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Abstract The Routley-Meyer relational semantics for relevant logics is ex-
tended to give a sound and complete model theory for many proposition-
ally quantified relevant logics (and some non-relevant ones). This involves
a restriction on which sets of worlds are admissible as propositions, and
an interpretation of propositional quantification that makes ∀pA true when
there is some true admissible proposition that entails all p-instantiations of
A. It is also shown that without the admissibility qualification many of the
systems considered are semantically incomplete, including all those that are
sub-logics of the quantified version of Anderson and Belnap’s system E of
entailment, extended by the mingle axiom and the Ackermann constant t.
The incompleteness proof involves an algebraic semantics based on atomless
complete Boolean algebras.

Keywords Propositional quantifiers · Relevant logic ·
Admissible proposition · Propositional function · Incompleteness ·
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1 Introduction

Propositional quantification played a role in the early development of ideas
about relevant implication. Anderson and Belnap observed in [2] that en-
riching their entailment system E by quantifiers ∀p, ∃p binding propositional
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variables allowed the definition of other conditionals. Thus an enthymematic
conditional A ⊃ B, i.e. one with a suppressed true assumption, could be
defined as

∃p(p ∧ (A ∧ p → B)),

where → is the implication of system E. Strict implication A � B could be
defined as

∃p(Np ∧ (A ∧ p → B)),

where N is the necessity modality defined by taking Np to be (p → p) → p.
They stated that adding the quantifiers to the positive fragment of E gives
a system whose theorems in �, ∧ and ∨ coincide exactly with the positive
fragment of Lewis’s system S4 of strict implication, and whose theorems in
⊃, ∧ and ∨ coincide exactly with the positive fragment of Heyting’s system
of intuitionistic logic. Also, if the negation ¬A is defined as A ⊃ (∀p)p, then
the theorems in ⊃, ¬, ∧ and ∨ coincide exactly with the full intuitionistic
propositional calculus. Here (∀p)p serves as the Falsum, an absurdity implying
every proposition.

No axioms for the quantifiers were stated in [2], but these were supplied by
Anderson in [1], extending E and the system R of relevant implication to logics
E† and R† whose quantifier axioms were the universal closures of the schemes

∀pA → A[B/p]
∀p(A → B) → (∀pA → ∀pB)

∀pA ∧ ∀pB → ∀p(A ∧ B)

∀p(A → B) → (A → ∀pB), with p not free in A.

∀p(A ∨ B) → (A ∨ ∀pB), with p not free in A.

(∀p(p → p) → A) → A.

Meyer in [9] gave alternative axiomatisations of these logics, calling them EP
and RP. He studied the above conditional definitions and others, verifying the
assertions about connections with intuitionistic logic and S4. He also noted that
the Ackermann constant t, thought of as the conjunction of all truths, could be
quantificationally defined as ∀p(p → p).

The volume [3] devoted its first chapter to relevant systems extended by
propositional quantification, using the notation (which we adopt) S∀p for some
system S thus extended.

A semantics for propositional quantifiers was discussed by Routley and
Meyer when they introduced their possible-worlds style model theory for the
logic R in [10]. Their model structures carry a quasi-order ≤, and propositions
are interpreted to be subsets of the structure that are hereditary, i.e. closed
upward under the quasi-order, as in Kripke’s intuitionistic semantics. They
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observed that taking ∀ to mean “for all hereditary subsets” gives a sound
semantics—all theorems of RP are validated—but stated their belief that
completeness fails. This was by analogy with Henkin’s primary interpretations
of higher-order logic [6], given that this interpretation of ∀ was second-order
in nature. Kremer [7] eventually proved their conjecture by showing that the
set of formulas validated by the Routley-Meyer primary semantics for RP is
not recursively axiomatisable.

The present paper provides a complete relational semantics for RP, EP and
other propositionally quantified relevant logics. The initial idea is to restrict
the class of hereditary sets that are admissible as propositions. Each model
structure will have a fixed collection Prop of hereditary sets over which the
propositional variables range. We require Prop to be closed under the opera-
tions interpreting the logical connectives. This approach has been successfully
used to model non-quantified (Boolean) propositional modal logics that are
incomplete for their Kripke semantics, and has also been applied to some
substructural logics.1 But here we have the new question of how to interpret
the propositional quantifiers relative to Prop.

Our answer, in brief, is an old one from algebraic logic: a universal quantifier
is interpreted by a greatest lower bound in the lattice of propositions, this
being the natural interpretation of arbitrary conjunctions. An approach of this
kind was developed for quantification of individual variables in [8]. Here it
is adapted to quantification of propositional variables. To explain how this
works, let ∀pA be a sentence, and A(P) be the result of replacing free p
in A by the hereditary set (proposition) P, viewed as a constant. Let |∀pA|
and |A(P)| be the hereditary sets of worlds at which these sentences are true,
respectively. The Routley-Meyer primary semantics in effect takes ∀pA to
have the same meaning as the conjunction of the A(P)’s as P ranges over all
hereditary sets, so puts

|∀pA| =
⋂

{|A(P)| : P is hereditary}.
This makes |∀pA| the greatest lower bound of the |A(P)|’s in the set of all
hereditary sets under the partial order ⊆ of set inclusion. That partial order is
also the interpretation of the entailment relation between propositions.

In a model whose set Prop of admissible propositions contains only some of
the hereditary sets, we take

|∀xA| =
�

P∈Prop

|A(P)|,

where
�

denotes greatest lower bound in the ordered set (Prop, ⊆). Our
definition of “model” will require that

�
P∈Prop |A(P)| always exists in Prop.

But it may not be equal to the intersection
⋂{|A(P)| : P ∈ Prop}. Instead

1For instance in [4], where admissible propositions for an Action Logic related to dynamic logic
are taken to be certain “stable” subsets of a canonical model. That paper does not discuss
propositional quantification.
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it will be the largest admissible proposition included in this intersection, and
hence the union of all admissible propositions included in the intersection.
Writing a |= ∀pA for “∀pA is true at world a”, i.e. a ∈ |∀xA|, we get that

a |= ∀pA iff there is some X ∈ Prop such that a ∈ X and X ⊆⋂
P∈Prop |A(P)|.

Thus

∀pA is true at a iff some admissible proposition true at a entails every
admissible instantiation A(P) of A.

Our “old” use of greatest lower bounds as conjunctions provides a new
semantic propositional analysis of the meaning of ∀p.

To develop a semantics that can interpret all formulas and not just sen-
tences, we need to assign propositions to variables. A formula A with n free
variables p1, . . . , pn can be seen as defining an n-ary propositional function,
i.e. a function of the form Propn → Prop, taking each n-tuple P1, . . . , Pn of
admissible propositions to the proposition |A(P1, . . . , Pn)| expressed by A
when each pi is assigned the value Pi. Since different formulas may have
different numbers of free variables, this approach would involve handling
finitary propositional functions of different arities, which would quickly be-
come cumbersome. A more convenient and equally natural approach is to
use functions of the form Prop ω → Prop, where ω = {0, 1, 2, . . . }. An element
f ∈ Prop ω is a function f : ω → Prop that serves as a valuation assigning the
proposition f (n) to the variable pn for all n ∈ ω, and so is a device that gives a
value to all variables simultaneously. Such an f can be thought as a sequence
f (0), . . . , f (n), . . . of admissible propositions. Each formula A determines a
propositional function |A| : Prop ω → Prop, taking each f ∈ Prop ω to the
admissible proposition |A| f expressed by A when its free variables are in-
terpreted according to f . |A| is defined formally by induction on the length of
A, as will be seen in Section 3.

Now just as we do not admit arbitrary hereditary sets as propositions, so
too we do not expect an arbitrary function from Prop ω to Prop to be the
interpretation of a logical formula. In addition to Prop, our model structures
have a fixed collection PropFun of admissible propositional functions that
is closed under function-building operations interpreting the connectives and
quantifiers. These closure properties ensure that |A| ∈ PropFun for any for-
mula A, and hence that |A| f is always admissible.

As well as proving soundness and completeness of many logics under our
semantics, we also give incompleteness results showing that our admissible-
propositions approach is essential. These results demonstrate that many of our
logics are incomplete for validity in models in which every hereditary set is
admissible. This is done by exhibiting a particular sentence that is valid in all
such models but not a theorem of the logic in question. The latter part of
the proof requires the development of an algebraic semantics using Boolean
algebras that are order-complete but atomless.
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The next section defines the many logics we study and gives their pertinent
proof-theoretic properties. Section 3 defines our model structures and models,
and gives the soundness theorem for the weakest logic. Section 4 proves the
completeness theorem for this logic by a canonical model construction, and
then Section 5 extends these results to all the other logics. The final Section 6
gives the incompleteness results via algebraic semantics.

2 Logics

Our formal language is based on a countably infinite set Var = {p0, p1, p2, . . .}
of propositional variables, and a countably infinite set Con of propositional
constants (we will usually use the letter c, possibly with subscripts, to refer
to members of Con). Formulas are generated from these variables and con-
stants in the standard way, using the connectives →, ∧, ¬; a special propo-
sitional constant t; and the universal quantifiers ∀pn. We also employ the
abbreviations

A ∨ B =df ¬(¬A ∧ ¬B)

A ↔ B =df (A → B) ∧ (B → A)

∃pA =df ¬∀p(¬A).

The notions of free and bound occurrences of variables and of pn being
free for B in A, are as usual. A formula is closed, or is a sentence, if it
has no free variables. To deal with substitution of formulas for variables the
notation

A[B0/p0, . . . , Bn/pn, . . .]

will refer to the formula resulting from simultaneous substitution of each
Bi for all free occurrences of pi in A. A single substitution A[p0/p0, . . . ,

B/pi, . . . , pn/pn, . . .] will be abbreviated to A[B/pi], and similarly we define
any finite substitution A[B0/pn0 , . . . , Bm/pnm ] in the obvious way.

Axiom Schemes

A1. A → A
A2. A ∧ B → A
A3. A ∧ B → B
A4. (A → B) ∧ (A → C) → (A → B ∧ C)

A5. A → A ∨ B
A6. B → A ∨ B
A7. (A → C) ∧ (B → C) → (A ∨ B → C)

A8. A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

A9. ¬¬A → A
A10. ∀pn A → A[B/pn] (where pn is free for B in A)
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Rules2

(R1)
A → B

A
B

(R2)
A
B

A ∧ B

(R3)
A → B

(B → C) → (A → C)
(R4)

B → C
(A → B) → (A → C)

(R5)
A → ¬B
B → ¬A

(R6)
t → A

A

(R7)
A

t → A
(RIC)

A → B
A → ∀pn B if pn is not free in A

By a logic we mean any set L of formulas that includes all instances of these
axioms and is closed under these rules. We call formula A an L-theorem, and
write �L A, when A ∈ L. The smallest logic will be called Bt∀p.

The labels A1–A9 and R1–R5 are as used in chapters 4 and 5 of [11], what
we call R6 here is called CR1 there and what we call R7 here is called CR7
there. It will be noted that R6 and R7 are the rules tE and tI stated by Anderson
and Belnap when extending their systems with t (for an overview see [3, §R2]).
The label RIC stands for “Rule of Intentional Confinement”.

From R7, RIC and R6, it is evident that any logic is closed under the rule

(UG)
A

∀pn A

of Universal Generalisation. The schemes

• ∀pn A ∧ ∀pn B → ∀pn(A ∧ B)
• A → ∀pn A with pn not free in A

are derivable in any logic.

Lemma 2.1 For any formula A with at most one free variable pn, and for any
closed formulas B and C, if �L B → C and �L C → B then �L A[B/pn] →
A[C/pn] and �L A[C/pn] → A[B/pn].

Proof This is by induction on the complexity of A. We give only the inductive
cases for the quantifiers.

If A = ∀pn D, then (∀pn D)[B/pn] = ∀pn D = (∀pn D)[C/pn], so
�L (∀pn D)[B/pn] → (∀pn D)[C/pn] and �L (∀pn D)[C/pn] → (∀pn D)[B/pn]
by axiom A1.

2The rules are read: “from the formulas above the horizontal line (premisses), infer the formula
(conclusion) below the horizontal line”.
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If A = ∀pm D with m = n, then (∀pm D)[B/pn] = ∀pm(D[B/pn]) as B is
closed, and similarly for C. Then we have

1. �L ∀pm D[B/pn] → D[B/pn] A10
2. �L D[B/pn] → D[C/pn] Induction Hypothesis
3. �L ∀pm D[B/pn] → D[C/pn] 1, R3, 2, R1
4. �L ∀pm D[B/pn] → ∀pm D[C/pn] 4, RIC.

Similarly �L ∀pm D[C/pn] → ∀pm D[B/pn]. ��

To consider some of the relevant (and irrelevant) logics that have been
discussed in the literature, we list some optional axioms below.

B1. (A ∧ (A → B)) → B
B2. (A → B) ∧ (B → C) → (A → C)

B3. (A → B) → ((B → C) → (A → C))

B4. (B → C) → ((A → B) → (A → C))

B5. (A → (A → B)) → (A → B)

B6. A → ((A → B) → B)

B7. (A → (B → C)) → (B → (A → C))

B8. (A → (B → C)) → ((A → B) → (A → C))

B9. (A → B) → ((A → (B → C)) → (A → C))

B10. A → (B → B)

B11. B → (A → B)

B12. A → (B → (C → A))

B13. A → (B → (A ∧ B))

B14. (A → B) → ((A → C) → (A → (B ∧ C)))

B15. ((A ∧ B) → C) → (A → (B → C))

B16. A ∨ (A → B)

B17. (A → B) ∨ (B → A)

B18. A → (A → A)

B19. (A ∨ B) → ((A → B) → B)

B20. ((A ∧ B) → C) → ((A → C) ∨ (B → C))

C1. (t → A) → A
C2. (A ∧ (A → B) ∧ t) → B
C3. ((A → B) ∧ t) → ((B → C) → (A → C))

C4. t → (A ∨ ¬A)

C5. A → (t → A)

D1. ((A ∧ B) → C) → ((A ∧ ¬C) → ¬B)

D2. A ∨ ¬A
D3. (A → ¬A) → ¬A
D4. (A → ¬B) → (B → ¬A)

D5. B → (A ∨ ¬A)

D6. A → (¬A → B)

D7. ¬(A → B) → (B → A)

D8. (A → ¬(B → C)) → (¬B → ¬A)
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E1. ∀pn(A → B) → (∀pn A → ∀pn B)

E2. ∀pn(A ∨ B) → (A ∨ ∀pn B), where pn is not free in A.
E3. (∀p(p → p) → A) → A

The axioms B1–B20, C1–C5 and D1–D8 are taken directly from Chapter 4
of [11], though with some labeling differences in the case of the t axioms C1–
C5. Rt∀p is the smallest logic containing B3–B6, D4, E1 and E2. E3 is derivable
in Rt∀p. RP is Rt∀p without R6 and R7, in the language without the constant t.

Any logic containing E1 also contains

∀pn(A → B) → (A → ∀pn B)

whenever pn is not free in A.
Now if � is any subset of this collection of optional axiom schemas, let L� be

the smallest logic that includes all instances of the members of �. A logic of the
form L� will be called inductively generated. Theoremhood in an inductively
generated logic is determined by finite proof sequences: �L�

A iff there is a
finite sequence A0, . . . , An = A such that each Ai is either an instance of A1–
A10 or of a member of �, or is derivable from earlier members of the sequence
by one of the rules R1–R7, RIC. Using this fact, we can show

Lemma 2.2 Every inductively defined logic is closed under the rules

RIC(con):
A → B[c/pn]

A → ∀pn B
if c is not in A or B, and pn is not free in A.

UG(con):
A[c/pn]
∀pn A

if c is not in A.

Sub:
A[cm0/pm0 , . . . , cmn/pmn ]

A
if cm0, . . . , cmn are distinct and not

in A.

Proof The derivations of RIC(con) and UG(con) are similar to Lemma 6.6
and Corollary 6.7 of [8], using the finite proof-sequence characterisation of
theoremhood in the logic.

For Sub, if � A[cm0/pm0 , . . . , cmn/pmn ] then � ∀pmn A[cm0/pm0 , . . . , cmn−1/

pmn−1 ] by UG(con), and hence � A[cm0/pm0 , . . . , cmn−1/pmn−1 ] from A10.
Repeating that argument n times leads to � A. ��

3 Semantics

Our models use structures of the form 〈K, 0, R, ∗〉, where K is some set (of
worlds or set-ups, or situations . . . ), 0 is a subset of K (the regular, or base
worlds), R is a ternary relation on K and ∗ is a unary function on K. We
write a ≤ b to mean that there is some x ∈ 0 such that Rxab . A set P ⊆ K
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is hereditary if it is closed upward under this relation, i.e. if a ∈ P and a ≤ b
then b ∈ P. We call this a basic model structure if it satisfies:

(P1) 0 is hereditary.
(P2) ≤ is reflexive and transitive.
(P3) Rbcd and a ≤ b implies Racd.
(P4) a∗∗ = a.
(P5) a ≤ b implies b ∗ ≤ a∗.

Operations ⇒ and − on the powerset ℘K of K are defined by

P ⇒ Q =df {a ∈ K : ∀b , c ∈ K(Rabc and b ∈ P implies c ∈ Q)}
−P =df {a ∈ K : a∗ /∈ P}

Then P ⇒ Q is hereditary by (P3), and −P is hereditary if P is, by (P5).
Now fix a set Prop ⊆ ℘K. For any S ⊆ ℘K, let

�
S =df

⋃
{X ∈ Prop : X ⊆

⋂
S}.

This operation will be used to interpret the universal quantifiers ∀pn. In
general

�
S ⊆ ⋂

S, and if
⋂

S ∈ Prop, then
�

S = ⋂
S. But it is also possible

to have
�

S ∈ Prop while
⋂

S /∈ Prop. If S ⊆ Prop and
�

S ∈ Prop, then
�

S
is the greatest lower bound of S in the partially ordered set (Prop, ⊆).

By a propositional function, relative to Prop, we will mean a function from
Prop ω to Prop. From such functions ϕ, ψ : Prop ω → Prop we specify new
functions ϕ ∩ ψ , ϕ ∪ ψ , ϕ ⇒ ψ , −ϕ and ∀nϕ on Prop ω. For the definition of
∀nϕ we need functions that “update” a variable assignment f , so we write
f [P/n] for the function that is identical to f except that it assigns the value
P to n. Now we put

(ϕ ∩ ψ) f =df (ϕ f ) ∩ (ψ f )
(ϕ ∪ ψ) f =df (ϕ f ) ∪ (ψ f )

(ϕ ⇒ ψ) f =df (ϕ f ) ⇒ (ψ f )
(−ϕ) f =df −(ϕ f )
(∀nϕ) f =df

�

P∈Prop

(ϕ f [P/n]).

A Bt∀p-model structure, or just model structure, can now be defined as a
structure

K = 〈K, 0, R, ∗, Prop, PropFun〉
such that 〈K, 0, R, ∗〉 is a basic model structure, Prop is a set of hereditary
subsets of K, and PropFun is a set of functions from Prop ω to Prop, satisfying
the following conditions:

CProp 0 ∈ Prop and if X and Y are in Prop, then X ∩ Y ∈ Prop, X ⇒ Y ∈
Prop and −X ∈ Prop.

CTee The function ϕt is in PropFun, where ϕt( f ) = 0 for all f ∈ Prop ω.
CEval The evaluation function ϕn is in PropFun for each n ∈ ω, where

ϕn( f ) = f (n) for all f ∈ Prop ω.
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CImp If ϕ, ψ ∈ PropFun, then ϕ ⇒ ψ ∈ PropFun.
CConj If ϕ, ψ ∈ PropFun, then ϕ ∩ ψ ∈ PropFun.
CNeg If ϕ ∈ PropFun, then −ϕ ∈ PropFun.
CAll If ϕ ∈ PropFun, then ∀nϕ ∈ PropFun for all n ∈ ω.

The condition CProp, which clarifies some of the structure of Prop, is
derivable from the others:

Lemma 3.1 If PropFun satisfies the conditions CTee, CEval, CImp, CConj and
CNeg, then Prop satisfies CProp.

Proof By CTee it must be that 0 ∈ Prop. Now take any P, Q ∈ Prop and
consider some f ∈ Prop ω such that f (1) = P and f (2) = Q. By CEval ϕ1, ϕ2 ∈
PropFun and so by CConj, ϕ1 ∩ ϕ2 ∈ PropFun. Now (ϕ1 ∩ ϕ2) f = ϕ1 f ∩
ϕ2 f = f (1) ∩ f (2) = P ∩ Q, hence P ∩ Q ∈ Prop. Similar arguments using
CImp or CNeg show that P ⇒ Q ∈ Prop and −P ∈ Prop. ��

A Bt∀p-model, or just model, is a structure

M = 〈K , V〉
where K is a Bt∀p-model structure, and V : Con → Prop is a function (pro-
viding a valuation of the propositional constants) such that:

CMod For any propositional constant c ∈ Con, the constant function ϕc is in
PropFun, where ϕc( f ) = V(c) for all f ∈ Prop ω.

Each model has a truth/satisfaction relation M, a, f |= A between worlds
a ∈ K, variable assignments f ∈ Prop ω, and formulas A. This is defined for
each a and f by induction on the complexity of A, and uses the notion of the
truth set of A under f as the set |A|M f of worlds at which A is true, i.e.

|A|M f =df {b ∈ K : M, b , f |= A}.
The inductive definition of |= is as follows.

• M, a, f |= c iff a ∈ V(c)
• M, a, f |= pn iff a ∈ f (n)
• M, a, f |= t iff a ∈ 0
• M, a, f |= ¬A iff M, a∗, f |= A
• M, a, f |= A ∧ B iff M, a, f |= A and M, a, f |= B
• M, a, f |= A → B iff ∀b∀c (M, b , f |= A and Rabc implies M, c,

f |= B)
• M, a, f |= ∀pn A iff there is some X ∈ Prop such that a ∈ X and X ⊆⋂

P∈Prop

|A|M f [P/n].
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These truth conditions could alternatively be stated as an inductive definition
of the truth sets |A|M f :

• |c|M f = V(c)
• |pn|M f = f (n)
• |t|M f = 0
• |¬A|M f = −|A|M f
• |A ∧ B|M f = |A|M f ∩ |B|M f
• |A → B|M f = |A|M f ⇒ |B|M f
• |∀pn A|M f =

�

P∈Prop

|A|M f [P/n] = ∀n|A|M f .

It turns out that the map f �→ |A|M f that interprets A is a propositional func-
tion in the model, i.e. a member of Propf un. To show this, for each formula A
we define the propositional function ϕM

A inductively on the complexity of A:

• ϕM
c = ϕc

• ϕM
pn

= ϕn

• ϕM
t = ϕt

• ϕM
¬A = −ϕM

A
• ϕM

A∧B = ϕM
A ∩ ϕM

B
• ϕM

A→B = ϕM
A ⇒ ϕM

B
• ϕM

∀pn A = ∀nϕ
M
A .

Note that each ϕM
A is indeed in PropFun by the conditions CMod, CEval,

CTee, CNeg, CConj, CImp and CAll.

Lemma 3.2 Let A be an arbitrary formula. Then in any model, ϕM
A f = |A|M f

for any f ∈ Prop ω. Hence |A|M f is a proposition, i.e. a member of Prop.

Proof By induction on the complexity of A. The base cases are

ϕM
c f = ϕc f = V(c) = |c|M f

ϕM
pn

f = ϕn f = f (n) = |pn|M f
ϕM

t f = ϕt f = 0 = |t|M f

The inductive cases follow similarly from the correspondence of the
definitions. ��

Since Prop consists of hereditary sets, we get

Corollary 3.3 (Hereditariness) In any model, for any formula A, if a ≤ b and
M, a, f |= A then M, b , f |= A.

We say that a formula A is satisfied by the assignment f in the model M
when M, a, f |= A for all base worlds a ∈ 0. A is valid in the model M, written
M |= A, if it is satisfied by every assignment f ∈ Prop ω. A is valid on the
model-structure K , written K |= A, if it is valid in every model based on K .
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The following is proved as in [10, Lemmas 2 and 3].

Lemma 3.4 (Semantic Entailment) For any model M, the formula A → B is
satisfied by f in M iff for any world a ∈ K, M, a, f |= A implies M, a, f |= B
i.e. iff |A|M f ⊆ |B|M f .

Next we show that the satisfaction relation depends only on the value
assignment to free variables.

Lemma 3.5 For any formula A and f, g ∈ Prop ω, if f and g agree on the free
variables of A then |A|M f = |A|Mg (and hence ϕM

A f = ϕM
A g by Lemma 3.2).

Proof By induction on the complexity of A. If A = pn, then as f and g agree
on the free variable pn, |pn|M f = f (n) = g(n) = |pn|Mg.

The cases of A = c ∈ Con and A = t, are straightforward, as are the induc-
tion cases for ∧, →, and ¬.

For A = ∀pn B:

|∀pn B|M f =
�

P∈Prop

|B|M f [P/n] =
�

P∈Prop

|B|Mg[P/n] = |∀pn B|Mg

by induction hypothesis as, for each P, f [P/n] and g[P/n] must clearly agree
on all free variables in B by assumption. ��

The semantics of formula-substitution is characterised by updating of vari-
able assignments, in a similar manner to first-order predicate logic (see for
example [8, Lemma 7.1]):

Lemma 3.6 In any model, for any f ∈ Prop ω, formulas A, B, and variable pn,
if pn is free for B in A, then |A[B/pn]|M f = |A|M f [|B|M f/n].

Proof First note that |A|M f [|B|M f/n] is indeed a well-defined notion, as
|B|M f ∈ Prop by Lemma 3.2, hence f [|B|M f/n] ∈ Prop ω. We will let f ′ =
f [|B|M f/n] and proceed by induction on the complexity of A.

For A = pn,

|pn[B/pn]|M f = |B|M f = f ′(n) = |pn|M f ′;
while for A = pm with m = n,

|pm[B/pn]|M f = |pm|M f = f (m) = f ′(m) = |pm|M f ′.

The cases of A = c ∈ Con and A = t, and the induction cases for ∧, →, and
¬, are left to the reader.

For A = ∀pmC where pn does not occur free in A,

|(∀pmC)[B/pn]|M f = |∀pmC|M f = |∀pmC|M f ′

follows by Lemma 3.5 as f and f ′ differ only in their assignment to pn, hence
they agree on the free variables of A = ∀pmC.
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For A = ∀pmC with pn free in A,

|(∀pmC)[B/pn]|M f = |∀pm(C[B/pn])|M f (a)—see below
=

�

Q∈Prop

|C[B/pn]|M f [Q/m] (b)

=
�

Q∈Prop

|C|M f [Q/m][|B|M f [Q/m]/n] (c)

=
�

Q∈Prop

|C|M f [Q/m][|B|M f/n] (d)

=
�

Q∈Prop

|C|M f [|B|M f/n][Q/m] (e)

=
�

Q∈Prop

|C|M f ′[Q/m] ( f )

= |∀pmC|M f ′, (g)

with each step justified as follows:

(a) as pn is assumed free for B in A = ∀pmC.
(b) by the truth condition for ∀pm.
(c) by induction hypothesis.
(d) as for any Q, |B|M f = |B|M f [Q/m]. This holds because the assumption

that pn is free for B in A, implies that B has no free variables that would
become bound in A[B/pn] = (∀pmC)[B/pn]. So in particular pm does not
occur free in B. Thus f and f [Q/m] agree on the free variables of B (for
any Q), hence by Lemma 3.5 |B|M f = |B|M f [Q/m].

(e) as m = n (else pn would not occur free in A).
(f) by the definition of f ′.
(g) by the truth condition for ∀pm. ��

Theorem 3.7 (Bt∀p-Soundness) For any formula A, if A is a Bt∀p-theorem, then
A is valid in all Bt∀p-model structures.

Proof Let M be any model on a Bt∀p-model structure. We need to show that
the axioms A1–A10 are valid in M, and that the rules R1–R7, RIC preserve
this validity. For A1–A9 and R1–R7, this proceeds as in [11, §4.5].

For A10, suppose M, a, f |= ∀pn A. Let B be a formula such that no free
variable in B becomes bound in A[B/pn] (i.e. pn is free for B in A) and define
f ′ = f [|B|M f/n]. Now by the truth condition for ∀pn there is some X ∈ Prop
such that X ⊆ ⋂

P∈Prop |A|M f [P/n] and a ∈ X. In particular, if we take P
as |B|M f , then we see X ⊆ |A|M f ′. So a ∈ |A[B/pn]|M f by Lemma 3.6,
i.e. M, a, f |= A[B/pn]. Hence by Semantic Entailment (Lemma 3.4) and the
arbitrary choice of f , ∀pn A → A[B/pn] is valid in M.
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For RIC, Suppose A → B is valid in M, where pn does not occur free in A.
By the definition of validity and Semantic Entailment we have that |A|Mg ⊆
|B|Mg for any g ∈ Prop ω, so

⋂

P∈Prop

|A|M f [P/n] ⊆
⋂

P∈Prop

|B|M f [P/n].

Now as pn is not free in A, Lemma 3.5 ensures that |A|M f = |A|M f [P/n] for
any P ∈ Prop. It follows that

|A|M f ⊆
⋂

P∈Prop

|B|M f [P/n].

Hence as |A|M f ∈ Prop by Lemma 3.2,

|A|M f ⊆
⋃{

Q ∈ Prop : Q ⊆
⋂

P∈Prop

|B|M f [P/n]
}
,

i.e. |A|M f ⊆ |∀pn B|M f . So by Semantic Entailment, A → ∀pn B is valid
in M. ��

4 Completeness of Bt∀ p

Fix an arbitrary logic L. We construct a characteristic model ML that validates
precisely the theorems of L. This adapts the Henkin-style constructions of [10]
and [11, §4.6], in which the points of the model are certain theories, i.e. sets of
formulas with suitable proof-theoretic closure conditions. We take much of the
propositional-logic aspect of the construction as known from these references,
and focus on its extension to our interpretation of the quantifiers.

For sets of formulae �, �, we write � �L � if there are some A1, . . . , An ∈
� and B1, . . . , Bm ∈ � such that �L A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm. The pair
(�, �) is L-independent when � �L �. � is an L-theory if for any formula B,
� �L {B} implies B ∈ �. An L-theory � is prime when A ∨ B ∈ � implies A ∈
� or B ∈ �, and regular when �L A implies A ∈ �. The appropriate version of
Lindenbaum’s Lemma in this context is

Lemma 4.1 [11, Lemma 4.3] If (�, �) is L-independent, there there exists some
prime L-theory �′ such that � ⊆ �′ and (�′, �) is L-independent.

Corollary 4.2 If �L A, there is a regular prime L-theory not containing A.

Proof Take � = {B : �L B} and � = {A} in the Lemma. ��

Now let KL be the set of all prime L-theories and 0L be the set of all regular
prime L-theories. Then for each closed formula A, define ‖A‖L =df {a ∈ KL :
A ∈ a}. Put

PropL = {‖A‖L : A is a closed formula}.



Admissible Semantics for Relevant Logics 87

From this definition we get an analogue of the Semantic Entailment
Lemma 3.4:

Lemma 4.3 For any closed formulas A, B we have that ‖A‖L ⊆ ‖B‖L iff �L

A → B.

Proof Suppose ‖A‖L ⊆ ‖B‖L. If �L A → B then ({A}, {B}) is an L-
independent pair. So by Lemma 4.1 there is some prime L-theory � extending
{A} such that (�, {B}) is an L-independent pair. Therefore � ∈ KL (as �

is a prime L-theory), A ∈ � and B /∈ �. But then � ∈ ‖A‖L and � /∈ ‖B‖L

contradicting ‖A‖L ⊆ ‖B‖L. Hence �L A → B.
Conversely, suppose �L A → B and consider any a ∈ ‖A‖L. Then A ∈ a,

and as a is an L-theory (closed under L-implication), B ∈ a, so a ∈ ‖B‖L.
Hence ‖A‖L ⊆ ‖B‖L. ��

We need a particular way of naming members of PropL, since for a given
closed B there will be infinitely many closed B′ with ‖B‖L = ‖B′‖L. So we
assume there is some fixed enumeration of all the closed formulas of our
language, and for each Q ∈ PropL, define BQ to be the first formula in this
enumeration such that ‖BQ‖L = Q. Then for any formula A and Q0, Q1, . . . ∈
PropL, let

A[Q0/p0, . . . , Qn/pn, . . .] =df A[BQ0/p0, . . . , BQn/pn, . . .].
This definition may be restricted to single substitutions A[Q/pn] or to any
finite substitution A[Q0/pn0 , . . . , Qm/pnm ] in the obvious way. We will also
allow ourselves the liberty of specifying mixed proposition and formula
substitutions, e.g. where Q ∈ Prop and C is a formula, A[Q/pm, C/pn] =
A[BQ/pm, C/pn].

To show that our choice of an enumeration of closed formulas does not
really matter, we have

Lemma 4.4 For any formula A with at most one free variable pn, and for any
closed formulas B and C, if ‖B‖L = ‖C‖L then ‖A[B/pn]‖L = ‖A[C/pn]‖L.

Proof If ‖B‖L = ‖C‖L then by Lemma 4.3 �L B → C and �L C → B. Now
by Lemma 2.1 we get �L A[B/pn] → A[C/pn] and �L A[C/pn] → A[B/pn].
Then ‖A[B/pn]‖L = ‖A[C/pn]‖L by Lemma 4.3 again. ��

Corollary 4.5 For any formula A, given closed formulas B0, . . . , Bn, . . . and
C0, . . . , Cn, . . ., if ‖Bi‖L = ‖Ci‖L for all i ∈ ω then ‖A[B0/p0, . . . , Bn/

pn, . . .]‖L = ‖A[C0/p0, . . . , Cn/pn, . . .]‖L.

Proof Take some m ∈ ω such that A[B0/p0, . . . , Bm/pm] = A[B0/p0, . . . ,

Bn/pn, . . .] (i.e. all the free variables of A occur among p0, . . . , pm). Also,
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given each Bi or Ci is a closed formula, it does not matter what order we
substitute them into A. In particular, for any i,

A[B0/p0, . . .] = A[B0/p0, . . . , Bi−1/pi−1, Bi+1/pi+1, . . .][Bi/pi].
Now using this information and Lemma 4.4 we see that

‖A[B0/p0, . . . , Bn/pn, . . .]‖L

= ‖A[B0/p0, . . . , Bm/pm]‖L

= ‖A[B1/p1, . . . , Bm/pm][B0/p0]‖L

= ‖A[B1/p1, . . . , Bm/pm][C0/p0]‖L

= ‖A[C0/p0, B1/p1, . . . , Bm/pm]‖L
...

= ‖A[C0/p0, C1/p1, . . . , Bm/pm]‖L
...

= ‖A[C0/p0, . . . , Cm/pm]‖L

= ‖A[C0/p0, . . . , Cn/pn, . . .]‖L.

��

Given f ∈ Prop ω
L , for any formula A, let

A f =df A[ f (0)/p0, . . . , f (n)/pn, . . .] = A[B f (0)/p0, . . . , B f (n)/pn, . . .].
It is clear that if A is closed then A f is just A. Furthermore, A f will always
be closed, as a free pi in A is replaced by some closed formula B f (i) (where
‖B f (i)‖L = f (i)). So for any A and f we have ‖A f ‖L ∈ PropL. The sub-
stitution operator f �→ A f commutes with the connectives: (A ∧ B) f =
(A f ∧ B f ), (A → B) f = (A f → B f ) and (¬A) f = ¬(A f ).

Lemma 4.6 If f (i) = ‖Ci‖L for all i ∈ ω, then ‖A f ‖L = ‖A[C0/p0, . . . ,

Cn/pn, . . .]‖L.

Proof Take Bi = B f (i) in Corollary 4.5. ��

Now for each formula A, define ϕA
L : Prop ω

L → PropL by ϕA
L f = ‖A f ‖L.

Put

PropFunL = {
ϕA

L : A is a formula
}
.

The canonical L-model structure is

KL = 〈KL, 0L, RL, ∗L, PropL, PropFunL〉,
where

• RLabc iff A → B ∈ a and A ∈ b implies B ∈ c,
• a∗L = {A : ¬A /∈ a} for any a ∈ KL,

and the other items are already defined. The canonical L-model is ML =
〈KL, VL〉, where VL(c) = ‖c‖L for all c ∈ Con.
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Now KL can be shown to be a Bt∀p-model structure. The authors of [11, §4.6]
show that 〈KL, 0L, RL, ∗L〉 is a basic model structure, in which a ≤ b iff a ⊆ b .
They also show that 0L = ‖t‖L, ‖A‖L ∩ ‖B‖L = ‖A ∧ B‖L, ‖A‖L ⇒ ‖B‖L =
‖A → B‖L and −‖A‖L = ‖¬A‖L. This implies that KL satisfies the condition
CProp.

For CTee, observe that ϕt
L ∈ PropFunL, where ϕt

L : f �→ ‖t f ‖L. But as t
is a closed formula, ‖t f ‖L = ‖t‖L = 0L. So ϕt

L satisfies the definition for ϕt,
therefore ϕt ∈ PropFunL.

For CEval, we have ϕ
pn
L ∈ PropFunL, where ϕ

pn
L : f �→ ‖pn

f ‖L. Now

p f
n = pn[B f (0)/p0, . . . , B f (n)/pn, . . .] = B f (n),

so ϕ
pn
L : f �→ ‖pn

f ‖L = ‖B f (n)‖L = f (n). So ϕ
pn
L satisfies the definition for ϕn

and therefore ϕn ∈ PropFunL.
That PropFunL satisfies CImp, CConj and CNeg follows from the results

(
ϕA

L ⇒ ϕB
L

) = ϕA→B
L(

ϕA
L ∩ ϕB

L

) = ϕA∧B
L

− (
ϕA

L

) = ϕ¬A
L . (4.1)

For the first of these,
(
ϕA

L ⇒ ϕB
L

)
f = ‖A f ‖L ⇒ ‖B f ‖L = ‖A f → B f ‖L

= ‖(A → B) f ‖L = (
ϕA→B

L

)
f,

and the others are similar.
Our main burden is to show that that CAll holds on the canonical model.

The following two lemmas are analogous to Lemmas 9.3 and 9.4 of [8].

Lemma 4.7 For any closed formula ∀pn A, and any prime L-theory a, we
have that a ∈ ‖∀pn A‖L iff there is some X ∈ PropL such that a ∈ X and X ⊆
‖A[Q/pn]‖L for all Q ∈ PropL, i.e.

‖∀pn A‖L =
�

Q∈PropL

‖A[Q/pn]‖L.

Proof Suppose a ∈ ‖∀pn A‖L i.e. ∀pn A ∈ a. Let X = ‖∀pn A‖L. Then a ∈ X ∈
PropL as ∀pn A is closed. Consider any Q ∈ PropL, and recall that Q =
‖BQ‖L. Now as ∀pn A ∈ a and �L ∀pn A → A[BQ/pn] (axiom A10, applicable
as BQ is a closed formula), by closure of L-theories under L-implication we
get A[BQ/pn] ∈ a and hence a ∈ ‖A[BQ/pn]‖L. So X ⊆ ‖A[BQ/pn]‖L =df

‖A[Q/pn]‖L.
Conversely, suppose there is some X ∈ PropL such that a ∈ X and X ⊆

‖A[Q/pn]‖L for all Q ∈ PropL. By definition of PropL, there is some closed
formula BX such that ‖BX‖ = X. Hence BX ∈ a. Choose a constant c ∈ Con
that does not occur in A or BX . Let Q = ‖c‖L ∈ PropL.
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Now if �L BX → A[c/pn], then ({BX}, {A[c/pn]}) is an L-independent pair.
So by Lemma 4.1 there is some prime L-theory �, extending {BX}, such that
(�, {A[c/pn]}) is an L-independent pair. So BX ∈ �, giving � ∈ ‖BX‖L = X,
and A[c/pn] /∈ �, giving � /∈ ‖A[c/pn]‖L. But as ‖c‖L = ‖BQ‖L we have that
‖A[c/pn]‖L = ‖A[BQ/pn]‖L by Lemma 4.4. Hence � /∈ ‖A[BQ/pn]‖L. But
‖A[Q/pn]‖L =df ‖A[BQ/pn]‖L = ‖A[c/pn]‖L, and as such it must be that
� /∈ ‖A[Q/pn]‖L. But � ∈ X, so � witnesses X ⊆ ‖A[Q/p]‖L, contradicting
our original supposition.

Therefore it must be that �L BX → A[c/pn], so by the rule RIC(con) of
Lemma 2.2, �L BX → ∀pn A. So finally, as a is a L-theory and BX ∈ a, closure
of L-theories under L-implication gives ∀pn A ∈ a, i.e. a ∈ ‖∀pn A‖L. ��

Lemma 4.8 ∀nϕ
A
L = ϕ

∀pn A
L . Hence PropFunL satisfies CAll.

Proof We begin with a definition. If f ∈ Prop ω
L and n ∈ ω, then

A f\n =df A[ f (0)/p0, . . . , f (n − 1)/pn−1, pn/pn, f (n + 1)/pn+1, . . .]

is the (possibly open) formula which applies the substitution f to all variables
except pn, which remains unchanged. This satisfies:

A f\n[Q/pn] = A f [Q/n] (4.2)

∀pn(A f\n) = (∀pn A) f . (4.3)

Equation 4.2 holds because, as was mentioned in the proof of Corollary 4.5,
when substituting closed formulas it does not matter in what order they are
substituted for their respective variables (as long as we only try substituting
once for each variable, which we do in A f\n[Q/pn] and A f [Q/n]).

For Eq. 4.3 we note that ∀pn(A f\n) = (∀pn A) f\n (for, as f\n leaves pn

unchanged, it makes no difference if it is forced to leave it unchanged, as in
(∀pn A) f\n). And clearly (∀pn A) f\n = (∀pn A) f as pn is not free in ∀pn A.

Now for any ϕA
L ∈ PropFunL, f ∈ Prop ω

L and n ∈ ω we have

(∀nϕ
A
L

)
f =

�

Q∈Prop

ϕA
L ( f [Q/n]) by definition of ∀n

=
�

Q∈Prop

‖A f [Q/n]‖L by definition of ϕA
L

=
�

Q∈Prop

‖A f\n[Q/pn]‖L by Eq. 4.2

= ‖∀pn(A f\n)‖L by Lemma 4.7
= ‖(∀pn A) f ‖L by Eq. 4.3
= (

ϕ
∀pn A
L

)
f by definition of ϕ

∀pn A
L .

Therefore ∀nϕ
A
L = ϕ

∀pn A
L ∈ PropFunL, and so CAll holds. ��
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That completes the proof that KL is a Bt∀p-model structure. To show that
ML is a Bt∀p-model, it remains only to show that it satisfies CMod. But if
c ∈ Con, then by definition, ϕc

L ∈ PropFunL, where, as c is closed,

ϕc
L f =df ‖c f ‖L = ‖c‖L =df VL(c).

Hence ϕc
L satisfies the definition for ϕc, and therefore ϕc ∈ PropFunL as

required for CMod.

Lemma 4.9 (Truth Lemma) For any formula A, ϕ
ML
A = ϕA

L . Equivalently (by
Lemma 3.2), for all f ∈ Prop ω

L we have |A|ML f = ‖A f ‖L, and so for all
a ∈ KL we have that

ML, a, f |= A iff A f ∈ a.

Proof By induction on the complexity of A. For the proof we write ML just
as M.

For the base cases, by definition we have ϕM
pn

= ϕn, ϕM
c = ϕc and ϕM

t = ϕt.
But we saw above that ϕn = ϕ

pn
L , ϕc = ϕc

L and ϕt = ϕt
L, so the Lemma holds

when A = pn, c or t.
For the inductive case of A = B → C, we have

|B → C|M = |B|M ⇒ |C|M = ϕB
L ⇒ ϕC

L

by induction hypothesis, which equals ϕB→C
L by the first equation of Eq. 4.1.

The cases of A = B ∧ C and A = ¬B are similar.
Finally, for the case A = ∀pn B: |∀pn B|M = ∀n|B|M = ∀nϕ

B
L by induction

hypothesis, which equals ϕ
∀pn B
L as in the proof of Lemma 4.8 above. ��

Corollary 4.10 �L A implies ML |= A.

Proof Let �L A, and choose n such that the free variables of A are among
p0, . . . , pn. By the rule UG, �L ∀p0 · · · ∀pn A. Hence using axiom A10, for
any closed formulas B0, . . . , Bn we get �L A[B0/p0, . . . , Bn/pn]. In particular,
for any f ∈ Prop ω, we have �L A f . As a regular L-theory contains all L-
theorems, this implies that for all a ∈ 0L, A f ∈ a, hence ML, a, f |= A by the
Truth Lemma. Thus A is valid in ML as required. ��

Theorem 4.11 If L is an inductively defined logic, then ML |= A implies �L A.

Proof Suppose �L A, and choose n such that the free variables of A are among
p0, . . . , pn. Choose distinct constants c0 . . . cn not occurring in A. Then by
the rule Sub of Lemma 2.2, �L A[c0/p0, . . . , cn/pn]. Hence by Corollary 4.2
there is some regular prime L-theory � such that A[c0/p0 . . . cn/pn] /∈ �, so
� /∈ ‖A[c0/p0 . . . cn/pn]‖L.



92 R. Goldblatt, M. Kane

Now take any f ∈ Prop ω
L such that f (i) = ||ci||L for all 0 ≤ i ≤ n. Then

by Lemma 4.6, ‖A f ‖L = ‖A[c0/p0, . . . , cn/pn]‖L. Hence � /∈ ||A f ||L. But
||A f ||L = |A|ML f by the Truth Lemma 4.9, so ML, �, f |= A. Since � ∈ 0L,
this shows that A is not valid in ML. ��

Corollary 4.12 (Bt∀p-Completeness) For any formula A, if A is valid in all
Bt∀p-model structures, then A is a Bt∀p-theorem.

Proof If A is valid in all Bt∀p-model structures, then it is valid in ML where L
is the inductively defined logic Bt∀p. ��

5 Completeness for Inductively Defined Logics

An inductively defined logic is one specified by adding to the axiomatisation
of Bt∀p some set � of axioms from the long list of optional axioms given at the
end of Section 2. Now we give, for each axiom from that list, a corresponding
condition on model structures. We use the following definitions:

R2abcd iff there is some x ∈ K such that (Rabx and Rxcd)
R2a(bc)d iff there is some x ∈ K such that (Rbcx and Raxd)
R3ab(cd)e iff there is some x ∈ K such that (R2abxe and Rcdx).

(CB1) Raaa
(CB2) Rabc implies R2a(ab)c
(CB3) R2abcd implies R2b(ac)d
(CB4) R2abcd implies R2a(bc)d
(CB5) Rabc implies R2abbc
(CB6) Rabc implies Rbac
(CB7) R2abcd implies R2acbd
(CB8) R2abcd implies R3ac(bc)d
(CB9) R2abcd implies R3bc(ac)d

(CB10) Rabc implies b ≤ c
(CB11) Rabc implies a ≤ c
(CB12) R2abcd implies a ≤ d
(CB13) Rabc implies (a ≤ c and b ≤ c)
(CB14) R2abcd implies (Racd and Rbcd)

(CB15) R2abcd implies there is some x such that b ≤ x, c ≤ x and Raxd
(CB16) (a ≤ b and x ∈ 0) implies a ≤ x
(CB17) a ≤ b or b ≤ a
(CB18) Rabc implies (a ≤ c or b ≤ c)
(CB19) Rabc implies (Rbac and a ≤ c)
(CB20) (Rabc and Rade) implies there is some x such that (b ≤ x and d ≤ x

and (Raxc or Raxe))

(CC1) x ∈ 0 implies Raxa
(CC2) x ∈ 0 implies Rxxx
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(CC3) for any x ∈ 0, R2xbcd implies R2b(xc)d
(CC4) for any x ∈ 0, x∗ ≤ x
(CC5) for any x ∈ 0, Raxc implies a ≤ c

(CD1) (Rabc and Rade) implies there is some x such that (b ≤ x and c∗ ≤ x
and Raxb ∗)

(CD2) for any x ∈ 0, x∗ ≤ x
(CD3) Raa∗a
(CD4) Rabc implies Rac∗b ∗
(CD5) a∗ ≤ a
(CD6) Rabc implies a ≤ b ∗
(CD7) (Rabc and Ra∗de) implies (d ≤ c or b ≤ e)
(CD8) Rabc implies there is some x such that (Rac∗x and for any d, e (Rx∗de

implies d ≤ b ∗))

(CE1) ∀n(ϕ ⇒ ψ) f ⊆ (∀nϕ ⇒ ∀nψ) f
(CE2)

�
P∈Prop(ϕ f ∪ ψ f [P/n]) ⊆ (ϕ ∪ ∀nψ) f

(CE3) (∀n(ϕn ⇒ ϕn) ⇒ ψ) f ⊆ ψ f

The conditions other that (CE1)–(CE3) are those given in [11, pp. 300–301,
352] for dealing with the non-quantified axioms.

Fix any inductively defined logic L = L� . An L-model structure is a Bt∀p-
model structure that satisfies all of the above conditions corresponding to the
members of �. An L-model is a Bt∀p-model on an L-model structure. We will
show that L is characterised by validity in L-model structures.

Theorem 5.1 (Soundness) Every L-theorem is valid in all L-model structures.

Proof It is shown in [11] that all of our non-quantificational optional axioms
are valid in all basic model structures that satisfy their corresponding condi-
tions. We show the same here for the quantification axioms E1–E3.

Consider an arbitrary L-model M. We repeatedly use the result ϕM
A f =

|A|M f of Lemma 3.2, together with the inductive definitions of ϕM
A f and

|A|M f .

(E1) Suppose CE1 holds. Let f ∈ Prop ω. Then using Lemma 3.2 etc.
we have

|∀pn(A → B)|M f = ϕM
∀pn(A→B) f

= ∀n
(
ϕM

A ⇒ ϕM
B

)
f

⊆ (∀nϕ
M
A ⇒ ∀nϕ

M
B

)
f by CE1

= |∀pn A → ∀pn B|M f.

Hence M |= ∀pn(A → B) → (∀pn A → ∀pn B) by the Semantic Entail-
ment Lemma 3.4.
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(E2) Suppose CE2 holds, and pn is not free in A. Then

|∀pn(A ∨ B)|M f =
�

P∈Prop

(|A|M f [P/n] ∪ |B|M f [P/n])

=
�

P∈Prop

(|A|M f ∪ |B|M f [P/n]) by Lemma 3.5

=
�

P∈Prop

(
ϕM

A f ∪ ϕM
B f [P/n])

⊆ (
ϕM

A ∪ ∀nϕ
M
B

)
f by CE2

= |A ∨ ∀pn B|M f.

Hence M |= ∀pn(A ∨ B) → (A ∨ ∀pn B) by Semantic Entailment.
(E3) Suppose (CE3) holds. Then

|∀pn(pn → pn) → A)|M f = (∀n(ϕn ⇒ ϕn) ⇒ ϕM
A

)
f

⊆ ϕM
A f = |A|M f by CE3,

so M |= (∀pn(pn → pn) → A) → A by Semantic Entailment. ��

Lemma 5.2 ML is an L-model structure.

Proof It has to be shown that KL is an L-model structure. We prove here the
cases for the conditions CE1–CE3, and refer the reader to Chapters 4 and 5 of
[11] for the cases of the conditions corresponding to other possible axioms of
L. Take any ϕ, ψ ∈ PropFunL, so by definition ϕ = ϕA

L and ψ = ϕB
L for some

formulas A and B. We make repeated use of the equations of Eq. 4.1 and
Lemma 4.8, along with Eq. 4.3 and the definition of ϕA

L f as ‖A f ‖L.

(CE1) We have

∀n
(
ϕA

L ⇒ ϕB
L

)
f = (

ϕ
∀pn(A→B)

L

)
f = ‖∀pn(A → B) f ‖L

= ‖∀pn
(

A f\n → B f\n)‖L.

But ‖∀pn(A f\n → B f\n)‖L ⊆ ‖∀pn(A f\n) → ∀pn(B f\n)‖L by axiom
E1 and Lemma 4.3. Since

‖∀pn(A f\n) → ∀pn(B f\n)‖L = ‖(∀pn A) f → (∀pn B) f ‖L

= (∀nϕ
A
L ⇒ ∀nϕ

B
L

)
f,

this proves ∀n
(
ϕA

L ⇒ ϕB
L

)
f ⊆ (∀nϕ

A
L ⇒ ∀nϕ

B
L

)
f , giving CE1 for KL.

(CE2) Fix an f ∈ Prop ω and, to avoid confusion of value-assignments, write
A′ for the closed formula A f . Then for any P ∈ Prop,

ϕA
L f ∪ ϕB

L f [P/n] = ‖A′ ∨ (
B f [P/n])‖L.

But by Eq. 4.2 and the fact that A′ is closed and hence unchanged by
substitution,

A′ ∨ (
B f [P/n]) = A′ ∨ (

B f\n[P/pn]
) = (A′ ∨ B) f\n[P/pn].



Admissible Semantics for Relevant Logics 95

Hence
�

P∈PropL

(
ϕA

L f ∪ ϕB
L f [P/n]) =

�

P∈PropL

‖(A′ ∨ B) f\n[P/pn]‖L

= ‖∀pn
(
(A′ ∨ B) f\n) ‖L

by Lemma 4.7. But by axiom E2, as pn is not free in A′,

‖∀pn((A′ ∨ B) f\n)‖L = ‖∀pn(A′ ∨ (B f\n))‖L ⊆ ‖A′ ∨ ∀pn(B f\n)‖L.

Since ‖A′ ∨ ∀pn(B f\n)‖L = ϕA
L f ∪ ‖(∀pn B) f ‖L (by Eq. 4.3) = ϕA

L f ∪
ϕ

∀pn B
L f , this all leads to

�

P∈PropL

(
ϕA

L f ∪ ϕB
L f [P/n]) ⊆ (

ϕA
L ∪ ∀nϕ

B
L

)
f,

establishing CE2 for KL.
(CE3) Since ϕn = ϕ

pn
L in KL,

(∀n(ϕn ⇒ ϕn) ⇒ ϕA
L

)
f = ‖(∀pn(pn → pn)

f → A f )‖L

= ‖(∀pn(pn → pn) → A f )‖L

as ∀pn(pn → pn) is closed. But using axiom E3,

‖(∀pn(pn → pn) → A f )‖L ⊆ ‖A f ‖L = ϕA
L f,

so CE3 follows for KL. ��

Corollary 5.3 (Completeness) For any inductively defined logic L, if A is valid
in all L-model structures, then A is an L-theorem.

Proof By Lemma 5.2 and Theorem 4.11. ��

6 Incompleteness

A model structure or model is called full if its set Prop of admissible proposi-
tions contains every one of its hereditary subsets. In that case, if S ⊆ Prop then⋂

S is admissible, being hereditary, and so
�

S = ⋂
S. It follows that in any

full model,

|∀pn A|M f =
⋂

P∈Prop

|A|M f [P/n], (6.1)

and so universal quantifiers have the standard semantics

M, a, f |= ∀pn A iff M, a, f [P/n] |= A for all P ∈ Prop.

Routley and Meyer speculated in [10, p. 235] that the system RP is incomplete
for its full model-structures, i.e. that there are formulas valid in all full RP-
model structures that are not RP-theorems. This was confirmed by Kremer in
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[7] by proving that the set of all formulas valid in all full RP-model structures
is not recursively axiomatisable, and indeed is recursively isomorphic to full
second-order logic. This shows that the use we have made of models with a
restricted set of admissible propositions is essential for providing a complete
relational semantics for RP.

But what of other logics, such as EP? In this final section we show that
there are numerous inductively defined logics that are incomplete for their full
model-structures. To state our results most generally, let LAlg be the smallest
logic that contains all of the axiom schemes

A1–A9, B1–B5, B8–B10, B14, B18, C1–C4 and D1–D5.

We will define a particular formula Inc such that

(1) Inc is valid in all full model structures whatsoever; and
(2) Inc is not a theorem of LAlg.

It follows that every sublogic L of LAlg is incomplete for its full model-
structures, since Inc is valid in all full L-models by (1), but is not a theorem
of L by (2). In particular, it can be shown that EP is a sublogic of LAlg,
as is EMt∀p, the extension of EP by t and the mingle axiom (A → B) →
((A → B) → (A → B)), so the incompleteness applies to these logics, and to
all of their sublogics.

Now to define Inc, let Exm (for Excluded Middle) be the sentence ∀p(p ∨
¬p), and let Atm (for Atom) be the sentence

∃q(q ∧ ∀r(q → r ∨ q → ¬r)).

Then Inc is the sentence Exm ∧ t → Atm.

After showing (1) we will show (2) by defining a semantics, using Boolean
algebras, in which Atm asserts of an algebra that it contains an atom (in a
sense: see Lemma 6.5). Bull [5] used a similar atomicity assertion to show
the incompleteness of the propositionally quantified modal logic S5 for its full
models.

The main fact about full models that we need, in addition to their standard
semantics for quantifiers, is that in a full model the hereditary sets [a) = {b :
a ≤ b} generated by each point are admissible.

Lemma 6.1 In any full model M, if x ∈ |Exm|M then x∗ ≤ x.

Proof Note that as Exm is a sentence, the value |Exm|M f is independent of
f by Lemma 3.5, so the notation |Exm|M is justified. Using Eq. 6.1 we see that

|Exm|M =
⋂

P∈Prop

(P ∪ −P).

Suppose x ∈ |Exm|M. As M is full, the hereditary set [x∗) = {a : x∗ ≤ a} is in
Prop and therefore x ∈ [x∗) ∪ −[x∗). But if x ∈ −[x∗), then x∗ /∈ [x∗) by the
definition of −[x∗), contradicting the reflexivity of ≤ (P2). So it must be that
x /∈ −[x∗) and hence x ∈ [x∗), i.e. x∗ ≤ x. ��
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To analyse the sentence Atm we first describe the semantics of the defined
notion ∃pn A =df ¬(∀pn(¬A)) when interpreted in full models.

Lemma 6.2 For any full model M and f ∈ Prop ω,

|∃pn A|M f =
⋃

P∈Prop

|A|M f [P/n], (6.2)

so existential quantifiers have the standard semantics

M, a, f |= ∃pn A iff M, a, f [P/n] |= A for some P ∈ Prop.

Proof |∃pn A|M f = − ⋂
P∈Prop −|A|M f [P/n], so a ∈ |∃pn A|M iff a∗ /∈⋂

P∈Prop

−|A|M f [P/n] iff there is some P ∈ Prop such that a∗ /∈ −|A|M f [P/n].

But a∗ /∈ −|A|M f [P/n] iff a = a∗∗ ∈ |A|M f [P/n]. ��

Lemma 6.3 In any full model M, if x∗ ≤ x ∈ 0, then x ∈ |Atm|M.

Proof Suppose x∗ ≤ x ∈ 0. Using Eqs. 6.1 and 6.2 we see that

|Atm|M =
⋃

Q∈Prop

(
Q ∩

⋂

R∈Prop

((Q ⇒ R) ∪ (Q ⇒ −R)

)
.

Now let Q = [x) = {a : x ≤ a}. Then x ∈ Q ∈ Prop, as M is full. Thus it suffices
to show

x ∈
⋂

R∈Prop

((Q ⇒ R) ∪ (Q ⇒ −R))

to conclude from this that x ∈ |Atm|M.
So take any R ∈ Prop and suppose x /∈ ([x) ⇒ R). Then there must be some

a, b ∈ K such that Rxab , a ∈ [x) and b /∈ R. So we know that x∗ ≤ x, x ≤ a, and
a ≤ b as x ∈ 0. Hence b ∗ ≤ a∗ ≤ x∗ ≤ x by (P5), hence b ∗ ≤ x by transitivity
(P2). Given b ∗∗ = b /∈ R it follows that b ∗ ∈ −R, and as −R is hereditary (R ∈
Prop and Prop closed under −) and b ∗ ≤ x we have that x ∈ −R. Now to
show x ∈ ([x) ⇒ −R) take any c, d ∈ K and suppose Rxcd and c ∈ [x). Then
x ≤ c and c ≤ d, hence x ≤ d. So as x ∈ −R it follows that d ∈ −R. Therefore
x ∈ ([x) ⇒ −R).

Putting all this together, we see that for any R ∈ Prop, either x ∈ ([x) ⇒ R)

or x ∈ ([x) ⇒ −R), so

x ∈
⋂

R∈Prop

([x) ⇒ R) ∪ ([x) ⇒ −R))

as required. ��

Theorem 6.4 Every full model validates the sentence Exm ∧ t → Atm.
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Proof Let M be full and x ∈ |Exm|M ∩ |t|M. Then x∗ ≤ x by Lemma 6.1,
and x ∈ 0, so x ∈ |Atm|M by Lemma 6.3. Hence M |= Exm ∧ t → Atm by the
Semantic Entailment Lemma 3.4. ��

To show that Exm ∧ t → Atm is not a theorem of LAlg we turn to algebraic
semantics, using Boolean algebras

B = 〈B, ∧B, ∨B, −B, 0B, 1B〉
that are complete in the sense of having a meet

∧
S and join

∨
S of every

subset S ⊆ B. On such a Boolean algebra we define an binary operation ⇒ by

a ⇒ b =
{

1B if a ≤ b ,

0B otherwise.

This will be used to interpret the connective →.
A Boolean algebraic model has the form M = 〈B, V〉, where B is a com-

plete Boolean algebra and V is a function V : Con → B providing a valuation
of the constants of our propositional language. In such a model, for each
function f : ω → B, acting as a variable-assignment, we inductively define a
value |A|M f in B for each formula A. The base of the induction is given by
|c|M f = V(c), |pn|M f = f (n) and |t|M f = 1B. The connectives →, ∧, ¬ are
inductively interpreted by the operations ⇒, ∧B, −B, and the quantifier case
is given by

|∀pn A|M f =
∧

b∈B
|A|M f [b/n].

Then we get |A ∨ B|M f = |A|M f ∨B |B|M f and

|∃pn A|M f =
∨

b∈B
|A|M f [b/n],

as usual for Boolean algebraic semantics. A formula A is valid in M if
|A|M f = 1B for every f ∈ Bω.

It can be shown that every theorem of LAlg is valid in every Boolean
algebraic model. All of the axioms

A1–A10, B1–B5, B8–B10, B14, B18, C1–C4 and D1–D5

are valid, and all the rules R1–R7, RIC, and E1–E3 preserves that validity.
Showing this involves a great deal of fairly routine algebraic reasoning which
is left to the interested reader. Proof of validity of the quantifier axioms makes
use of analogues of Lemmas 3.5 and 3.6, namely:

• If f and g agree on the free variables of A, then |A|M f = |A|M g.
• If pn is free for B in A, then |A[B/pn]|M f = |A|M f [|B|M f/n].
These algebraic models do not validate such schemes as B6, B7 and C5, so our
incompleteness method does not apply to RQ. But that logic was dealt with by
Kremer’s result.
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We now show that there are Boolean algebraic models invalidating Inc.
Recall that an atom of a Boolean algebra is a non-zero element a such that
if b ≤ a, then b = a or b = 0. Equivalently, a non-zero a is an atom iff a ≤ b
or a ≤ −b for all b . Note that as Atm is a sentence with no constants, it has
a fixed value in any model that is independent of V, and so can be denoted
|Atm|B.

Lemma 6.5 If |Atm|B = 0, then B has an atom.

Proof Suppose |Atm|B = 0. Then as

|Atm|B =
∨

a∈B

(
a ∧B

∧

b∈B
(a ⇒ b ∨B a ⇒ −b)

)
,

there must be some a ∈ B with

a ∧B

∧

b∈B
(a ⇒ b ∨B a ⇒ −b) = 0.

Hence a = 0, and for every b , (a ⇒ b ∨B a ⇒ −b) = 0, so either a ⇒ b = 0
or a ⇒ −b = 0, hence a ≤ b or a ≤ −b . Thus a is an atom. ��

Corollary 6.6 If B is a complete and atomless Boolean algebra, then Exm ∧
t → Atm is not valid in B.

Proof By the Lemma, |Atm|B = 0. But

|Exm ∧ t|B =
(

∧

a∈B
(a ∨B −a)

)
∧B 1 = 1,

So |Exm ∧ t → Atm|B = 1 ⇒ 0 = 0. ��

Since there do exist complete atomless Boolean algebras—for instance the
algebra of regular open subsets of the real line—it follows that there are
algebraic models that validate LAlg but do not validate Inc. So Inc is not an
LAlg-theorem, which gives our overall incompleteness result.
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