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Abstract In this paper we investigate three approaches to iterated contraction,
namely: the Moderate (or Priority) contraction, the Natural (or Conserva-
tive) contraction, and the Lexicographic contraction. We characterise these
three contraction functions using certain, arguably plausible, properties of an
iterated contraction function. While we provide the characterisation of the
first two contraction operations using rationality postulates of the standard
variety for iterated contraction, we found doing the same for the Lexicographic
contraction more challenging. We provide its characterisation using a variation
of Epistemic ranking function instead.

Keywords Belief contraction · State contraction · Iterated belief contraction ·
Degrees of belief

1 Introduction

It is now taken for granted that any rational theory of belief change, such as
the classic AGM theory [1] and those that extended it in various directions,
must provide accounts of how new beliefs are added (belief expansion), old
beliefs are removed (belief contraction), as well as how current beliefs are
modified in light of new information that is deemed accepted (belief revision).
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One of the problems that the classical AGM account has been extended to
deal with is the problem of iterated belief change – the problem of how an
agent is supposed to continually modify its beliefs in light of a sequence of
observations made (or pieces of information received). However, for some
reason or other, the emphasis in this context has historically been on iterated
revision; the problem of iterated contraction having received a rather step-
motherly treatment. In more recent times, however, the research community
appears to be taking measures to redress this inequity [11, 16, 18, 20]. Three
approaches to such an account examined by Nayak and colleagues [16, 18] are
called the Natural Contraction, the Priority Contraction and the Lexicographic
Contraction.1 The accounts provided of these operations in the literature are
by and large semantic; and the attempt made to characterize the Lexicographic
Contraction via rationality postulates in [16] is rather incomplete. In this paper
we aim to characterize these three operations. Unlike the Natural and Priority
contractions, we found Lexicographic contraction difficult to characterize in
the expected fashion using rationality postulates of the sort well known in the
literature starting from [1]. We instead use a more “information-rich” measure
that we call degree of belief for this purpose.

Throughout this paper we will assume a propositional object language L
generated from a finite alphabet, whose sentences, denoted by lower case
Greek letters such as α and β, with or without decorations, will be used to
represent individual beliefs. Sets of such sentences will be represented by
uppercase Latin letters, such as A,B, . . .; in particular, K with or without
decorations, will be used to denote sets of beliefs. For the sake of simplicity
we take the background logic governing this language to be the classical
propositional logic, identified with the classical deducibility relation �.2 Given
a set A of sentences, we will represent by [A] the set of models of A; and
for readability, given a sentence α, the set of models [{α}] will be represented
simply by [α]. Other such measures will be adopted for readability where
no confusion is imminent; for instance, for some function f and sentence α,
the expression f ([α]) will be simplified to f [α], whose official representation
is in fact f ([{α}]). We will be using the words “interpretation” and “world”
interchangeably, with the understanding that models of some sentence α are
the worlds that satisfy α; individual worlds would be denoted by ω with possible
decorations, the set of all worlds will be denoted by �, and subsets of � by
upper case Greek letters such as � and �.

As is standard, we will assume that a belief set, that is the body of beliefs
of an epistemic agent, is represented by a set of sentences, typically K that is
closed under �, i.e., K = {α ∈ L | K � α}. A belief set such as K is distinguished
from a belief state such as K: the latter is a richer representation of the relevant

1Please note that the Natural Contraction and the Priority Contraction are respectively termed the
Conservative Contraction and the Moderate Contraction in [20].
2Alternatively, as standard in the literature, we can take the background logic to be a proposi-
tional, supra-classical logic satisfying the deduction theorem and compactness.
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information. In particular, we assume that the belief set KK associated with
a belief state K can be extracted from the latter using some appropriate
operation, say, bel; thus, bel(K) = KK. Furthermore, we assume that the belief
state K incorporates a relevant belief (set) contraction operation, say −K that
determines the outcome K′ = −K(KK, α) of removing some information α

from the associated belief set KK. In general, in response to the removal of α,
the belief state K will undergo modification to, say, K′ = −(K, α) such that
the new belief state K′ and the new belief set K′ are appropriately aligned, that
is, bel(K′) = K′ such that further belief removal can be carried out as and when
necessary.

In the literature, belief states have been represented in many different
ways, including a relational epistemic entrenchment measure [8], a numerical
possibility measure [5] and an ordinal ranking function [23]. In this paper we
will represent a belief state as a total preorder (i.e., a reflexive, connected and
transitive relation) � over �, with the understanding that ω � ω′ means ω is at
least as plausible as ω′. It is well known in the literature that a total preorder
such as � can be directly translated to Grove’s system of spheres as propounded
in [9] and vice versa. Furthermore, the plausibility measure � over � and the
entrenchment measure � over sentences of L are inter-translatable.3 We will
denote by � the strict part of �, and by ≈ its symmetric part. It is worth noting
that on occasion we will need to refer to modified plausibility preorders such
as �−

α ; and in such cases we will refer to their strict part and symmetric part by
�−

α and ≈−
α respectively.

Given any set of worlds � ⊆ � we will denote by min�(�) = {ω ∈
� | ω � ω′, for all ω′ ∈ �} the set of �-minimal worlds of � that the epistemic
agent considers most plausible among those in �. In particular, min�(�) will
represent the set of most plausible worlds among all possible worlds as viewed
by the agent and min�−

α
(�) will represent the most plausible worlds after it has

removed information α from its belief state (set). The beliefs of the agent are
those that are true in all these most plausible worlds. This is captured in the
following equation that we name after Grove. Note that from here onwards,
the set of beliefs bel(�) extracted from the belief state � will be denoted by K�.

bel(�) = K� = {α ∈ L | min�(�) ⊆ [α]} (G1)

3Epistemic entrenchment is a relational measure, roughly indicating how hard it is to remove a
given belief. It is typically defined as a binary relation � over sentences of a language satisfying
certain standard conditions such as those provided in [8]. How an entrenchment relation can be
obtained from a given plausibility preorder is well-known in the literature: for all sentences α, β ∈
L, α � β iff ω � ω′ for all ω ∈ min�[¬α] and ω′ ∈ min�[¬β]. The other side, how the plausibility
preorder can be obtained from a given entrenchment relation can be found on page 252 of [19] in
a slightly different framework. In our notation, it would be: for all worlds ω, ω′ ∈ �, ω � ω′ iff
for every sentence α ∈ L such that ω |= ¬α, there exists a sentence α′ ∈ L such that both ω′ |= ¬α′
and α � α′. The proof is easily verified. For (⇒), assume ω � ω′, ω ∈ [¬α] and set [¬α′] = {ω′}.
For (⇐), let [¬α] = {ω}, α � α′ and ω′ ∈ [¬α′]. The proof will use the well known definition of �
via � just mentioned.
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At this point we seek to clarify certain notational device that is potentially
confusing. The contraction operation − that we are concerned with is a state
contraction operation: given a belief state � and a sentence α to be removed
from it, this operation returns a belief state �−

α in which, in general, α is not
believed. The corresponding propositional content of these two belief states,
that is the associated belief sets, are K� and K�−

α
. When the prior state � can

be contextually determined, and the intended reading is clear, for the sake
of simplicity we will refer to these belief sets as K and K−

α instead. In a similar
fashion, (K−

α )−β will refer to the belief set associated with the belief state (�−
α )−β .

In other words, the same symbol − is used for both state contraction operation
as in K�−

α
, as well as the corresponding set contraction operation −� (as in

K−
α , which should officially be written as: K−�

α ), but since the belief set and
belief state in question are assumed to be appropriately co-related, it is not
problematic.

An inconsistent belief state is represented by an empty relation �⊥: for any
two distinct worlds ω, ω′ ∈ �, ω ��⊥ ω′.4 On the other hand �
 denotes the full
pre-order relation: for every ω, ω′ ∈ �, ω �
 ω′. The relation �
 denotes the
belief state where the agent believes only in logical tautologies and the relation
�⊥ denotes the state where the agent believes in every sentence.

A notion that we would be using throughout this paper is that of a chain of
worlds. Given a belief state �, and a set of worlds � ⊆ �, a chain of worlds
in � is a sequence of worlds in � ordered by the strict part � of �, e.g., ω0 �
ω1 � . . . � ωn. Based on this notion, we define a complete chain of worlds in
� as follows. A chain of worlds ω0 � ω1 � . . . � ωn in � is said to be complete
iff ω0 is a �-minimal world of � and for any ωi−1 � ωi (1 ≤ i ≤ n) there does
not exist any world ω′ in � such that ωi−1 � ω′ � ωi. The length of a complete
chain of worlds C = ω0 � ω1 � . . . � ωn is defined to be n, and is denoted by
‖C‖. Two special cases of this notion are of interest: when � is the universal set
�, and when � is exactly the set of models [α] of some sentence α.

2 Three Contraction Functions

The modified preorder �−
α represents the result of contracting the prior belief

state � by a sentence α. From Eq. G1 it is evident that, if α is to be successfully
removed from the corresponding belief set in this process, then there must
exist at least one model of ¬α among the minimal worlds in �−

α . This would
mean that min�−

α
(�) is not contained in [α] and hence α is not retained. We

will say that a belief state contraction operation − is AGM rational just in case
the corresponding belief set contraction operation satisfies the standard AGM
postulates [1]. Combining the semantic account of belief (set) contraction
provided in [4, 8, 9] with the account of belief (state) contraction we are

4Here by empty preorder we mean a reflexive and transitive relation which is “completely
disconnected”, i.e., no two distinct worlds are related to each other.
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espousing, we get that a belief state contraction operation − is AGM rational
when

min�−
α
(�) = min�(�) ∪ min�[¬α] (G2)

Henceforth in this paper, any reference to an AGM-rational contraction
function will refer either to a state contraction function which satisfies Eq. G2,
or a belief set contraction operation appropriately obtained from such a state
contraction function. The context should sufficiently disambiguate the usage.

It is to be noted that the condition G2 on �−
α does not guarantee a

unique way of changing � to �−
α . Different ways of changing � have been

proposed, each giving a different contraction function. Three such contraction
functions, namely the moderate contraction, the natural contraction and the
lexicographic contraction have been proposed in [17, 18]. In this section we
briefly outline these functions.

2.1 Moderate Contraction Function

This contraction function is referred to as moderate contraction function in
[20] and as priority contraction function in [17, 18]. The basic idea behind
moderate contraction is simple. Suppose we want to remove a non-trivial belief
α (i.e., �� α). When we remove α from a belief set, under usual circumstances,
α becomes a non-belief. Every sentence of the form β → α can be viewed as
contributing to the agent’s epistemic attitude towards α. This demands that
out of every pair β → α and ¬β → α, at least one be removed. The question is,
what happens to those sentences β → α which are not removed from the belief
set in the process. Moderate contraction is based on the intuition that even if
some sentence β → α is not removed via removal of α, its entrenchment should
be reduced, and its status be demoted.5 The degree of entrenchment of β → α

for some particular β is reflected by the most plausible worlds in [β] ∩ [¬α]
in the belief state �. By promoting all the worlds in [¬α] the entrenchment of
every β → α is reduced. This is captured by the condition MC3 in the following
formalization.

Given a total pre-order relation � on �, and a sentence α to be removed
from the associated belief set, a moderate contraction function − changes the
relation � to a new relation �−

α . If α is not believed in the state represented
by the prior �, or it is a tautology, then no change is effected in �, i.e., �−

α =�.
In the principal, non-trivial case, where α ∈ K and � α, the new total pre-order
�−

α satisfies the following conditions: for any ω1, ω2 ∈ �,

MC1 When ω1 |= α and ω2 |= α then ω1 �−
α ω2 if and only if ω1 � ω2.

MC2 When ω1 |= ¬α and ω2 |= ¬α then ω1 �−
α ω2 if and only if ω1 � ω2.

5How this idea can be formally captured is debatable. Since the entrenchment relation is changing
in the process, it is not immediately obvious how to capture it in a relational setup. In Section 3 we
define degree of belief on the sentences of the language. We can show that the degree of belief of
the sentences of the form β → α decreases when α is removed using moderate contraction.
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MC3 When ω1 |= α, ω1 /∈ min�(�) and ω2 |= ¬α then ω2 �−
α ω1.

MC4 When ω1 ∈ min�(�) or ω1 ∈ min�[¬α], then ω1 �−
α ω2, for any ω2 ∈ �.

It is clear from conditions MC1 and MC2 that the relative plausibility of
worlds in [α] (and respectively in [¬α]) are not affected. We come across
such invariance a number of times in this paper, and need a name for it.
Accordingly we introduce the notion of Order Preservation in Section 2.4
which is closely related to the postulates of iterated revision (CR1 and CR2)
as presented in [4]. Condition MC3 captures the uniform promotion of worlds
in [¬α] and condition MC4 reflects Eq. G2. The change to the preorder
relation as prescribed here is presented pictorially in Fig. 1a. In Fig. 1 preorder
relations are depicted as systems of spheres since they are equivalent, and
representation of preorders as systems of spheres is well understood.

2.2 Natural Contraction Function

Boutilier [2] introduced natural revision in an attempt to account for iterated
belief revision while remaining true to the dictum of “minimal change” to the
belief state. Upon receiving information γ , natural revision changes the belief
state � such that only the min�[γ ] worlds become the minimal worlds in the
revised belief state; no other change is made to the relation �. Formally the
natural revision function is defined as follows: considering the non-trivial cases,
when [γ ]�= ∅ and ��=�⊥,

NR1 If ω1 ∈ min�[γ ], and ω2 /∈ min�[γ ], then ω1 �∗
γ ω2.

NR2 If ω1 /∈ min�[γ ] and ω2 /∈ min�[γ ], then ω1 �∗
γ ω2 iff ω1 � ω2.

NR3 If ω1, ω2 ∈ min�[γ ] then ω1 ≈∗
γ ω2.

Natural contraction follows natural revision in changing the relation on �

only with respect to the most plausible worlds in [¬α] when contracting by α.
Given a total pre-order relation � on �, and a sentence α, the changed total
pre-order relation �−

α satisfies the following conditions: for any ω1, ω2 ∈ �,

NC1 If ω1 ∈ min�(�) or ω1 ∈ min�[¬α], then ω1 �−
α ω2, for any ω2 ∈ �.

NC2 If ω1,ω2 /∈ min�(�) and ω1, ω2 /∈ min�[¬α] then ω1 �−
α ω2 iff ω1 � ω2.

Natural contraction is pictorially depicted in Fig. 1b. It is clear that since a
natural contraction function satisfies Eq. G2, the belief set corresponding to
the contracted belief state will satisfy the standard AGM contraction postu-
lates given in [1, 8]. The relative orderings of worlds in [α] (and respectively in
[¬α]) are not changed; thus it satisfies Order Preservation (which we discuss in
Section 2.4) just like the moderate contraction. It should be noted that Rott
[20] has provided an equivalent definition of natural contraction when the
belief state of the agent is given by an epistemic entrenchment relation.
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2.3 Lexicographic Contraction Function

The Harper identity gives a relation between contraction and revision [10]. It
states that K−

α = K ∩ K∗
¬α [8]. Semantically the Harper identity may be taken

to say that the �-minimal worlds of � and the �-minimal worlds of [¬α] are
to be given equivalent status in the state resulting from the contraction of �
by α. We present below a mildly modified version of the generalized Harper
identity that was presented in [18]:6

Generalized Harper Identity. In the trivial case, where α �∈ K�, the
preorder � does not change under contraction by α. As to the principal
case, let Bi, 0 ≤ i ≤ n − 1 be the n bands (�-equivalence classes) of
worlds generated by the pre-contraction state �, where B0 consists of
the �-minimal worlds in � and ω � ω′ for all ω ∈ Bi, ω′ ∈ B j and
i < j. Let Ci, 0 ≤ i < k ≤ n be the k �-equivalent classes of worlds in
[¬α], i.e.,

⋃k−1
i=0 Ci = [¬α], and ω � ω′ for all ω ∈ Ci, ω′ ∈ C j and i < j.

Similarly, let C′
i, 0 ≤ i < k′ ≤ n be the k′ �-equivalent classes of worlds

in [α], i.e.,
⋃k′−1

i=0 C′
i = [α], and ω � ω′ for all ω ∈ C′

i, ω′ ∈ C′
j and i < j.

Define Ci+1 = ∅ for k − 1 ≤ i < k′ − 1, if k < k′; otherwise, if k > k′, then
define C′

i+1 = ∅ for k′ − 1 ≤ i < k − 1. The bands in �−
x are given by

Di = Ci ∪ C′
i for 0 ≤ i < max(k, k′) − 1.

It can be easily noted that neither moderate nor natural contraction function
satisfies the generalized Harper identity. On the other hand, lexicographic
contraction is defined to satisfy the generalized Harper identity. Given a total
pre-order relation � on � and a belief α ∈ K, when contracting α from K, the
lexicographic contraction function − changes the total pre-order to �−

α . The
changed relation �−

α is given as follows:
LC1 If ω |= α and ω′ |= α, then ω �−

α ω′ iff ω � ω′
LC2 If ω |= ¬α and ω′ |= ¬α, then ω �−

α ω′ iff ω � ω′
LC3 Let χ be one member of {α, ¬α} and χ the other. If ω |= χ and ω′ |= χ ,

then ω �−
α ω′ iff the length of a complete chain of worlds in [χ] which

ends in ω is less than or equal to the length of a complete chain of
worlds in [χ ] which ends in ω′.7,8

For the special case where α /∈ K or � α, the lexicographic contraction results
in an unchanged pre-order relation, �−

α =�. Conditions LC1 and LC2 state
that the prior ordering between any two worlds ω, ω′ that both satisfy α (or
¬α) is not changed upon contraction by α. LC3 states that the worlds of
[¬α] are simultaneously shifted so that the worlds in [¬α] and worlds in [α]
which are ranked equally within the respective sets (after removing the empty

6The modification in question deals with certain emptysets that were not properly dealt with in
the version presented in [18].
7Please note that empty “layers” are ignored in the process.
8This is equivalent to the original condition presented in [16].
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Fig. 1 a Priority/Moderate contraction, b Natural/Conservative contraction, and c Lexicographic
contraction. The numbers indicate how the “system of spheres” should be constructed after
contraction by α. The cells numbered 1 would jointly constitute the centre; the ones numbered
2 will be the next layer, and so on

sets) are equally placed in the preorder resulting from contraction. A pictorial
representation of lexicographic contraction is given in Fig. 1c.

2.4 Comparison of the Three Contraction Functions

Moderate, natural and lexicographic contraction functions offer three different
ways of changing the total preorder on �. They share some similarities. The
three contraction functions behave in the same way when the sentence α

(which is being contracted) is either a logical tautology or is not an existing
belief of the agent. In the non-trivial case, where α is a contingent belief, i.e.,
both α ∈ K and �� α, all three of them preserve the ordering of the worlds in [α]
after contraction. Furthermore, in all the three cases of contraction, ordering of
worlds in [¬α] is also preserved. We call these properties as Order Preservation
in [α] and Order Preservation in [¬α].

Definition 1 (Order Preservation) Let � be a total preorder on � representing
the belief state, and α be a sentence. A contraction function − is said to obey
Order Preservation in �, for any � ⊆ �, if and only if, for every ω, ω′ ∈ �,
ω �−

α ω′ iff ω � ω′.

When − obeys Order Preservation in � upon contraction by α, we write this
in short-hand by OPα(�). It is worth noting that Order Preservation has been
studied in the literature in different contexts. Order Preservation property was
proposed in the context of iterated belief revision in [4]. Chopra and colleagues
[3] provide order preservation properties based on iterated belief change in
the context of presenting variations of the recovery axiom [1].9 We study order
preservation purely in the context of iterated contraction.

9The recovery axiom: K ⊆ (K−
α )+α .
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When contracting a belief α, the contraction function − might preserve
the ordering of worlds in two different sets [α] and [¬α]. The following
two lemmas show that if the contraction function is an AGM-rational state
contraction function that satisfies both OPα[α] and OPα[¬α], then the result
of consecutive contractions using this function follows a predictable pattern
under special circumstances. We provide the proofs of these and other claims
in Appendix A.

Lemma 1 Let � be a consistent belief state and K its associated belief set. An
AGM-rational state contraction function − satisf ies OPα[α] for any sentence α

iff for every sentence β such that � α ∨ β, (K−
α )−β = K−

α ∩ K−
α→β .

Lemma 2 Let � be a consistent belief state and K its associated belief set. An
AGM-rational state contraction function − satisf ies OPα[¬α] for any sentence
α iff for every sentence β such that � α → β, (K−

α )−β = K−
α ∩ K−

α∨β .

Lemmas 1 and 2 highlight the similarity between the three contraction
functions. To illustrate the differences between the three contraction functions,
we draw attention to an example provided in [17] which is a variation of the
well known example given in [4].

Example 1 Let the agent believe that Mr. Craig is rich and Mr. Craig is smart.
The result of removing the belief smart followed by the removal of the belief rich
in terms of the three state contraction functions is given in Fig. 2.

Smart,    Rich :  0 0  

10, 00, 01, 11

1 0

0 0

0 1, 1 1

 1 0

0 1, 1 1, 0 0

0 0

1 0

0 1, 1 1

0 0

0 1, 1 0, 1 1

Smart, Rich     :   1 1

 1 0, 0 0 

 0 1, 1 1

Smart, Rich      :   0 1

Smart,     Rich :    1 0

M
od

er
at

e

Lexicographic

N
atural

Fig. 2 This figure shows the result of contracting a belief state first by smart and then by rich. The
preorder relation is represented as boxes. The lowest box denotes the set of most plausible worlds,
the box above it denotes the set of the next most plausible worlds, and so on
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In this example it is shown that given an initial belief state represented as a
total preorder on �, shown as the four-layered box on the leftmost column,
all the three contraction functions retain the same set of beliefs after first
contraction, represented in Fig. 2 as the lowest layers in the three boxes
in the central column (consisting of worlds 01 and 11). But in the process
of contracting the belief, the three contraction functions change the belief
state in different ways, thus resulting in different belief states. Upon second
contraction, according to moderate contraction function, the agent will end
up believing if smart then rich. When the agent uses conservative contraction
function, the agent will end up believing either smart or rich. On the other hand,
if the contraction function used is lexicographic contraction, the agent will end
up believing only in tautologies. The difference in how the non-minimal [α]
and [¬α] worlds are shifted relative to each other by each contraction function
gives rise to different results upon iterated contraction. In Section 4, we study
the effect of different changes to the preorder relation on iterated contraction.

2.5 Principled Factored Insertion

In their attempt to characterize lexicographic contraction functions, the au-
thors in [16] studied Principled Factored Insertion which is derived from
Qualif ied Intersection [19] and Factoring [1].

Principled Factored Insertion (PFI) Given β ∈ K−
α

1. If α → β ∈ (K−
α )−β , then (K−

α )−β = K−
α ∩ K−

α∨β

2. If β ∨ α ∈ (K−
α )−β , then (K−

α )−β = K−
α ∩ K−

α→β

3. If neither α → β ∈ (K−
α )−β nor α ∨ β ∈ (K−

α )−β , then (K−
α )−β = K−

α ∩ K−
α∨β ∩

K−
α→β .

Any AGM contraction function that satisfies PFI is said to be a principled
iterated contraction operation. In [16] it was shown that every lexicographic
contraction function is a principled iterated contraction operation. However,
it was also observed that even moderate contraction function is a principled
iterated contraction operation. Here we present sufficiency conditions for a
contraction function to satisfy PFI.

Theorem 1 Every contraction function − satisfying Eq. G2, OPα[α] and
OPα[¬α] satisf ies the principled factored insertion(PFI).

We have already seen that moderate, natural and lexicographic contraction
functions satisfy OPα[α] and OPα[¬α]. They also satisfy Eq. G2. Hence all the
three contraction functions satisfy PFI, and therefore, they are all principled
iterated contraction operations. These contraction functions differ from each
other in how the ordering between the worlds of [α] and [¬α] are changed
relative to each other. To characterize these contraction functions we need to
identify properties that capture these changes. We investigate such properties
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in Section 4. But before that, we present a measure called degree of belief based
on the belief state of the agent. This measure would be helpful in investigating
the characteristics of different ways of changing the preorder on �.

3 Degrees of Belief

All the beliefs of an agent need not be considered to be equally important.
Prioritization of beliefs has been studied in detail in many works, [6, 7, 12, 21].
The quality or strength of beliefs is captured in the literature in different ways,
as ‘incorrigibilty’ of a belief [13, 14], degrees of potential surprise or disbelief
[22], entrenchment relations [8], possibility measures [6] and ordinal ranking
functions [23]. These offer a measure of gradation among the beliefs of an
agent, be it qualitative or quantitative. Here we present a quantitative measure
that we call degree of belief, and denote it by the function d(·).

Before we define the function d, we recall that a chain of worlds ω0 �
ω1 � . . . � ωn is said to be complete iff ω0 is a �-minimal world of � and for any
ωi−1 � ωi (1 ≤ i ≤ n) there does not exist any world ω′ such that ωi−1 � ω′ � ωi.
Degree of belief, d is a function that takes the sentences in the language to a
non-negative integer. To every sentence α, the function d assigns a value based
on the belief state �.

Definition 2 Given a consistent belief state � (i.e., ��=�⊥), the degree of
belief d for any sentence α ∈ L is defined as

1. d(α) = ∞ when � α,
2. d(α) = 0 when α � ⊥,
3. d(α) = min{‖C‖ : C is a complete chain of worlds in � ending in some

model of ¬α}, for any α such that � α and α � ⊥.

One way to get a better grasp of this notion of degree of belief is the
following. Imagine that the belief state � that typically is viewed as a system of
spheres in fact represents a graduated cup [15], shown in Fig. 3.10 The central
sphere (i.e., min�(�)) constitutes the base of this cup and other subsequent
�-equivalence classes correspond to different levels as marked in the cup. The
set of worlds [¬α] then will correspond to some “hole” in this cup and [α]
to a graduated cup with a hole in it. Given this picture, the measure d(α) in
fact specifies the lowest point of the hole(s) represented by [¬α], and hence,
equivalently, tells how much liquid the damaged graduated cup [α] can hold.
Alternatively, we may say d(α) specifies where the belief α leaks, and to that
effect specifies the degree of belief in α. Definition 2 above refers only to
the case where the belief state is consistent. An inconsistent belief state is
represented by �⊥ which is totally disconnected. Then the set of minimal

10In [15], the notion of graduated cup was used to motivate the semantics of epistemic entrench-
ment (footnote 12 in Section 1.4.3). Here we use it to motivate the degree of belief which is similar.
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Fig. 3 The cup and the hole
(denoted by the shaded
region) together form the set
of all possible worlds. The cup
in (a) holds more liquid than
the cup in (b); hence the
degree of belief in the
proposition α is higher than
that of β

(a)

[α]

[  α]

[β]

[  β]

(b)

worlds min�⊥(�) is an empty set. This is a special case, and needs to be
dealt with as such. Hence we postulate that the degree of belief of every
sentence in an inconsistent belief state is ∞. Alternatively, when the belief
state is denoted by a full preorder relation �
, we get min�
(�) = �. In this
case, for every contingent sentence there is a model of its negation which is
present in min�(�). By our definition, every contingent sentence is, therefore,
assigned zero as degree of belief. This is as expected, since when a belief state
is represented by a full preorder every contingent sentence is a non-belief and
the only beliefs are tautologies.

The following properties of d are easily established. Given two sentences α

and β in the language:

1. d(α ∧ β) = min{d(α), d(β)}.
2. d(β) ≥ d(α), when α and β are such that α � β.
3. d(β) = d(α), when α and β are equivalent under �.

Further, we have defined the degree of belief of ⊥ to be zero. By observing
these properties, we realize that our definition of degree of belief bears a
striking resemblance to the Entrenchment Ranking Function [21]. In fact, our
definition is a translation of the notion of entrenchment ranking function in
to a system of spheres framework. We now extend our definition of degree of
belief to some restricted belief states.

3.1 Conditional Degrees of Belief

The degree of belief of a sentence is the dual of a measure of doubt or
uncertainty on that sentence. The higher the degree of belief of a sentence the
lower is its measure of doubt. When a sentence has maximum degree of belief,
there is no trace of doubt attached to it. The agent assigns a degree of belief
zero to any sentence it maximally doubts. In general, tautologies are the only
sentences to have maximum degree of belief. However, it is quite conceivable
that an agent unreservedly believes a sentence which is not a tautology. For
instance a highly opinionated agent might refuse to see the fallibility of some
of its beliefs. Alternatively, a reasonable agent might take a certain physical
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law such as the Second Law of Thermodynamics11 as a given, and beyond the
reach of any doubt. In that case the agent considers the sentence in question
to have maximum degree of belief. We propose to capture such phenomena
by a restriction of the belief state such that a given contingent sentence has
maximum degree of belief.

Let � be the initial belief state of the agent (where only tautologies
have maximum degree of belief). Suppose that the agent decides that a set
of contingent sentences are true beyond any doubt. We denote this set of
sentences by R. The agent then assigns a maximum degree of belief to the
sentences in R. To this end, we restrict the initial belief state � of the agent to
[R], denoting the resultant state by �R. In other words, for any two possible
worlds ω1 and ω2, ω1 �R ω2 if and only if ω1, ω2 ∈ [R] and ω1 � ω2. We
call this restriction of the belief state by R as conditionalization of the belief
state.12 We denote the degree of belief in the conditionalized belief state as dR
or d(.|R).

To gain a better understanding of the issue at hand, let us consider a very
simple case. Suppose that the set R is a singleton set, R = {α}. There are three
cases to consider while conditionalizing by α.

Case 1. When α is an existing belief of the agent, every �-minimal world
of � is a model of α. Upon conditionalization, all these worlds remain to be
minimal worlds of [R] (now [R] = [α]) based on �R. Therefore the set of
beliefs of the agent remains the same after conditionalization. However, the
degree of belief assigned to sentences have changed. For instance, degree of
belief of α is changed from some non-zero value to dR(α) = ∞.

Case 2. Suppose neither α nor ¬α is believed in the initial belief state. The
set of �R-minimal worlds is given by the set of all �-minimal worlds of �

which are also models of α. Therefore, from Eq. G1 we see that no beliefs are
lost but the belief set is expanded to include α. The degree of belief of sentence
α is changed from zero to ∞ upon conditionalization while the degree of belief
of ¬α remains zero.

Case 3. Suppose the agent initially believes in ¬α. Conditionalisation by α in
this case changes the set of beliefs. Some beliefs are lost and some beliefs are
gained. The minimal worlds of [α] based on the relation � become the minimal
worlds based on the relation �R. The degree of belief of α changes from zero
to ∞ and the degree of belief of ¬α changes from non-zero positive value to
zero.

When the set R is empty, this reduces to the case where only logical
tautologies are the sentences with maximum degree of belief. It can be seen
that d(α) = d(α|
), where d is the degree of belief based on �. On the other

11This law says the the overall entropy of a closed system will never decrease.
12This is very similar to conditional probability. In probabilistic conditionalization, the posterior
state ignores the simple events that are inconsistent with the evidence; similarly here worlds
outside [R] are ignored.
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hand suppose R contains an inconsistent sentence. Conditionalization by R in
this case results in an inconsistent belief state. We have already defined the
degree of belief of any sentence in an inconsistent state to be ∞. Hence the
degree of belief of every sentence upon conditionalization by an inconsistent
sentence becomes ∞. Some of the properties of conditional degrees of belief
are as follows:

1. d(β|α) = ∞ for every β such that α � β. In particular:

a) d(α|α) = ∞.
b) d(
|α) = ∞.
c) d(β|⊥) = ∞ for every β.

2. d(β|α) = 0 for every β such that α � ¬β. As special cases, we have:

a) d(⊥|α) = 0.
b) d(¬α|α) = 0.

Although the degree of belief is similar to epistemic entrenchment, it is richer
than a pure relational measure. In a certain sense, it allows us to “compare”
the effects of different epistemic changes on one or more beliefs. For instance,
intuitively, I would more firmly believe that kangaroos are man eaters if I
observe a killer kangaroo than if I observe a grass munching kangaroo. While
this intuition cannot be captured via relational measures such as epistemic
entrenchment, it can be captured using the degree of belief. We will make use
of such conditional degrees of belief in characterising lexicographic contraction
in Section 5. But before that we need to discuss various cases that arise in
sequential contraction of α followed by β; and that is the topic we take up in
the next section.

4 Plausible Properties of Iterable Contraction Functions

As we saw in Example 1, the difference between the three contraction func-
tions is evident in the resultant sets of beliefs only after repeated contractions.
Therefore we aim to completely characterize these state contraction functions
with the help of the properties based on iterated contractions. Towards this
goal, in this section we study various cases that arise when contracting two
beliefs α and β one after the other. From Eq. G2 it is evident that when the
belief being withdrawn is not present in the belief set, the result of contraction
by any of these three contraction functions does not change the resulting set
of beliefs. Hence in the following discussion, we will assume that α, β ∈ K
and also β ∈ K−

α . Sentences α ∨ β and α → β are two important factors to be
considered when removing β following removal of α. Let us suppose α ∨ β

survives the individual removal of α and β, i.e., α ∨ β ∈ K−
α and α ∨ β ∈ K−

β .
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In such a case one might want α ∨ β ∈ (K−
α )−β . Given the assumption that

β ∈ K−
α , we get:13

α ∨ β ∈ K−
β ⇒ (K−

α )−β = K−
α ∩ K−

α→β. (1)

As a special case we have α and β such that � α ∨ β. Thus,

� α ∨ β ⇒ (K−
α )−β = K−

α ∩ K−
α→β. (2)

When the belief α → β is preferred to α ∨ β, the agent might retain α → β

in K−
β , at the cost of α ∨ β. Since both α → β ∈ K−

α and α ∨ β ∈ K−
α (courtesy

the assumption that β in K−
α ), the agent might make the same choice when

contracting β from K−
α ; i.e., α → β ∈ (K−

α )−β . Therefore α → β ∈ K−
β suggests

that α → β ∈ (K−
α )−β and hence from PFI

α → β ∈ K−
β ⇒ (K−

α )−β = K−
α ∩ K−

α∨β. (3)

As a special case of Eq. 3, we get:

� α → β ⇒ (K−
α )−β = K−

α ∩ K−
α∨β. (4)

We recall that Lemmas 1 and 2 concern Eqs. 2 and 4 respectively. Furthermore,
as a dual of Eq. 2 we get:

� α ∨ β ⇒ (K−
α )−β = K−

α ∩ K−
α∨β. (5)

Lemma 3 An AGM-rational contraction function − satisf ies Eq. 5 iff for every
sentence α, both: (a) − satisf ies OPα[¬α], and (b) ω �−

α ω′ for every ω, ω′ ∈ �

such that ω ∈ [¬α] and ω′ ∈ [α]\min�[α].

Finally, Eqs. 1 and 3 jointly suggest:

α ∨ β /∈ K−
β , α → β /∈ K−

β ⇒ (K−
α )−β = K−

α ∩ K−
α∨β ∩ K−

α→β. (6)

Lemma 4 For any arbitrary beliefs α and β such that β ∈ K−
α , an AGM-

rational contraction function − satisf ies Eqs. 1, 3 and 6 if and only if ∀ω, ω′ /∈
(min�(�) ∪ min�[¬α]), ω �−

α ω′ iff ω � ω′.

The Eqs. 1, 3 and 6 have been presented as Naive factored insertion in [16].
It is worth noting that there is a certain amount of conflict among the Eqs. 1–6.
For instance, one can imagine cases where the preconditions of Eqs. 1 and 5
are jointly satisfied, but their consequences are not. In fact, it may be argued
that these equations naturally fall into two exclusive sets: {(2) and (5)} is one
and {(1), (3) and (6)} is the other, since their respective preconditions partition
the hypothesis space in different manner.

13Note that the symbol ⇒ in the properties listed henceforth is not a logical connective. For
readability, we use this symbol rather than natural language “if . . . , then . . . ”.
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4.1 Properties Based on Degrees of belief

We now present a translation of Eqs. 1–6 in terms of degrees of belief. As we
have already seen, α ∨ β and α → β are two important factors to be considered
when removing β following the removal of α. The choice between contracting
by α ∨ β and α → β can be resolved with the help of degrees of belief. When
the degree of belief in α ∨ β is greater than the degree of belief in α → β, then
the agent contracts α → β, and similarly it contracts α ∨ β when the degree
of belief in α ∨ β is less than that of α → β. When both have equal degrees
of belief then both are contracted. This can be formalized in terms of the
following:

d(α ∨ β) > d(α → β) ⇒ (K−
α )−β = K−

α ∩ K−
α→β. (7)

d(α ∨ β) < d(α → β) ⇒ (K−
α )−β = K−

α ∩ K−
α∨β. (8)

d(α ∨ β) = d(α → β) ⇒ (K−
α )−β = K−

α ∩ K−
α→β ∩ K−

α∨β. (9)

With the help of following observation we note that Eqs. 7, 8 and 9 are
equivalent to Eqs. 1, 3 and 6 respectively when the contraction function
involved is AGM-rational.

OBSERVATION 1 Let − be an AGM-rational contraction function, and the
degree of belief function d is appropriately related with the presumed belief
state �. Then:

(a) Equation 1 is satisfied iff Eq. 7 is,
(b) Equation 3 is satisfied iff Eq. 8 is, and
(c) Equation 6 is satisfied iff Eq. 9 is.

Property 5, which states that when α ∨ β is not a tautology the contraction
by β after contraction by α is given by the meet of contraction by α and α ∨ β,
can be captured in terms of degrees of belief by

d(α ∨ β) < ∞ ⇒ (K−
α )−β = K−

α ∩ K−
α∨β. (10)

The property 2, on the other hand, can be translated as follows:

d(α ∨ β) = ∞ ⇒ (K−
α )−β = K−

α ∩ K−
α→β. (11)

By using conditional degrees of belief, we can list some more properties
for iterated contraction. The degree of belief of α ∨ β in the belief state
conditionalised with respect to ¬α can be taken as indicating the degree to
which the belief α ∨ β is independent of α. Similarly the conditional degree of
belief d(α → β|α) can be considered as indicating the degree of independence
of belief α → β from ¬α. Suppose we have d(α → β|α) > d(α ∨ β|¬α), we can
interpret this as α → β is more “self-sufficient” than α ∨ β and hence there
is more reason to retain the belief in α → β after iterated contraction of α
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followed by β. Going back to PFI in case the agent decides to retain α → β

in (K−
α )−β , we say that the result of iterated contraction is given by the meet

of contraction by α and α ∨ β. Similarly when d(α ∨ β|¬α) > d(α → β|α),
the result of iterated contraction can be derived from PFI to be the meet of
contraction by α and α → β. If d(α ∨ β|¬α) = d(α → β|α), then it is indicated
that both α ∨ β and α → β are equally independent of α and ¬α, respectively.
With equal preference, the agent could decide not to retain either of them
and hence the result of the iterated contraction could be the combined meet
of contraction by α, α ∨ β and α → β. We list these in the form of following
properties.

d(¬α ∨ β|α) > d(α ∨ β|¬α) ⇒ (K−
α )−β = K−

α ∩ K−
α∨β (12)

d(α ∨ β|¬α) > d(¬α ∨ β|α) ⇒ (K−
α )−β = K−

α ∩ K−
α→β (13)

d(α ∨ β|¬α) = d(¬α ∨ β|α) ⇒ (K−
α )−β = K−

α ∩ K−
α→β ∩ K−

α∨β. (14)

We give two lemmas that connect the properties based on degrees of belief
and properties 1–6 described earlier in Section 4.

Lemma 5 Any AGM-rational contraction function − that satisf ies Eq. 13 also
satisf ies Eq. 2.

Lemma 6 Any AGM-rational contraction function − that satisf ies Eq. 12 also
satisf ies Eq. 4.

5 Representation Results

In this section we will provide the representation results which axiomatically
characterize moderate, natural and lexicographic contraction functions based
on these properties.

Theorem 2 An AGM-rational contraction function is a moderate contraction
function iff it satisf ies properties 2 and 5.

The above result gives a very simple characterisation of the moderate con-
traction function in that, it identifies the AGM-rational contraction functions
that also satisfy the equations:

� α ∨ β ⇒ (K−
α )−β = K−

α ∩ K−
α→β (2)

� α ∨ β ⇒ (K−
α )−β = K−

α ∩ K−
α∨β. (5)



132 R. Ramachandran et al.

to be exactly the moderate contraction functions. In terms of degrees of belief,
any AGM-rational contraction function is a moderate contraction function iff
it satisfies Eqs. 10 and 11.

Theorem 3 An AGM-rational contraction function is a natural contraction
function iff it satisf ies properties 1, 3 and 6.

Theorem 3 identifies the necessary and sufficiency conditions for a con-
traction function to be qualified as a natural contraction function. Keeping
in mind how AGM-rational contraction functions are constructed, we claim
that a belief (set) contraction function is generated from a natural belief state
contraction function iff it satisfies the AGM contraction postulates along with

α ∨ β ∈ K−
β ⇒ (K−

α )−β = K−
α ∩ K−

α→β (1)

α → β ∈ K−
β ⇒ (K−

α )−β = K−
α ∩ K−

α∨β (3)

α ∨ β, α → β /∈ K−
β ⇒ (K−

α )−β = K−
α ∩ K−

α∨β ∩ K−
α→β (6)

Since Eqs. 1, 3 and 6 form the Naive factored insertion [16], we have that
an AGM-rational contraction function is a natural contraction function iff it
satisfies naive factored insertion. The natural contraction function can also be
characterized in terms of degrees of belief based on a given belief state. Every
AGM-rational contraction function is a natural (or conservative) contraction
function if and only if it satisfies the properties 7, 8 and 9.

Theorem 4 An AGM-rational contraction function is a lexicographic contrac-
tion function iff it satisf ies properties 12, 13 and 14.

The above theorem gives the necessary and sufficient conditions for a
contraction function to be a lexicographic contraction function. Thus we have
that an AGM-rational contraction function is lexicographic iff it satisfies the
properties

d(¬α ∨ β|α) > d(α ∨ β|¬α) ⇒ (K−
α )−β = K−

α ∩ K−
α∨β (12)

d(α ∨ β|¬α) > d(¬α ∨ β|α) ⇒ (K−
α )−β = K−

α ∩ K−
α→β (13)

d(α ∨ β|¬α) = d(¬α ∨ β|α) ⇒ (K−
α )−β = K−

α ∩ K−
α→β ∩ K−

α∨β (14)

6 Concluding Remarks

In this paper we examined three different iterable contraction functions,
namely, the moderate (or priority) contraction, the natural (or conservative)
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contraction and the lexicographic contraction. The proposals for these contrac-
tion functions were originally couched in semantic terms, and their properties
have not been studied before. We showed that all these three functions satisfy
the Principled factored insertion which was studied in [16] in relation to lexico-
graphic contraction. We presented and examined a list of plausible properties
(similar to rationality postulates) that one may expect an iterable contraction
function to satisfy. Using these properties, we provided representation results
for the natural and moderate contraction functions.

In order that we can characterise lexicographic contraction, we introduced
a quantitative measure that we call the degrees of belief, and its derivative
notion called the conditional degree of belief. This notion allows simple rep-
resentation of plausible properties of iterated contraction. Using different sets
of such properties we characterised lexicographic, moderate as well as natural
contraction functions. Nonetheless, we find it somewhat unsatisfying that a
standard characterisation of lexicographic contraction still eludes us. It will
be nice if such a characterisation can be given, or it can be established that
such standard characterisation of lexicographic contraction is not possible. We
leave this task to a future occasion.

A Proofs

Lemma 1 Let � be a consistent belief state and K its associated belief set. An
AGM-rational state contraction function − satisf ies OPα[α] for any sentence α

iff for every sentence β such that � α ∨ β, (K−
α )−β = K−

α ∩ K−
α→β .

Proof Let − be a contraction function satisfying Eq. G2, � a belief state and
K given by Eq. G1. Let α be any arbitrary sentence. We need to show that
the contraction function − satisfies OPα[α] iff (K−

α )−β = K−
α ∩ K−

α→β for every
sentence β such that � α ∨ β.

(Left to Right). Assume that − satisfies OPα[α]. Let β be an ar-
bitrary sentence such that � α∨β. Since � α∨β we have [¬β] ⊆ [α].
Therefore min�−

α
[¬β] = min�−

α
[α∧¬β]. Since − satisfies OPα[α], we fur-

ther have min�−
α
[α∧¬β] = min�[α∧¬β]. Therefore min�(�) ∪ min�[¬α] ∪

min�−
α
[¬β] = min�(�) ∪ min�[¬α] ∪ min�[α∧¬β], i.e., (K−

α )−β = K−
α ∩ K−

α→β .
(Right to Left). Assume that (K−

α )−β = K−
α ∩ K−

α→β for every sentence β

such that � α ∨ β. Let ω, ω′ be two arbitrarily chosen worlds in [α]. Let us
assume that ω � ω′. There are two cases : (1) Suppose ω ∈ min�(�). Then
from Eq. G2 we can deduce that ω ∈ min�−

α
(�), i.e., ω �−

α ω′. (2) Suppose
ω /∈ min�(�). Let β be a sentence such that [¬β] = {ω, ω′}. Since [¬β] ⊆
[α] we have � α ∨ β. Therefore (K−

α )−β = K−
α ∩ K−

α→β , whereby, from Eq. G2
min�(�) ∪ min�[¬α] ∪ min�−

α
[¬β] = min�(�) ∪ min�[¬α] ∪ min�[α ∧

¬β]. However ω /∈ min�(�), ω /∈ min�[¬α] and ω ∈ min�[α ∧ ¬β]. Therefore
ω ∈ min�−

α
[¬β], i.e., ω �−

α ω′. Similarly assuming ω � ω′ yields ω �−
α ω′. Hence

− satisfies OPα[α]. ��
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Lemma 2 Let � be a consistent belief state and K its associated belief set. An
AGM-rational state contraction function − satisf ies OPα[¬α] for any sentence
α iff for every sentence β such that � α → β, (K−

α )−β = K−
α ∩ K−

α∨β .

Proof This proof is similar to that of Lemma 1. Let − be a contraction function
satisfying Eq. G2, � a belief state and K the corresponding belief set. Let α be
an arbitrary sentence. We need to show that − satisfies OPα[¬α] iff (K−

α )−β =
K−

α ∩ K−
α∨β for every sentence β such that � α → β.

(Left to Right). Let − satisfy OPα[¬α]. Let β be a sentence such that � α →
β. Since � α → β we have [α] ⊆ [β]. Therefore min�−

α
[¬β] ⊆ min�−

α
[¬β ∧ ¬α].

Since − satisfies OPα[¬α] we further have min�−
α
[¬β ∧ ¬α] = min�[¬β ∧ ¬α].

Therefore min�(�) ∪ min�[¬α] ∪ min�−
α
[¬β] = min�(�) ∪ min�[¬α] ∪

min�[¬α ∧ ¬β], i.e., (K−
α )−β = K−

α ∩ K−
α∨β .

(Right to Left). Assume that (K−
α )−β = K−

α ∩ K−
α∨β for every β such that

� α → β. Let ω, ω′ be two worlds in [¬α]. Assume further that ω � ω′. Two
cases arise here: (1) Suppose ω ∈ min�(�). Then ω ∈ min�−

α
(�), i.e., ω �−

α

ω′. (2) On the other hand, suppose ω /∈ min�(�). Let β be a sentence such
that [¬β] = {ω, ω′}. Since [¬β] ⊆ [¬α] we have � α → β. Therefore (K−

α )−β =
K−

α ∩ K−
α∨β which, via Eq. G2, gives min�(�) ∪ min�[¬α] ∪ min�−

α
[¬β] =

min�(�) ∪ min�[¬α] ∪ min�[¬α ∧ ¬β]. We have ω ∈ min�[¬α ∧ ¬β] but
ω /∈ min�(�). Now, if ω ∈ min�[¬α] then from Eq. G2 we have ω ∈ min�−

α
(�),

i.e., ω �−
α ω′. On the other hand, if ω /∈ min�[¬α], then ω ∈ min�−

α
[¬β], i.e.,

ω �−
α ω′. Similarly assuming ω � ω′ yields ω �−

α ω′. Hence − satisfies
OPα[¬α]. ��

Theorem 1 Every contraction function − satisfying Eq. G2, OPα[α] and
OPα[¬α] satisf ies the principled factored insertion(PFI).

Proof Let − be a contraction function that satisfies Eq. G2, OPα[α] and
OPα[¬α]. Let K be the belief set obtained from the belief state � by Eq. G1.
We need to show that for any arbitrary beliefs α and β in K such that β ∈ K−

α ,
− satisfies PFI.

Suppose that α ∨ β ∈ (K−
α )−β . Equation G2 gives that min�−

α
(�)=min�(�) ∪

min�[¬α]. Now applying Eq. G2 again (for contraction by β) we
get min(�−

α )−β (�)=min�−
α
(�) ∪ min�−

α
[¬β]. From α ∨ β ∈ (K−

α )−β we get that
min(�−

α )−β (�) ⊆ [α ∨ β], i.e., min�−
α
[¬β] ⊆ [α] whereby min�−

α
[¬β]=min�−

α
[¬β ∧

α]. Since − satisfies OPα[α] we have min�−
α
[¬β]=min�−

α
[¬β ∧ α]=min�[¬β ∧

α]. Therefore Eq. G2 gives (K−
α )−β =K−

α ∩ K−
α→β as desired.

Similarly, if α→β ∈ (K−
α )−β then we get min(�−

α )−β (�) ⊆ [α→β], i.e.,
min�−

α
[¬β] ⊆ [¬α] whereby min�−

α
[¬β] = min�−

α
[¬β∧¬α]. Now since − sat-

isfies OPα[¬α] we have min�−
α
[¬β∧¬α] = min�[¬β∧¬α] from which we can

deduce (K−
α )−β = K−

α ∩ K−
α∨β .

Similarly when neither α ∨ β nor α → β belong to (K−
α )−β we have

min�−
α
[¬β] = min�−

α
[¬β ∧ ¬α] ∪ min�−

α
[¬β ∧ α]. Since − satisfies both OPα[α]
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and OPα[¬α], we have min�−
α
[¬β] = min�[¬β ∧ ¬α] ∪ min�[¬β ∧ α]. Hence

we get, (K−
α )−β = K−

α ∩ K−
α→β ∩ K−

α→β . Thus − satisfies PFI. ��

Lemma 3 An AGM-rational contraction function − satisf ies Eq. 5 if f for every
sentence α, both: (a) − satisf ies OPα[¬α], and (b) ω �−

α ω′ for every ω, ω′ ∈ �

such that ω ∈ [¬α] and ω′ ∈ [α]\min�[α].

Proof Let − be a contraction function which satisfies Eq. G2. Let � denote a
consistent belief state and K the corresponding belief set.

(Left to Right). Assume that − satisfies Eq. 5. We need to show that when
contracting by an arbitrary sentence α, − changes the belief state � to �−

α

such that − satisfies OPα[¬α] and for all ω, ω′ ∈ � such that ω ∈ [¬α] and
ω′ ∈ [α]\ min�[α], we have ω �−

α ω′.
Note that if � α, the set of worlds [¬α] is empty and then − trivially satisfies

the requirements (a) and (b). We consider the non-trivial case of �� α in detail.
PART (a): First we show that − satisfies OPα[¬α]. Consider ω, ω′ ∈ [¬α].

Suppose that ω � ω′. Since the language L is finitely generated, there exists a
sentence β ′ ∈ L such that [¬β ′] = {ω, ω′}. Therefore we have � α → β ′ and �

α ∨ β ′. Suppose ω ∈ min�(�) or ω ∈ min�[¬α] then from Eq. G2 we have ω ∈
min�−

α
(�) and hence ω �−

α ω′. Alternatively, suppose that ω /∈ min�−
α
(�). We

know that ω ∈ min�[¬β ′ ∧ ¬α]. Since − satisfies Eq. 5, (K−
α )−β ′ = K−

α ∩ K−
α∨β ′ .

Hence min(�−
α )−

β′ (�) = min�(�) ∪ min�[¬α] ∪ min�[¬β ′ ∧ ¬α]. Therefore from

Eq. G2, ω ∈ min�−
α
[¬β ′]. This gives ω �−

α ω′. We can similarly show that if ω �
ω′ then ω �−

α ω′. Hence − satisfies OPα[¬α].
PART (b): Now we show that for all ω, ω′ ∈ � such that ω ∈ [¬α] and ω′ ∈

[α]\ min�[α], we have ω �−
α ω′. Consider ω ∈ [¬α] and ω′ ∈ [α]\ min�[α]. As

the language L is finitely generated, there exists a sentence β ′ ∈ L such that ω

and ω′ are the only models of its negation. Two possibilities arise here:

Case (1) ω ∈ min�[¬α]. Then we will have ω ∈ min�−
α
(�) from which we

conclude that ω �−
α ω′.

Case (2) ω /∈ min�[¬α]. It is clear that β ′ is such that � α ∨ β ′. Since − sat-
isfies Eq. 5, (K−

α )−β ′ = K−
α ∩ K−

α∨β ′ . Therefore with the aid of Eq. G2
we get min(�−

α )−
β′ (�) = min�(�) ∪ min�[¬α] ∪ min�[¬β ′ ∧ ¬α]. We

know that since [¬β ′ ∧ ¬α] is a singleton set, ω ∈ min�[¬β ′ ∧ ¬α].
But we have assumed that ω /∈ min�(�) and ω /∈ min�[¬α]. This
shows that ω ∈ min�−

α
[¬β ′]. Also since ω′ /∈ min�[¬β ′ ∧ ¬α] and

ω′ /∈ min�−
α
(�), we have ω′ /∈ min�−

α
[¬β ′]. This gives ω �−

α ω′, as
desired.

(Right to Left). Let − be a contraction function that satisfies Eq. G2. For
every belief α, assume that − satisfies OPα[¬α] and ω �−

α ω′ for every ω ∈
[¬α] and ω′ ∈ [α]\ min�[α], . We need to show that − satisfies Eq. 5 that is
when α is a belief of the agent and β is an arbitrary belief such that � α ∨ β

and β ∈ K−
α then (K−

α )−β = K−
α ∩ K−

α∨β . In fact we will prove a stronger result
by showing that (K−

α )−β = K−
α ∩ K−

α∨β even when β /∈ K−
α .
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Case 1: Consider β /∈ K−
α . Then we have min�−

α
[¬β] ⊆ min�−

α
(�). Therefore

from Eq. G2 we get min(�−
α )−β (�) = min�−

α
(�). Since we have β ∈ K we can say

that min�[¬α] = min�[¬α] ∪ min�[¬α ∧ ¬β]. Therefore (K−
α )−β = K−

α ∩ K−
α∨β .

Case 2: Consider β ∈ K−
α . This gives min�−

α
(�) ⊆ [β]. Note that α ∈ K, and

hence min�[α] = min�(�). Therefore there exists no model in min�[α] or
in min�[¬α] which is also a model of ¬β. Since � α ∨ β there is a world
ω ∈ [¬α] which models ¬β. Therefore ω �−

α ω′ for every ω′ which is a model
of α ∧ ¬β. This gives min�−

α
[¬β] ⊆ [¬β ∧ ¬α]. By our hypothesis the con-

traction function − satisfies OPα[¬α]. Therefore min�−
α
[¬β] = min�−

α
[¬β ∧

¬α] = min�[¬β ∧ ¬α]. Hence we have min(�−
α )−β (�) = min�(�) ∪ min�[¬α] ∪

min�[¬α ∧ ¬β] which gives (K−
α )−β = K−

α ∩ K−
α∨β . Therefore − satisfies Eq. 5.

��

Lemma 4 For any arbitrary beliefs α and β such that β ∈ K−
α , an AGM-

rational contraction function − satisf ies Eqs. 1, 3 and 6 if and only if ∀ω, ω′ /∈
(min�(�) ∪ min�[¬α]), ω �−

α ω′ iff ω � ω′.

Proof Let − be a contraction function that satisfies Eq. G2. Let K be the belief
set associated with a consistent belief state �. Let α, β be two arbitrary beliefs
such that β ∈ K−

α . We need to show that − satisfies Eqs. 1, 3 and 6 if and only if
∀ ω, ω′ ∈� such that ω, ω′ /∈(min�(�) ∪ min�[¬α]) we have ω �−

α ω′ iff ω�ω′.
(Left to Right). Let − satisfy Eqs. 1, 3 and 6. Let ω, ω′ ∈ � be such that

ω, ω′ /∈ min�(�) and ω, ω′ /∈ min�[¬α]. Since L is finitely generated, there is a
sentence β ′ ∈ L such that ω and ω′ are the only models of its negation. By our
assumption of ω, ω′ we get that β ′ ∈ K−

α .
Case 1: Suppose ω |= α and ω′ |= α. Then � α ∨ β ′. Therefore α ∨ β ′ ∈ K−

β ′

and hence from Eq. 1 we get (K−
α )−β ′ = K−

α ∩ K−
α→β ′ . From Eq. G2, we can

write this as min�−
α
(�) ∪ min�−

α
[¬β ′] = min�(�) ∪ min�[¬α] ∪ min�[¬β ′ ∧ α].

However, since β ′ ∈ K−
α and � α ∨ β ′ we have min�−

α
[¬β ′] = min�[¬β ′ ∧ α].

Therefore ω �−
α ω′ iff ω � ω′.

Case 2: Suppose ω |= ¬α and ω′ |= ¬α. Along the same lines as presented
above, since − satisfies Eq. 3 we have ω �−

α ω′ iff ω � ω′.
Case 3: Suppose ω |= α, ω′ |= ¬α and ω � ω′. Therefore ω ∈ min�[¬β ′].

From Eq. G2 min�−
β′ (�) = min�(�) ∪ min�[¬β ′]. Since we know that α is

a belief in K, we have that min�−
β′ (�) ⊆ [α]. From this we can derive that

α ∨ β ′ ∈ K−
β ′ . The contraction function − satisfies Eq. 1. Therefore (K−

α )−β ′ =
K−

α ∩ K−
α→β ′ . From Eq. G2 we can write this as min�−

α
(�) ∪ min�−

α
[¬β ′] =

min�(�) ∪ min�[¬α] ∪ min�[¬β ′ ∧ α]. Since β ′ ∈ K−
α , we get min�−

α
[¬β ′] =

min�[¬β ′ ∧ α]. This gives that ω �−
α ω′.

Case 4: Suppose ω |= α, ω′ |= ¬α and ω′ � ω. Along the same lines as in case
3 we can show that, since − satisfies Eq. 3 we have ω′ �−

α ω.
Case 5: Suppose ω |= α and ω′ |= ¬α. Also let ω ≈ ω′. This case too follows

in similar lines as in case 3 and 4. In this case neither α ∨ β ′ nor α → β ′ belong
to K−

β ′ . Since − satisfies Eq. 6 it follows that ω ≈−
α ω′.
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(Right to Left). Let − be a contraction function that satisfies Eq. G2. Given
a belief state �, upon contraction by an arbitrary belief α, let − change the
belief state to �−

α where for every ω, ω′ ∈ � such that ω, ω′ /∈ (min�(�) ∪
min�[¬α]) we have ω �−

α ω′ iff ω � ω′. Let β be an arbitrary belief such that
β ∈ K−

α .
Case 1: � β. Hence both α ∨ β and α → β, being theorems, belong to K−

β .
Therefore this case satisfies the pre-conditions of both Eqs. 1 and 3, but not of
Eq. 6. Thus Eq. 6 is trivially satisfied. As to Eqs. 1 and 3, note that [β] = [α ∨
β] = [α → β] = �, and hence, min�[¬β] = min�[¬α ∧ ¬β] = min�[α ∧
¬β] = ∅. The desired result easily follows from it.

Case 2: � α and �� β. It follows that α ∨ β is a theorem, and hence belongs to
K−

β . Now α → β is logically equivalent to β; hence K−
β = K−

α→β . Furthermore,
since � α, we get �−

α =�, whereby, K−
α = K. Hence [(K−

α )−β ] = min�[¬β] =
min�[α ∧ ¬β] wherefrom the desired result (K−

α )−β = K−
α→β = K−

α ∩ K−
α→β

follows.
Case 3: Let � α and � β. Three subcases arise here:
Case (3a): Suppose α and β are such that α ∨ β ∈ K−

β . From Eq. G2
we can write min�−

β
(�) ⊆ [α ∨ β]. Therefore min�[¬β] ⊆ [α], i.e. min�[¬β] =

min�[¬β ∧ α]. Since β ∈ K−
α , if ω is a model of ¬β then ω /∈ (min�(�) ∪

min�[¬α]). By our hypothesis − preserves ordering within [¬β], i.e., − satisfies
OPα[¬β]. Hence min�−

α
[¬β] = min�[¬β]. This gives min�−

α
[¬β] = min�[¬β ∧

α]. Therefore when α ∨ β ∈ K−
β we have (K−

α )−β = K−
α ∩ K−

α→β , i.e., − satisfies
Eq. 1.

Case (3b): Suppose α and β are such that α → β ∈ K−
β . Following along the

same lines as presented for Case (3a) we can show that − satisfies Eq. 3.
Case (3c): Suppose α and β are such that α ∨ β /∈ K−

β and α → β /∈ K−
β . With

similar arguments as in Case (3a) we can show that − satisfies Eq. 6. ��

OBSERVATION 1 Let − be an AGM-rational contraction function, and the
degree of belief function d is appropriately related with the presumed belief
state �. Then:

(a) Equation 1 is satisfied iff Eq. 7 is,
(b) Equation 3 is satisfied iff Eq. 8 is, and
(c) Equation 6 is satisfied iff Eq. 9 is.

Proof Let us make the general assumption that − is an AGM-rational contrac-
tion function and �, K denote a consistent belief state and the corresponding
belief set. Also assume that d is appropriately related to �. We provide the
proofs of the three different parts of this observation separately.

Part (a)

Consider two arbitrary beliefs α and β. It will be sufficient to show that
α ∨ β ∈ K−

β is equivalent to d(α ∨ β) > d(α → β).
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(Left to Right). Let α ∨ β ∈ K−
β . This implies that min�−

β
(�) ⊆ [α ∨ β],

whereby, min�[¬β] ⊆ [α]. Therefore for any world ω′ in [¬β ∧ ¬α] and ω ∈
min�[¬β ∧ α] we have ω � ω′. In terms of degrees of belief we have d(α ∨
β) > d(α → β).

(Right to Left). For the reverse, we just need to trace our step backwards in
the proof for the (⇒) part.

Part (b)

For the proof for the (⇒) part, we begin by assuming that α → β ∈ K−
β .

This implies min�[¬β] ⊆ [¬α] which leads us to conclude d(α → β) > d(α ∨
β). The proof for the (⇐) part can be obtained by simply tracing our steps in
the (⇒) part backwards.

Part (c)

For the proof for the (⇒) part, we begin by assuming that neither α → β

nor α ∨ β are retained in K−
β . This implies that min�[¬β] = min�[¬β ∧ α] ∪

min�[¬β ∧ ¬α] and from the definition of degrees of belief we deduce that
d(α → β) = d(α ∨ β). Again the proof for the (⇐) part can be obtained by
simply tracing the above steps backwards. ��

Lemma 5 Any AGM-rational contraction function − that satisf ies Eq. 13 also
satisf ies Eq. 2.

Proof Let − be an AGM-rational contraction function that satisfies Eq. 13.
Let � be the presumed belief state and K be its associated belief set that is
consistent. We need to show that for any two beliefs α and β such that � α ∨ β

we have (K−
α )−β = K−

α ∩ K−
α→β .

Case 1: Suppose α is a sentence such that � α. Since − is an AGM-rational
contraction function we have (K−

α )−β = K−
β = K−

α ∩ K−
α→β . Hence − satisfies

Eq. 2 trivially.
Case 2: Suppose � β. Based on similar arguments as presented in case 1, we

can say that − trivially satisfies Eq. 2.
Case 3: Suppose � α, � β but � α ∨ β. By Property 1 of conditional degrees

of belief we have d(α ∨ β|¬α) = ∞. However d(α → β|α) < ∞ since, the
alternative, d(α → β|α) = ∞ would yield � α → β which is not possible given
our assumptions � α ∨ β and �� β. Therefore we have d(α ∨ β|¬α) > d(α →
β|α). From Eq. 13 we get (K−

α )−β = K−
α ∩ K−

α→β . Hence − satisfies Eq. 2. ��

Lemma 6 Any AGM-rational contraction function − that satisf ies Eq. 12 also
satisf ies Eq. 4.

Proof Let − be an AGM-rational contraction function that satisfies Eq. 12.
Let � be the underlying belief state; and K its associated, consistent belief set,
and d the relevant degree of belief function. Assume two beliefs α and β such
that � α → β. We need to show that (K−

α )−β = K−
α ∩ K−

α∨β .
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Case 1: Assume � β. With arguments similar to those in case 1, we can say
that − trivially satisfies Eq. 4. Since − is AGM-rational, we have (K−

α )−β = K−
α .

Furthermore, since � α ∨ β, we have K−
α∨β = K. Hence we get the desired

result, (K−
α )−β = K−

α ∩ K−
α∨β .

Case 2: Assume � α. Since by assumption � α → β, it follows that� β. Thus
it reduces to Case 1.

Case 3: Suppose � α, � β but � α → β. Now, by Property 1 of conditional
degrees of belief, we have d(α → β|α) = ∞. However, d(α ∨ β|¬α) < ∞ be-
cause d(α ∨ β|¬α) = ∞ would give d(α ∨ β) = ∞. That would lead to � β.
Therefore we have d(α → β|α) > d(α ∨ β|¬α). From 12 we get (K−

α )−β = K−
α ∩

K−
α∨β , as desired. ��

Theorem 2 An AGM-rational contraction function is a moderate contraction
function iff it satisf ies properties 2 and 5.

Proof Let − be an AGM-rational contraction function. Consider the belief set
K which is obtained from a given consistent belief state � by Eq. G1. We need
to show that the contraction function − is a moderate contraction function iff
it satisfies Eqs. 2 and 5 for any two arbitrary beliefs α, β in K.

(Left to Right). Let us assume that − is a moderate contraction function. By
definition of a moderate contraction function we know that − satisfies OPα[α]
for any arbitrary belief α. Hence from Lemma 1 it is clear that − satisfies Eq. 2.

Furthermore, consider any two ω and ω′ such that ω ∈ [¬α] and ω′ ∈
[α]\ min�(�). Since α is a belief in K, we have min�(�) = min�[α]. Further-
more, since ω ∈ [¬α] and ω′ ∈ [α]\ min�[α], we get ω �−

α ω′. Since we also have
that − satisfies OPα[¬α], Lemma 3 leads us to conclude that − satisfies Eq. 5.

(Right to Left). Let − be an AGM-rational contraction function that
satisfies Eqs. 2 and 5 when successively contracting two arbitrary beliefs α and
β. We need to show that − is a moderate contraction function.

Since − satisfies Eq. 2, we can conclude from Lemma 1 that − satisfies
OPα[α]. By our assumption that − satisfies Eq. 5 and from Lemma 3, we
also have that − satisfies OPα[¬α]. We can also conclude that for any two
worlds ω and ω′ such that ω ∈ [¬α] and ω′ ∈ [α]\ min�[α], we have ω �−

α ω′.
Since α is a belief of the agent, we also have min�[α] = min�(�). Therefore
we have that ω �−

α ω′ when ω ∈ [¬α] and ω′ ∈ [α]\ min�(�). Hence − is a
moderate contraction function, satisfying conditions MC1–MC4 as presented
in the Section 2.1. ��

Theorem 3 An AGM-rational contraction function is a natural contraction
function iff it satisf ies properties 1, 3 and 6.

Proof The proof of this theorem follows directly from Lemma 4. ��

Theorem 4 An AGM-rational contraction function is a lexicographic contrac-
tion function iff it satisf ies properties 12, 13 and 14.



140 R. Ramachandran et al.

Proof Let − be an AGM-rational contraction function. Let � represent a
consistent belief state and K denote the corresponding belief set. Let α and
β be any arbitrary beliefs. We need to show that the contraction function − is
a lexicographic contraction function iff it satisfies 12, 13 and 14.

(Left to Right). Let − be a lexicographic contraction function. We need to
show that for any arbitrary beliefs α, β, − satisfies Eqs. 12, 13 and 14. We do
that by analysing four possible cases.

Case 1: Let both � α and � β. Then K−
α = K = (K−

α )−β = K−
α∨β = K−

α→β .
Hence the conditions 12, 13 and 14 are trivially satisfied.

Case 2: Let � α and �� β. By the properties of conditional degrees of belief,
we have d(α ∨ β|¬α) = ∞ (since � α ∨ β) and d(α → β|α) = d(β) which is
less than ∞. Therefore d(α ∨ β|¬α) > d(α → β|α) which satisfies the pre-
condition for Eq. 13. Clearly then, the preconditions of Eqs. 12 and 14 are
not satisfied, whereby Eqs. 12 and 14 are trivially satisfied. As to Eq. 13, since
− is a lexicographic contraction function it satisfies OPα[α] whereby �−

α =�.
Therefore we have min�−

α
[¬β] = min�[¬β] = min�[¬β ∧ α]. Therefore from

Eq. G2 we get (K−
α )−β = K−

β = K−
α ∩ K−

β = K−
α ∩ K−

α→β , as desired.
Case 3: Let � α and � β. Since − satisfies Eq. G2 we note that the second

contraction in (K−
α )−β is vacuous. From this we can see that − trivially satisfies

Eqs. 12, 13 and 14.
Case 4: Let both � α, � β. We discuss two subcases here.
Sub-case (4a): Suppose β /∈ K−

α . From Eq. G2 and since β is a belief in
K, we see that there is a model of ¬β in min�[¬α]. Any complete chain
of worlds in [¬α] begin with some world in min�[¬α]. Since there exists a
model of ¬β in min�[¬α] we have d(β|¬α) = 0, i.e., d(α ∨ β|¬α) = 0. From
β ∈ K we get that d(β|α) > 0, i.e., d(α → β|α) > 0. Hence d(α → β|α) >

d(α ∨ β|¬α). Note hence that this satisfies the precondition of Eq. 12, and
hence Eqs. 13 and 14 are trivially satisfied. We need only to show that
Eq. 12 is satisfied. Now, min(�−

α )−β (�) = min�−
α
(�) ∪ min�−

α
[¬β]. Since β /∈

K−
α we have min�−

α
[¬β] ⊆ min�−

α
(�). Therefore min(�−

α )−β (�) = min�−
α
(�), i.e.,

(K−
α )−β = K−

α . Again from β ∈ K and β /∈ K−
α we get min�[¬α] ∩ [¬β] �= ∅.

We can therefore write min�[¬α] = min�[¬α] ∪ min�[¬α ∧ ¬β]. From Eq. G2
we get min�−

α
(�) = min�(�) ∪ min�[¬α] = min�(�) ∪ min�[¬α] ∪ min�[¬α ∧

¬β]. Therefore (K−
α )−β = K−

α ∩ K−
α∨β , as desired.

Sub-case (4b): Suppose β ∈ K−
α . We will show that Eq. 13 is satisfied, and

leave out Eqs. 12 and 14 since the proofs are analogous. Let us assume
that d(α ∨ β|¬α) > d(α → β|α). We wish to first show that min�−

α
[¬β] =

min�[¬β ∧ α] from which the desired result will easily follow. First the trivial
case: if � α ∨ β, then clearly [¬β] ⊆ [α] whereby min�−

α
[¬β] = min�[¬β ∧ α].

Now the non-trivial case: assume that �� α ∨ β, i.e., [¬α ∧ ¬β] �= ∅. Let ω′ ∈
min�[¬β ∧ ¬α]. Now, it is easily noted that �� α → β, i.e., [α ∧ ¬β] �= ∅. Let
ω ∈ min�[¬β ∧ α]. Hence, by the properties of conditional degree of beliefs,
there is a chain of worlds in [¬α] ending in ω′ whose length is greater than
any chain of worlds in [α] ending in ω. Hence we have ω �−

α ω′. Therefore,
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from OPα[α] we get min�−
α
[¬β] = min�[¬β ∧ α]. From Eq. G2 we get (K−

α )−β =
K−

α ∩ K−
α→β . Hence we see that − satisfies Eq. 13. Similarly we can show that

− satisfies Eqs. 12 and 14.
(Right to Left). Let − be an AGM-rational contraction function which

satisfies Eqs. 12, 13 and 14 when contracting two arbitrary beliefs α and β.
We need to show that − is a lexicographic contraction function, i.e., it satisfies
OPα[α], OPα[¬α] and LC3.

Lemma 5 states that any AGM contraction function that satisfies Eq. 13
also satisfies Eq. 2. Now from Lemma 1 we know that any AGM contraction
function that satisfies Eq. 2 also satisfies OPα[α]. Hence we see that − satisfies
OPα[α]. Similarly from Lemmas 6 and 2 we can conclude that − satisfies
OPα[¬α]. Hence it will be sufficient to show that − satisfies LC3.

Case 1: � α. We have shown that − satisfies OPα[α]. Hence, we have �−
α =�.

Case 2: � α. Consider two worlds ω and ω′ such that ω is a model of α and
ω′ is a model of ¬α. Let n denote the minimum length of a complete chain of
worlds in [α] that end in ω and m denote the minimum length of a complete
chain of worlds in [¬α] that end in ω′. Since L is finitely generated there exists
a sentence β in the language such that the only models of ¬β are ω and ω′.
There are four possible subcases that arise.

Subcase (2a): Suppose n = 0 whereby, n ≤ m. Then we have ω ∈ min�[α],
i.e., ω ∈ min�(�). Therefore ω ∈ min�−

α
(�). This gives ω �−

α ω′ when n = 0.
However suppose m = 0, i.e., m ≤ n. Then ω′ ∈ min�[¬α]. Since − is an AGM
contraction function it satisfies Eq. G2 and hence ω′ ∈ min�−

α
(�). Therefore

ω′ �−
α ω.

Subcase (2b): Suppose n, m �= 0 and n < m. Since n, m ≥ 0, and [¬β] =
{ω, ω′}, we have β ∈ K−

α . By definition of conditional degree of belief, we
have that d(β|α) = n and d(β|¬α) = m. Therefore d(α ∨ β|¬α) > d(α → β|α).
Since the contraction function satisfies Eq. 13 we have (K−

α )−β = K−
α ∩ K−

α→β .
From Eq. G2 and from β ∈ K−

α we get min�−
α
[¬β] = min�[¬β ∧ α], whereby,

ω �−
α ω′.

Subcase (2c): Suppose n, m �= 0 and n > m. With similar reasoning as
in case b above, together with the fact that − satisfies Eq. 12, we get
ω′ �−

α ω.
Subcase (2d): Consider n, m �= 0 and n = m. Since − satisfies Eq. 14, follow-

ing in similar lines as presented in case b, we can conclude that ω ≈−
α ω′.

Thus − satisfies LC3 and hence we see that − is a lexicographic contraction
function. ��
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