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Abstract Classical mereology is a formal theory of the part-whole relation,
essentially involving a notion of mereological fusion, or sum. There are various
different definitions of fusion in the literature, and various axiomatizations
for classical mereology. Though the equivalence of the definitions of fusion
is provable from axiom sets, the definitions are not logically equivalent, and,
hence, are not inter-changeable when laying down the axioms. We examine
the relations between the main definitions of fusion and correct some technical
errors in prominent discussions of the axiomatization of mereology. We show
the equivalence of four different ways to axiomatize classical mereology, using
three different notions of fusion. We also clarify the connection between clas-
sical mereology and complete Boolean algebra by giving two “neutral” axiom
sets which can be supplemented by one or the other of two simple axioms to
yield the full theories; one of these uses a notion of “strong complement” that
helps explicate the connections between the theories.

Keywords Classical mereology · Part-whole relation · Mereological fusion ·
Boolean algebra · Mereological sum · Part · Mereology · Fusion

The idea of a mereological fusion or mereological sum has become a common-
place in philosophical literature. Those who use the notion casually may do
so without giving an exact definition. Some very rough explanation like “the
fusion of some things is what you get when you put them together” is enough
for some purposes. Something more substantial and precise is often wanted,
however, for there are appeals to such principles as
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If every proper part of x is part of y, and every proper part of y is part of
x, then x = y

which are supposed to follow from some axioms in which the notion of fusion
plays a central role.

When definitions of fusion are given, they are not always the same. In fact,
there are many slightly different definitions, of which two are quite common
in the literature. These two definitions are often run together, but they are
logically distinct. It is true that once we have “the correct” axioms in place,
or any equivalent set of axioms, then the two definitions can be shown to be
equivalent (i.e., their equivalence logically follows from those axioms). But
when actually giving an axiomatization intended to yield “the correct” theory,
which we will call classical mereology, the difference matters. There is fairly
universal agreement on what the theorems of classical mereology ought to be—
not on whether they are true, but on what they are. (Roughly, they are the
same as the theorems derived from the axioms for complete Boolean algebra,
except without a zero element.) The difference between the definitions of
fusion makes for a difference in how one can get those theorems. It turns
out that Peter Simons’ system SC in Parts does not suffice to get the desired
theorems. Casati and Varzi’s definition of system GEM in Parts and Places
suffers from an unintended ambiguity; on one disambiguation, we do get the
desired theorems, on the other, we do not. These mistakes, first addressed in
the literature by Carsten Potow in [10], are fairly easily fixed, however, once
they are noticed: we will see that, as in [10], one way is to replace a weak
“supplementation” axiom with a stronger one; we also show that another way
is to replace the “weaker” definition of fusion with the other one.1

We will also consider an alternative axiom set that does not directly use
either common definition of fusion; rather it splits a fusion existence axiom
into two parts and uses the notion of minimal upper bound in place of fusion,
gaining, perhaps, in intuitive appeal what it loses in brevity. Using a related
axiom set, we will give a very clear picture of the close connection between
mereologies and complete Boolean algebras. The connection was known to
Tarski (see [15] and [16]) and has been given a recent treatment in [11]. The
treatment given here differs from others in that it crucially uses the concept
of a “strong complement” in the axiomatizations, which sheds an alternative
light on the roles of the “supplementation” axioms of mereology and the
complement and “distribution” axioms of Boolean algebra. Along the way,
we will correct an axiomatization found in the work of Fred Landman and in
the work of Manfred Krifka that uses the notion of minimal upper bound.

We presuppose no substantial knowledge of mereology or Boolean algebra,
and the technical arguments are intended to be accessible to non-specialists
interested in a fairly self-contained, careful treatment. The paper is almost

1I wish to express my gratitude to Pontow for very useful comments on an earlier draft of this
paper.
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purely technical in nature; we do not address the question of whether classical
mereology is a plausible theory.

1 Definitions of Fusion

We begin with an explication of the devices needed for a formal language in
which classical mereology might be expressed. Suppose we have a first-order
(or higher) language2 that includes a special 2-place predicate ≤, meant to
represent “is part of” or “is a part of”.3 Thus ∀x(Cat(x) → ∃y(Tail(y) ∧ y ≤ x))
says that every cat has a tail as part. For any terms s and t, pick a variable v not
free in s or in t and stipulate:4

s ◦ t abbreviates ∃v(v ≤ s ∧ v ≤ t)

s � t abbreviates ¬ s ◦ t

s 	 t abbreviates s ≤ t ∧ ¬ s = t

‘101 ◦ 102’ can be paraphrased as ‘Rooms 101 and 102 have a common part’
or ‘Rooms 101 and 102 overlap.’ ‘101 � 102’ says that they do not overlap, or
are disjoint, and ‘102 	 101’ says that Room 102 is a proper part of room
101; it is a part, but is not the whole.5 One could, instead, take ◦ or � or 	
as primitive, and define ≤ and the others in terms of the primitive, but this
substantially affects the axiomatization, as we will see later in this paper. It
seems most natural to take ≤ as primitive.

1.1 Schematic Fusion-definitions

We now look at the two common definitions of fusion. According to the first,
roughly put, a fusion of the F’s is a thing x such that for every thing y, y

2Strictly speaking, when we get to axioms and theorems, we will be interested in not a single
axiomatic theory of mereology, but rather any system that results from introducing a new relation
symbol ≤ into a system by (augmenting its language and) adding certain axioms and axiom-
schemes. For our model examples, below, we assume we are working in pure unrestricted mereol-
ogy: pure, meaning ≤ is the only non-logical expression in the language; unrestricted meaning that
the quantifiers of the mereology axioms are unrestricted. For most of our purposes, we may assume
unrestrictedness (the uniform imposition of explicit restriction being a routine matter) and what
other expressions there are in the language will not matter. For informal examples, we will often
assume our language contains predicates like ‘is a cat’ and ‘is a dog’. The availability of set-theory
or higher-order logical devices in the language will be addressed below.
3Sharvy suggests in [13] (cf. [12]) that “is part of” and “is a part of” have rather different meanings,
but classical mereology treats a single relation.
4We will use lower-case italic letters (s, t, x, etc.) as meta-language variables meant to stand for
terms and variables of the object language; the object language will be in sans-serif font (x ≤ y,
etc.). We will be a little loose with use/mention.
5One might complain about the fact that in formal mereology, everything is treated as part of itself.
The usual reply is that this is a mere formal convenience, eliminable in principle.
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overlaps x iff y overlaps one of the F’s. We will first look at a way of formalizing
this that uses an open sentence Fx in place of the notion of “the F’s.”

We will use the expression φ(y) to stand for any wff (well-formed formula)
whose free variables may or may not include y, and so on for any variable. For
any variable x, any wff φ(x), and any term t distinct from the variable x, find a
variable y that does not occur free in φ(x) or in t, and stipulate that

1.1.1 Schematic Type-1 Fusion

Fu1(t, [x | φ(x)]) abbreviates ∀y(y ◦ t ↔ ∃x(φ(x) ∧ y ◦ x))

(read “t is a fusion of the first type, of the condition φ(x)” or, perhaps, “t fuses
the φ’s”). For example,

Fu1(a, [x | ∃z(Cat(z) ∧ Loves(x, z))])
abbreviates

∀y(y ◦ a ↔ ∃x(∃z(Cat(z) ∧ Loves(x, z)) ∧ y ◦ x))
and says that a fuses (in the first sense) the things that love a cat.

Note that we do not, with our notation, take for granted that there is at most
one fusion of cat-lovers. Roughly put, “fusing” is a relation between a thing
(the fusion) and a condition, or between a thing (the fusion) and some things
(that get “fused”). But since we here assume only a first-order language, no
such “relation” can be explicitly mentioned; its logical type would be beyond
the type associated with first-order relation symbols. Note, for example, that
though we know how to say a fuses the cats, it is not immediately evident how
we might say that a fuses some cats: we want something like

∃ψ (∃xψ(x) ∧ ∀x(ψ(x) → Cat(x)) ∧
∀y(y ◦ a ↔ ∃x(ψ(x) ∧ y ◦ x)))

but, of course, this is nonsense, unless ‘ψ ’ here is being used as a second-order
or plural variable; we will consider this possibility in more detail momentarily.

Further, the expression “the fusion of cat-lovers” has to be justified by
showing that our axioms entail that if some things are fused by z and also by w,
then z = w. Yet, since we are using schemes in a standard first-order setting,
we have another kind of uniqueness for free. If every φ is a ψ , and vice-versa,
then anything that fuses the φ’s fuses the ψ ’s:

∀x(φ(x) ↔ ψ(x)) →
∀z (Fu1(z, [x | φ(x)]) ↔ Fu1(z, [x | ψ(x)]))

For the second notion of fusion: for any φ(x), t, x, as above (in the following
we will often suppress qualifications like these), find y as above and stipulate
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1.1.2 Type-2 Fusion

Fu2(t, [x | φ(x)]) abbreviates

∀x(φ(x) → x ≤ t) ∧ ∀y(y ≤ t → ∃x(φ(x) ∧ y ◦ x))

(“t is a fusion of the second type, of φ(x)”).
Roughly the second notion of fusion is the one used by Alfred Tarski in [16]

and David Lewis in [7]. The former notion is used by Simons [14], (see his SD9
on p. 37) and Casati and Varzi [2], p. 46. Casati and Varzi seem to assume that
the difference does not matter in their reference to Tarski’s system on p. 47.

1.2 Schematic vs. Non-schematic

We had to say “roughly” in connection with Tarski and Lewis because their
definitions are non-schematic. It is possible, and sometimes desirable,6 to use
sets, second-order quantification, plural quantification, or some other auxiliary
device in place of the schematic [x | φ(x)] that we used, to give definitions of
fusion to similar effect. E.g., if we were helping ourselves to set theory, then
we would define Type-2 fusion like this:

1.2.1 Set-theoretic Type-2 Fusion

Fu2(t, s) abbreviates

∀x(x ∈ s → x ≤ t) ∧ ∀y(y ≤ t → ∃x(x ∈ s ∧ y ◦ x))

(Tarski gives an obviously equivalent definition of what is called ‘sum’, in the
translation, in [16].) Going the plural route, Lewis would replace ‘x ∈ s’ with
‘x is one of Xs’; one could also aim to get the intended effect using monadic
second-order variables. In the case of sets, it is common and natural to take the
quantifiers in the mereology axioms (formulated in a language that contains
both ≤ and ∈) to be restricted to a set (and thus to give a single axiom of
fusion-existence instead of an axiom scheme). To see the expressive power of
the use of auxiliaries, note that it is easy to say that a is a set-theoretic type-1
fusion of a set of cats:

∃ψ
(
Set(ψ) ∧ ∃x x ∈ ψ ∧ ∀x(x ∈ ψ → Cat(x)

) ∧
∀y(y ◦ a ↔ ∃x(x ∈ ψ ∧ y ◦ x)))

with ‘ψ ’ just another first-order variable.

6And sometimes not desirable. E.g., the nominalist might wish to avoid commitment to sets in
defining fusions; also, one may wish to consider what happens when unrestricted fusion axiom-
schemes are added to something else, like an already given first-order theory, e.g., a modal formal
language, or set theory. Cf. Uzquiano’s discussion of the difficulties of combining set theory and
mereology, in [17].
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Using auxiliaries, we get an “explicit” definition of the fusion relationship,
as in something of the form “for all x and y, x fuses y just in case. . . ” or of the
form “for any x and any Ys, x fuses Ys just in case. . . ” In the case of set theory,
the fusion relationship acquires the logical type of a standard relation between
objects: fuser and fused are both objects (things in the range of the first-order
quantifiers). With plural logic, the logical type is of a relation between an object
and some objects. As we noted, with a schematic definition of fusion, no such
relation is even hinted at (except perhaps in our abbreviatory conventions),
and no “explicit” definition is possible: there is nothing to put in the blank in
“for all x and all , x fuses just in case. . . ”7

Thus we have a second kind of ambiguity in the notion of mereological
fusion, among the purely schematic and alternative non-schematic versions.
Fortunately, most of the issues we discuss arise in parallel for all of these
alternatives, so, for our purposes, it usually does not matter which is chosen.
Informally, we will ignore the differences among the schematic, set-theoretic,
and plural versions, when the differences do not matter. Formally, we will
finesse the issue by adopting the notation

Fu2(t, φx)

in place of the schematic Fu2(t, [x | φ(x)]) or the set theoretic Fu2(t, φ) (where
φ is taken as a first-order variable whose range includes sets). Officially, φx

is an abbreviation to be unabbreviated differently according to whether one
wants to proceed schematically or by sets, or by plural variables, etc. Similarly
for Fu1. For example, Fu1(t, φx) is always partially unabbreviated as

∀y(y ◦ t ↔ ∃x(φx ∧ y ◦ x)),
but the occurrence of ‘φx’ in this will be (partially) unabbreviated as ‘φ(x)’
on a schematic treatment, and (completely) unabbreviated as ‘x ∈ φ’ on a set-
theoretic treatment (with φ a first-order variable), and as ‘x is one of the φs’ on
a plural variable treatment (with φs a plural variable), and so forth.

1.3 Minimal Upper Bounds

Now, it is easy enough to say ‘z is a fusion of all lovers of cats’, but if we are
required to spell out (in English) the defined notion in terms of the part-whole
relation, we are left with quite a mouthful; without a lot of training, it is far
from easy to understand just what is being said.

There is a perhaps more intuitive notion that, in conjunction with the right
axioms, is basically equivalent: the notion of a minimal upper bound. It is rather

7It is worth noting that even if we use auxiliaries to define fusion, schemes will still be invoked
when the auxiliary theory is axiomatized (as in the Separation scheme of set theory, or the
Comprehension schemes of plural and second-order logic) and the resulting notions of fusion will
thus logically link back to these schemes. Basically, utilizing set theory, our schematic ‘[x |φ(x)]’
will be linked to ‘{x : φ(x)}’; utilizing plural quantification, with ‘Xs’ a plural variable, it gets linked
to ‘Xs such that x is one of them if and only if φ(x)’.
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intuitive that if z is the fusion of all cats, then, whatever else it is, it has every
cat as a part. That is to say, it is an “upper bound” on the cats:

∀x(Cat(x) → x ≤ z)

But it is not just any upper bound. According to classical mereology, there is
some object which is the fusion of all objects, call it the universe, and of which
everything is a part. Thus, every cat is part of the universe, so the universe is
an upper bound on the cats. But the fusion of cats should be something smaller
than the universe; no dogs should be part of it, for example. What’s special
about z, the fusion of the cats, is that it is a minimal upper bound (mub), a part
of any upper bound on the cats:

∀w((Cat(x) → x ≤ w) → z ≤ w)

For a compact notation for mubs, stipulate

1.3.1 Min Upper Bound

Mub(t, φx) abbreviates

∀x(φx → x ≤ t) ∧ ∀w(∀x(φx → x ≤ w) → t ≤ w)

We use the term minimal instead of least so as not to build uniqueness into our
very definition. The axiom of Anti-symmetry (see below) is enough, however,
to guarantee that any mub of φx is identical with every mub of φx, so with Anti-
symmetry in place, minimal amounts to (uniquely) least. (The terms supremum
and join are sometimes used for formally the same notion.) We will eventually
see that in classical mereology, for any φx, if, and only if, there is an x with
φx, there is exactly one type-1 fusion of φx, exactly one type-2 fusion, and
exactly one minimal upper bound, and they are all the same thing. Hence,
once the right axioms are in place, one could use the notion of least upper
bound (supremum, join) in place of fusion.8

The use of the notion of least upper bound in place of type-1 or type-2
fusion can be found in the formal linguistic literature in connection with the
semantics of mass nouns and plurals, e.g., in Krifka [3], Landman [4] and [5],
and Link [8]. Landman and Krifka intend to capture classical mereology with
their axiomatizations, but they do not quite succeed, as we note below when
we show how to use mubs in place of fusions to axiomatize classical mereology.
Richard Sharvy uses the notion of least upper bound as his central fusion-like
concept, but favors a notion of quasi-mereology, which is weaker than classical
mereology; see p. 234 of [13] and footnote 8 of [12].

8Acknowledgment is due to Tony Martin for directing my attention to the notion of least upper
bound in connection with the notion of fusion; see footnote 16.
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2 Axiomatizations Short of Classical Mereology

Adopting nomenclature from Casati and Varzi,9 let us have the system M
(Ground Mereology) be the set of axioms

Reflexivity ∀x x ≤ x

Anti-symmetry ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)

Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)

These say ≤ is (in mathematician’s parlance) a partial ordering.
We will show shortly that the two notions of fusion are not equivalent, in

the sense that we cannot derive, using first-order logic alone

∀z(Fu1(z, φx) ↔ Fu2(z, φx))

without further assumptions. In the presence of Transitivity, however, the
right-to-left direction can be derived. The second type of fusion thus may be
said to be the stronger notion of fusion.

2.1 Fusion Existence Axioms

Consider now the system GM1 that results from adding to M instances of a
scheme (or, if one is using auxiliaries, a single axiom) asserting the existence
of type-1 fusions. For any wff φx, if the variable z is not free in φx then

Fusion1E ∃xφx → ∃z Fu1(z, φx)

is an axiom of GM1. (If desired, take universal closures instead of allowing free
variables in the axioms.)

Similarly, GM2 is the system that results from adding an existence axiom or
axiom scheme for type-2 fusions to M:

Fusion2E ∃xφx → ∃z Fu2(z, φx)

GM1 is a very weak system, in the sense that it imposes very little structure on
the part-whole relation; much less than in classical mereology. For example,
the following is a model of GM1:

• •

•

b
�������

a

c
�������

M. 1

9Casati and Varzi [2] and [18].
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In this and our other diagrams, the lines connecting dots are to be thought
of as holdings of a relation R from the lower dot to the higher dot, and the
interpretation of the ≤ symbol in the model is to be the reflexive and transitive
closure of R.

In M. 1, everything overlaps everything, so for any things, any thing is a
type-1 fusion of those things. This example also allows us to see the logical
independence of the two notions of fusion, for it is not a model of GM2. There
is no type-2 fusion of {b , c}10 in this model, for there is nothing of which both
b and c are parts. (The fact that each of a, b , and c is a type-1 fusion of {b , c}
underscores the relative weakness of the notion of type-1 fusion.) But GM2 is
also quite weak, for the following is a model of GM2:

•

•
b

�������
•

c

d
�������

•

�������
a

�������

M. 2

Again, everything overlaps everything, and everything is part of d, so, for any
things, d is a type-2 fusion of them.

2.2 Weak Supplementation

To get to full classical mereology, one course is to add a “supplementation”
axiom that forbids such a situation as that in M. 1, and M. 2, where a is a proper
part of b , and yet b has no other proper parts. The most obvious one says that
a thing with a proper part x has some other, supplementing, part that is disjoint
from x:

WeakSup ∀x∀y(x 	 y → ∃z(z ≤ y ∧ x � z))
It is called “weak” because there is an alternative that is found in the literature
that is “stronger”; we will return to it later.

Let MM be the system that results from adding WeakSup to M, and let
WGM1 be GM1 plus WeakSup.11 Anticipating, we will call the system that
results from adding WeakSup to GM2, CLM (Classical Mereology).12

10or, if one is being schematic, of the condition x = b ∨ x = c with respect to x when b is the value
of the term b and c is the value of the term c. We will suppress such subtleties below.
11We call it ‘WGM1’ and do not use Casati and Varzi’s term ‘GEM’, since, given the situation,
that term is not well defined by their introduction of it on p. 46 of [2].
12We call it ‘CLM’ instead of ‘CM’ to avoid collision with Casati and Varzi’s use of ‘CM’ for what
they call ‘Closure Mereology’.
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Neither M. 1 nor M. 2 are models of MM, since, in both of them, a 	 b , but
there is no part of b that a does not overlap. It is worth briefly noting that MM
by itself is quite weak, since the following is a model of MM:

• a • b

M. 3

In M. 3, nothing is a proper part of anything else, so WeakSup is trivially
satisfied. Neither fusion axiom is satisfied, however, since there is no fusion
for {a, b}.

We now show that WGM1, the result of adding fusion-1 existence and
WeakSup to the partial ordering axioms, yields a surprisingly weak system,
and does not in fact yield classical mereology. This fact has been addressed
in print by Carsten Pontow, in [10]. Pontow’s discussion considers only the
type-1 definition of fusion, however, and so he (reasonably, given only the
one definition) concludes that “only the Strong Supplementation Principle is
sufficient to fit the theories with a strong kind of extensionality,” and suggests
Strong Supplementation in place of WeakSup as the way to mend the errors
in the literature. We explore some different paths here, on which WeakSup
remains central. We tend to “place the blame” more on the weakness of the
type-1 definition of fusion than on WeakSup. Perhaps it is worth noting that
some, including Peter Simons, find WeakSup much more plausible as a basic
truth about the part-whole relation than StrongSup; see, e.g., p. 116 of [14].
Consider first the following two propositions, desired as theorems of classical
mereology,

Product ∀x∀y(x ◦ y → ∃z∀w(w ≤ z ↔ (w ≤ x ∧ w ≤ y)))

and

BLUB ∀x∀y∃z∀w(z ≤ w ↔ (x ≤ w ∧ y ≤ w))

There is a model of WGM1, and hence GM1, in which both Product and BLUB
(binary least upper bound) fail:

• •

•a

c �������
• b

d�������

M. 4

Here, c and d each overlap everything, but they have no product, since, the
things that are parts of both of them are {a, b}, and yet every thing of which
both a and b are parts has a part that fails to be a part of both c and d. To
see that Fusion1E is true, we need to show that for each non-empty subset of
the domain (that is definable with a φx; and since the domain is finite, all of
its subsets are definable) has at least one type-1 fusion. Observe that for each
singleton, its member is a fusion of it (in fact, one can see that this is true in
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all models, since ∀z(z, Fu1(z, [x | x = z])) is true by first-order logic alone). For
any other non-empty set of things in the domain of the model, if it includes
either c or d, then everything in the domain overlaps a member of the set, and
so c fuses the set (and so does d). The only set left over is {a, b}, but everything
overlaps either a or b , so, again c and d each fuse this set. One can confirm
WeakSup by noting that the only things that are proper parts of anything are
a and b , and everything, that either is a proper part of, has both as parts; since
they do not overlap, WeakSup is satisfied.

Simons claims that his system SC, which is equivalent with WGM1, yields
both Product and BLUB, and, indeed, a host of other things that do seem
to be theorems of CLM.13 Casati and Varzi claim that GM1 is enough to get
Product.14 This is the source of their claim that WGM1 is equivalent with the
system SGM1 that results from adding the axiom StrongSup (discussed below)
to GM1. These three claims are incorrect. In the next part, we will show that
SGM1 is indeed equivalent with CLM (= GM2 + WeakSup). Thus, classical
mereology is indeed obtained by adding, to the partial ordering axioms, a
fusion-existence axiom (scheme) and a supplementation principle: if we use
type-1 fusion, we need StrongSup, but if we use type-2 fusion, we need only
WeakSup.

One might wonder whether Product is a theorem of GM2 (partial ordering
plus fusion-2 existence); we have not shown otherwise, since M. 4 is not a
model of GM2, since {c, d} has no type-2 fusion, and Product holds in M. 2.
But it can be “extended” to M. 5, a model of GM2 in which Product fails
(for {c, d}):

•

•

�������
•

e
�������

•a

c ��������������� • b

d
���������������

M. 5

3 Classical Mereology

Now, M.5 is not a model of CLM, since, in it, c is a proper part of e and yet
both of them overlap everything, so WeakSup fails. If we add a proper part
to e that does not overlap c, so as to try to satisfy WeakSup while leaving the
failure of Product in place, we will find that we need more fusions, involving
the new thing and the old things, which WeakSup will then constrain; a lot

13See pp. 37–40 of [14].
14Casati and Varzi [2] p. 46. Cf. [18] Section 4.2.
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of structure is imposed. Product cannot be made to fail. We will show that in
CLM, Fusion2E and WeakSup work together to yield the uniqueness of type-2
fusions. This is a powerful theorem, and a linchpin for other strong theorems;
Product, for example, is a fairly easy consequence. This uniqueness theorem
is a corollary of our main theorem, which says that type-2 fusions are minimal
upper bounds.

Before proceeding to the main theorem, it helps to note first a minor lemma
that is often wanted in reasoning about fusions:

Overlap Lemma ∀z∀y(∃x(x ≤ y ∧ x ◦ z) → y ◦ z)
This lemma is easy to prove using Transitivity; the following diagram gives one
a feel for it:

•

•

y
�������

•

•

�������

z
�������

Now suppose that we have ∃x φx. By Fusion2E, we will have a fusion z of
the φ’s. We can prove that this object is a minimal upper bound: it is part of
anything that all the φ’s are part of.

Formally, given CLM, for any variable x and any φx, and any variables y and
z that do not occur free in φx, we can derive15 (the universal closure of)

Fu2MUB ∀z(Fu2(z, φx) → Mub(z, φx))

Sketch of derivation Pick an arbitrary z with Fu2(z, φx). After unabbrevia-
tion, it should be clear that the main task is to show that, given an arbitrary
upper bound y, i.e., a y with ∀x(φx → x ≤ y), we have z ≤ y.

Use Fusion2E to obtain v with Fu2(v, [x | x = y ∨ x = z]) (or Fu2(v, {y, z})
etc.). Get that z ≤ v. If v = y we will have the desired formula z ≤ y . So
suppose for reductio that y = v. Since y ≤ v, y 	 v; apply WeakSup to get s
with s ≤ v and y � s. Since s ≤ v, by the definition of type-2 fusion we can get
that s ◦ y ∨ s ◦ z; the former disjunct is ruled out, so s ◦ z. Get w with w ≤ s
and w ≤ z.

Since w ≤ z, unabbreviating and applying the fusion clause on z in our
assumptions, get ∃x(φx ∧ w ◦ x), and instantiate to a so we have φa ∧ w ◦ a.

15Strictly: if we are using the schematic Fusion2E axiom, then we can derive this, within any stan-
dard deduction system that includes first-order logic. If we are using a non-schematic formulation,
then we must take advantage of certain basic assumptions about the replacements of the schemes
(the sets or pluralities or what have you) e.g., that there is a set {y, z}. Similar remarks go for all of
our derivations below.
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Since φa, given our assumption that y is an upper bound on the φs, a ≤ y.
But w ◦ a; from these last two we can get that w ◦ y, applying the Overlap
Lemma. But w ≤ s; this leads to a contradiction by another application of the
lemma, since we had y � s above. So, by reductio, y = v; thus z ≤ y; universally
generalize and we are done.

In CLM, type-2 fusions are minimal upper bounds. It is basically built into
the definition of type-2 fusion that a type-2 fusion is an upper bound; it is not
trivial that they are minimal, and that is what WeakSup is for.16

Since we have Anti-symmetry, there is at most one minimal upper bound
for any φx. So, as a corollary to Fu2MUB, we get a crucial theorem-scheme:

Fu2Uniqueness ∀z∀y((Fu2(z, φx) ∧ Fu2(y, φx)) → z = y)

This justifies our speaking of the mereological fusion of φx. Now, in CLM one
can derive that if ∃x∃y x = y then there is no mub for φx unless ∃x φx (see the
discussion below of the connection to Boolean algebras). Hence we can derive
a slightly qualified equivalence between type-2 fusion and mubs: for any φx,

(∃x∃y x = y ∨ ∃x φx) → ∀z(Fu2(z, φx) ↔ Mub(z, φx))

3.1 Using Mubs Instead of Fusions

The theory of CLM could have been axiomatized using the notion of minimal
upper bound instead of fusion, given a couple of minor adjustments. First, no-
tice that we can re-locate the “difference” between the definitions of minimal
upper bound and of type-2 fusion, extracting a somewhat intuitive axiom to
the effect that if something is part of a minimal upper bound on the φ’s, then it
overlaps some φ.

Filtration ∀y∀z((y ≤ z ∧ Mub(z, φx)) → ∃x(φx ∧ y ◦ x))
Now suppose that we modify CLM by taking Filtration as an axiom, and
replacing Fusion2E with

MubE ∃xφx → ∃z Mub(z, φx).

A little unabbreviation shows that Fusion2E is then easily derivable.
In fact, it is easy to see that we can then drop Reflexivity and Anti-symmetry,

as derivable. For the former, given y, get a z with Mub(z, [x | x = y]) (or
Mub(z, {y})); y ≤ z, so if y = z, y 	 z; apply WeakSup and then Filtration
to get a contradiction. The latter can be had by a fairly simple reductio
and applications of WeakSup, Reflexivity, and Transitivity. These last two
arguments are also possible in CLM, of course, but they are perhaps a little
easier to understand when Fusion2E is split into Filtration and MubE.

16 Thanks to Tony Martin for helpfully suggesting that Fu2MUB be brought to the center of the
discussion of CLM. This suggestion re-oriented and simplified an earlier presentation of mine of
the route to Fu2Uniqueness in CLM.
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The set-theoretic version of the modified axiom set (partial ordering, or
just Transitivity, plus WeakSup, Filtration, and MubE) is close to Landman’s
definition of a part-of structure.17 Almost the same definition is used by Krifka
for his notion of lattice sort.18 These definitions are clearly intended to generate
classical mereology, since the authors (incorrectly) claim that the defined
structures are, in general, complete Boolean algebras with the zero element
removed.

Basically, a part-of structure is defined as a structure that satisfies the partial-
ordering axioms, set-theoretic MubE (the existence of a mub (join) for each
non-empty set), WeakSup, and something called Distributivity which governs
mubs of two-element sets (binary joins). Where x + y denotes the z with
Mub(z, {x, y}), the axiom is

x ≤ y + z → (x ≤ y ∨ x ≤ z ∨ ∃y′ ≤ y ∃z′ ≤ z(x = y′ + z′)).

This does not by itself yield Filtration (though it does if the domain is finite)
and we do not get classical mereology.

To see this, let A be any infinite set and let B be

{S|S ⊆ B and S is non-empty and finite } ∪ {A}.
Then 〈B, ⊆〉 is a part-of structure, but not a model of classical mereology.19

If Distributivity is expanded to an infinitary analog, then it is equivalent (in
the presence of the other axioms) with the set-theoretic version of Filtration.
Letting

∨
φ denote the z such that Mub(z, φ), the axiom would be:

z ≤
∨

φ → ∃ψ(∀y(ψy → ∃x(φx ∧ y ≤ x)) ∧ z =
∨

ψ).

This proposition is not really statable with schemes (because of the ∃ψ) though
one can use Filtration to show that

[y | ∃x(φx ∧ x ◦ z ∧ Mub(y, [w | w ≤ x ∧ w ≤ z]))]
“witnesses” the requirement.20 For simplicity and neutrality (with respect to
the scheme-versus-set issue) Filtration seems to be the superior axiom.

3.2 Strong Supplementation

We have seen that we get the desired uniqueness of fusions with the type-2
notion in CLM, using WeakSup. Consider now a stronger supplementation
proposition:

StrongSup ∀z∀y(∀x(x ≤ y → x ◦ z) → y ≤ z)

17See p. 315 of [4] (cf. the beginning of Lecture Four of [5] and the use of Landman’s notion by
Link in Chapter 8 of [9]).
18In [3].
19The latter can be verified by noting that Filtration will fail. One can express “x is a singleton in
B” with ∀y(y ≤ x → y = x); now if x is a singleton, consider the lub of all singletons not identical
with x. It would have to be A; but x ≤ A and yet x does not overlap any of these things.
20The easiest proof of this makes use of StrongSup, to be introduced immediately.
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We can show that StrongSup is derivable in CLM. We could show that CLM
yields Product, and take advantage of Simons’ derivation of StrongSup from
Product and WeakSup,21 but we can avoid a direct appeal to WeakSup and
proceed by taking advantage of Fu2Uniqueness, and the following easy lemma,
to the effect that, put set-theoretically, x fuses {x};

Lemma 2 ∀x Fu2(x, {x})

Sketch of derivation of StrongSup in CLM Take arbitrary a and b and suppose
that ∀x(x ≤ a → x ◦ b); we want a ≤ b. By Fusion2E, ∃z Fu2(z, {a,b}); call it
z. We will then show that Fu2(z, {b}); once we have that, given Lemma 2 and
Fu2Uniqueness, we then get that z = b, and since a ≤ z (easily), a ≤ b and we
are done. To show what we need, we need only show that b ≤ z and ∀w(w ≤
z → w ◦ b); these are both fairly easily obtained.

Thus we have derived StrongSup from Lemma 2, the partial ordering axioms
(M), and Fu2E, and Fu2Uniqueness. The payoff is that, since WeakSup easily
follows from StrongSup with an appeal to Anti-symmetry, we have done half
the work needed to show that we may axiomatize CLM with Tarski’s surpris-
ingly small system from [16] (or a schematic or other variant), that results
basically from taking Fu2Uniqueness as an axiom along with Transitivity and
Fusion2E. Surprisingly, one can derive Reflexivity and Anti-symmetry from
these. A sketch of these derivations, the other half of the needed work, is here
in a footnote.22

21See pp. 30–31 of [14].
22The derivation of reflexivity is somewhat long:

Lemma 1 ∀x x ◦ x

Proof Let a be the fusion of {x} (i.e. Fu2(a, [y|y = x])). Then x ≤ a and ∀y(y ≤ a → ∃z(z = x ∧
z ◦ y)). Apply the universal to x. ��

Lemma 2 ∀x Fu2(x, [y|y ≤ x])

Proof Obviously, every part of x is part of x. If y ≤ x, then y ◦ y, so the second condition is met.

Theorem 1 ∀x Fu2(x, [y|y = x])

Proof Take a with Fu2(a, [y|y = x]). Now we show that Fu2(a, [y|y ≤ x]). (i) if y ≤ x then y ≤ a
(since x ≤ a). And if y ≤ a, then, by def., y ◦ x. So get a z with z ≤ x and z ≤ y. Since z ◦ z, get a w
with w ≤ z. By transitivity, w ≤ y, so y ◦ z. So (ii) ∀y(y ≤ a → ∃z(z ≤ x ∧ y ◦ z)).

So we have Fu2(a, [y|y ≤ x]); by Lemma 2, Fu2(x, [y|y ≤ x]), so by uniqueness of fusions a = x.
(Strictly, we must note also that by Lemma 1, there is some y such that y ≤ x, in order to apply the
uniqueness axiom.)

Anti-symmetry is then fairly straightforward using Lemma 2, since a ≤ b and b ≤ a together
imply ∀z(z ≤ a ↔ z ≤ b). ��
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3.3 Extending WGM1 to Classical Mereology

Returning to WGM1 (or Simons’ SC, one of the disambiguations of Casati
and Varzi’s GEM), we now show that it can be extended to yield classical
mereology by using StrongSup instead of WeakSup. We do this by showing
that GM1 and StrongSup together yield

∀z(Fu1(z, φx) → Fu2(z, φx))

Sketch of derivation Suppose we have ∀y(y ◦ z ↔ ∃x(φx ∧ y ◦ x)); we want
∀x(φx → x ≤ z) ∧ ∀y(y ≤ z → ∃x(φx ∧ y ◦ x)). The right conjunct is almost
immediate with an appeal to Reflexivity. For the left conjunct, suppose its
negation for reductio, and derive that there is x with φx ∧ ¬ x ≤ z; call it x.
Applying the contrapositive form of StrongSup, get that ∃w(w ≤ x ∧ w � z); call
it w. Since w ≤ x, we have φx ∧ w ◦ x, so by our original supposition, w ◦ z; this
contradicts w � z, so we are done.

Since StrongSup yields WeakSup (if we also have Anti-symmetry), classical
mereology can be axiomatized with GM1 (= partial ordering plus Fusion1E)
plus StrongSup. It is not clear whether Reflexivity and Anti-symmetry can be
dropped, however, for we appealed to each in the relevant derivations above.

Thus we have seen that classical mereology can be obtained by the partial
ordering axioms together with a fusion-existence axiom and a supplementation
principle: if we use Fusion1E, we need StrongSup; if we use Fusion2E, we need
only WeakSup. Alternatively, we may instead use partial ordering together
with WeakSup, Filtration and the existence of minimal upper bounds. Further,
in classical mereology, the two notions of fusion and the notion of minimal
upper bound all basically coincide; for any non-empty φx, there is a single thing
that is the unique type-1 fusion, type-2 fusion, and least upper bound for φx.

This completes the main track of this part of the paper; we close this part
with a couple of side tracks.

3.4 No Obvious Tarski-style System For Type-1 Fusions

The question naturally arises whether one can axiomatize CLM in something
like the manner of Tarski’s compact axiomatization, but with type-1 fusions
instead. Suppose we try the most obvious thing: Transitivity plus a universal
closure for every instance of

Fusion1UE ∃xφx → ∃!z Fu1(z, φx)

(with z not free in φx). This won’t work, because there is a model of these
axioms in which we have one element that is not part of itself.
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Suppose then that we add Reflexivity. Anti-symmetry and WeakSup may
then be derived. Still, we get unwanted models. For example, consider

• i • j • k • o

•

��������������

��������������������������
a •

������������������

																		
b •

��������������
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c

M. 6

One can confirm that M. 6 is a model of the resulting system, as follows: let D
be the domain of M. 6, and for each non-empty set S ⊆ D write O(S) for the
set {y ∈ D : there is some x ∈ S with x ◦ y}. Then we have

O({o}) = D
O({ a}) = {a, i, j, o} O({ i}) = D \ {c}
O({ b}) = {b , i, k, o} O({ j}) = D \ {b}
O({ c}) = {c, j, k, o} O({ k}) = D \ {a}

Let F be the set containing these seven sets. For any singletons S, T ⊆ D,
if O(S) = O(T), S = T, hence if any element x of D fuses some non-empty
subset of D, it is the only such element. Thus we have satisfied the uniqueness
part of Fusion1U; so, if we can show that for each non-empty S ⊆ D, there is
something that fuses S, then we are done. We can show this by noting first that
each element fuses its singleton, and second that O(S ∪ T) = O(S) ∪ O(T),
while the set F is closed under union. So M. 6 is a model of the system that
strives for Tarskian brevity with type-1 fusion. It is easy to check that M. 6 is not
a model of CLM. One might regard this as a mark in favor of the type-2 notion.

3.5 Alternate Primitives

Since the notions we have formalized with ≤, ◦, �, and the fusion notations are
all inter-related, it is possible to take any of them as primitive and define the
others with respect to it. In a sense, the choice is a mere matter of convenience;
but the details of axiomatization of a theory equivalent with CLM are rather
different.

An illustrative example is the Calculus of Individuals of Leonard and
Goodman [6]. Here, � is taken as primitive, and x ≤ y is defined as ∀z(z � y →
z � x), and x ◦ y is defined as we did above. The notion of fusion that they give,
which we notate with Fulg is as follows:

Fulg(t, φx) abbrev. ∀y(y � t ↔ ∀x(φx → y � x))

(They use classes for the φx, rather than schemes.)
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Since some quantification is built into the definition of ≤, we get Transitivity
and Reflexivity as a matter of mere first-order logic. If we add Leonard and
Goodman’s second axiom (Anti-symmetry) and third axiom

∀x∀y(x ◦ y ↔ ¬(x � y))
(which was true by definition in our systems) we get significant further theo-
rems, including WeakSup, the equivalence of Fulg(t, φx) with each of Fu1(t, φx)

and Fu2(t, φx), uniqueness for LG-Fusions, i.e.,

∀y∀z(Fulg(y, φx) ∧ Fulg(z, φx) → y = z),

and, hence, Fu2Uniqueness (and the similar result for type-1 fusions). When
we add their first axiom, a fusion-existence axiom

∃xφx → ∃z Fulg(z, φx)

we get that Fulg(t, φx) is equivalent with Mub(t, φx) and, hence, we get all the
theorems of CLM.

4 Strong Complements and Boolean Algebra

We now show the close connection between classical mereology and the notion
of a complete Boolean algebra. The basic result, which seems to go back to
[15], is roughly this: every complete Boolean algebra is a classical mereology,
except for the presence of a single extra element called 0, an element that
is a part of everything; and every classical mereology is a complete Boolean
algebra, except for the presence of the 0 element. (In classical mereology, there
is no 0, unless there is only one thing; one way to see this is that every object
would then be a fusion of {0}; another is that WeakSup fails, since 0 would be
a proper part of anything else, but overlaps everything.)

A qualification on the claim of near-equivalence is in order, regarding
the way that the “completeness” of complete Boolean algebra is conceived.
The standard conception of completeness is that every subset of the domain
of the algebra (the domain itself being conceived as a set) has a minimal
upper bound. This requirement is intended to be strictly stronger than the
analogous requirement imposed by the schematic version of CLM; with the
axiom-scheme we require, in effect, minimal upper bounds only for those
subsets of the domain that are definable in the language whose formulas are in
the “substitution range” for the scheme. Thus there are set-theoretic models of
pure first-order schematic CLM whose structures are not standardly complete
Boolean algebras, even after a 0 is added. (See [11] for a careful discussion
of this fact.) Here we have a mismatch between two ways of getting at “every
subset of the domain.” Schemes get at them only indirectly, as correlates to
formulas, and hence only countably many are addressed; the standard notion
of complete Boolean algebra gets at them directly, from within the set theory.
However, as our discussion will make clear, if the mechanisms for generality
are matched, the basic equivalence-except-for-0 result holds perfectly.
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First, we will construct a “neutral” axiom set that effectively contains the
common core of mereology and complete Boolean algebras. If one adds to the
neutral axioms the axiom that if there is more than one thing, then there is not
a 0 element, the result is CLM; if one adds the axiom that there is a 0 element,
the result is (schematic or, with sets, standard) complete Boolean algebra. We
will also eventually relate CLM to (not necessarily complete) Boolean algebra.

Next, we will find an alternative neutral axiom set, which will make central
use of a new notion: that of the strong complement of an object: basically, the
strong complement of x is something y such that (1) y is disjoint from x; (2)
everything disjoint from x is part of y; and (3) everything disjoint from y is part
of x. Recall that CLM can be axiomatized with the combination of Reflexivity,
Anti-symmetry, Transitivity, MubE, WeakSup, and Filtration, and that in fact,
Reflexivity and Anti-symmetry can be derived from the other four. It turns
out that if we bring Anti-symmetry back in as an axiom, then we can basically
capture the combined effect of WeakSup and Filtration with a single axiom
about strong complements. The axiom says that almost everything has a strong
complement: the only exception is the fusion of all things.

While the classic [15] and the recent [11] also address the near-equivalence,
our use of the notion of strong complement is, as far as the author knows,
unique. The comparison with (not necessarily complete) Boolean algebra and
complete Boolean algebra is facilitated by using this notion, and we are led
to non-standard axiomatizations of both of those theories, as well as a non-
standard axiomatization of CLM.

4.1 The Neutral Axiom Set

Our first task is to display a neutral axiom set that is obviously very close to
CLM, and which can be slightly supplemented to yield either CLM or complete
Boolean algebra.

For neutrality, we must be careful about our defined symbols. We will use
the defined notion of Mub exactly as we did above. Since we do not want to
rule a 0 in or out, we will focus on a predicate 0 (rather than a name) defined
as follows:

∀x (0(x) ↔ Mub(x, [y | y = y]))
(or use the empty set or the like if one is using auxiliaries). It is a consequence
of the definition alone that

∀x∀y(0(y) → y ≤ x)

The definition of proper part (	) remains the same. We use revised notions of
overlap and disjointness as follows:

s • t abbrev. ∃x(¬ 0(x) ∧ x ≤ s ∧ x ≤ t)

and

s �� t abbrev. ¬ s • t
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(In a Boolean algebra, there is a zero element, so if we use the old notion
of overlap, everything overlaps everything, and nothing is disjoint from
anything.)

The neutral axiom set N is:

ZeroU ∀x∀y(0(x) ∧ 0(y) → x = y)

Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)

WeakSupN ∀x∀y((¬ 0(x) ∧ x 	 y) → ∃z(¬ 0(z) ∧ z ≤ y ∧ x �� z))
FiltrationN ∀y∀z((¬ 0(y) ∧ y ≤ z ∧ Mub(z, φx)) →
∃x(φx ∧ y • x))
MubE ∃xφx → ∃z Mub(z, φx)

To get CBA (complete Boolean algebra), it suffices to add

Zero ∃x 0(x)
to N.

To get CLM, add

NoZero ∃x∃y(x = y) → ∀x ¬ 0(x)

to N.
As in CLM, we may derive Reflexivity and Anti-symmetry in N. The

derivations are as before, with the necessary adjustments to take account of
the possibility that a thing be 0. (Alternatively, if we took Anti-symmetry as an
axiom, then we would not need ZeroU.)

It is easy to confirm that the addition of NoZero to N is equivalent with
CLM. If we assume ∃x∀y(x = y), then this is straightforward (note that Zero
is then derivable); otherwise, derive NoZero in CLM and then derive (in each
system) that the new definitions of overlap and disjointness are equivalent with
the old ones, and then similarly for the axioms. To show the connection with
Boolean algebra will require more work, which we postpone for the moment.

4.2 N2

First, we introduce and show the utility of the notion of a strong complement.
Consider the following variant of N that uses strong complements (with the
neutral definitions of overlap and disjointness): First define 1(x) as ∀y y ≤ x.
N2 is then Anti-symmetry, Transitivity, MubE, and

Strong Complement ∀x((¬ 1(x) →
∃z(z �� x ∧

∀y((y �� x → y ≤ z) ∧ (y �� z → y ≤ x))))

4.3 N from N2

We may derive N from N2. It is easy to see that there is a unique z with 1(z)
(viz. the z with Mub(z, [w|w = w])), so we may use ‘1’ as if it were a name.



What is Classical Mereology? 75

Use the expression ‘a∗’ for “the strong complement of a,” as asserted to exist
by Strong Complement, when it is clear that a is not 1.23 (Deduce that strong
complements are unique with Anti-symmetry; similarly, get ZeroU.)

Reflexivity Given x with x = 1 (otherwise x ≤ x), get strong complement x∗
with x∗ �� x. Since ∀y, if y �� x∗ then y ≤ x, and x �� x∗, x ≤ x.

Using the definition of � as before, note that 0(x) implies x �� y and ¬ x � y.
Using reflexivity, note that if x ≤ y and ¬ 0(x), then x • y. Next deduce these
Easy Lemmas:

0(a∗) ↔ a = 1; a∗ = 1 ↔ 0(a);
a ≤ b → b∗ ≤ a∗;
a∗∗ ≤ a;a ≤ a∗∗; a = a∗∗;
b∗ ≤ a∗ → a ≤ b; a ≤ b∗ ↔ b ≤ a∗; a∗ ≤ b ↔ b∗ ≤ a.

Though WeakSupN may be given a more direct derivation, some of the
naturalness of N2 is revealed by first deriving StrongSupN and inferring
WeakSupN by applying Anti-symmetry.

StrongSupN ∀x∀y(∀b(b = 0 ∧ b ≤ x → b • y) → x ≤ y)

StrongSupN follows easily from

Strong Overlap Lemma: ∀x∀y(∀b(b • x → b • y) → x ≤ y)

To show this lemma, assume ∀b(b • x → b • y). We may suppose that y = 1,
and thus (by an Easy Lemma) ¬ 0(y∗). Now, if x = 1, then: ∀z (¬ 0(z) → z •
x), hence y∗ • x, so y∗ • y; contradiction. Conclude x = 1. By contraposition,
∀b(b �� y → b �� x). But y∗ �� y, so y∗ �� x, hence y∗ ≤ x∗. So, using an Easy
Lemma, x ≤ y.

FiltrationN Given y with ¬ 0(y) and y ≤ z and Mub(z, φx). (Note that then
¬ 0(z) and that ∃x(φx ∧ ¬ 0(x)). Also, we may suppose that for no x of φx do
we have x = 1, since, if so, we are done.) Suppose for reductio that for each x
of φx with ¬ 0(x), ¬ x • y. Then, for each such x, y �� x, so y ≤ x∗. Thus for each
such x, x ≤ y∗; (and 0(b) implies b ≤ y∗) so each x of φx is ≤ y∗. Hence z ≤ y∗.
Hence y ≤ y∗, so y • y∗; contradiction.

Thus N can be derived from N2.

4.4 N2 from N

We may go the other way.
First derive the Strong Overlap Lemma (SOL) (stated above): Assume

∀b(b • x → b • y). Now if 0(x) then x ≤ y, so we may assume not. Now, use

23Officially, uses of ‘1’, ‘a∗’, and the like are to regarded as definite descriptions, which are
abbreviatory devices to be handled in the manner of Russell’s theory of descriptions.
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MubE to get a with Mub(a, [z|z ≤ x ∧ z ≤ y]. Get that ¬ 0(a) (starting from
x • x). Get that a ≤ x and a ≤ y by design of a. Now suppose for reductio that
a 	 x (so that when done we will conclude a = x and hence x ≤ y, as desired).
Use WeakSupN to get w with ¬ 0(w) and w ≤ x and w �� a. Since w • x, w • y;
get u with ¬ 0(u) and u ≤ w and u ≤ y. u ≤ x, as well, so u ≤ a by design; but
then we have that a • w, a contradiction.

Next, infer StrongSupN from SOL, and then, to derive Strong Complement:
Given x with x = 1. We must show that x “has a complement” as the axiom
describes. If 0(x), it is easy to see that 1 is the desired complement. Otherwise:
we know that x 	 1, so, by WeakSupN , ∃y y �� x with ¬ 0(y). So get z with
Mub(z, [w|w �� x]). z is the desired complement. If z • x, then get some y
(¬ 0(y)) with y ≤ x and y ≤ z; by FiltrationN , y • w for some w with w �� x;
but since (¬ 0(w) and) w • y and y ≤ x, we then have w • x; contradiction.
Thus z �� x as desired. Next, given arbitrary y with y �� x, y ≤ z by design. Next,
given arbitrary y with y �� z, if 0(y) then y ≤ x; else: for any w with ¬ 0(w) and
w ≤ y, ¬w ≤ z, so, by design, ¬w �� x. Hence w • x. Now apply StrongSupN

and conclude y ≤ x.
NoZero is an easy theorem of CLM. Thus we may conclude that if we

add NoZero to N2, the result is equivalent with CLM. Thus we have an
alternate axiomatization of CLM, in which Strong Complement, (with the aid
of Anti-symmetry) basically has the effect of the combination of WeakSup and
Filtration. (We can replace ‘��’ with ‘�’ in this axiom set, as in the “Fifth way” in
the summary below.)

4.5 Boolean Algebra

Traditionally, there are two different ways to give axioms for (not necessarily
complete) Boolean algebra. (See, for example, the first two sections of the first
chapter of [1].)

The “algebraic” way, suggestive of the connection with the Boolean con-
nectives of propositional logic, involves taking as primitive the constants 0
and 1, a binary operation called “join” (symbolized x + y or x ∨ y), a binary
operation “meet” (symbolized x · y or x ∧ y), and a singulary operation of
“complementation” (symbolized x∗ or ¬ x). The axioms then constrain the
behavior of the operations on arbitrary items in the domain (and on 0 and
1). x ≤ y is then defined as x + y = y or as x · y = x.

The “relational” way is to take ≤ as primitive, and define 0 and 1 and all
of the algebraic operations in terms of it; e.g., x + y is defined as the least
upper bound or supremum of x and y, while x · y is defined as their infimum.
Such definitions have to be justified by the axioms stated in terms of ≤. In the
case of a not-necessarily-complete Boolean algebra, we only care about least
upper bound and greatest lower bound on pairs of elements. These notions are
straightforwardly definable in terms of first-order logic and ≤, so no schemes,
set theory, or additional primitives are required.

To give axioms for complete Boolean algebra, one needs to add an axiom
or scheme that uses a generalized (that is, stated with schemes or auxiliary
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entities) notion of supremum (minimal upper bound), whether one takes
as primitive the relation ≤ or the algebraic operations and 0 and 1. In the
complete case, it is more natural to take ≤ as primitive, and, of course, this
facilitates comparison with mereology.

A standard axiom set for complete Boolean algebra, sCBA, breaks into
three groups. The first group says that ≤ is a partial ordering. The second group
consists of a single axiom (scheme) saying that any φx has a supremum (mub):

Supremum ∃z Mub(z, φx)

(Recall that standardly, the notion of complete Boolean algebra is defined
within set theory, so the φx’s would be set-variables.) Supremum is obviously
equivalent to the conjunction of MubE and Zero. With Anti-symmetry in
place, we get that there is exactly one supremum for any φx. This justifies our
introducing defined complex terms

Sup(φx)

(the supremum of φx) for arbitrary φx, to be treated as the definite description
“the minimal upper bound for φx”. Next, we may get that for any φx, there is a
greatest lower bound for φx. Let

Inf (φx)

(the infimum of φx), be treated as Sup([y | ∀x(φx → y ≤ x)]).
By definition, ∀y(∀x(φx → y ≤ x) → y ≤ Inf (φx)). Also, we have that

∀z(∀y(∀x(φx → y ≤ x) → y ≤ z) → Inf (φx) ≤ z). Now every x such that φx is
like z in the antecedent of the main conditional of this last formula; hence we
have ∀x(φx → Inf (φx) ≤ x). Thus Inf (φx) is indeed a greatest lower bound
on φx.

The third group of axioms is stated in terms of 1 and 0 and the algebraic
operations of meet and join, all defined in terms of ≤. 0 is as above; 1 is
Sup([x | x = x]).

(s + t) abbrev. Sup([x | x = s ∨ x = t])
(s · t) abbrev. Inf ([x | x = s ∨ x = t])

The axioms are:

Complement ∀x∃y(x+ y = 1 ∧ x · y = 0)

Distributivity ∀x∀y∀z(x+ (y · z) = (x+ y) · (x+ z))

One can derive that the object asserted to exist by Complement is unique,
using some of the important little theorems24 x · y = x ↔ x ≤ y ↔ x+ y = y,

24Their use for this purpose is standard, as in [1].
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(x · y) + x = x, x · (y+ x) = x, x = x+ 0, x = x · 1, x · y = y · x, x+ y = y+ x,
x+ (y+ z) = (x+ y) + z, and x · (y · z) = (x · y) · z. If a and a′ are comple-
ments of x, i.e., x+ a = 1, x · a = 0, x+ a′ = 1, and x · a′ = 0, then

a · a′ = (a+ (x · a′)) · a′ = ((a+ x) · (a+ a′)) · a′ = (a+ a′) · a′ = a′

So a′ ≤ a; similarly, get a ≤ a′ and apply Anti-symmetry. One can derive the
dual distribution principle, namely

∀x∀y∀z(x · (y+ z) = (x · y) + (x · z))
without appealing to Complement, by making use of some of the little the-
orems; begin by using Distribution to get that (x · y) + (x · z) = ((x · y) + x) ·
((x · y) + z).

The notion of a (not necessarily complete) Boolean algebra is much weaker
than the notion of a complete Boolean algebra. A standard axiom set, sBA,
for the general notion of Boolean algebra, also has axioms falling into three
groups. The first group is again the partial ordering axioms. The second forms a
greatly weakened version of the Supremum axiom: it is only required that each
pair of things have both a supremum and an infimum (cf. Product and BLUB
above). The third group is Distribution (the definitions of join and meet are
the same) and an existentially quantified version of Complement above, that
says that there exist objects (to be called ‘0’ and ‘1’) such that the Complement
axiom above is satisfied. (One can then prove that these objects are unique,
that ∀x (0 ≤ x ∧ x ≤ 1), and so on.)

If we do not require completeness (of at least the schematic sort), the close
correlation with classical mereology would fail. Every Boolean algebra with
finitely many objects is complete, but the two notions come apart if there are
infinitely many objects.25

25Consider PSCLM, “pure” schematic CLM, in which ≤ is the only non-logical relation. There
are non-complete Boolean algebras that cannot be converted into models of PSCLM by simply
deleting 0 and restricting ≤ accordingly; for example, there are Boolean algebras in which the set
of atoms has no least upper bound. (An atom of a Boolean algebra is an element such that only 0
and it are ≤ it; an atom of a mereology is an element such that only it is part of it.) Since “atom”
is easily given a definition in a first-order language with ≤, the set of atoms is definable in the
relevant sense, and so it is an easy theorem of PSCLM that if there is an atom, then there is a least
upper bound on the atoms.

That there are such Boolean algebras can be seen by the following argument. First, given that
〈B,≤B〉 is a Boolean algebra, and A ⊆ B: if A is closed under (binary) meet and (binary) join and
complementation, and 1 ∈ A (where 1 is the “top” element of 〈B,≤B〉), 〈A,≤A(= ≤B � A)〉 is
a Boolean algebra (where ≤B � A is {〈x, y〉 : x ≤B y and x, y ∈ A}; moreover the meet, join, and
complement operations of the A-algebra are restrictions of those of the B-algebra (e.g., for x ∈ A,
the complement of x in 〈A,≤A〉 is the complement of x in 〈B,≤B〉).

Now call an element x of a Boolean algebra a “bit of gunk” if x = 0 and no atoms are ≤ x. Let
〈B,≤〉 be a Boolean algebra that has infinitely many atoms and also at least one bit of gunk. Let
P be some infinite set of pairwise disjoint bits of gunk of B. (x and y are disjoint if their meet is 0;
there must be such a set if there is at least one bit of gunk in B.) Let G be {x ∈ B : ∃y ∈ P x ≤ y}.
Let T be the set of atoms of B and let A be the closure of T ∪ G under (binary) join, (binary)
meet and complement. Then 〈A,≤ � A〉 is a Boolean algebra in which the set of atoms has no least
upper bound. (To show this, it helps to put each member of A into a “normal form” analogous to
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4.6 N2F (with Zero) and sBA

We are now in a position to start linking mereology with Boolean algebra. A
weakening of N2 naturally provides an alternate set of axioms equivalent with
sBA. We simply add Zero and reduce MubE to its finite counterpart, which
effectively asserts a minimal upper bound for any x and y:

Binary Join ∀x∀y∃z(x ≤ z ∧ y ≤ z ∧ ∀w(x ≤ w ∧ y ≤ w → z ≤ w))

(In the presence of Reflexivity and Transitivity, Binary Join is equivalent with
BLUB above.) Let N2F (N2 Finite) be the conjunction of Anti-symmetry,
Transitivity, Binary Join, and Strong Complement, and let BA be N2F con-
joined with the axiom Zero. We can derive from BA the standard relational
axioms for Boolean Algebra, sBA.

First, we can derive in BA that there are unique objects that satisfy 0(x) and
1(x), where these are defined as above, or equivalently, 0(x) ↔ ∀y x ≤ y and
1(x) ↔ ∀y y ≤ x. (Zero yields the 0; apply Strong Complement to it to yield
the 1.) Each is the strong complement of the other (and this holds even if there
is exactly one thing). Thus we have

Exceptionless Strong Complement

∀x∃z(z �� x ∧ ∀y((y �� x → y ≤ z) ∧ (y �� z → y ≤ x)))

and so we may speak of “the strong complement” of x (notated again x∗) for
any x. The Easy Lemmas above go through. Applying Anti-symmetry, binary
joins are unique, so we may use ‘x + y’ as a term for the object asserted to
exist by Binary Join. Then it can fairly easily be shown that (x∗ + y∗)∗ is a meet
for x and y. (x∗ ≤ x∗ + y∗, so (x∗ + y∗)∗ ≤ x; similarly (x∗ + y∗)∗ ≤ y. And if
a ≤ x and a ≤ y, then: x∗ ≤ a∗, and y∗ ≤ a∗, so x∗ + y∗ ≤ a∗, so a ≤ (x∗ + y∗)∗.)
Notate the meet of x and y with ‘x · y’.

The Stong Overlap Lemma (SOL) goes through as above. To derive Com-
plement, we need to show that for any x, x+ x∗ = 1 and x · x∗ = 0. The latter is
easy since x �� x∗; to get the former, note that for any a = 0, if a �� x, then a ≤ x∗,
so a • x+ x∗, while if not, a • x, so again, a • x+ x∗. So for any a with a • 1,
a • x+ x∗; apply SOL and conclude 1 ≤ x+ x∗, hence 1 = x+ x∗.

Conjunctive Normal Form in propositional logic. Since members of A are “generated out of T ∪ G
by inductive closure on the three operations,” given the Boolean laws governing these operations,
one can deduce that every member of A can be represented as a finite join of terms, each of
which is a finite meet of terms, each of which (in turn) is a member of T or of G or a complement
thereof: i.e., notating the meet, join, and complementation operations of 〈B,≤〉 as ‘·’, ‘+’, and ‘′’
respectively, each member of A is of the form

( (a1 · . . . · an · b ′
1 · . . . · b ′

m · g1 · . . . · gi · h′
1 · . . . · h′

j) + (. . .) + . . . + (. . .) )

(where n, m, i, j ≥ 0 and each a and each b ∈ T and each g and each h ∈ G). A key observation is
then that for each x that is a complement of a member of T ∪ G, there are at most finitely many
members of T ∪ G that are not ≤ x.)
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To derive Distributivity, we will show both

(i) x+ (y · z) ≤ (x+ y) · (x+ z) and
(ii) (x+ y) · (x+ z) ≤ x+ (y · z)

The first can be shown to follow basically from the definitions of join and
meet. To derive the second, we derive

(iia) a • [(x+ y) · (x+ z)] → a • (x+ (y · z))
and apply SOL.

The key lemmas for deriving (iia) are

(iia) L1 a �� x ∧ a �� y → a �� x+ y and
(iia) L2 a �� x ∧ a ≤ x+ y → a ≤ y

To show L1, note that the antecedent implies that x ≤ a∗ and similarly for
y, so x+ y ≤ a∗; so a ≤ (x+ y)∗, so a �� x+ y. (The only way b ≤ z and b ≤ z∗
is if b = 0.) To show L2, assume the antecedent, and that a = 0 (otherwise we
are done). Now consider any b with b • a: get c = 0 with c ≤ a and c ≤ b. Get
that c �� x while c • x+ y. Apply (the contrapositive of) L1 to deduce c • y and
infer b • y. So for any b, if b • a, b • y; apply SOL and conclude a ≤ y.

Now to derive (iia), suppose a • [(x+ y) · (x+ z)]. Get b = 0 with b ≤ a
and b ≤ (x+ y) · (x+ z); get that b ≤ x+ y and b ≤ x+ z. Now, if b • x, then
we have a non-zero c with c ≤ b ≤ a and c ≤ x ≤ x+ (y · z). Otherwise b �� x;
apply (iia)L2 twice to get b ≤ y and b ≤ z and thus b ≤ y · z. Thus, in any case,
a • x+ (y · z).

To show that sBA yields BA, we need only show that the complements
postulated by Complement are in fact strong complements, in the presence
of the other axioms. Use x̄ to denote the (weak) complement of x, and x∗ for
the strong complement; we want ∀x x∗ = x̄. To show this, we need to show
x �� x̄ and ∀y (y �� x → y ≤ x̄) and ∀y (y �� x̄ → y ≤ x). One can easily show that
x �� y ↔ x · y = 0. Hence x �� x̄. Now suppose y �� x. Then y · x = 0, and so:

x̄ = x̄+ 0 = x̄+ (y · x) = (x̄+ y) · (x̄+ x) = (x̄+ y) · 1 = x̄+ y

Hence y ≤ x̄. The other needed fact is derived similarly.

4.7 Main Results of Part Four

Thus BA, which is N2F (the finite version of N2) plus Zero, is equivalent with
sBA. With this shown, it is clear that N2 plus Zero is equivalent with the
“infinite” or complete version of Boolean algebra, sCBA (provided that the
mechanism for generality represented by our φx’s is the same on both sides). To
see their equivalence, we need only the above arguments and the observation
that Zero and MubE together are equivalent with Supremum.

As we noted earlier, in the presence of Zero, we can derive in N2F that
there are unique elements 0 and 1 with the expected properties and that
each is the strong complement of the other. Putting all this together, we
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get that we may axiomatize Boolean algebra with the conjunction of Anti-
symmetry, Transitivity, Binary Join, and Exceptionless Strong Complement.
To get complete Boolean algebra, replace Binary Join with Supremum.

Summing up, N2 is an axiomatic “middle ground” between Classical mere-
ology and Boolean algebra. We have that CLM is equivalent with N plus
NoZero, which, in turn, is equivalent with N2 plus NoZero. And sCBA
is equivalent with N2 plus Zero, which, in turn, is equivalent with N plus
Zero. This brings out the small difference between Classical mereology and
complete Boolean algebra. Further, we have seen how the defined notion
of strong complement helps to bring all of these theories together. In the
presence of partial ordering and mubs (finite or not), the effect of the strong
complement axiom is basically the same as the combination of WeakSup and
Filtration, and, again, basically the same as the combination of Complement
and Distributivity.

5 Summary of Axiom Sets

Classical mereology is the core notion of “mereology” in the philosophical
literature. Within a system that yields it, the two main notions of fusion and the
notion of least upper bound are equivalent; but in axiomatizing, one must be
more careful. The stronger, second type of fusion seems to be the more natural
notion, and the notion of minimal upper bound is perhaps more natural still.

Here are five ways to axiomatize classical mereology. (See Part One above
for the definitions of other terms and the use of φx.)

Type-1 Fusion Fu1(t, φx) abbreviates

∀y(y ◦ t ↔ ∃x(φx ∧ y ◦ x))

Type-2 Fusion Fu2(t, φx) abbreviates

∀x(φx → x ≤ t) ∧ ∀y(y ≤ t → ∃x(φx ∧ y ◦ x))

Min Upper Bound Mub(t, φx) abbreviates

∀x(φx → x ≤ t) ∧ ∀w(∀x(φx → x ≤ w) → t ≤ w)

One may not replace type-2 fusion with type-1 fusion in any of the
axiom sets.

First way:
Reflexivity ∀x x ≤ x
Anti-symmetry ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
StrongSup ∀z∀y(∀x(x ≤ y → x ◦ z) → y ≤ z)
Fusion1E ∃xφx → ∃z Fu1(z, φx)

Second way:
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
WeakSup ∀x∀y(x 	 y → ∃z(z ≤ y ∧ x � z))
Fusion2E ∃xφx → ∃z Fu2(z, φx)
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Third way:
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
WeakSup ∀x∀y(x 	 y → ∃z(z ≤ y ∧ x � z))
Filtration ∀y∀z((y ≤ z ∧ Mub(z, φx)) → ∃x(φx ∧ y ◦ x))
MubE ∃xφx → ∃z Mub(z, φx)

Fourth way:
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
Fusion2UE ∃xφx → ∃!z Fu2(z, φx)

Fifth way:
Anti-symmetry ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)
Transitivity ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
MubE ∃xφx → ∃z Mub(z, φx)
Strong Complement
∀x(∃y y ≤ x →

∃z(z � x ∧
∀y((y � x → y ≤ z) ∧ (y � z → y ≤ x))))

NoZero ∃x∃y x = y → ¬ ∃x∀y x ≤ y
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