this section, can be used to
model iterated belief revision.

5 Iterated Belief Revision in Branching-time Frames

Branching-time belief revision frames provide a natural setting for studying
iterated belief revision, that is, changes in beliefs prompted by a sequence
of informational inputs. The analysis can be carried out either semantically,
within the class of branching-time frames, or syntactically, within the modal
language of the previous section; furthermore, the two approaches can be
linked via axiomatic characterization results. In this section we will briefly dis-
cuss some of the principles of iterated belief revision that have been proposed
in the literature,22 while in the next section we provide a generalization of
AGM belief revision functions that captures iterated revision and discuss the
correspondence between branching-time frames and iterated belief revision
functions.

In an AGM-consistent frame a total pre-order associated with a state-instant
pair (ω, t) (whose existence is guaranteed by Proposition 6 ) encodes both the
agent’s initial beliefs and her disposition to change those beliefs upon receipt
of new information. This is what has been called in the literature an epistemic
or doxastic state (see, for example, [9, 23, 27]). AGM-consistency imposes only
very weak restrictions on how the epistemic state of the agent can change from
(ω, t) to (ω, t′) when t′ is an immediate successor of t. The following lemma
(proved in the Appendix) identifies one such restriction: if E ⊆ F ⊆ � and the
agent’s beliefs when informed that F do not rule out E, then she will have the
same beliefs in the situation where she is immediately informed that E as in
the situation where she is first informed that F and then she is is informed that
E.23

Lemma 10 Let F = 〈T, �, �, {It,Bt}t∈T〉 be an AGM-consistent frame. Fix an
arbitrary state ω ∈ � and instants t, t1, t2, t3 ∈ T such that t � t1 � t2 and t � t3
(that is, t1 and t3 are immediate successors of t and t2 is an immediate successor
of t1). Then

if It3(ω) = It2(ω) ⊆ It1(ω) andBt1(ω) ∩ It2(ω) �= ∅,

thenBt2(ω) = Bt3(ω). (REFweak)

22The first analysis of iterated belief revision using the branching-time frames introduced in [4]
was carried out in [38].
23In the following lemma, E = It2 (ω) = It3 (ω) and F = It1 (ω). Note that, although REFweak is
a rather weak property and is implied by the AGM postulates, the underlying requirement for
iterated belief revision is not uncontroversial: see, for example, [26, 30].
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Note that the clause Bt1(ω) ∩ It2(ω) �= ∅ is crucial: without it the lemma is
not true.24 Denote by REF the strengthening of REFweak obtained by dropping
the clause Bt1(ω) ∩ It2(ω) �= ∅ (as before, t, t1, t2, t3 ∈ T are such that t � t1 �
t2 and t � t3 and ω ∈ �):

if It3(ω) = It2(ω) ⊆ It1(ω), then Bt2(ω) = Bt3(ω). (REF)

Property REF states that “since the subsequent evidence is more specific than
the initial evidence (that is, It2(ω) ⊆ It1(ω)), the later evidence washes away the
earlier evidence” ([23], p. 197). Figure 3 shows a locally rationalizable frame
that violates Property REF at (α, t).25 Consider a model based on this frame
where, for some atomic formulas p, q and r, ‖p‖ = {δ} , ‖q‖ = {α, γ } = It2(α) =
It3(α) and ‖r‖ = {γ }. Then at (α, t) the agent’s disposition to revise her beliefs
is such that, if informed that q (which is the case at (α, t3)) she will believe that
r. However, after being informed that (p ∨ q) (at (α, t1): It1(α) = {α, γ, δ} =
‖p ∨ q‖) her disposition changes and, if later she is informed that q (which is
the case at (α, t2)), she will believe that ¬r (despite the fact that information
that q is a refinement of the information that (p ∨ q)).

Although not implied by AGM-consistency, Property REF captures a prin-
ciple that is part of most well-known theories of iterated belief revision (see, for
example, [7–9, 18, 23]). It is shown in [38] that Property REF is characterized
by the following axioms:

A(ψ → φ) ∧ �(Iφ ∧ �(Iψ ∧ Bχ)) → © (Iψ → Bχ) (Ref1)

A(ψ → φ) ∧ �(Iψ ∧ Bχ) → © (Iφ → ©(Iψ → Bχ)). (Ref2)

A further strengthening of REF is given by the following property, which
corresponds to the postulate ‘Conjunction’ in [23] (p. 203). It says that if two
sequentially received pieces of information are consistent with each other, then

24‘REF’ stands for ‘refinement’ (of information). Property REFweak can be derived from the
Qualitative Bayes Rule (Property 4 of Definition 3) and the following property, introduced in [4]:

i f t � t1, t � t3, It3 (ω) ⊆ It1 (ω) andBt1 (ω) ∩ It3 (ω) �= ∅

then Bt3 (ω) = Bt1 (ω) ∩ It3 (ω). (CAB)

Property CAB is valid in every branching-time belief revision frame which is rationalizable at
every state-instant pair and—as shown in [5]—it is characterized by the axioms

�(I(φ ∧ ψ) ∧ Bχ) → ©(Iφ → B ((φ ∧ ψ) → χ)) (K7)

�(Iφ ∧ ¬B¬(φ ∧ ψ) ∧ B(ψ → χ)) → ©(I(φ ∧ ψ) → Bχ). (K8)

25Belief revision at (α, t) is rationalized by the total pre-order generated by the strict total order
β PδPγ Pα, while belief revision at (α, t1) is rationalized by any total pre-order that contains the
strict component δPαPγ . Note that the ranking of α and γ has been reversed in moving from (α, t)
to (α, t1).
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Fig. 3 An AGM-consistent frame that violates Property REF

they induce the same beliefs as the information consisting of their conjunction.
As before let t, t1, t2, t3 ∈ T be such that t � t1 � t2 and t � t3 and let ω ∈ �:

if It2(ω) ∩ It1(ω) �= ∅ and It3(ω) = It2(ω) ∩ It1(ω)

then Bt2(ω) = Bt3(ω). (REFstrong)

It is shown in [38] that Property REFstrong is characterized by the following
axioms:

¬A¬(ψ ∧ φ) ∧ �(Iφ ∧ �(Iψ ∧ Bχ)) → © (I(φ ∧ ψ) → Bχ) (Ref3)

¬A¬(ψ ∧ φ) ∧ �(I(φ ∧ ψ) ∧ Bχ) → © (Iφ → ©(Iψ → Bχ)). (Ref4)

The rationale for Property REFstrong is that information should be treated
cumulatively in the sense that information that E followed by information that
F has the same effect on beliefs as information that E ∩ F (provided that E
and F are compatible, that is, that E ∩ F �= ∅).

Other principles of iterated belief revision that have been proposed in
the literature have corresponding properties in branching-time belief revision
frames and can be characterized by modal axioms similar to the ones discussed
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above: see [38]. Instead of continuing the discussion along these lines, in the
next section we go back to the relationship between branching-time frames
and AGM belief revision functions and provide a generalization of the latter
that can be used to discuss principles of iterated belief revision.

6 Iterated Belief Revision Functions

As in Section 2, let � be the set of formulas in the propositional language based
on the set S of atomic formulas. Recall that, given a belief set K ⊆ �, an AGM
belief revision function is a function BK : � → 2� that associates with every
formula φ ∈ � (thought of as new information) a revised belief set BK(φ) ⊆ �,
satisfying the AGM postulates (see Definition 2). Several authors (for example
[23, 27]) have discussed whether belief revision ought to be thought of as a
unary operation (that is, a function taking an informational input φ ∈ � and
producing a new belief set) or as a binary operation (that is, a function taking
a belief set K ⊆ � and an informational input φ ∈ � and producing a new
belief set). This is an issue that has been raised in the context of iterated belief
revision. We propose to model iterated belief revision in terms of a three-
argument function, that is, a ternary operation. As we shall see, our proposed
functions incorporate the belief revision operations suggested in the literature
and offer a clear way of stating principles of iterated revision.

Let H be the set of sequences in �. If h = 〈φ1, ..., φn〉 ∈ H and φ ∈ �,
we denote the sequence 〈φ1, ..., φn, φ〉 ∈ H by hφ. The empty sequence 〈 〉
is denoted by ∅ and is an element of H. We think of a sequence h as a
history of informational inputs received in the past and up to the moment under
consideration. The first argument of our iterated belief revision functions is a
history h. The need to take into account the history of previous informational
inputs has been noted in the literature. For instance Rott ([27], p. 398)
writes:

“We need to make room for a dependence of the revision function not
only on the current belief state, but also on the history of belief changes
(previous belief states as well as previous inputs).”

In a similar vein Nayak et al. ([23], p. 202) write:

“It is conceivable that at two different times, t1 and t2, an agent has the
same set of beliefs but the relative firmness of the beliefs are different. If
the agent accepts the same evidence at t1 and t2, the resultant belief sets
would be different.”

Presumably, the difference the authors refer to is attributable to the fact
that the two different times t1 and t2 represent different ways in which the
agent arrived at the same set of beliefs, that is, different past histories.
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Fig. 4 An AGM-consistent frame where the same information yields different beliefs at two
different histories

Figure 4 illustrates this possibility by means of an AGM-consistent
branching-time belief revision frame.26 Consider a model based on this frame
where, for some atomic formulas m, p, q, r and s, ‖m‖ = {α, β, γ, δ, ε}, ‖p‖ =
{α, β, γ }, ‖q‖ = {α, β, ε}, ‖r‖ = {α, γ, ε} and ‖s‖ = {α} . Then the agent has the
same belief set at (α, t1) and at (α, t2), namely the set K = {φ ∈ � : β |= φ}.
However, the same information (at the corresponding next instant), namely
that r is the case (It3(α) = It4(α) = ‖r‖), leads to different beliefs: for instance
at (α, t3) she believes that s while at (α, t4) believes that ¬s (Bt3(α) ⊆ ‖s‖ while
Bt4(α) ⊆ ‖¬s‖). This difference in disposition to revise beliefs upon receiving
information that r, despite the same “initial” set of beliefs K, can be traced
to the different informational history leading to K: the information history at
(α, t1) is given by 〈m, p〉 while the information history at (α, t2) is given by
〈m, q〉.

26It is straightforward to check that the frame of Fig. 4 is rationalizable at every state-instant
pair. For example, belief revision at (α, t0) is rationalized by the total pre-order generated by the
strict total order δPα,t0 β Pα,t0 αPα,t0 γ Pα,t0 ε, belief revision at (α, t1) is rationalized by the total pre-
order generated by the strict total order β Pα,t1 αPα,t1 γ Pα,t1 δPα,t1 ε and belief revision at (α, t2) is
rationalized by the total pre-order generated by the strict total order β Pα,t2 δPα,t2 γ Pα,t2 αPα,t2 ε.
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The other two arguments in the iterated belief revision functions are a belief
set K ⊆ � and an informational input φ ∈ �. Let K be the set of deductively
closed sets of formulas.

Definition 11 An AGM iterated belief revision function is a function B : H ×
K × � → 2� that satisfies the AGM postulates: ∀h ∈ H, ∀K ∈ K, ∀φ, ψ ∈ �

(AGM1) B(h, K, φ) = [B(h, K, φ)]PL

(AGM2) φ ∈ B(h, K, φ)

(AGM3) B(h, K, φ) ⊆ [K ∪ {φ}]PL

(AGM4) if ¬φ /∈ K, then [K ∪ {φ}]PL ⊆ B(h, K, φ)

(AGM5) B(h, K, φ) = � if and only if φ is a contradiction
(AGM6) if φ ↔ ψ is a tautology then B(h, K, φ) = B(h, K, ψ)

(AGM7) B(h, K, φ ∧ ψ) ⊆ [
B(h, K, φ) ∪ {ψ}]PL

(AGM8) if ¬ψ /∈ B(h, K, φ), then
[
B(h, K, φ) ∪ {ψ}]PL ⊆ B(h, K, φ ∧ ψ).

As noted by Nayak et al. ([23], p. 196) the only restriction that the AGM
postulates imply concerning iterated belief revision is the one given in the
following lemma, which is the counterpart of Lemma 10.

Lemma 12 Let B : H × K × � → 2� be an AGM iterated belief revision func-
tion. Then, for every h ∈ H, K ∈ K, and φ, ψ ∈ �

if ¬ψ /∈ B(h, K, φ) then B(hφ, B(h, K, φ), ψ) = B(h, K, φ ∧ ψ). (9)

The antecedent of Eq. 9, namely ¬ψ /∈ B(h, K, φ), says that ψ is compatible
with the revised belief set after information that φ, when the starting point
is given by informational history h and belief set K; the consequent says that
the revised belief set after the further information that ψ , with new starting
point given by the updated history hφ and the revised belief set B(h, K, φ),
coincides with the revised belief set after information that (φ ∧ ψ), when the
starting point is given by informational history h and belief set K. In short:
information that φ followed by information that ψ produces the same beliefs
as the “one step” information that (φ ∧ ψ), provided that ψ is compatible with
the revised beliefs after the first piece of information, namely φ.

Property 9 is the counterpart of the semantic property REFweak. The coun-
terpart of the strong version of this property, namely REFstrong is obtained by
replacing the clause ‘¬ψ /∈ B(h, K, φ)’ with ‘(φ ∧ ψ) is a consistent formula’:27

if (φ ∧ ψ) is consistent, then B(hφ, B(h, K, φ), ψ) = B(h, K, φ ∧ ψ). (10)

27The counterpart of the intermediate property REF is: if ψ implies φ, then B(hφ, B(h, K, φ),

ψ) = B(h, K, φ ∧ ψ).
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A consequence of Eq. 10 is that the order in which two consistent items of
information are received is irrelevant:28

if (φ ∧ ψ) is consistent,
then B(hφ, B(h, K, φ), ψ) = B(hψ, B(h, K, ψ), φ).

(11)

However, Eq. 11 is weaker than (10); that is, it is possible for an AGM iterated
belief revision function to satisfy Eq. 11 but not Eq. 10.

Other principles of iterated belief revision that have been proposed in
the literature can easily be stated by means of AGM iterated belief revision
functions. For instance, Darwiche and Pearl’s postulate DP2 ([9]; see also [23],
p. 203) can be stated as follows:

if (φ ∧ ψ) is inconsistent while each of φ and ψ is consistent,
then B(hφ, B(h, K, φ), ψ) = B(h, K, ψ).

Rather than restating (within the framework of AGM iterated belief re-
vision functions) the various principles of iterated revision proposed in the
literature, we first comment on the philosophical issue of how revision of belief
states should be modeled and then turn to the relationship between AGM
iterated belief revision functions and branching-time belief revision frames.

Several authors have convincingly argued that a belief state ought to be
thought of as comprising both the initial set of beliefs and the disposition to
change those beliefs upon receipt of new information. As Rott ([27], p. 398)
puts it,

“an [AGM] revision function does not revise a belief state—let alone
revise all possible belief states—but a revision function is a belief state.
Actually, a revision function does not revise anything; in particular,
there are no primitive entities in the study of belief revision that could
be revised by such a function. Revision functions are themselves the
primitive entities of the theory of belief revision.”

Rott goes on to note that, if one accepts this point of view, then one faces
the problem of how to represent the revision of belief states:

“If unary revision functions are primitive and the appropriate formal
representation of doxastic states, how do they get revised by propositional
inputs?” [ibidem]

We argue that the AGM iterated belief revision functions of Definition 11
provide an answer to this question. The function B : H × K × � → 2� can
be viewed as a function that transforms a belief state and an informational
input into a new belief state, as follows. A belief state can be taken to be a

28Proof Let (φ ∧ ψ) be a consistent formula. From Eq. 10 we get that B(hφ, B(h, K, φ), ψ) =
B(h, K, φ ∧ ψ). Similarly, B(hψ, B(h, K, ψ), φ) = B(h, K, ψ ∧ φ). Since (φ ∧ ψ) is equiva-
lent to (ψ ∧ φ), by AGM6 B(h, K, φ ∧ ψ) = B(h, K, ψ ∧ φ). Thus B(hφ, B(h, K, φ), ψ) =
B(hψ, B(h, K, ψ), φ). ��
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triple (h, K, b) where h ∈ H is a history of previous informational inputs,

K ∈ K is the current set of beliefs and b(·) def= B(h, K, ·) : � → 2� is the
one-step revision function obtained from B : H × K × � → 2� by fixing the
values of h and K. Upon receipt of information φ ∈ �, the initial belief state
(h, K, b) is transformed into the new belief state (h′, K′, b ′) where h′ = hφ,
K′ = B(h, K, φ) and b ′(·) = B(h′, K′, ·) : � → 2�.29

We now turn to the relationship between branching-time belief revision
frames and AGM iterated belief revision functions. For simplicity we will
focus on rooted branching-time frames where there is an instant t0 ∈ T, called
the root, which has no immediate predecessor and is a predecessor of every
other instant (that is, for every t ∈ T\{t0} there is a sequence 〈t0, t1, ..., tn〉 in T
such that tn = t and, for every i = 1, ..., n, ti−1 � ti).30 Given a branching-time
belief revision frame F = 〈T, �, �, {It,Bt}t∈T〉 and a valuation V : S → 2�,
let M = 〈F, V〉 be the corresponding model. Then M gives rise to a partial
iterated belief revision function in a natural way, as follows. Associate with
every state-instant pair (ω, t) a history hM,ω,t and a belief set KM,ω,t by letting
(as before: see Eq. 1) KM,ω,t = {φ ∈ � : Bt(ω) ⊆ ‖φ‖M} and hM,ω,t be the
history of past informational inputs up to t, defined as follows. Let 〈t0, t1, ..., tn〉
be the path from the root t0 to t (thus tn = t) and let

〈
It0(ω), It1(ω), ..., Itn(ω)

〉

be the corresponding sequence of sets of states reachable from ω by the in-
formation relations Iti (i = 0, 1, ..., n). For every i = 0, 1, .., n, let �i = {φ ∈ �,
Iti(ω) = ‖φ‖M} and let hM,ω,t = ∅ (recall that ∅ denotes the empty sequence)
if �i = ∅ for every i = 0, 1, ..., n, otherwise hM,ω,t = 〈φ1, ..., φm〉 (m ≤ n + 1)

where φ j is an arbitrary selection from � j �= ∅. Finally, if φ ∈ � is such such
that It′(ω) = ‖φ‖M for some t′ ∈ T such that t � t′, let B(hM,ω,t, KM,ω,t, φ) =
{ψ ∈ � : Bt′(ω) ⊆ ‖ψ‖M}.

As an illustration, consider a model M based on the frame of Fig. 4 where,
for some atomic formulas m, p, q and r, ‖m‖ = {α, β, γ, δ, ε}, ‖p‖ = {α, β, γ },
‖q‖ = {α, β, ε} and ‖r‖ = {α, γ, ε}. For simplicity we drop the subscript M .
Then

hα,t0 = 〈m〉 Kα,t0 = {φ ∈ � : δ |= φ}
hα,t1 = 〈m, p〉 Kα,t1 = {φ ∈ � : β |= φ}
hα,t2 = 〈m, q〉 Kα,t2 = {φ ∈ � : β |= φ}
hα,t3 = 〈m, p, r〉 Kα,t3 = {φ ∈ � : α |= φ}
hα,t4 = 〈m, q, r〉 Kα,t4 = {φ ∈ � : γ |= φ}

29Rott’s proposal in [27] is to define iterated belief revision functions as unary operations
∗ : H → 2� taking sequences of input formulas into sets of beliefs. Such functions can be

generated by the functions of our Definition 11 as follows: (1) fix a starting point (h, K), (2) obtain
from the sequence of input formulas 〈φi〉i=1,..,n the sequence 〈(hi, Ki)〉i=1,..,n where hi = hi−1φi and
Ki = B(hi−1, Ki−1, φi) and then (3) define ∗(〈φi〉i=1,..,n) = Kn.
30In a general branching-time frame with no root, instead of identifying a past history with the
path from the root to the instant under consideration one would consider a maximal chain of
predecessors of that instant.
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and B(hα,t0, Kα,t0, p) = Kα,t1 , B(hα,t0 , Kα,t0 , q) = Kα,t2 , B(hα,t1 , Kα,t1 , r) =
Kα,t3 and B(hα,t2 , Kα,t2, r) = Kα,t4 .

By Proposition 6, the partial iterated belief revision function associated with
an arbitrary model based on a frame F = 〈T, �, �, {It,Bt}t∈T〉 that is ratio-
nalizable at every state-instant pair can be extended to a full AGM iterated
belief revision function. One can extend the analysis by adding to the AGM
postulates appropriate postulates of iterated belief revision and identifying
properties of frames that are equivalent to the existence of full AGM iterated
belief revision functions that (1) satisfy those additional postulates and (2)
extend the partial iterated revision functions obtained by interpreting the given
frames. We leave this project to future research.

7 Related Literature

The branching-time belief revision frames discussed in this paper provide a
natural setting for a discussion of iterated belief change both semantically,
in terms of property of frames, and syntactically, in terms of modal axioms.
The modal logic that we considered is based on three operators: a temporal
operator, a belief operator and an information operator. Instead of temporal
logic, a number of authors have used dynamic modal logic to model belief
revision [10, 13, 21, 28, 29, 35, 36]. This approach is known as dynamic doxastic
logic. Despite some differences in the proposed logics, the common idea is
to think of revision as a dynamic action. Besides the standard belief operator
B (representing initial beliefs), these authors introduce, for every Boolean
formula φ, a revision operator [∗φ] with the intended interpretation of [∗φ]χ
as “after performing the action of revising by φ the individual believes that
χ”. Thus these logics lack an explicit temporal operator and involve an inf inite
number of modal operators (one for each formula φ), while our logic uses only
three operators.31

The branching-time belief revision frames discussed above are a gener-
alization of the Kripke frames used in modeling static beliefs. Indeed, if
one considers a sequence of instants 〈t1, t2, ...tn〉 with ti � ti+1 (for each i =
1, ..., n − 1), there is an associated sequence

〈
(�,Bt1), (�,Bt2), ..., (�,Btn)

〉
of

Kripke frames, where, for every i = 1, ..., n, the Kripke frame (�,Bti) repre-
sents the agent’s beliefs at instant ti. The representation of belief change in
terms of transformation of a Kripke structure into a new Kripke structure is
the key feature of the recent literature on Dynamic Epistemic Logic (DEL)
[2, 25, 31, 37]. DEL is a logic based on modal operators that describe oper-
ations on Kripke models. These operations, called updates, represent events
that involve information being revealed to the agents in a variety of ways,

31In a similar vein, Board [3] proposes a modal logic for belief revision which also uses an infinite
number of modal operators: for every formula φ, an operator Bφ is introduced, representing the
hypothetical beliefs of the individual in the case where she learns that φ. Thus the interpretation
of Bφψ is “upon learning that φ, the individual believes that ψ ”.
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such as through a public or a private announcement. However, time does
not play an explicit role in DEL and thus the DEL framework offers very
limited flexibility in terms of describing beliefs through time. Another recent
approach, where time enters more explicitly, is Epistemic Temporal Logic
(ETL) [11, 24]. Epistemic temporal models consist of a set of histories and
a binary relation on histories representing the agent’s beliefs. Thus there is
a connection between epistemic accessibility and the flow of time allowing
one to model such properties as memory, perfect recall, etc.32 In ETL models,
however, the causes of belief change are given little structure; in particular,
information does not play an explicit role. The connections between DEL
and ETL have recently been clarified in [32–34] in the form of representation
theorems showing how sequences of models produced by ‘product update’ in
DEL form a special subclass of ETL models.

For further discussion of literature that is somewhat related to the approach
proposed in this paper, the reader is referred to [4].

Open issues that are left for future work are (1) the extension of the
branching-time belief revision frames (and the associated modal logic) to
multi-agent settings, (2) a more comprehensive investigation of principles of
iterated belief revision and (3) the integration of time uncertainty into the
analysis (see Footnote 32).
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Appendix

First we prove the following lemma (see Footnote 10).

Lemma 13 Let K be a consistent belief set and BK : � → 2� an AGM belief
revision function. Let φ, ψ, χ ∈ � be such that χ ∈ BK(φ) and χ ∈ BK(ψ).
Then χ ∈ BK(φ ∨ ψ).

Proof First we show that

(φ → χ) ∈ BK(φ ∨ ψ). (12)

If ¬φ ∈ BK(φ ∨ ψ) then, since—by AGM1—BK(φ ∨ ψ) is deductively closed
and ¬φ → (φ → χ) is a tautology, (φ → χ) ∈ BK(φ ∨ ψ). If ¬φ /∈ BK(φ ∨ ψ)

32This can be done in branching-time belief revision frames too, by adding a binary ‘time-
uncertainty’ relation on T. This would allow one to model such phenomena as, for example,
forgetting past information or being uncertain about current information.
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then, by AGM7 and AGM8, BK((φ ∨ ψ) ∧ φ) = [BK(φ ∨ ψ) ∪ {φ}]PL, that is,
for every ξ ∈ �,

ξ ∈ BK((φ ∨ ψ) ∧ φ) if and only if (φ → ξ) ∈ BK(φ ∨ ψ). (13)

Since (φ ∨ ψ) ∧ φ is propositionally equivalent to φ, by AGM6 BK((φ ∨ ψ) ∧
φ) = BK(φ). Thus, using Eq. 13 and the hypothesis that χ ∈ BK(φ), we get that
(φ → χ) ∈ BK(φ ∨ ψ). A similar proof leads to

(ψ → χ) ∈ BK(φ ∨ ψ). (14)

From Eqs. 12 and 14 and the fact that BK(φ ∨ ψ) is deductively closed we
obtain

((φ → χ) ∧ (ψ → χ)) ∈ BK(φ ∨ ψ). (15)

Since ((φ → χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ) is a tautology, it belongs to
BK(φ ∨ ψ). Hence, by Eq. 15, ((φ ∨ ψ) → χ) ∈ BK(φ ∨ ψ). By AGM2, (φ ∨
ψ) ∈ BK(φ ∨ ψ). Hence χ ∈ BK(φ ∨ ψ). ��

We now turn to the proof of Proposition 6. First we need some preliminary
definitions and results.

Definition 14 A choice structure is a triple 〈�, E, f 〉 where � is a set, E ⊆ 2�

is a collection of subsets of � and f : E → 2� is a function that satisfies the
following properties: ∀E ∈ E , (1) f (E) ⊆ E and (2) if E �= ∅ then f (E) �= ∅.

Give a choice structure C = 〈�, E, f 〉, a Hansson sequence in C is a sequence
〈E0, ..., En〉 (n ≥ 1) such that (1) En = E0 and, ∀k = 1, ..., n, (2) Ek ∈ E and (3)
Ek−1 ∩ f (Ek) �= ∅.

The following result is due to Hansson ([15], Theorem 7, p. 455).

Proposition 15 Let C = 〈�, E, f 〉 be a choice structure. The following are
equivalent:

1. there exists a total pre-order R ⊆ � × � such that , for every E ∈ E , f (E) =
bestR E

def= {ω ∈ E : ωRω′, ∀ω′ ∈ E},
2. for every Hansson sequence 〈E0, ..., En〉 in C, Ek−1 ∩ f (Ek) = f (Ek−1) ∩

Ek, ∀k = 1, ..., n.

As we shall see below, by Proposition 15 Property PLS of Proposition 6
guarantees the rationalizability of the beliefs at the immediate successors of an
instant t (and some state ω). However, our definition of local rationalizability
includes the initial beliefs, that is, also the beliefs at (ω, t). Thus a little more
work needs to be done in order to prove the equivalence of (b) and (c) of
Proposition 6.

Definition 16 Given two choice structures C = 〈�, E, f 〉 and C ′ = 〈
�, E ′, f ′〉,

we say that C ′ is a QBR-extension of C by the addition of O ⊆ � (with O �= ∅)
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if (1) E ′ = E ∪ {O}, (2) f ′ is an extension of f , that is, ∀E ∈ E , f ′(E) = f (E)

and (3) ∀E ∈ E , if E ∩ f ′(O) �= ∅ then f (E) = E ∩ f ′(O).

Lemma 17 Let C = 〈�, E, f 〉 be a choice structure and C ′ = 〈
�, E ′, f ′〉, a QBR-

extension of C by the addition of O ⊆ �. Then the following are equivalent:

(A) if 〈E0, ..., En〉 is a Hansson sequence in C then, ∀k = 1, ..., n, Ek−1 ∩
f (Ek) = f (Ek−1) ∩ Ek;

(B) if
〈
E′

0, ..., E′
n

〉
is a Hansson sequence in C ′ then, ∀k = 1, ..., n, E′

k−1 ∩
f ′(E′

k) = f ′(E′
k−1) ∩ E′

k.

Proof That (B) ⇒ (A) is obvious, since the set of Hansson sequences in C ′
contains the set of Hansson sequences in C (they are those where E′

k ∈ E for
all k). Thus we only need to prove (A) ⇒ (B).

Consider first the case where, ∀E ∈ E , E ∩ f ′(O) �= ∅. Then, by Definition
16, f (E) = E ∩ f ′(O), ∀E ∈ E . Define the following relation R′ on �: for
all x, y ∈ �, xR′y if and only if either (1) x ∈ f ′(O) or (2) x /∈ f ′(O) and
y /∈ f ′(O). Then R′ is a total pre-order33 and, furthermore, for every E ∈ E ′,
f ′(E) = bestR′ E.34 Thus, by Proposition 15, (B) holds.

Suppose now that E ∩ f ′(O) = ∅ for some E ∈ E . Let E0 ={
E ∈ E : E ∩ f ′(O) = ∅

}
and let �0 = ⋃

E∈E0

E. Then �0 ∩ f ′(O) = ∅. By

Proposition 15 it follows from (A) that there is a total pre-order R of � such
that, for all E ∈ E , f (E) = bestR E. Fix such a total pre-order R and define
the following relation R′ on �:

R′ = (R ∩ (�0 × �0))
⋃ {

(x, y) ∈ � × � : x ∈ f ′(O)
}

⋃ {
(x, y) ∈ � × � : y ∈ �\(�0 ∪ f ′(O))

} (16)

That is, (i) the elements of f ′(O) are the most plausible states, (ii) R′ coincides
with R on �0 × �0 and (iii) the elements of �\(�0 ∪ f ′(O)) are the least
plausible states. We want to show that R′ is a total pre-order of � and is
such that, for every E ∈ E ′, f ′(E) = bestR′ E. If we establish this then, by
Proposition 15, (B) holds.

Proof that R′ is complete. Fix arbitrary x, y ∈ �. We need to show that
either xR′y or yR′x. If x ∈ f ′(O) then, by Eq. 16, xR′y; similarly, if y ∈ f ′(O)

then yR′x. If x, y ∈ �0 then it follows from Eq. 16 and completeness of R.
If y ∈ �\(�0 ∪ f ′(O)) then, by Eq. 16, xR′y; similarly, if x ∈ �\(�0 ∪ f ′(O))

then yR′x.

33Proof of completeness Fix arbitrary x, y ∈ �. We need to show that either xR′ y or yR′x. If x ∈
f ′(O) then xR′ y; if y ∈ f ′(O) then yR′x; if both x /∈ f ′(O) and y /∈ f ′(O) then xR′ y and yR′x.

Proof of transitivity Fix arbitrary x, y, z ∈ � and suppose that xR′ y and yR′z. We need to show
that xR′z. If x ∈ f ′(O), then xR′z. If x /∈ f ′(O) then, since xR′ y, it must be that y /∈ f ′(O) and
thus, since yR′z, it must be that also z /∈ f ′(O). Thus xR′z. ��
34By definition of R′, bestR′ � = f ′(O). Let E ∈ E . Then, since f (E) = E ∩ f ′(O) = E ∩
bestR′ �, f (E) = bestR′ E (recall that we are considering the case where, ∀E ∈ E , E ∩ f ′(O) �= ∅).
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Proof that R′ is transitive. Fix arbitrary x, y, z ∈ � and suppose that xR′y
and yR′z. We need to show that xR′z. If x ∈ f ′(O), then, by Eq. 16, xR′z.
Assume that x /∈ f ′(O). Two cases are possible: (1) x ∈ �0 and (2) x ∈ �\(�0 ∪
f ′(O)). In Case 1, since xR′y, it must be that either (1a) y ∈ �0 or (1b) y ∈
�\(�0 ∪ f ′(O)). In Case 1a, since yR′z, it must be that either z ∈ �0, in which
case xR′z by Eq. 16 and transitivity of R, or z ∈ �\(�0 ∪ f ′(O)), in which case
xR′z by Eq. 16. In Case 1b, since yR′z by Eq. 16 it must be that z ∈ �\(�0 ∪
f ′(O)) and thus, by Eq. 16, xR′z. Consider now Case 2, where x ∈ �\(�0 ∪
f ′(O)). Then, since xR′y, it must be that y ∈ �\(�0 ∪ f ′(O)) and thus, since
yR′z, it must be that also z ∈ �\(�0 ∪ f ′(O)). Hence xR′z by Eq. 16.

Thus R′ is a total pre-order of �. It remains to show that, for every E ∈ E ′,
f ′(E) = bestR′ E. It is clear from Eq. 16 that f ′(O) = bestR′ � and thus
f ′(O) = bestR′ O (since, by definition of choice structure, f ′(O) ⊆ O ⊆ �).
Thus we only need to show that f (E) = bestR′ E for all E ∈ E . If E ∈ E0 (that
is, E ∩ f ′(O) = ∅) then, since f (E) = bestR E, it follows from Eq. 16 that
f (E) = bestR′ E (since R′ and R coincide on �0 × �0). Suppose, therefore,
that E /∈ E0, that is, E ∩ f ′(O) �= ∅. Then, by Definition 16, f (E) = E ∩
f ′(O). Hence, since f ′(O) = bestR′ � and bestR′ � ∩ E = bestR′ E (because
bestR′ � ∩ E �= ∅), it follows that f (E) = bestR′ E. ��

Proof of Proposition 6. Part 1: equivalence of (b) and (c) Fix a branching-time
belief revision frame 〈T, �, �, {It,Bt}t∈T〉 , an arbitrary state ω̂ and an arbi-
trary instant t̂. Condition PLS states that

∀t0, t1, ..., tn ∈ t̂� with tn = t0 and n ≥ 1,
if Itk−1(ω̂) ∩ Btk(ω̂) �= ∅, ∀k = 1, ..., n,

then Itk−1(ω̂) ∩ Btk(ω̂) = Btk−1(ω̂) ∩ Itk(ω̂), ∀k = 1, ..., n.

(17)

Associate with (ω̂, t̂) the following choice structure C = 〈�, E, f 〉: E =
{It(ω̂) : t ∈ t̂�} and, for every E ∈ E , if E = It(ω̂) for some t ∈ t̂� then f (E) =
Bt(ω̂). Note that the function f is well-defined because of Property 3 of
Definition 3. Then Eq. 17 can be rewritten as follows (see Definition 14):

for every Hansson sequence 〈E0, ..., En〉 in C
E j−1 ∩ f (E j) = f (E j−1) ∩ E j, ∀ j = 1, ..., n.

(18)

Let C ′ = 〈
�, E ′, f ′〉 be the extension of C given by E ′ = E ∪ {It(ω̂)} and

f ′(It(ω̂)) = Bt(ω̂) (and, for every E ∈ E , f ′(E) = f (E)). Then, by Property 4 of
Definition 3, C ′ is a QBR extension of C by the addition of It(ω̂) (see Definition
16). Thus, by Lemma 17, Eq. 18 is equivalent to

for every Hansson sequence
〈
E′

0, ..., E′
n

〉
in C ′

E′
j−1 ∩ f ′(E′

j) = f ′(E′
j−1) ∩ E′

j, ∀ j = 1, ..., n.
(19)

By Proposition 15, Eq. 19 is equivalent to the existence of a total pre-
order R̂ ⊆ � × � that rationalizes C ′ and thus (by construction of C ′) R̂ that
rationalizes belief revision at (ω̂, t̂) (that is, (b) of Proposition 6 is satisfied).

��
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Remark 18 The proofs of Proposition 15 and Lemma 17 do not require � to
be finite. Thus the equivalence of (b) and (c) of Proposition 6 holds also in the
case where � is infinite.

In order to prove the equivalence of (a) and (b) of Proposition 6 we need
the following.

Definition 19 A choice structure 〈�, E, f 〉 (see Definition 14) is called a U-
choice structure (‘U’ because E contains the universal set �) if (i) � ∈ E and
(2) ∀E ∈ E , E �= ∅.

A U-choice structure 〈�, E, f 〉 is rationalizable if there exists a total

pre-order R of � such that, for every E ∈ E , f (E) = bestR E
def= {ω ∈ E :

ωRω′, ∀ω′ ∈ E}.
A U-choice structure 〈�, E, f 〉 is AGM-consistent if, for every valuation

V : S → 2�, the (partial) belief revision function BK : � → 2� where K =
{φ ∈ � : f (�) ⊆ ||φ||}, � = {φ ∈ � : ||φ|| ∈ E} and, for every φ ∈ �, BK(φ) =
{χ ∈ � : f (||φ||) ⊆ ||χ ||}, can be extended to a full AGM belief revision
function.

The following proposition is proved in [6].

Proposition 20 A U-choice structure 〈�, E, f 〉 with � f inite is AGM-consistent
if and only if it is rationalizable.

We now show that a “local” application of Proposition 20, with some
appropriate modifications of the choice structure associated with every state-
instant pair (ω, t), yields a proof of the equivalence between (a) and (b) of
Proposition 6.

Proof of Proposition 6. Part 2: equivalence of (a) and (b) Fix a branching-
time belief revision frame 〈T, �, �, {It,Bt}t∈T〉 , with � finite. Fix an arbitrary
state ω̂ ∈ � and an arbitrary instant t̂ ∈ T.

Associate with (ω̂, t̂) the following U-choice structure C = 〈�, E, f 〉: E =
{�} ∪ {It(ω̂) : t ∈ t̂�}, f (�) = Bt̂(ω̂) and, for every E ∈ E\{�}, if E = It(ω̂) for
some t ∈ t̂� then f (E) = Bt(ω̂).35

By construction, (a) of Proposition 6 coincides with AGM-consistency of C
(see Definition 19).36

Next we show that (b) of Proposition 6 is equivalent to rationalizability
of C. Suppose that C is rationalizable and let R be a total pre-order of �

that rationalizes C. Then (b.2) of Proposition 6 holds by definition of C.

35As noted above, the function f is well-defined because of Property 3 of Definition 3.
36Given an arbitrary valuation V : S → 2�, the initial beliefs and the partial belief revision
function associated with (ω̂, t̂) coincide with the initial beliefs and the partial belief revision
function associated with C.
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Furthermore, Bt̂(ω̂) = f (�) = bestR �. Since Bt̂(ω̂) ⊆ It̂(ω̂), it follows that
Bt̂(ω̂) = bestR It̂(ω̂) and thus (b.1) holds. Conversely, let R be a total pre-order
of � that satisfies (b.1) and (b.2). Let E0 = {E ∈ E\{�} : E ∩ f (�) = ∅} and let
�0 = ⋃

E∈E0

E. Then �0 ∩ f (�) = ∅. Define the following relation R′ on �:

R′ = (R ∩ (�0 × �0))
⋃ {(x, y) ∈ � × � : x ∈ f (�)}⋃ {(x, y) ∈ � × � : y ∈ �\(�0 ∪ f (�))}. (20)

Then R′ is a total pre-order of � (the proof is identical to that given
in Lemma 17 for Eq. 16, replacing f ′ with f and O with �). We want to
show that, for every E ∈ E , f (E) = bestR′ E. It is clear from Eq. 20 that
f (�) = bestR′ �. Thus we only need to show that f (E) = bestR′ E for all
E ∈ E\{�}. If E ∈ E0 (that is, E ∩ f (�) = ∅) then, since f (E) = bestR E,
it follows from Eq. 20 that f (E) = bestR′ E (since R′ and R coincide on
�0 × �0). Suppose, therefore, that E /∈ E0 , that is, E ∩ f (�) �= ∅. Then, since
f (�) = bestR′ �, E ∩ bestR′ � �= ∅ and thus E ∩ bestR′ � = bestR′ E. By
Property 4 of Definition 3 (the Qualitative Bayes Rule), f (E) = E ∩ f (�).37

Thus f (E) = bestR′ E.
Since (a) of Proposition 6 is equivalent to AGM-consistency of C and (b) of

Proposition 6 is equivalent to rationalizability of C, the equivalence of (a) and
(b) follows from Proposition 20. ��

Proof of Proposition 9 It is shown in [5] that, for j = 1, 2, Axiom j of Proposi-
tion 9 characterizes Property j of Definition 3.

Next we show that Axiom 3 of Proposition 9 characterizes Property 3 of
Definition 3. Fix an arbitrary frame that satisfies Property 3 of Definition 3,
namely if t � t′, t � t′′ and It′(ω) = It′′(ω) then Bt′(ω) = Bt′′(ω). Fix arbitrary
ω̂ ∈ �, t̂ ∈ T and Boolean formulas φ and ψ and suppose that (ω̂, t̂) |= �(Iψ ∧
Bφ). Then there exists a t′ such that t̂ � t′ and (ω̂, t′) |= Iψ ∧ Bφ, that is,
It′(ω̂) = ‖ψ‖t′ and Bt′(ω̂) ⊆ ‖φ‖t′ . We have to show that (ω̂, t̂) |= ©(Iψ → Bφ).
Fix an arbitrary t ∈ T such that t̂ � t and suppose that (ω̂, t) |= Iψ . Then
It(ω̂) = ‖ψ‖t. Since ψ is a Boolean formula, by Proposition 5 in [4], ‖ψ‖t′ =
‖ψ‖t. Hence It′(ω̂) = It(ω̂) and thus, by Property 3 of Definition 3, Bt′(ω̂) =
Bt(ω̂). Hence Bt(ω̂) ⊆ ‖φ‖t′ . Since φ is a Boolean formula, ‖φ‖t′ = ‖φ‖t, so
that Bt(ω̂) ⊆ ‖φ‖t, that is, (ω̂, t) |= Bφ . Hence (ω̂, t) |= Iψ → Bφ and thus,
since t was chosen arbitrarily with t̂ � t, (ω̂, t̂) |= ©(Iψ → Bφ). Conversely,
fix a frame that violates Property 3 of Definition 3. Then there exist ω ∈ �

and t, t1, t2 ∈ T such that t � t1, t � t2, It1(ω) = It2(ω) and Bt1(ω) �= Bt2(ω).
Without loss of generality we can assume that

there exists an α ∈ Bt2(ω) such that α /∈ Bt1(ω) (21)

(otherwise renumber the two instants). Construct a model where, for some
atomic formulas p and q, ‖p‖ = It1(ω) × T and ‖q‖ = Bt1(ω) × T. Then

37By definition of C, f (�) = Bt̂(ω̂), E = It(ω̂) for some t such that t̂ � t and f (E) = Bt(ω̂). By
Property 4 of Definition 3, if Bt̂(ω̂) ∩ It(ω̂) �= ∅ then Bt(ω̂) = Bt̂(ω̂) ∩ It(ω̂).
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(ω, t1) |= Ip ∧ Bq and thus, since t � t1, (ω, t) |= �(Ip ∧ Bq). Furthermore,
since It1(ω) = It2(ω), (ω, t2) |= Ip and, by Eq. 21, (ω, t2) � Bq, so that (ω, t2) �

(Ip → Bq). Hence, since t � t2, (ω, t) � ©(Ip → Bq) and thus Axiom 3 is
falsified at (ω, t).

It is shown in [5] that Axiom 4a of Proposition 9 (called ND in [5]) is
characterized by the following property

if t � t′ and Bt(ω) ∩ It′(ω) �= ∅ then Bt′(ω) ⊆ Bt(ω) (22)

and Axiom 4b of Proposition 9 (called NA in [5]) is characterized by the
following property

if t � t′ then Bt(ω) ∩ It′(ω) ⊆ Bt′(ω). (23)

Since Property 4 of Definition 3 implies both Eqs. 22 and 23, it follows that
a frame that satisfies Property 4 validates Axioms 4a and 4b . Furthermore, in
the presence of Property 1 of Definition 3, the conjunction of Eqs. 22 and 23
implies Property 4. Thus, in the presence of Property 1, violation of Property
4 implies violation of either Eqs. 22 or 23 (or both) and thus leads to the
possibility of falsifying either Axiom 4a or Axiom 4b (or both).

We conclude the proof of Proposition 9 by showing that Axiom 5 is
characterized by Property PLS of Proposition 6. Fix a branching-time belief
revision frame that satisfies PLS, an arbitrary model based on it, arbitrary
Boolean formulas φ1, ..., φn and χ1, ..., χn and arbitrary ω̂ ∈ � and t̂ ∈ T and
suppose that (letting φ0 = φn)

(ω̂, t̂) |=
∧

j=1,...,n

� (
Iφ j∧¬B¬φ j−1∧Bχ j

)
(24)

We have to show that, for every j = 1, ..., n (letting φ0 = φn and χ0 = χn)

(ω̂, t̂) |= ©
(
(Iφ j → B(φ j−1 → χ j−1)) ∧ (Iφ j−1 → B(φ j → χ j))

)
.

By Eq. 24 there exist t1, ..., tn ∈ t̂� such that

(ω̂, t1) |= Iφ1∧¬B¬φn∧Bχ1 (recall that φ0 = φn) and
(ω̂, t j) |= Iφ j∧¬B¬φ j−1∧Bχ j for all j = 2, ..., n.

(25)

Thus

(a) It j(ω̂) = ∥∥φ j
∥∥

t j
for all j = 1, ..., n,

(b) Bt j(ω̂) ∩ It j−1(ω̂) �= ∅ for all j = 2, ..., n,
(c) Bt1(ω̂) ∩ Itn(ω̂) �= ∅

(d) Bt j(ω̂) ⊆ ∥∥χ j
∥∥

t j
for all j = 1, ..., n.

(26)

Fix arbitrary j ∈ {1, ..., n} and t ∈ T with t̂ � t. We have to show that if
(ω̂, t) |= Iφ j then (ω̂, t) |= B(φ j−1 → χ j−1) and if (ω̂, t) |= Iφ j−1 then (ω̂, t) |=
B(φ j → χ j). Suppose first that (ω̂, t) |= Iφ j, that is, It(ω̂) = ∥∥φ j

∥∥
t. Since φ j

is a Boolean formula, by Proposition 5 in [4] (p. 148),
∥∥φ j

∥∥
t = ∥∥φ j

∥∥
t j
, so
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that, by (a) of Eq. 26, It(ω̂) = It j(ω̂). It follows from this and Property 3
of Definition 3, that Bt(ω̂) = Bt j(ω̂). Thus, without loss of generality, we can
take t = t j. Similarly, if (ω̂, t) |= Iφ j−1 then, without loss of generality, we
can take t = t j−1. Thus it will be sufficient to show that if (ω̂, t j) |= Iφ j then
(ω̂, t j) |= B(φ j−1 → χ j−1) and if (ω̂, t j−1) |= Iφ j−1 then (ω̂, t j−1) |= B(φ j → χ j).

By (b) and (c) of Eq. 26 and property PLS we have that (letting t0 = tn)

It j−1(ω̂) ∩ Bt j(ω̂) = Bt j−1(ω̂) ∩ It j(ω̂). (27)

By (d) of Eq. 26, Bt j−1(ω̂) ⊆ ∥∥χ j−1
∥∥

t j−1
and, since χ j−1 is a Boolean formula, by

Proposition 5 in [4],
∥∥χ j−1

∥∥
t j−1

= ∥∥χ j−1
∥∥

t j
. Thus

Bt j−1(ω̂) ⊆ ∥∥χ j−1
∥∥

t j
. (28)

Hence, by Eqs. 27 and 28,

It j−1(ω̂) ∩ Bt j(ω̂) ⊆ ∥∥χ j−1
∥∥

t j
. (29)

Now (letting �E denote the complement E, that is, �E = �\E),

Bt j(ω̂) ⊆ �It j−1(ω̂) ∪ (
It j−1(ω̂) ∩ Bt j(ω̂)

)
. (30)

By (a) of Eq. 26, It j−1(ω̂) = ∥∥φ j−1
∥∥

t j−1
. Since φ j−1 is a Boolean formula,

∥∥φ j−1
∥∥

t j−1
= ∥∥φ j−1

∥∥
t j
. Thus

�It j−1(ω̂) = �
∥∥φ j−1

∥∥
t j

= ∥∥¬φ j−1
∥∥

t j
. (31)

Putting together Eqs. 30, 31 and 29 we get that Bt j(ω̂) ⊆ ∥∥¬φ j−1
∥∥

t j
∪ ∥∥χ j−1

∥∥
t j

=
∥∥φ j−1 → χ j−1

∥∥
t j

, that is, (ω̂, t j) |= B(φ j−1 → χ j−1). The proof that if (ω̂, t j−1) |=
Iφ j−1 then (ω̂, t j−1) |= B(φ j → χ j) is along the same lines.38

Conversely, fix a frame that violates property PLS. Then there exist ω̂ ∈ �,
t̂ ∈ T, t1, ..., tn ∈ t̂�, and a k∗ ∈ {1, ..., n} such that (letting t0 = tn)

(a) Itk−1(ω) ∩ Btk(ω) �= ∅, ∀k = 1, ..., n,

(b) Itk∗−1(ω̂) ∩ Btk∗ (ω̂) �= Btk∗−1(ω̂) ∩ Itk∗ (ω̂).
(32)

Let p1, ..., pn, q1, ..., qn, be atomic formulas and construct a model where, for
every k = 1, ..., n, ‖pk‖ = Itk(ω̂) × T and ‖qk‖ = Btk(ω̂) × T. Then, by (a) of
Eq. 32 (letting p0 = pn)

(ω̂, t̂) |=
∧

j=1,...,n

� (
Ip j∧¬B¬ pj−1∧Bq j

)
. (33)

38By (d) of Eq. 26 Bt j(ω̂) ⊆ ∥∥χ j
∥∥

t j
and since χ j is Boolean,

∥∥χ j
∥∥

t j
= ∥∥χ j

∥∥
t j−1

. Thus, using Eq. 27, we

get that Bt j−1 (ω̂) ∩ It j(ω̂) ⊆ ∥∥χ j
∥∥

t j−1
. Since Bt j−1 (ω̂) ⊆ �It j(ω̂) ∪ (

It j(ω̂) ∩ Bt j−1 (ω̂)
)

and It j(ω̂) =
∥∥φ j

∥∥
t j

= ∥∥φ j
∥∥

t j−1
, it follows that Bt j−1 (ω̂) ⊆ ∥∥¬φ j

∥∥
t j−1

∪ ∥∥χ j
∥∥

t j−1
= ∥∥φ j → χ j

∥∥
t j−1

.
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By (b) of Eq. 32, either (A) there is an α ∈ Itk∗−1(ω̂) ∩ Btk∗ (ω̂) such that
α /∈ Btk∗−1(ω̂) ∩ Itk∗ (ω̂) or (B) there is a β ∈ Btk∗−1(ω̂) ∩ Itk∗ (ω̂) such that β /∈
Itk∗−1(ω̂) ∩ Btk∗ (ω̂).

Consider Case A first. Since α ∈ Btk∗ (ω̂) and, by Property 1 of Definition
3, Btk∗ (ω̂) ⊆ Itk∗ (ω̂), it must be that α /∈ Btk∗−1(ω̂), so that (α, t) |= ¬qk∗−1, for
every t ∈ T. Since α ∈ Itk∗−1(ω̂), (α, t) |= pk∗−1, for every t ∈ T. Thus (α, t) |=
¬(pk∗−1 → qk∗−1), for every t ∈ T, in particular (α, tk∗) |= ¬(pk∗−1 → qk∗−1).
Since α ∈ Btk∗ (ω̂), it follows that (ω̂, tk∗) |= ¬B(pk∗−1 → qk∗−1), so that, since
(ω̂, tk∗) |= Ipk∗ , (ω̂, tk∗) |= ¬(Ipk∗ → B(pk∗−1 → qk∗−1)). It follows from this
and the fact that t̂ � tk∗ that (ω̂, t̂) |= ¬ © (Ipk∗ → B(pk∗−1 → qk∗−1)). This,
together with Eq. 33 falsifies Axiom 5 of Proposition 9 at (ω̂, t̂).

Now consider Case B. Since β ∈ Btk∗−1(ω̂) and Btk∗−1(ω̂) ⊆ Itk∗−1(ω̂), it
must be that β /∈ Btk∗ (ω̂), so that (β, t) |= ¬qk∗ , for every t ∈ T. Since β ∈
Itk∗ (ω̂), (β, t) |= pk∗ , for every t ∈ T. Thus (β, t) |= ¬(pk∗ → qk∗), for every
t ∈ T, in particular (β, tk∗−1) |= ¬(pk∗ → qk∗). Since β ∈ Btk∗−1(ω̂), it follows
that (ω̂, tk∗−1) |= ¬B(pk∗ → qk∗), so that, since (ω̂, tk−1∗) |= Ipk∗−1, (ω̂, tk∗−1) |=
¬(Ipk∗−1 → B(pk∗ → qk∗). It follows from this and the fact that t̂ � tk∗−1
that (ω̂, t̂) |= ¬ © (Ipk∗−1 → B(pk∗ → qk∗)). This, together with Eq. 33 falsifies
Axiom 5 of Proposition 9 at (ω̂, t̂).

Proof of Lemma 10 First we prove that a frame which is rationalizable at every
state-instant pair satisfies Property CAB (see Footnote 24) and then show
that Property CAB, together with the Qualitative Bayes Rule (Property 4
of Definition 3) implies Property REFweak. Fix ω ∈ � and t, t1, t3 ∈ T such
that t � t1, t � t3, It3(ω) ⊆ It1(ω) and Bt1(ω) ∩ It3(ω) �= ∅; we want to
show that Bt3(ω) = Bt1(ω) ∩ It3(ω) (this is Property CAB ). By rationaliz-
ability at (ω, t), there exists a total pre-order R of � such that Bt1(ω) =
bestR It1(ω)

def= {ω ∈ It1(ω) : ωRω′, ∀ω′ ∈ It1(ω)} and Bt3(ω) = bestR It3(ω)
def=

{ω ∈ It3(ω) : ωRω′, ∀ω′ ∈ It3(ω)}. Since, by hypothesis, It3(ω) ⊆ It1(ω) and
Bt1(ω) ∩ It3(ω) �= ∅, bestR It3(ω) = bestR It1(ω) ∩ It3(ω). Hence Bt3(ω) =
Bt1(ω) ∩ It3(ω).

Next we show that Property CAB, together with the Qualitative Bayes
Rule (QBR) implies Property REFweak. Fix ω ∈ � and t, t1, t2, t3 ∈ T such that
t � t1 � t2 and t � t3 and suppose that It3(ω) = It2(ω) ⊆ It1(ω) and Bt1(ω) ∩
It2(ω) �= ∅. By QBR, since Bt1(ω) ∩ It2(ω) �= ∅, Bt2(ω) = Bt1(ω) ∩ It2(ω). Since
It3(ω) = It2(ω), Bt1(ω) ∩ It3(ω) �= ∅ and thus, by Property CAB, since It3(ω) ⊆
It1(ω), Bt3(ω) = Bt1(ω) ∩ It3(ω). Hence Bt2(ω) = Bt3(ω). ��

Proof of Lemma 12 Fix arbitrary h′ ∈ H, K′ ∈ K and φ, ψ ∈ �. By AGM3 and
AGM4, if ¬ψ /∈ K′ then B(h′, K′, ψ) = [

K′ ∪ {ψ}]PL. Thus, letting h′ = hφ and
K′ = B(h, K, φ) we get

if ¬ψ /∈ B(h, K, φ) then B(hφ, B(h, K, φ), ψ) = [
B(h, K, φ) ∪ {ψ}]PL

.

(34)
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By AGM7 and AGM8,

if ¬ψ /∈ B(h, K, φ), then
[
B(h, K, φ) ∪ {ψ}]PL = B(h, K, φ ∧ ψ). (35)

Thus, by Eqs. 34 and 35, if ¬ψ /∈ B(h, K, φ), B(hφ, B(h, K, φ), ψ) =
B(h, K, φ ∧ ψ). ��
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